507 research outputs found

    A Fast Quartet Tree Heuristic for Hierarchical Clustering

    Get PDF
    The Minimum Quartet Tree Cost problem is to construct an optimal weight tree from the 3(n4)3{n \choose 4} weighted quartet topologies on nn objects, where optimality means that the summed weight of the embedded quartet topologies is optimal (so it can be the case that the optimal tree embeds all quartets as nonoptimal topologies). We present a Monte Carlo heuristic, based on randomized hill climbing, for approximating the optimal weight tree, given the quartet topology weights. The method repeatedly transforms a dendrogram, with all objects involved as leaves, achieving a monotonic approximation to the exact single globally optimal tree. The problem and the solution heuristic has been extensively used for general hierarchical clustering of nontree-like (non-phylogeny) data in various domains and across domains with heterogeneous data. We also present a greatly improved heuristic, reducing the running time by a factor of order a thousand to ten thousand. All this is implemented and available, as part of the CompLearn package. We compare performance and running time of the original and improved versions with those of UPGMA, BioNJ, and NJ, as implemented in the SplitsTree package on genomic data for which the latter are optimized. Keywords: Data and knowledge visualization, Pattern matching--Clustering--Algorithms/Similarity measures, Hierarchical clustering, Global optimization, Quartet tree, Randomized hill-climbing,Comment: LaTeX, 40 pages, 11 figures; this paper has substantial overlap with arXiv:cs/0606048 in cs.D

    Polyhedral geometry of Phylogenetic Rogue Taxa

    Get PDF
    It is well known among phylogeneticists that adding an extra taxon (e.g. species) to a data set can alter the structure of the optimal phylogenetic tree in surprising ways. However, little is known about this "rogue taxon" effect. In this paper we characterize the behavior of balanced minimum evolution (BME) phylogenetics on data sets of this type using tools from polyhedral geometry. First we show that for any distance matrix there exist distances to a "rogue taxon" such that the BME-optimal tree for the data set with the new taxon does not contain any nontrivial splits (bipartitions) of the optimal tree for the original data. Second, we prove a theorem which restricts the topology of BME-optimal trees for data sets of this type, thus showing that a rogue taxon cannot have an arbitrary effect on the optimal tree. Third, we construct polyhedral cones computationally which give complete answers for BME rogue taxon behavior when our original data fits a tree on four, five, and six taxa. We use these cones to derive sufficient conditions for rogue taxon behavior for four taxa, and to understand the frequency of the rogue taxon effect via simulation.Comment: In this version, we add quartet distances and fix Table 4

    A list of parameterized problems in bioinformatics

    Get PDF
    In this report we present a list of problems that originated in bionformatics. Our aim is to collect information on such problems that have been analyzed from the point of view of Parameterized Complexity. For every problem we give its definition and biological motivation together with known complexity results.Postprint (published version

    Frustrated spin -1/2 two-leg and three-leg antiferromagnetic Heisenberg ladders

    Full text link
    The goal of this project is to study the ground-state properties of frustrated spin-1/2 two- and three-leg Heisenberg ladders, and to investigate possible effects of diagonal couplings on spin gaps. The ground-state and the first-excited-state energies of these two systems are calculated systematically by using the density matrix renormalization group method. The ground state phase diagrams for these two systems are obtained. For the frustrated two-leg ladder, we found that the spin gap is insensitive to the change of the FM diagonal coupling constant. This is in agreement with experimental suggestions. For the frustrated three-leg ladder, we conclusively proved that introducing AF diagonal couplings can not change the gapless property of the ground state

