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Abstract

In this report we present a list of problems that originated in Bionformatics. Our aim is
to collect information on such problems that have been analyzed from the point of view of
Parameterized Complexity. For every problem we give its definition and biological motiva-
tion together with known complexity results.

1 Introduction

The theory of NP-completeness seems to be one of the greatest achievements in Theoretical
Computer Science during the last 35 years. In particular, it offered a solid background for
characterising and investigating the “hardness” of combinatorial problems [GJ79]. However,
for practical purposes, such a theory seems to introduce a rather pessimistic viewpoint as the
majority of natural non-trivial combinatorial problems seems to be NP-hard and thus one cannot
expect that they admit an efficient (i.e. polynomial time) algorithmic solution. However, a most
optimistic point of view can be adopted if we take in mind that the NP-completeness concerns
only the worst case complexity of a combinatorial problem. In many real applications, the inputs
of a generally tractable problem may be structured or restricted in a way that makes them
tractable in practice. This motivated the idea of splitting the input of a combinatorial problem
into two parts: the main part and the parameterized part. The splitting should be done in a way
that the size of the parameterized part is “small” in the majority of the “real world” applications
while the main part is the one that includes elements of the problem that can be really big.
The hope in this splitting is that we may be able to design algorithms with complexities whose
super-polynomial part is exclusively depending on the “small” parameterized part. In other
words, when we fix the parameterized part to be of constant size then the problem becomes
tractable. If this is possible, then we may consider such a problem “tractable in practice” as it
is easy to solve it in most of the cases where we may require a solution. This idea motivated
what is now called Parameterized Complexity, a theory that during the last 16 years offered
a solid and attractive alternative for investigating the hardness of combinatorial problems for
from both algorithmic and complexity point of view.

Formally, a parameterized problem has as instances pairs (I,K) where I is the main part and
K is the parameterized part. We use the notation n = |I| and k = |K| for the sizes of I and
K respectively. The Parameterized Complexity settles the question of whether the problem is
solvable by an algorithm (we call it FPT-algorithm) of time complexity

f(k) · nO(1)

where f(k) is a (super-polynomial) function that does not depend on n. If such an algorithm
exists, we say that the parameterized problem belongs in the class FPT. In a series of fundamen-
tal papers (see [DF95a, ADF95, DF95b, DF93, DF92]), Downey and Fellows defined a series of
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complexity classes, namely the classes

W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT ] ⊆ W[P ]

and proposed special types of reductions such that hardness for some of the above classes makes
it rather impossible that a problem belongs in FPT (we stress that FPT ⊆ W[1]). The above
theoretical framework initiated the classification of several parameterized problems according to
their parameterized complexity. As it is expected in such a project, special attention has been
given to parameterizations of problems that emerge from practical applications where fast (or
“as fast as possible”) solutions where really wanted. Parameterized complexity offered insightful
results in a great variety of research areas like VLSI-design [FL92, FL88a, FL88b], Robot Motion
Planning [CW95], Data Bases [GSS02, DFT97, PY99], Logical Programming, [LP97] and others
(see also [Fel01, DFS99, DF99b, DF99a]). So far, the most complete list of parameterized
problems along with their classification according to their parameterized complexity is the
compendium of Marco Cesati [Ces01] including more than 200 problems reflecting the huge
amount of work that has been devoted on this theory during the last two decades.

Perhaps, the topic where Parameterized Complexity has been more extensively applied is bioin-
formatics. One of the first important steps in this direction was done 10 years ago in [BFH94]
where it was noticed that several computational problems in bioinformatics involve parameters
that in most of applications do not obtain big values. This provided a hope that their general
NP-hardness may not be an obstacle for an efficient solution when these parameters are small.
Currently, parameterized complexity is able to present results in a big variety of topics in biol-
ogy such as genome sequence alignment and reconstruction, biopolymer folding, and problems
in phylogeny and evolution. While a lot of problems where classified to be hard for some of the
classes of the parameterized complexity hierarchy, there were also considerably many problems
that have been classified in FPT. It is interesting to notice that there were cases where known
techniques in bioinformatics were proved to be nothing more than FPT-algorithms [DFS99].
Moreover, it seems that there are several algorithmic results on bioinformatics that may fit into
the framework of Parameterized Complexity while they where never presented as such. This
makes us believe that the encounter between bioinformatics and parameterized complexity has
more future than history. With this problem list we attempt a first classification of the existing
results. Our aim is double: first to make the parameterized complexity community more famil-
iar to the results and the challenges arising from bioinformatics and second, to invite researchers
from bioinformatics to adopt the tool of parameterization as a way to cope with the structural
hardness of the problems they deal with.

One of the most difficult tasks in the compilation of our problem list was to bridge the difference
in the way problems are presented in each of the two communities. In Parameterized Complexity
problems and solutions should be presented using str ict mathematical formalism. However,
in bionformatics, problems and solutions escape from the “ideal” world of theoreticians and
obtain more attributes of the real world. There were papers where it was hard to “transcript”
the given problem into a formal definition while it is apparent that what is presented is an
FPT-algorithm.

We present our list in five main sections. The first four are related to a bioinformatics concept,
however also the data and the computational problems hold similarity. The fifth one is devoted
to classical graph problems that also have motivations in Bioinformatics. We finish with a small
list of open problems.

The list of problems is accompanied with a glossary on terms on bioinformatics and two indices
of the listed problems, one alphabetic and one hierarchical (with respect to the levels of the
parameterized complexity hierarchy).
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2 Sequence Alignment

Biological relationships are obtained by different tools and models from sequence analysis. Se-
quence alignment is the assignment of residue-residue correspondence between biological se-
quences. Similarity is the observation or measurement of resemblance an difference, indepen-
dently of the source of resemblance. This is done through different quantitative measures of
string similarity.

We will use the following terminology: A string x is a substring of a string s if x appears in
contiguous positions in s. Conversely s is a supersting of x. A string x is a supersequence of a
string s if we can delete some characters in x in such a way that the remaining string is equal
to s. Conversely s is a subsequence of x.

2.1 Bounded Duplication Shortest Common Supersequence for Complete
p-Sequences

Problem Definition [FHKS98b]:

A string of symbols (or sequence) x ∈ Σ∗ is a p-string (p-sequence) if no symbol of Σ occurs
more than once in x.

x is a complete p-sequence if each symbol of the alphabet occurs exactly once in x.

A string x contains r duplication events if x is not a p-sequence, but removing exactly r symbols
from x result in a p-sequence

The duplication cost of a sequence x is defined as ‖x‖c =
∑

a∈Σ(na(x)−1)c(a), where, for a ∈ Σ,
na(x) denotes the number of occurrences of symbol a in x.

Instance: Given a set of complete p-sequences xi over an alphabet Σ of size n, a
positive integer r, and a cost function c : Σ → Z+

Parameter: r

Question: Is there a common supersequence x of duplication cost ‖x‖c ≤ r?

Biological Motivation [FHKS98b]:

The problem is the sequence analog of the same problem on trees, see problem 3.1

Complexity: NP-complete [FHKS98b].

Parameterized Complexity: FPT [FHKS98b].

2.2 Bounded Duplication Shortest Common Supersequence for p-Sequences

Problem Definition [FHKS98b]:

For the definition of p-sequence and duplication event see Problem 2.1.

Instance: Given an alphabet Σ with k-symbols, a family x1, . . . , xk of p-sequences
over Σ, such that each symbol of Σ occurs in at least one of the input sequences,
and a positive integer r.
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Parameter: k and r

Question: Is there a common supersequence x of length at most n + r?

Biological Motivation: See problem 2.1 for biological motivation.

Complexity: NP-complete [FHKS98b].

Parameterized Complexity: FPT, O(kr · n) [FHKS98b].

2.3 Closest String

Problem Definition :

The Hamming distance between two strings si and sj, both of length l, is given by dH(si, sj) =
{1 ≤ p ≤ l | si[p] 6= sj[p]}.

Instance: Given a collection of k strings s1, s2, . . . , sk, all of them with length L,
over an alphabet Σ and two non-negative integers d and k.

Parameters:

1. k

2. d

Question: Is there a string s of length L such that dH(s, si) ≤ d for all i = 1, . . . , k?

Biological Motivation [Gra03]:

Primers are short sequences of nucleotides which are designed such that the primer hybridizes
to a given DNA sequence (or to all of a given set of DNA sequences) in order to provide a
start point for DNA strand synthesis by polymerase chain reaction (PCR). The hybridization of
primers depends on complex thermodynamic rules, but it is largely determined by the number of
“mismatching” positions which should be as small as possible. Designing candidates for primers
is a task often done by biological experts using the output of multiple alignment programs which
is evaluated by hand.

A motif is a string that occurs approximately preserved, i.e., with changes in at most d positions
for a fixed integer d, as a substring in several DNA sequences. Motifs are candidates for
substrings of non-coding parts of the DNA sequence that have functions related to, e.g., gene
expression.

Given a collection of related sequences, a consensus sequence is a single sequence that best
represents the collection. A challenge associated with creating consensus sequences is sample
bias. For example, given a dataset of sequences of orthologous genes form many closely related
species and a few more distantly related ones, the resulting consensus sequence could be biased
towards sequences from the over-represented species group. One proposed approach to deal
with the bias is to create a consensus sequence by minimizing the maximum distance from any
sequence rather than minimizing the total distance [BDLPR97] and this task is carried out by
Closest String problem [LLM+03].
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Complexity: NP-complete even for binary alphabet [FL97, LLM+03].