    Festparameter-Algorithmen fuer die Konsens-Analyse Genomischer Daten

    Get PDF
    Fixed-parameter algorithms offer a constructive and powerful approach to efficiently obtain solutions for NP-hard problems combining two important goals: Fixed-parameter algorithms compute optimal solutions within provable time bounds despite the (almost inevitable) computational intractability of NP-hard problems. The essential idea is to identify one or more aspects of the input to a problem as the parameters, and to confine the combinatorial explosion of computational difficulty to a function of the parameters such that the costs are polynomial in the non-parameterized part of the input. This makes especially sense for parameters which have small values in applications. Fixed-parameter algorithms have become an established algorithmic tool in a variety of application areas, among them computational biology where small values for problem parameters are often observed. A number of design techniques for fixed-parameter algorithms have been proposed and bounded search trees are one of them. In computational biology, however, examples of bounded search tree algorithms have been, so far, rare. This thesis investigates the use of bounded search tree algorithms for consensus problems in the analysis of DNA and RNA data. More precisely, we investigate consensus problems in the contexts of sequence analysis, of quartet methods for phylogenetic reconstruction, of gene order analysis, and of RNA secondary structure comparison. In all cases, we present new efficient algorithms that incorporate the bounded search tree paradigm in novel ways. On our way, we also obtain results of parameterized hardness, showing that the respective problems are unlikely to allow for a fixed-parameter algorithm, and we introduce integer linear programs (ILP's) as a tool for classifying problems as fixed-parameter tractable, i.e., as having fixed-parameter algorithms. Most of our algorithms were implemented and tested on practical data.Festparameter-Algorithmen bieten einen konstruktiven Ansatz zur Loesung von kombinatorisch schwierigen, in der Regel NP-harten Problemen, der zwei Ziele beruecksichtigt: innerhalb von beweisbaren Laufzeitschranken werden optimale Ergebnisse berechnet. Die entscheidende Idee ist dabei, einen oder mehrere Aspekte der Problemeingabe als Parameter der Problems aufzufassen und die kombinatorische Explosion der algorithmischen Schwierigkeit auf diese Parameter zu beschraenken, so dass die Laufzeitkosten polynomiell in Bezug auf den nicht-parametrisierten Teil der Eingabe sind. Gibt es einen Festparameter-Algorithmus fuer ein kombinatorisches Problem, nennt man das Problem festparameter-handhabbar. Die Entwicklung von Festparameter-Algorithmen macht vor allem dann Sinn, wenn die betrachteten Parameter im Anwendungsfall nur kleine Werte annehmen. Festparameter-Algorithmen sind zu einem algorithmischen Standardwerkzeug in vielen Anwendungsbereichen geworden, unter anderem in der algorithmischen Biologie, wo in vielen Anwendungen kleine Parameterwerte beobachtet werden koennen. Zu den bekannten Techniken fuer den Entwurf von Festparameter-Algorithmen gehoeren unter anderem groessenbeschraenkte Suchbaeume. In der algorithmischen Biologie gibt es bislang nur wenige Beispiele fuer die Anwendung von groessenbeschraenkten Suchbaeumen. Diese Arbeit untersucht den Einsatz groessenbeschraenkter Suchbaeume fuer NP-harte Konsens-Probleme in der Analyse von DNS- und RNS-Daten. Wir betrachten Konsens-Probleme in der Analyse von DNS-Sequenzdaten, in der Analyse von sogenannten Quartettdaten zur Erstellung von phylogenetischen Hypothesen, in der Analyse von Daten ueber die Anordnung von Genen und beim Vergleich von RNS-Strukturdaten. In allen Faellen stellen wir neue effiziente Algorithmen vor, in denen das Paradigma der groessenbeschraenkten Suchbaeume auf neuartige Weise realisiert wird. Auf diesem Weg zeigen wir auch Ergebnisse parametrisierter Haerte, die zeigen, dass fuer die dabei betrachteten Probleme ein Festparameter-Algorithmus unwahrscheinlich ist. Ausserdem fuehren wir ganzzahliges lineares Programmieren als eine neue Technik ein, um die Festparameter-Handhabbarkeit eines Problems zu zeigen. Die Mehrzahl der hier vorgestellten Algorithmen wurde implementiert und auf Anwendungsdaten getestet