Parameterized Complexity: FPT, when parameterized by d, O(kL + kd · dd) time [Gra03].
FPT, when parameterized by k [Gra03].

2.4 Closest Substring

Problem Definition [FGN02]:

By dH(s, s′i) we denote the Hamming distance between strings s and s′i, for a definition see
problem 2.3.

Instance: Given a collection of k strings s1, s2, . . . , sk over alphabet Σ, and two
non-negative integers d and L.

Parameters:

1. L, d and k

2. k

Question: Is there a string s of length L such that, for every i = 1, . . . , k, there is a
length-L substring s′i of si with dH(s, s′i) ≤ d? .

Biological Motivation [GHN02]:

A formal definition of the motif search problem leads to the Closest Substring problem.
These problems are of central importance for sequence analysis in computational molecular
biology. These problems have applications in fields such as genetic drug target identification or
signal finding.

Complexity: NP-complete [FGN02].

Parameterized Complexity:

W[1]-hard, when parameterized by the combination of L, d, and k, in case of unbounded alphabet
size, by reduction from Clique [FGN02].

W[1]-hard, when parameterized by the number k of input strings (even over a binary alphabet)
[FGN02].

2.5 Consensus Pattern

Problem Definition:

By dH we denote the Hamming distance for definition see problem 2.3.

Instance: Strings s1, s2, . . . , sk over alphabet Σ, and a non-negative integer d and L.

Parameters:

1. k
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2. d and L

Question: Is there a string s of length L, and, for every i = 1, . . . , k, a length-L
substring s′i of si such that

∑k
i=1 dH(s, s′i) ≤ d? (.

Biological Motivation [Gra03]:

Applications for the consensus word analysis of DNA, RNA, or protein sequences include locat-
ing binding sites and finding conserved regions in unaligned sequences for genetic drug target
identification, for designing genetic probes, and for universal PCR primer design. These prob-
lems can be regarded as various generalizations of the common substring problem, allowing
errors. This leads to Closest Substring and Consensus Pattern, where errors are mod-
eled by the (Hamming) distance parameter d.

Complexity: NP-complete [FGN02].

Parameterized Complexity:

W[1]-hardness, by reduction from Clique, results as for Closest Substring given unbounded
alphabet size [FGN02].

W[1]-hard, when parameterized by the number k of strings, for a binary alphabet [FGN02].

2.6 Distinguishing String Selection (DSS)

Problem Definition [GGN03]:

By dH(s, s′i) we denote the Hamming distance between strings s and s′i, for a definition see
problem 2.3.

Instance: Given a collection of k1 good strings s1, . . . , sk1
, a collection of k2 bad

strings s′1, . . . , s
′
k2

, all of them with L characters, and two positive integers d1 and
d2.

Parameter: d1 and d2

Question:

Is there a string s of length L for which

max
i=1,...,k1

dH(s, s′i) ≤ d1

and
min

j=1,...,k2

dH(s, s′j) ≥ L − d2?

Biological Motivation [LLM+03]: DSS problems have the potential to help out in drug target
selection. Given a dataset of sequences of orthologous genes from a group of closely related
pathogens, and a host (such as humans or livestock), the goal would be to find an essential
sequence that is more conserved in all or most of the pathogens but not as conserved in the hosts.
The protein encoded by this fragment could become a target for novel antibiotic development.
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Deng et al. [DLL+02] let all good strings be of same length L. The terminology “good” and
“bad” has its motivation in the application [LLM+99] of designing genetic markers to distinguish
the sequences of harmful germs (to which the markers should bind) from human sequences (to
which the markers should not bind) [GGN03].

Another application of DSS problems is with consensus sequences. Given a collection of related
sequences, a consensus sequence is a single sequence that best represents the collection. A
challenge associated with creating consensus sequences is sample bias. For example, given a
dataset of sequences of orthologous genes from many closely related species and a few more
distantly related ones, the resulting consensus sequence could be biased towards sequences from
the over-represented species group.

Finally, DSS problems have also applications in creating diagnostic probes for bacterial infection
and creating universal PCR primers.

Complexity: NP-hard [FL97, LLM+99].

Parameterized Complexity: FPT, for fixed alphabet, O((k1+k2)L·(max{d1+1, (d2+1)(|Σ|−1)})d1 )
time [Gra03].

2.7 Fixed Alphabet LongestCommon Subsequence

Problem Definition:

A string s is a subsequence of a string r if we can delete some characters in r such that the
remaining string is equal to s.

Instance: An alphabet Σ having fixed size; a set of k strings r1, . . . , rk over the
alphabet Σ, and a positive integer m.

Parameters:

1. k

2. k and m

Question: Is there a string s ∈ Σ∗, with length at least m, that is a subsequence of
each ri, for i = 1, . . . , k?

Biological Motivation:

The computational problem of finding the longest common subsequence (LCS) of a set of k strings
has been studied extensively over the last twenty years. This problem has many applications.
When k = 2, the longest common subsequence is a measure of the similarity of two strings and
is thus useful in molecular biology, pattern recognition, and text compression. The version of
longest common subsequence in which the number of strings is unrestricted is also useful in text
compression, and is a special case of the multiple sequence alignment and consensus subsequence
discovery problems in molecular biology [DF99a].

Complexity: NP-complete [Mai].

Parameterized Complexity:
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W[1]-hard, when parameterized by k, by a reduction from Partitioned Clique [Pie03].

FPT, when parameterized by k and m (by the trivial algorithm that generates all |Σ|m possible
subsequence strings and checks them against each ri) [Ces04].

Comments: See also Problem 2.10, Longest Common Subsequence (LCS).

2.8 Fixed Alphabet Shortest Common Supersequence

Problem Definition [Ces04]:

A string s is a supersequence of a string r if we can delete some characters in s such that the
remaining string is equal to r .

Instance: An alphabet Σ having fixed size, a set of strings {r1, . . . , rk} over the
alphabet Σ, and a positive integer λ.

Parameters:

1. k

2. λ

Question: Does there exist a string s ∈ Σ∗ of length at most λ such that s is a
supersequence of each string ri, 1 ≤ i ≤ k?

Biological Motivation [BDF+]:

Current technology allows only relatively short regions of DNA or protein to be sequenced;
hence, the base sequences of longer regions must be determined by breaking such regions into
fragments that can be sequenced and then reconstructing the region from these fragments.
In much the same way as the LCS problem underlies various versions of multiple sequence
alignments and consensus. This problem underlies sequence reconstruction [BDF+].

Complexity: NP-complete when |Σ| ≥ 2 [GMS80].

Parameterized Complexity:

W[1]-hard, when parameterized by k, by a reduction from Partitioned Clique [Pie03].

FPT, when parameterized by λ [FHK].

Comments: See also Problem 2.13, Shortest Common Supersequence (SCS).

2.9 Longest Arc Preserving Common Subsequence (LAPCS)

Problem Definition [Eva99, Gra03]:

A basic sequence is the sequence of base symbols that form the fundamental, unannotated
sequence. Mathematically, an alphabet is a set of symbols, generally represented by

∑

.

Given a sequence S, let P be the set of positions in the sequence. If S has length n then
P = {1, . . . , n}. An arc is a directed edge (p1, p2) ∈ P ×P . An arc can be viewed as a link that
connects two symbols that are part of the same sequence. The order of the pair (p1, p2) should
be consistent with the sequence order, so p1 < p2.
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A sequence y is a common subsequence of the sequences S1 and S2 if y is a subsequence of both
S1 and S2.

For a sequence S of length n, an arc annotation A of S is a set of pairs of numbers from
{1, 2, . . . , n}. Each pair (i, j) connects the two bases S[i] and S[j] at positions i and j in S by
an arc .

Given an arc annotation A of a sequence S, we can consider several measures

• s, the maximum number of levels of nested arcs.

• k, the crossing or cutwidth of the arc structure, that is the maximum number of arcs
across a cut between consecutive positions.

• d, the bandwidth of arc structure, that is the maximum (j − i) for any arc (i, j) in A.

All those measures can used as parameters restricting the input. We use the abbreviations
cross and nest for arc annotations with bounded crossings or nested arcs.

Instance: Given a target length l, and a pair of arc annotated sequences (S1, A1)
and (S2, A2).

Parameters:

1. l, length of desired subsequence.

2. s, levels of nested arcs.

3. k, cutwidth of arc structure.

4. d, bandwidth of arc structure.

Question: Finding a common subsequence of length l which preserves induced arcs.

Observe that the length of desired subsequence l is independent of the other parameters. How-
ever the others are related; s = k, and k ≤ d for all restriction levels except when unlimited.

The term “plain” refers to sequences without arcs, “crossing” denotes arc structures where no
two arcs share an endpoint, and “unlimited” refers to a completely unrestricted arc structure.
With these terms, various versions of the LAPCS problem LAPCS(type1, type2) refers to
the case in which input sequence S1 has an arc structure of type1 and S2 has an arc structure
of type2.

Biological Motivation [Eva99]:

Molecular biologists use algorithms that compare sequences that represent genetic and pro-
tein molecules. However, most of these algorithms, operate on the basic sequence and do not
incorporate the additional information that is often known about the molecule and its pieces.

The descriptive text that accompanies a sequence in a database record is called an annotation.
An annotation scheme is a system of representing additional information (beyond that found
in the basic sequence) in a way that relates it to the basic sequence. An individual annotation
for a specific sequence is its associated additional information, as represented according to the
chosen annotation scheme.

The basic annotation schemes include adding colors and arcs to the sequence, and these arcs
can be used to link sequence symbols or colored substrings to indicate molecular bonds or
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other relationships. Adding these annotations to sequence analysis problems such as sequence
alignment or finding the longest common subsequence can make the problem more complex,
often depending on the complexity of the annotation scheme.

The arcs represent a few types of information that go naturally with these restrictions, and
produce five different levels of allowed arc structure for the problem

Complexity: NP-complete [Gra03].

Parameterized Complexity:

FPT, LAPCS(cross, cross), when parameterized by cutwidth k, O(9knm) time [Eva99].

FPT, LAPCS(cross, cross), when parameterized by bandwidth d, O(9dnm) time [Eva99].

FPT, LAPCS(nested, nested), when parameterized by nesting depth s, with modifications
to take advantage of non-crossing arcs, O(s24snm) time [Eva99].

FPT, LAPCS(nest, nest), when parameterized by bandwidth d, O(d24dnm) time [Eva99].

2.10 Longest Common Subsequence (LCS)

Problem Definition:

Instance: An alphabet Σ, a set of k strings X1, . . . ,Xk over the alphabet Σ, and a
positive integer m.

Parameters:

1. k (LCS-1).

2. m (LCS-2).

3. k, m (LCS-3).

4. k, |Σ| (LCS-4).

Question: Is there a string X ∈ Σ∗ of length at least m such that it is a subsequence
of Xi, for i = 1, . . . , k?

Biological Motivation: See problem 2.7 for biological motivation.

Complexity: NP-complete [Mai].

Parameterized Complexity:

W[t]−hard for all t for LCS-1 [BDFW95], by a reduction from Monotone Weighted t-
Normalized Satisfiability [BDFW95, BDFW94, DF99a]).

W[2]−hard for LCS-2 but in W[P ] [BDFW95], membership is easy; hardness: by reduction from
Dominating Set [BDFW95, DF99a]; in FPT if |Σ| is a parameter, by the trivial algorithm
that generates all |Σ|m possible subsequence strings and checks them against each ri.

W [1]−complete for LCS-3 [BDFW95], membership: by reduction to Weighted q-CNF Sat-
isfiability by [BDFW95, BDFW94, DF99a]; hardness: by reduction from Clique [BDFW95,
BDFW94, DF99a].
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W [t]−hard for all t for LCS-4, by reduction from LCS-1 to LCS-4 [BDF+, BDFW94]. The
reduction required the size of Σ to grow as a function of the parameter.

Comments: See also 2.7 problem, Fixed Alphabet Longest Common Subsequence.

2.11 k -Mismatch

Problem Definition [Gra03]:

By dH(s, s′i) we denote the Hamming distance between strings s and s′i, for a definition see
problem 2.3.

Let s(p, L) denote the length-L substring of a given string s starting at position p.

Instance: Given m strings s1, s2, . . . , sm of length n, and two integers L and k.

Parameter: k

Question: Is there a string s of length L and a position p with 1 ≤ p ≤ n − L + 1,
such that dH(s, si(p, L)) ≤ k for all i = 1, . . . ,m?.

Biological Motivation:

See problem 2.3 for biological motivation.

Complexity: NP-hard [FL97, LLM+99].

Parameterized Complexity: FPT, O(mL + (n − L)mk · kk) time [Gra03].

2.12 Modified Distinguishing Substring Selection (MDSSS)

Problem Definition:

By dH we denote the Hamming distance for definition see problem 2.3.

Instance: Given two sets of strings of length at least L over Σ = {0, 1}, Sg =
{s1, . . . , skg

} and Sb = {s′1, . . . ..., s′kb
}, and two non-negative integers dg and db.

Parameter: dg and db

Question: Is there a length-L string s over Σ such that, in every si ∈ Sg, for every
length-L substring ti of s1, dH(s, ti) ≥ dg; and that, every s′i ∈ Sb has at least one
length-L substrings t′i with dH(s, t′i) ≤ db?

Biological Motivation:

See problem 2.6 for biological motivation. Recall that Sg represent a set of god strings while Sb

represents a set of bad strings.

Complexity: NP-hard [FL97, LLM+99].

Parameterized Complexity: FPT, O(L · kg + ((d′g)
2kg + N

√
L log L) · (d′g)

d′g ) time where N =
∑

s′i∈Sb
|s′i| is the total size of the bad strings [GGN03].

Comments: See problem 2.6 (see also [GGN03]).
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2.13 Shortest Common Supersequence (SCS)

Problem Definition:

Instance: An alphabet Σ, a set of k strings {r1, . . . , rk} formed over alphabet Σ, and
a positive integer λ.

Parameters:

1. k, |Σ|
2. λ

Question: Does there exist a string s ∈ Σ∗ of length at most λ such that s is a
supersequence of each string ri, 1 ≤ i ≤ k?

Biological Motivation:

See problem 2.8 for biological motivation.

Complexity: NP-complete [Mai].

Parameterized Complexity:

W[t]-hard for all t, when parameterized by k, |Σ| [FHK, Hal].

FPT, when parameterized by λ [Hal96].

Comments:

See also Problem 2.8, Fixed Alphabet Shortest Common Supersequence.

2.14 Shortest Common Supersequence for p-Sequences

Problem Definition:

For the definition of p-sequence see problem 2.1.

Instance: A collection of k p-sequences, x1, . . . , xk, and a positive integer M .

Parameter: k

Question: Is there a sequence x, with |x| ≤ M such that xi is a subsequence of x,
for i = 1, . . . , k?

Biological Motivation:

See problem 2.8 for biological motivation.

Complexity: NP-complete [FHKS98b].

Parameterized Complexity: W[1]-hard [FHKS98a], by a reduction from the Clique problem
[FHKS98b].
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3 Evolution and Phylogeny

Biological nomenclature is based on the idea that living things are divided into units called
species, groups of similar organisms with a common gene pool. With the discovery of evolution
it emerged that the system largely reflects biological ancestry, so that the question of which
similarities truly reflect common ancestry must be faced. Sequence analysis gives the most
unambiguous evidence for the relationships among species.

Computational models measuring the genetic distance between two species can be used in the
construction of tree of evolutionary history, or—if such a tree is known through other means—in
estimating the rate of genomic evolution. These measures are generally based on a hypothesized
set of transformations that can alter a genome; the distance between the genomes of two species
is then the minimum number of these steps necessary to transform one into the other.

Homology is the observation or measurement of resemblance an difference, due to evolution.

Phylogeny or phylogenetics is the classification of species and organisms according to their evolu-
tionary relationships. In molecular phylogenetics, this classifications is based on genomic data.
The single units being compared, usually species, are referred to as taxa. Given a set of taxa,
a commonly used model for their evolutionary relationship is a tree called phylogenetic tree in
which the leaves are in one-to-one correspondence to the taxa and in which inner nodes

An X-tree is a tree (rooted or not) in which the leaves are labeled from X.

A Phylogenetic tree or p-tree is a rooted tree where the leaves are labeled from a set of labels
X and where no symbol in X is used more than once as a label

We say that a p-tree Z is a supertree of a p-tree T if X is contained in Y by a topological
containment that respects ancestry with label isomorphisms at the leaves.

3.1 Bounded Duplication Smallest Common Supertree for Binary p-Trees

Problem Definition [FHKS98b]:

A tree T contains r duplication events if T is not a p-tree but the exactly r leaves must be
removed which result in a tree homeomorphic to a p-tree.

Instance: A family of k complete binary p-trees, T1, . . . , Tk with leaf label set Σ,
|Σ| = n, and a positive integer r representing the number of duplication events.

Parameter: k and r

Question: Is there a binary Σ-tree T , such that T is a supertree of all the Ti, and
contains at most r duplication events?

Biological Motivation [FHKS98b]:

When trying to resolve the species tree for a set of n taxa, one typically creates a set of k gene
trees. It is not always the case that the gene trees agree. One such reason is due to paralogous
duplications of genes followed by subsequent loss of genes. This model implicitly makes use of
trees with repeated leaf labels. For problems about sequences, it is usually assumed that the
sequences of interest will contain occurrences of the same symbol many times. But there are
some applications where attention may be restricted to sequences x where any symbol occurring
in x occurs at most once.
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This definition is reasonable for applications in the study of gene duplication events in the sense
that both k and r may be small and the input trees complete when complete sequence data is
available for all of the species under consideration.

Complexity: NP-complete [FHKS98b].

Parameterized Complexity: FPT, [FHKS98b].

3.2 Compatibility of Unrooted Phylogenetic Trees

Problem Definition [SS03]:

An unrooted phylogenetic tree T is an X-tree having no vertices of degree two.

A tree T displays another tree T ′ if

Instance: Given a collection of unrooted phylogenetic trees T1, T2, . . . , Tk.

Parameter: k.

Question: Does there exist an unrooted phylogenetic tree T that simultaneously
displays each tree Ti, for 1 ≤ i ≤ k?

Biological Motivation [BL04]:

This problem was first discussed by Gordon in [Gor86], who introduced the notion of subtrees
as samples of the true evolutionary tree, i.e., given a collection of phylogenetic trees for different
sets of species, can we find a ‘super’ tree such that all the input trees are restrictions, or samples,
of the larger tree.

Complexity: NP-hard [Ste92].

Parameterized Complexity: FPT, O(nf(k)) time [BL04].

3.3 Gene Duplication

Problem Definition:

Gene trees and species trees are rooted, binary, and leaf labeled. T = (V,E,L) denotes a gene
or species tree where V is the vertex set, E is the edge set, and L ⊆ V is the leaf-labeling. For
a vertex u ∈ V , Tu denotes the subtree of T rooted at u. The leafset L of T is denoted by L(T ),
and the leafset of a subtree Tu is denoted by L(u) instead of L(Tu).