    Reconstructing phylogenies from noisy quartets in polynomial time with a high success probability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, quartet-based phylogeny reconstruction methods have received considerable attentions in the computational biology community. Traditionally, the accuracy of a phylogeny reconstruction method is measured by simulations on synthetic datasets with known "true" phylogenies, while little theoretical analysis has been done. In this paper, we present a new model-based approach to measuring the accuracy of a quartet-based phylogeny reconstruction method. Under this model, we propose three efficient algorithms to reconstruct the "true" phylogeny with a high success probability.</p> <p>Results</p> <p>The first algorithm can reconstruct the "true" phylogeny from the input quartet topology set without quartet errors in <it>O</it>(<it>n</it><sup>2</sup>) time by querying at most (<it>n </it>- 4) log(<it>n </it>- 1) quartet topologies, where <it>n </it>is the number of the taxa. When the input quartet topology set contains errors, the second algorithm can reconstruct the "true" phylogeny with a probability approximately 1 - <it>p </it>in <it>O</it>(<it>n</it><sup>4 </sup>log <it>n</it>) time, where <it>p </it>is the probability for a quartet topology being an error. This probability is improved by the third algorithm to approximately <inline-formula><m:math name="1748-7188-3-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:msup><m:mi>q</m:mi><m:mn>2</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mn>2</m:mn></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>4</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>16</m:mn></m:mrow></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>5</m:mn></m:msup></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqaIXaqmaeaacqaIXaqmcqGHRaWkcqWGXbqCdaahaaqabeaacqaIYaGmaaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaGaemyCae3aaWbaaeqabaGaeGinaqdaaiabgUcaRmaalaaabaGaeGymaedabaGaeGymaeJaeGOnaydaaiabdghaXnaaCaaabeqaaiabiwda1aaaaaaaaa@3D5A@</m:annotation></m:semantics></m:math></inline-formula>, where <inline-formula><m:math name="1748-7188-3-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mi>q</m:mi><m:mo>=</m:mo><m:mfrac><m:mi>p</m:mi><m:mrow><m:mn>1</m:mn><m:mo>−</m:mo><m:mi>p</m:mi></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemyCaeNaeyypa0tcfa4aaSaaaeaacqWGWbaCaeaacqaIXaqmcqGHsislcqWGWbaCaaaaaa@3391@</m:annotation></m:semantics></m:math></inline-formula>, with running time of <it>O</it>(<it>n</it><sup>5</sup>), which is at least 0.984 when <it>p </it>< 0.05.</p> <p>Conclusion</p> <p>The three proposed algorithms are mathematically guaranteed to reconstruct the "true" phylogeny with a high success probability. The experimental results showed that the third algorithm produced phylogenies with a higher probability than its aforementioned theoretical lower bound and outperformed some existing phylogeny reconstruction methods in both speed and accuracy.</p

    The development and application of metaheuristics for problems in graph theory: A computational study

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.It is known that graph theoretic models have extensive application to real-life discrete optimization problems. Many of these models are NP-hard and, as a result, exact methods may be impractical for large scale problem instances. Consequently, there is a great interest in developing e±cient approximate methods that yield near-optimal solutions in acceptable computational times. A class of such methods, known as metaheuristics, have been proposed with success. This thesis considers some recently proposed NP-hard combinatorial optimization problems formulated on graphs. In particular, the min- imum labelling spanning tree problem, the minimum labelling Steiner tree problem, and the minimum quartet tree cost problem, are inves- tigated. Several metaheuristics are proposed for each problem, from classical approximation algorithms to novel approaches. A compre- hensive computational investigation in which the proposed methods are compared with other algorithms recommended in the literature is reported. The results show that the proposed metaheuristics outper- form the algorithms recommended in the literature, obtaining optimal or near-optimal solutions in short computational running times. In addition, a thorough analysis of the implementation of these methods provide insights for the implementation of metaheuristic strategies for other graph theoretic problems
    corecore