The root of each tree T has a left and right subtree, rooted by the two kids of the root root(T )
and denoted by Tl and Tr.

For trees T = (V1, E1, L1) and S = (V2, E2, L2), given a vertex u ∈ V1 let lcaT2
(L(v)) be the

least common ancestor of all the labels in L(v) in tree T2.

Let G = (VG, EG, L) be a gene tree and S = (VS , ES , L′), L ⊆ L′ be a species tree. A mapping
M of gene tree G into a species tree S specifies two functions locG,S and eventG,S :

• The function locG,S : VG 7→ VS associate each vertex in G with a vertex in S.
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• The function eventG,S : VG 7→ {dup, spec} associates to each vertex in G an event, indi-
cating whether the event in G corresponds to a duplication or a speciation event.

Those function as defined as follows: for each u ∈ VG − L,

loc(u) = lcaS(L(u)),

event(u) =

{

spec if locG,S(u′) 6= locG,S(u), for all u′ where u′ is a kid of u in G,
dup otherwise.

The quantity cost(G,S) = |{u|u ∈ VG − L, eventG,S(u) = dup}| is the minimum number of
gene-duplication events necessary to rectify the gene tree G with the species tree S,

For given G1, G2, . . . , Gk, and S let cost(G1, G2, . . . , Gk, S) =

k
∑

i=1

cost(Gi, S).

Let |L| = n.

Instance: A collection of k gene trees G1, . . . , Gk over the leaf set L, and a positive
integer c.

Parameter: c

Question: Does there exist a species tree S with cost(G1, . . . , Gk, S) ≤ c?

Biological Motivation [Ste99]:

When trying to resolve the tree of life one usually wants to compute the phylogenetic relation-
ships between the organisms based on the data provided by the DNA or protein sequences of
families of homologous genes.

Taxa is a taxonomic group of any rank, including all the subordinate groups. Any group of
organisms, populations, or taxa considered to be sufficiently distinct from other such groups to
be treated as a separate unit.

A species tree or evolutionary tree for a given set of taxa is a complete rooted binary tree built
over the set of taxa representing the phylogenetic relationships between the taxa.

The Gene Duplication is the problem of computing the optimal species tree for a given set
of gene trees under the Gene-Duplication Model. That is for a set of taxa given by a set of
possibly contradictory gene trees. Several models for attacking the problem have appeared in
the literature including Problem 3.4, the Maximum Agreement Subtree (MAST).

Complexity: NP-complete [Ste99].

Parameterized Complexity: FPT, O(4k · n3 · m2) time [Ste99].

3.4 k -Maximum Agreement Subtree (MAST)

Problem Definition:

Instance: A set of rooted trees T1, . . . , Tr (r ≥ 3) with the leaf set of each Ti labeled
1 : 1 with a set of species X, and a positive integer k.
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Parameter: k

Question: Is there a subset S ⊆ X of size at most k such that Ti restricted to the
leaf set X ′ = X − S is the same (up to label-preserving isomorphism and ignoring
vertices of degree 2) for i = 1, . . . , r?

Biological Motivation [CCH+]:

The MAST problem arises naturally in biology and linguistics as a measure of consistency
between two evolutionary trees over species or languages, respectively. It is often difficult to
determine the true phylogeny for a set of taxa, and one way to gain confidence in a particular
tree is to have different lines of evidence supporting that tree. In the biological taxa case, one
may construct trees from different parts of the DNA of species. These are known as gene trees.
For many reasons, these trees need not entirely agree, and so one is left with the task of finding
a consensus of the various gene trees. The Maximum Agreement Subtree is one method of
arriving at such a consensus.

Therefore, the parameter k is the number of species to exclude from analysis [AGN01].

Complexity: NP-complete [DFS99].

Parameterized Complexity: FPT, O(2.270k + rn3) time [AGN01].

3.5 Minimum Quartet Inconsistency (MQI)

Problem Definition [GN01]:

Let S be a set of labels an T and p-tree on S. A quartet is a size four subset {a, b, c, d} of S,
and the topology for {a, b, c, d} induced by T is the four leaf subtree of T induced by {a, b, c, d}.
The three possible quartet topologies for {a, b, c, d} are [ab|cd], [ac|bd], and [ad|bc], the fourth
possible topology would be the star topology, which is not considered here because it is not
binary [GN01].

Instance: A set S of n taxa and a set of
(

n
4

)

quartet topologies, such that there is
exactly one topology for every quartet set in QS , and a positive integer k.

Parameter: k

Question: Is there an evolutionary tree T where the leaves are bijectively labeled
by the elements from S such that the set of quartet topologies induced by T differs
from QS in at most k quartet topologies?

Biological Motivation:

An application of Minimum Quartet Inconsistency problem in biology is the reconstruction
of evolutionary tree from biological data between quartet paradigm [VJLW02].

Quartet methods infer the evolutionary tree only for four taxa, called a quartet. Once having
determined the evolutionary tree for every quartet of taxa, they try to combine these evolution-
ary trees involving four taxa, called quartet topologies, in order to obtain a tree containing all
taxa [Gra03].

Complexity: NP-complete [GN01].
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Parameterized Complexity: FPT, O(4k · n + n4) time [GN01].

3.6 Perfect Path Phylogeny Haplotyping with Missing Data ({0, 1, 2, ?}-
PPPH)

Problem Definition:

A genotype is a string over an alphabet {0, 1, 2}. A genotype matrix is a matrix whose rows are
genotypes. We say that a genotype matrix A admits a perfect phylogeny or is pp-realizable if
there exists a labeled rooted tree T , called perfect phylogeny such that:

1. Every edge of T is labeled by at least one column of A.

2. Each column of A labels exactly one edge of T .

3. For each row r of A there are two nodes in T labeled r′ and r′′

4. For every row r of A the set of columns with value 2 in this row forms a path p in T
connecting r′ and r′′ and the set of columns with value 1 in row r forms a path from the
root of T to the top-most node on the path p.

A genotype matrix with ?-entries is a genotype matrix in which we substitute some of its entries
with question marks (the ?-entries). A genotype matrix A with ?-entries is pp-realizable if
we can replace all its question marks with values from {0, 1, 2} so that the resulting genotype
matrix admits a perfect phylogeny. If additionally this perfect phylogeny tree is a path, then
we say that A is perfect path phylogeny realizable, ppp-realizable for short.

Instance: A n × m genotype matrix A with k ?-entries.

Parameter: k

Question: Is A ppp-realizable?

Biological Motivation [GNST04, Gus02]:

Haplotyping via perfect phylogeny is a method for haplotype inference where it is assumed that
the (unknown) haplotypes underlying the (observed) genotype data can be arranged in a genetic
tree in which each haplotype results from an ancestor haplotype via mutations. The perfect
phylogeny approach is popular due to its applicability to real haplotype inference problems
and its theoretical elegance. It was introduced by Gusfield [Gus02] and received considerable
attention which resulted, among others, in quadratic-time algorithms for the case of complete
and error-free-input data [VDGS03, EHK02]. In the special case where perfect path phylogenies
are sought, even a linear time algorithm is known [GNST04].

A detailed biological justification for considering perfect phylogenies and for requiring the above
properties for the tree T can be found in [GNST04, Gus02].

Complexity: NP-complete [GNST04].

Parameterized Complexity: FPT, in O(4km3n + 3O(k36kk!)n2) time [GNT04].
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3.7 Perfect Phylogeny

Problem Definition:

Instance: A set C = {1, . . . ,m} of characters; for each c ∈ C, a set Ac = {1, . . . , rc}
of states; and a set S ⊆ A1× . . .×Am where |S| = n (S represents a set of n species).

Parameters:

1. r = maxc∈C rc

2. r = maxc∈C rc,m

Question: Is there a tree T with the properties:

1. S ⊆ V (T ) ⊆ A1 × . . . × Am.

2. Every leaf in T is in S.

3. For each c ∈ C and each j ∈ Ac, the set of vectors v ∈ V (T ) such that vc = j
induces a subtree of T ?

Biological Motivation [AFB96, VLM]:

Infer the evolutionary history of a set of species is a fundamental problem in biology. Each
of such that set of species is specified by the set of traits of characters that exhibits. All
information about evolutionary history can be conveniently represented by an evolutionary tree
or phylogenetic tree, and often referred as a phylogeny.

Complexity: NP-complete [BFW92, Ste92].

Parameterized Complexity:

FPT, when parameterized by r, O(23r(nm3 + m4)) time [AFB94].

FPT, when parameterized by r and m, O((r − n/m)mrnm) time [AFB96].

Comments:

This problem is also known as the Character Compatibility Problem and it is also related
with problem 5.9, Triangulating k-Colored Graphs.

3.8 Perfect Phylogeny plus k columns

Problem Definition:

For the definitions of genotype matrix and perfect phylogeny (PP) see Problem 3.6

Instance: An n × m genotype matrix M and an integer k.

Parameter: k

Question: Is it possible to delete at most k columns from M in such a way that the
resulting matrix has a perfect phylogeny?
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Biological Motivation [Dam04]:

Perfect phylogeny is a fundamental structure in computational biology, as it describes evolu-
tionary histories in the case that every position is affected by a mutation at most once. The
positions can be pieces of DNA, but also features of phenotypes. The notion of PP can be
generalized to more than two characters. Then the condition is that every mutation creates a
new character (that never occurred before) at the affected position .

Complexity: NP-complete [BFW92].

Parameterized Complexity: FPT, O(k2nm + k22k) time [Dam04].

3.9 Perfect Phylogeny plus k rows

Problem Definition:

For the definitions of genotype matrix and perfect phylogeny (PP) see Problem 3.6

Instance: An n × m genotype matrix M and an integer k.

Parameter: k

Question: Is it possible to delete at most k rows from M in such a way that the
resulting matrix has a perfect phylogeny?

Biological Motivation:

See Problem 3.8 for biological motivation.

Complexity: NP-complete [BFW92].

Parameterized Complexity: FPT, O(3knm) time [Dam04].

3.10 Perfect Phylogeny with k errors

Problem Definition:

For the definitions of genotype matrix and perfect phylogeny (PP) see Problem 3.6

Instance: An n × m binary genotype matrix M and an integer k.

Parameter: k

Question: Is it possible to change a set of at most k bits in M , so that it has a
perfect phylogeny.

Biological Motivation:

See problem 3.8 for biological motivation.

Complexity: NP-complete [BFW92].

Parameterized Complexity: FPT, O(k6knm) time [Dam04].
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3.11 Smallest Common Supertree for p-trees

Problem Definition [FHKS98b]:

An rl-tree: It is a rooted tree with leaves labeled from a set X, where labels may be repeated.

Instance: A collection of k binary p-trees T1, . . . , Tk and a positive integer m.

Parameter: k

Question: Is there an rl-tree T , with |T | ≤ m such that any Ti is contained in T
by a topological containment that respects ancestry with label isomorphism at the
leaves, for any i = 1, . . . , k?

Biological Motivation [FHKS98b]:

In computational biology the question arises how to resolve the species tree for a given set of
trees such that the number of paralogous duplications is minimized.

Complexity: NP-complete [FHKS98b].

Parameterized Complexity: W[1]-hard, by a reduction from the Clique problem [FHKS98b].

4 Genome rearrangement

The genome rearrangement field provides some of the currently most popular measures in phy-
logenetic studies for related species.

4.1 Breakpoint Median

Problem Definition [GN02]:

Given a set S = {1, . . . , n}, an ordering π on S is a permutation on S. Every ordering is
extended by two special elements namely s, marking the start, and t, marking the end, and the
ordering π is written as 〈s π(1) π(2) . . . π(n) t〉. Then Ss is S ∪{s} (St and Ss,t, analogously) .

An ordering π is signed iff every π(x), x ∈ S, is equipped with a sign {+,−}, denoting the
“orientation” of the element, such that π(x) can be, for y ∈ S, a “positive” element +y (or, only
y), having left-to-right orientation, or a “negative” element −y, having right-to-left orientation.
Note that a signed ordering contains either y or −y, but not both at the same time. The special
elements s and t are always unsigned. We write S± for the set {−1, 1,−2, 2, . . . ,−n, n} and S±

s

for S± ∪ {s} (S±
t and S±

s,t analogously).

We use succπ(x), for signed ordering π and x ∈ Ss, to denote the succesor y ∈ S±
s,t of element

x in π, which is defined w.r.t. x’s direction: For an element x ∈ G occurring positively in π,
the successor is the element following x. An x ∈ G occurring negatively, however, has “reverse”
orientation; hence, from x’s point of view, its successor is the “reverse version” of the element
preceding x.

Given two signed orderings π1 and π2, both over S, we call a pair (x, y), x ∈ S±
s and y ∈ S±

t ,
a breakpoint of π1 w.r.t. π2, if
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1. x = s or π1(l) = x for some l ∈ S, and

2. succπ1
(x) = y and succπ2

(x) 6= y

Finally, define the breakpoint distance dbp between two signed orderings as follows: dbp(π1, π2) =
|{(x, y)|x, y ∈ S±

s,t, x, y is breakpoint of π1 w.r.t. π2}|.
Observe that, due to symmetry, dbp(π1, π2) = dbp(π2, π1).

Instance: Given m signed orderings π1, π2, ..., πm on the set S = {1, . . . , n}, and a
positive integer k.

Parameter: k

Question: Is there a signed ordering π such that
∑m

i=1 dbp(πi, π) ≤ k?

Biological Motivation [GN02]:

With breakpoint distance, the genome rearrangement field delivered one of the currently most
popular measures in phylogenetic studies for related species. Here, breakpoint median, whose
genomes are represented as signed orderings, is the core basic problem.

Complexity: NP-complete [PS].

Parameterized Complexity: FPT, O(2.15k · mn) time [GN02].

4.2 Sorting by Reversals

Problem Definition [HP96]:

A reversal ρ = ρ(i, j) on a permutation π = π1 . . . πi−1πi . . . πjπj+1 . . . πn reverses the order of
elements πi . . . πj and transforms π into permutation π · ρ = π1 . . . πi−1πj . . . πiπj+1 . . . πn. The
reversal distance d(π) is defined as the minimum number of reversals ρ1, . . . , ρt to transform π
into the identity permutation.

Let i ∼ j if |i− j| = 1. Extend a permutation π = π1 . . . πn by adding π0 = 0 and πn+1 = n+1.
We call a pair of consecutive elements πi and πi+1, 0 ≤ i ≤ n, of π an adjacency if πi ∼ πi+1, and
a breakpoint if πi � πi+1. Define a block of π as an interval πi . . . πj containing no breakpoints.
Define a strip of π as a maximal block. A strip of one element is called a singleton.

Instance: Given a permutation π of {1, 2, . . . , n} with k singletons.

Parameter: k

Question: Does there exist at most k reversals needed to transform π into the
identity permutation?

Biological Motivation [HP96]:

Studies of genomes evolving by rearrangements lead to combinatorial problem of sorting permu-
tation by reversals. Physical maps usually do not provide information about directions of genes
and, therefore lead to representation of a genome as an unsigned permutation π. Biologists
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implicitly try to derive a signed permutation from this representation by assigning a positive
(negative) sign to increasing (decreasing) strips of π. Biologists have to choose the desired
degree of resolution of the constructed physical maps. Low-resolution physical maps usually
contain many singletons (strips of size one) and, as a result, rearrangement scenarios for such
maps are hard to analyze.

O(log n) singletons is the desired trade-off of resolution for cross-hybridization physical map-
ping in molecular evolution studies. If the number of singletons is large, a biologist might
choose additional experiments (i.e. sequencing of some areas) to resolve the ambiguities in gene
directions.

Complexity: NP-hard [KS93].

Parameterized Complexity: FPT, O(2kn3 + n4) time [HP96].

4.3 Syntenic Distance

Problem Definition [LN02]:

In this model, a gene is represented by a subset of a set of n characters and a genome is given
by k such subsets.

A genome can be transformed by any of the following set operations:

• a fusion of S and T is the replacement of (s, T ) by U , where U = S ∪ T .

• in a fission a set U is replace by to non-empty sets (S, T ) where U = S ∪ T .

• a translocation of a pair of sets (S, T ) replaces the pair for another pair (S′, T ′), where
S ∪ T = S′ ∪ T ′.

The syntenic distance d(S1,S2) between two genomes S1 and S2 is the minimum number of
fusions, fissions, and translocations required to transform S1 into S2, ignoring all genes that
appear in only one of the two genomes.

Instance: Given two genomes S1 = S11
, . . . , S1n and S2 = S21

, . . . , S2m .

Parameter: k

Question: Does there exist d(S1,S2) ≤ k?

Biological Motivation [AGN01] [LN02]:

When comparing genomes containing multiple chromosomes, one must consider transformations
acting between chromosomes in addition to those acting within a single chromosome. These
transformations include fissions, in which one chromosome splits into two, fusions, in which
two chromosomes merge into one, and translocations, in which two chromosomes exchange
contiguous blocks (usually prefixes or suffixes of genes) [LN02].

In this model, a genome is given by k subsets of a set of n characters (genes). These subsets
represent the chromosomes and the characters in a set represent the genes located on the
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chromosome. The mutation events in this model are the union of two chromosomes sets, the
splitting of a chromosome set into two sets, and the exchange of genes between two sets.

Two genes are syntenic if they appear in the same chromosome. The syntenic distance be-
tween two genomes is the minimum number of fusions, fissions, and translocations required to
transform the common genes in one chromosome to the genes in the other.

Complexity: NP-complete [LN02, DJK+97].

Parameterized Complexity: FPT, O(nm + 2O(k log k)) time [LN02].

5 Assembling DNA fragments

The problem of DNA assembly became very important for sequencing very large genomes such
as the human genome. The methods consists sequencing relatively small fragments and then
seek for a suitable method to assemble those fragments. The problem of assembly becomes
complex because that include, orientation, repeats, overlaps, and sequencing errors.

It is possible to construct information based in overlaps and model those overlaps by means of
graphs and completion problems.

A graph G = (V,E) is a supergraph of the graph G′ = (V ′, E′) if V = V ′ and E ⊇ E′.

A k-coloring of a graph is an assignment of vertices to a set of k-colors such that the endpoints
of an edge always get different colors.

5.1 Colored Proper Interval Graph Completion

Problem Definition:

A graph G = (V,E) is an interval graph if . . .

Instance: A graph G = (V,E), and a k-coloring of G.

Parameter: k

Question: Is there a supergraph G′ of G which is a proper interval graph and has
clique size at most k, and no edge in G′ connects two vertices in G with the same
color?

Biological Motivation [GGK+95]:

Suppose a set of clones is obtained by complete digestion of the genome by one or more restriction
enzymes. Since the digestion is complete, in such a set, no two clones will overlap. Consider
a Physical Mapping project in which the set of clones consists of equal length clones, and it is
composed of several subsets of clones, where each subset is obtained by a complete digest with a
different set of enzymes. One would like to reconstruct the map from clone overlap data, in the
presence of “false negative” errors, i.e., some overlaps which are not detected experimentally.
One wishes to construct a map which is as close as possible to our input data, i.e., it assumes
as few errors as possible.
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Complexity: NP-complete [AS99, GGK+95].

NP-complete for colored caterpillars of hair length 2 and in P for caterpillars of hair length 1
or 0, by reduction from the Multiprocessor Scheduling problem [AS99].

Parameterized Complexity: W[1]-hard, by a parameterized reduction from Independent Set
[KS96].

Comments:

This problem is equivalent to Colored Unit Interval Graph Completion, as the class of
unit interval graphs and proper interval graphs are equivalent [Ces01].

See also Problem 5.7, Restricted Completion to a Proper Interval Graph with
Bounded Clique Size, a biologically motivated restriction of Restricted Completion
to a Proper Interval Graph Completion with Bounded Clique Size is defined by
the graph and a k-coloring c of it, and the requirement that the set of added edges must not
violate the coloring [KST94].

5.2 Completion to a Proper Interval Graph with Bounded Clique Size

Problem Definition:

A clique is a complete bipartite graph. The clique size of a graph is the size of the largest clique
contained in it.

Instance: Given a graph G = (V,E) and a constant k.

Parameter: k

Question: Does there exist a supergraph (for definition see problem 5.1) G′ of G
which is a proper interval graph and has clique size at most k?

Biological Motivation [KST94]:

Most work on Physical Mapping with errors has involved heuristics. Imposing an additional
constraint, prevalent in real biological data, leads to a polynomial-time problem: The “width”
of a map (or of a set of interval on the line) is the largest number of mutually overlapping clones.
In the corresponding interval graph G, this is its clique size, denoted ω(G). Typical biological
maps have width between 5 and 15, even when the total number of clones is in the thousands.

This problem is motivated by the situation where overlap information for pairs of clones (inter-
vals) may be definite yes, definite no, or undetermined.

Complexity: NP-hard [KST94].

Parameterized Complexity: W[t]-hard for any t > 0 [KST94], by reduction from Uniform Em-
ulation on a Path problem.

Comments [KST94]:

This problem is a completion problem, but instead of bounding the number of added edges, we
bound the clique size of the map. Here, even the existence of a polynomial algorithm for fixed
k is not obvious.
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This problem is equivalent to decide whether the proper pathwidth of G is not greater than
k − 1.

5.3 k-Interval Positional Sequencing by Hybridization (Interval PSBH)

Problem Definition:

The p-spectrum of a string X ∈ Σ∗ is the multi-set of all substrings of X with length p [Pe’02,
BDPSS01].

Instance: A multi-set S of strings with length p and, for each s ∈ S, a set P (s)
which is a sub-interval of {0, |S| − 1}.
Parameter: p

Question: Is S the p-spectrum of some string X, such that for each s ∈ S its
positions along X is in P (s)?

Biological Motivation:

In Sequencing by Hybridization (SBH), one has to reconstruct a sequence from its s-long
substring. SBH was proposed as an alternative to gel-based DNA sequencing approaches, but
in its original form the method is not competitive. Positional SBH (PSBH) is a recently
proposed enhancement of SBH in which one has additional information about the possible
positions of each substring along the target sequence [Pe’02, BDPSS01].

In PSBH additional information is gathered concerning the position of the l-mears in the target
sequence. More precisely, for each l-mer in the spectrum its allowed positions along the target
are registered [Pe’02, BDPSS01].

Complexity: NP-complete, even if all sets of allowed positions are intervals of equal length, by a
reduction from Interval Positional Eulerian Path (PEP) problem [Pe’02, BDPSS01].

Parameterized Complexity: FPT, O(mk1.54k) time [Pe’02].

Comments: The parameter k is an upper bound on the sizes of the intervals of allowed positions
for each edge [Pe’02, BDPSS01].

5.4 Intervalizing Colored Graphs or DNA Physical Mapping

Problem Definition:

Instance: A graph G = (V,E) and a coloring c : V → {1, . . . , k}; and a positive
integer k.

Parameter: k

Question: Is there a supergraph (for definition see problem 5.1) G′ = (V,E′) of G
which is an interval graph and has clique size at most k, and no edge in G′ connects
two vertices in G with the same color?
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Biological Motivation:

This problem models a problem arising in sequence reconstruction, which appears in some
investigations in molecular biology (such as protein sequencing, nucleotide sequencing and gene
sequencing). A sequence X (usually a large piece of DNA) is fragmented (or k copies of the
sequence X are fragmented) such that the fragments can be further analyzed. The information
about the order of the fragments in the original sequence is lost during the fragmentation
process. The objective of DNA physical mapping is to reconstruct this order. To this end, a set
of characteristics is determined for each fragment (list ‘fingerprint’ or ‘signature’), and based
on respective fingerprints, an ‘overlap’ measure is computed. Using this overlap information,
the fragments are assembled into islands of contiguous fragments (contigs) [BdF95].

Instances of ICG model the situation where k copies of X are fragmented, and some fragments
(clones) are known to overlap. Fragments of the same copy of X will not overlap. Now each
vertex in V represents one fragment; the color of a vertex represents to which copy of X the
fragment belongs. It can be seen that ICG (and specially the constructive version of ICG, which
also outputs an interval model of the interval graph G′) helps here to predict other overlaps and
to work towards reconstruction of the sequence X [BdF95].

Complexity: NP-complete for four or more colors (for any fixed number of colors ≥ 4) even when
the graph is a caterpillar tree, colored with k ≥ 4 colors [BdF95, ADS01, BFH+00].

Parameterized Complexity: W[t]-hard for all t ∈ N, by reduction from Colored Cutwidth
(CC-1) [BFH94, BFH+00].

Comments:

1. ICG is closely related to Triangulating Colored Graph (TCG) [BdF95].

2. The Proper Path Decomposition (PPD) is equivalent to Intervalizing Colored
Graphs (ICG) [BdF95].

5.5 Minimum Fill-in

Problem Definition:

A chordal graph is . . .

Instance: A graph G = (V,E) and a positive integer k.

Parameter: k

Question: Can we add no more than k edges to G and cause G to become chordal?

Biological Motivation:

The Minimum Fill-in problem is very important in the area of computational biology called
perfect phylogeny [DF99a].

This problem is to decide if a graph can be triangulated by adding at most k edges. Is to find
a minimum triangulating (fill-in) of a given graph [KST99]. The importance of this problem
lies mainly in the fact that it is equivalent to finding an order of Gaussian elimination steps
of a (usually sparse) symmetric matrix, minimizing the number of generated non-zero entries
[BKKM].
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This problem is also known as Chordal Completion problem [KST99], and there are studied
variants of the completion problem, motivated by DNA mapping, in which the input graph is
pre-colored and the required supergraph also obeys the coloring [NSS01].

Complexity: NP-complete [Yan81].

Parameterized Complexity: FPT, O(k2mn + k624k) time [KST99].

Comments:

This problem is also known as Chordal Graph Completion problem [KST99].

5.6 Proper Interval Graph Completion (PIGC)

Problem Definition:

For the definition of proper interval graph see Problem 5.1.

Instance: A graph G = (V,E), and a positive integer k.

Parameter: k.

Question: Does there exist a set of no more than k edges, whose addition to the
input graph will form a proper interval graph?

Biological Motivation [KST94]:

Interval completion problems arise in molecular biology and in the Human Genome Project: In
physical mapping of DNA, a set of long contiguous intervals of the DNA chain (called clones)
is given together with experimental on their pairwise overlaps. The goal is to build a map
describing the relative position of the clones .

The biologically important case is where all clones have equal length. In the presence of “false
negative” errors (unidentified overlaps) the problem of building a map with fewest errors is
equivalent to Proper Interval Graph Completion (PIGC).

Complexity: NP-hard [GKS94].

Parameterized Complexity: FPT, when k is all minimal triangulations of a graph G and m is the
edge set, O(24km) time [KST94].

5.7 Restricted Completion to a Proper Interval Graph with Bounded
Clique Size

Problem Definition:

For the definition of proper interval graph see Problem 5.1.

Instance: A graph G = (V,E), a set E′ ⊆ V × V of forbidden edges, and a positive
integer k.

Parameter: k

Question: Is there a G′ ⊃ G which is a proper interval graph, has clique size at most
k, and G′ has no edges from E′?
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Biological Motivation:

See Problem 5.2 for biological motivation.

Complexity: NP-Complete [KST94].

Parameterized Complexity:

W[t]-hard for all t [KST94, KS96].

It remains W[t]-hard even when E′ = ∅ [KS96].

Comments:

This problem is a generalization of Completion to a Proper Interval Graph with
Bounded Clique Size [KST94].

5.8 Strongly Chordal Completion

Problem Definition:

A graph is strongly chordal if it is chordal (every cycle of length 4 or more has a chord) and if
every even cycle of length 6 or more contains a chord splitting the cycle into two odd length
paths.

Instance: Given a graph G = (V,E) and a positive integer k.

Parameter: k

Question: Does there exist an edge set A such that |A| 6 k and G = (V ∪ A) is
strongly chordal graph?

Biological Motivation:

See problem 5.5 for biological motivation.

Complexity: NP-hard [KST99].

Parameterized Complexity: FPT, O(82kmlogn) time [KST99].

5.9 Triangulating k -Colored Graphs

Problem Definition:

Instance: A graph G = (V,E), a vertex coloring c : V → {1, . . . , k}, and a positive
integer k.

Parameter: k

Question: Does there exist a supergraph (for definition see problem 5.1) G′ =
(V ′, E′) where E ⊆ E′, G′ is properly colored by c, and G′ is triangulating?
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Biological Motivation:

Infer the evolutionary history of a set of species is a fundamental problem in biology. Each
of such that set of species is specified by the set of traits of characters that exhibits. All
information about evolutionary history can be conveniently represented by an evolutionary tree
or phylogenetic tree, and often referred as a phylogeny [AFB96, VLM].

Complexity: NP-complete [BFH+00].

Parameterized Complexity:

W[t]-hard for all t, the perfect phylogeny algorithm leads to an O((2e/k)ke2k) algorithm for
triangulating a k-colored graph [AFB96], by reduction from Longest Common Subsequence
when parameterized by k [BFH94].

Comments:

This problem is related with 3.7 problem, Perfect Phylogeny.

6 Graph problems

In this section we present some graph problems that also have applications in bioinformatics.

6.1 k -Cluster Editing

Problem Definition:

Instance: An undirected graph G = (V,E), and a nonnegative integer k.

Parameter: k

Question: Can we transform G, by deleting and adding at most k edges, into a
graph that consists of a disjoint union of cliques?

Biological Motivation:

Novel DNA microarray technologies enable the monitoring of expression levels of thousands of
genes simultaneously. This allows a global view on the transcription levels of many (or all)
genes when the cell undergoes specific conditions or processes. Analyzing gene expression data
requires the clustering of gene into groups with similar expression patterns [SS00].

A key step in the analysis of gene expression data is the identification of groups of genes that
manifest similar expression patterns over several conditions. The corresponding algorithmic
problem is to cluster multicondition gene expression patterns.

The grouping of genes with similar expression patterns into clusters helps in unraveling relations
between genes, deducing the function of genes and revealing the underlying gene regulatory
network [SS00].

Complexity: NP-complete [Hüf03].

Parameterized Complexity: FPT, O(1.92k + |V |3) time [Hüf03].
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6.2 Vertex Bipartization

Problem Definition:

Instance: Given a graph G = (V,E); a non-negative integer k.

Parameter: k

Question: Can we transform the graph into a bipartite graph by deleting at most k
vertices?

Biological Motivation:

In SNP haplotype assembly problems, the goal is to assign a given haplotype fragment, repre-
sented by its sequence of SNP states, to one of two possible haplotypes. In the reconstruction
of haplotype structure, the goal is to divide the given genotype fragments, represented by their
sequence of not necessarily unique SNP states, into two haplotype fragments each. The com-
monality of both problems is that we require a bipartition of haplotype fragments into two
sets such that haplotype fragments with differences in their SNP states belong to different sets
[Gra03].

In Vertex Bipartization we ask, given a graph G and a non-negative integer k, whether we
can transform the graph into a bipartite graph by deleting at most k vertices [Gra03].

Complexity: NP-complete [GJ79], (Problem number GT21).

Parameterized Complexity: FPT, O(4kkmn) time [RSV04].

6.3 3-Hitting Set

Problem Definition:

Instance: Collection C of subsets of size three of a finite set S, and a positive integer
k.

Parameter: k

Question: Is there a subset S′ ⊆ S with |s′| ≤ k which allows S′ contain at least one
element from each subset in C?

Biological Motivation [PH]:

In computational biology the 3-hitting Set has several applications that go from helping to
combine different phylogenetic trees [GW02, NR99] to help into gene regulatory networks.

In phylogenetic when trying to combine different trees, the idea is to model the structure
in triples and delete a minimum number of species in order to avoid all conflicts in the tree
structures.

Complexity: NP-complete [NR99].

Parameterized Complexity: FPT, O(2.270k + n) time [NR99].
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6.4 k -Pathwidth

Problem Definition [KS96]:

A path decomposition of a given graph G = (V,E) is a sequence of subsets of V , X = (X1, . . . ,Xl)
such that:

1. V = ∪iXi

2. For each edge (u, v) ∈ E, there exists some i ∈ {1, . . . , l} so that both u and v belong to
Xi.

3. ∀ i, j, h, if i ≤ j ≤ h, then Xi ∩ Xh ⊆ Xj .

The width of X is defined by pwX(G) = max{|Xi||i = 1, . . . , l}−1. The pathwidth of G, denoted
pw(G), is the minimum value of pwX(G) over all path decompositions, i.e.,

pw(G) = min{pwX(G) | X is a path decomposition ofG}.

Instance: A graph G = (V,E), and a positive integer k.

Parameter: k

Question: Is the pathwidth of G no more than k?

Biological Motivation [KS96]:

In order to study a genome, several copies of it are cut or broken down, and some of the resulting
shorter segments (called clones) are preserved for further analysis. Depending on the technique
used, the preserved clones may have variable length, or they may all have essentially the same
length. In the process of producing the clones, all information on their relative position along
the DNA chain is lost. The goal of physical mapping of DNA is to reconstruct that order, based
on experimental.

An important feature of real biological data is that the “width” of the map is consistently
very small: The largest number of mutually overlapping clones is typically between 5 and 15,
compared to a total number of clones in the thousands.

Complexity: NP-complete [ACP87].

Parameterized Complexity: FPT, O(2k2

n) time [BK96, Bod96, BT98].

6.5 Steiner Tree

Problem Definition:

Instance: A Graph G = (V,E), a set S of at most k vertices in V , an integer m.

Parameters:

1. k

2. m
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Question: Is there a set of vertices T ⊆ V − S such that |T | ≤ m and G[S ∪ T ] is
connected?

Biological Motivation [SV97]:

Phylogeny construction from molecular sequence data is a prominent application of the notion
of a minimal Steiner Tree [HRW92, FHP79]. This is due to the use of the notion of a most
parsimonious tree to formalize the biological problem of reconstructing the evolutionary history
of a set of sequences. A most parsimonious tree is a tree whose leaves are labeled with the given
sequences and where sequences are assigned to the inner nodes in such a way that the overall
number of mutations along the tree edges is minimized.

Complexity: NP-complete by a reduction from Exact Cover [GKR, GJ79], (Problem number
ND12).

Parameterized Complexity:

FPT, when parameterized by k, O(3kn + 2kn2 + n3) time [DW71]

W[2]-hard, when parameterized by m, by a reduction from Dominating Set(k) in [DF95a].

6.6 Steiner Tree in HyperCubes

Problem Definition:

A q-dimensional hypercube: is a graph whose vertex are labelled by all binary sequence of
length q. Two nodes with labels x and y are adjacent if the dH(x, y) = 1 (where dH(x, y) is the
Hamming distance, for a definition see Problem 2.3).

Instance: Binary sequences X1, . . . ,Xk, where each Xi has length q; a positive
integer M encoded in binary.

Parameter: k

Question: Is there a subgraph S of the q-dimensional binary hypercube that includes
the vertices X1, . . . ,Xk, such that S has at most M edges?

Biological Motivation:

The Steiner Problem for Hypercubes is of interest to biologists in the computation of
phylogenetic trees under the criterion of minimum evolution/maximum parsimony. The set S
corresponds to a set of species, and the binary vectors correspond to information about the
species, each component recording the answer to some question (as 0 or 1), such as: “Does it
have wings?” or “Is there a thymine at a certain position in the DNA sequence?” [DFS99].

Complexity: NP-complete [DFS99].

Parameterized Complexity: FPT, by the reduction to problem kernel method [Ces04, DF99a].
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6.7 Vertex Cover

Problem Definition:

A vertex cover is a subset V ′ ⊆ V such that ∀(v,w) ∈ E, v ∈ V ′ or w ∈ V ′.

Instance: A graph G = (V,E), and a positive integer k.

Parameter: k

Question: Does G have a vertex cover of size at most k?

Biological Motivation:

It is naturally that in computational biology, the data sets are often incomplete or faulty. It is
frequently, to formulate the corresponding problem of cleaning up data as a covering problem
[NR99].

Given a set of experimental data points, some of which are in conflict. Is possible to determine
a minimum size set of data points such that, if “deleted” from the experimental data, this would
remove or explain all inconsistencies? [NR99].

Complexity: NP-complete [GJ79], (Problem number GT1).

Parameterized Complexity: FPT, O(1.271k + kn) time [CKJ99].

7 Open

7.1 Closest String

Problem Definition:

dH denotes the Hamming distance, for a definition see Problem 2.3.

Instance: Strings s1, s2, . . . , sk over alphabet Σ of length L each, and a non-negative
integer d.

Parameters:

1. d and k

2. d

Question: Is there a string s of length L such that dH(s, si) ≤ d for all i = 1, . . . , k?

Biological Motivation:

See problem 2.3 for biological motivation.

Complexity: NP-complete [dlHC00].

Parameterized Complexity:
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The algorithm proposed in [Gra03] suffers from huge constant factors in the running time, even
for moderate values of k. That seem to make it impossible to find exact solutions with this
algorithm for k > 4. Is it possible to give a fixed-parameter algorithm for parameter k that is
usable for larger values of k and arbitrary values of L and d? [Gra03].

Closest String is considered with respect to Hamming distance. What is, for constant
alphabet size, the parameterized complexity of Closest String with respect to parameter d
when using edit distance instead, i.e., allowing insertions, deletions, and substitutions? [Gra03].

7.2 Closest Substring

Problem Definition:

dH denotes the Hamming distance, for a definition see problem 2.3.

Instance: A collection of k strings, s1, s2, . . . , sk, over an alphabet Σ, and two non-
negative integers d and L.

Parameters:

1. d and k

2. d

Question: Is there a string s of length L such that, for every i = 1, . . . , k, there is a
length-L substring s′i of si with dH(s, s′i) ≤ d?.

Biological Motivation [GHN02]:

A formal definition of the motif search problem leads to the Closest Substring problem.
These problems are of central importance for sequence analysis in computational molecular
biology. These problems have applications in fields such as genetic drug target identification or
signal finding.

Complexity: NP-complete [FGN02].

Parameterized Complexity: In the case of constant alphabet size, the complexity of the problem
remains open when parameterized by d and k together, or by d alone [FGN02].

7.3 Consensus Pattern

Problem Definition:

dH denotes the Hamming distance, for a definition see problem 2.3.

Instance: Given a collection of k strings, s1, s2, . . . , sk, over an alphabet Σ, and two
non-negative integers d and L.

Parameter: d

Question: Is there a string s of length L, and, for every i = 1, . . . , k, a length-L
substring s′i of si such that

∑k
i=1 dH(s, s′i) ≤ d? .
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Biological Motivation [Gra03]:

Applications for the consensus word analysis of DNA, RNA, or protein sequences include locat-
ing binding sites and finding conserved regions in unaligned sequences for genetic drug target
identification, for designing genetic probes, and for universal PCR primer design. These prob-
lems can be regarded as various generalizations of the common substring problem, allowing
errors. This leads to Closest Substring and Consensus Pattern, where errors are mod-
eled by the (Hamming) distance parameter d.

Complexity: NP-complete [FGN02].

Parameterized Complexity: Parameterized by “distance parameter” d, the complexity remains
open for alphabets of constant size [FGN02].

7.4 Gene Duplication and Loss

Problem Definition:

See problem 3.3 for definition of species tree, gene trees and cost model.

Instance: Gene trees T1, . . . , Tk.

Parameters:

1. m and k

2. m

Question: Does there exist a species tree S with cost(T1, . . . , Tk, S) ≤ m?

Biological Motivation [Ste99]:

The Gene Duplication and Loss is a biological cost model which has received considerable
attention. The basic idea is to measure the similarity/dissimilarity between a set of gene trees
by counting the number of postulated paralogous gene duplications and subsequent gene losses
required to explain (in evolutionary meaningful way) how the gene trees could have arising with
respect to the species tree .

See Problem 3.3 for further biological motivation.

Complexity: NP-complete [Ste99].

Parameterized Complexity:

In [Ste99] suspect the problem to be in FPT when parameterized by both the number of dupli-
cation and loss events (m) and the number of gene trees (k).

In [Ste99] conjecture the Duplication and Loss problem to be W[1]-hard when parameterized
by the number of duplications and losses (m) only.

7.5 Edge Bipartization

Problem Definition:
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A graph G is bipartite if its vertex set can be partitioned into parts, X and Y , in such a way
that all the edges in G have one endpoint in X and the other in Y .

Instance: Given a graph G = (V,E); a non-negative integer k.

Parameter: k

Question: Can we transform the graph into a bipartite graph by deleting at most k
edges?

Biological Motivation:

See problem 6.2 for biological motivation.

In Edge Bipartization we ask, given a graph G and a non-negative integer k, whether we
can transform the graph into a bipartite graph by deleting at most k edges [Gra03].

Complexity: NP-complete [GJ79], (Problem number GT25).

Parameterized Complexity: Is Edge Bipartization fixed-parameter tractable with respect to
the number of allowed edge deletions? [Gra03].
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Glossary

Alignment A one-to-one matching of two sequences, so that each character in a pair of se-
quences is associated with a single character of the other sequence or with a gap. Align-
ments are often displayed as two rows with a third row in between indicating levels of
similarity.

Chromosome The self-replicating genetic structures of cells containing the cellular DNA that
bears in its nucleotide sequence the linear array of genes. In prokaryotes, chromosomal
DNA is circular, and the entire genome is carried on one chromosome. Eukaryotic genomes
consist of a number of chromosomes whose DNA is associated with different kinds of
proteins.

Clone Contiguous chain of DNA.

Consensus A single sequence that represents, at each subsequent position, the variation found
within corresponding columns of a multiple sequence alignment.

Contig A set of overlapping sequence fragments that represent a large piece of DNA, usually
a genomic region from a particular chromosome.

DNA The molecule that encodes genetic information. DNA is a double-stranded molecule held
together by weak bonds between base pairs of nucleotides. The four nucleotides in DNA
contain the bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In nature,
base pairs form only between A and T and between G and C; thus the base sequence of
each single strand can be deduced from that of its partner.

DNA sequencing Determination of the order of nucleotides (base sequences) in a DNA or
RNA molecule or the order of amino acids in a protein.

Dichotomy Successive division and subdivision, as of a stem of a plant or a vein of the body,
into two parts as it proceeds from its origin; successive bifurcation.

Enzyme Proteins that act as catalysts, speeding the rate at which biochemical reactions pro-
ceed but not altering the direction or nature of the reactions.

Evolution A change in the genetic composition of a population over time.

Evolutionary Tree It is a two-dimensional graph showing evolutionary relationships among
organisms, or in the case of sequences, in certain genes from separate organisms. The
separate sequences are referred to as taxa (singular taxon), defined as phylogenetically
distinct units on the tree. The tree is composed of outer branches (or leaves) represented
as sequences.

False Negative A negative data point collected in a data set that was incorrectly reported
due to a failure of the test in avoiding negative results.

False positive A positive data point collected in a data set that was incorrectly reported due
to a failure of the test. If the test had correctly measured the data point, the data would
have been recorded as negative.

Fingerprint A set of characteristics for each fragment.

Fission One chromosome splits into two.
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Fusion Two chromosomes merge into one.

Gap Mismatch in the alignment of two sequences caused by either an insertion in one sequence
or a deletion in the other.

Gene A segment of DNA (a locus on a chromosome) that serves as the basic unit of biological
inheritance. It includes a region that is transcribed into RNA as well as flanking regulatory
sequences. A Discrete subunit of the DNA molecule.

Gene Expression Biochemical process which genes are read.

Gene Tree A tree based on different parts of the DNA of species.

Genome All of the genetic material in a cell or an organism.

Genotype The genetic constitution of an organism. Compare phenotype.

Haplotype A combination of alleles (for different genes) which are located closely together on
the same chromosome and which tend to be inherited together.

Hybridization The process of joining two complementary strands of DNA or one each of DNA
and RNA to form a double- stranded molecule.

Homologous Genes Two genes with a common ancestor. A pair of genes from different but
related species which correspond to each other and which are identical or very similar to
each other.

Human Genome Project Collective name for several projects begun in 1986 by the Depart-
ment of Energy (DOE) to create an ordered set of DNA segments from known chromoso-
mal locations, develop new computational methods for analyzing genetic map and DNA
sequence data, and develop new techniques and instruments for detecting and analyzing
DNA. This DOE initiative is now known as the Human Genome Program. The national ef-
fort, led by DOE and National Institute of Health (NIH), is known as the Human Genome
Project.

Indel An insertion or deletion in a sequence alignment.

Intron (intervening sequence) A segment of DNA that is transcribed, but removed from
the mRNA by a splicing reaction before translation into protein occurs.

Maximum Parsimony The minimum number of evolutionary steps required to generate the
observed variation in a set of sequences, as found by comparison of the number of steps
in all possible phylogenetic trees.

Mismatch In an alignment, two corresponding symbols that are not the same.

Motif A region within a group of related protein or DNA sequences that is evolutionary
conserved-presumably due to its functional importance.

Mutation A heritable change in DNA sequence resulting from mutagens. Various types of
mutations include frame-shift mutations, missense mutations, and nonsense mutations.

Nucleotide A subunit of DNA or RNA consisting of a nitrogenous base (adenine, guanine,
thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in RNA), a phosphate
molecule, and a sugar molecule (deoxyribose in DNA and ribose in RNA). Thousands of
nucleotides are linked to form a DNA or RNA molecule.
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Orthologous Genes A gene from one species which corresponds to a gene in another species
that is related via a common ancestral species (a homologous gene), but which has evolved
to become different from the gene of the other species.

Pathogen Organism which can cause disease in another organism.

Pattern Recognition It aims to classify data (patterns) based on either a priori knowledge
or on statistical information extracted from the patterns. The patterns to be classified
are usually groups of measurements or observations, defining points in an appropriate
multidimensional space.

Parsimony The principle that the hypothesis that requires the fewest assumptions is the most
likely to be true (i.e., the most defensible hypothesis).

PCR (Polymerase Chain Reaction). A method of repeatedly copying segments of DNA using
short oligonucleotide primers (10-30 bases long) and heat stable polymerase enzymes in
a cycle of heating and cooling so as to produce an exponential increase in the number of
target fragments.

Phenotype The physical appearance/observable characteristics of an organism. See genotype.

Phylogenetic The field of biology that deals with the relationships between organisms. It
includes the discovery of these relationships an the study of the causes behind this patterns.

Phylogeny The evolutionary history of an organism as it is traced back, connecting through
shared ancestors to lineages of other organisms.

Physical Map A map of the locations of identifiable landmarks on DNA (e.g., restriction
enzyme cutting sites, genes), regardless of inheritance. Distance is measured in base pairs.
For the human genome, the lowest-resolution physical map is the banding patterns on the
24 different chromosomes; the highest-resolution map would be the complete nucleotide
sequence of the chromosomes.

Primer A short DNA (or RNA) fragment that can anneal to a single-stranded template DNA
to form a starting point for DNA polymerase to extend a new DNA strand complementary
to the template, forming a duplex DNA molecule.

Protein A large molecule composed of one or more chains of amino acids in a specific order;
the order is determined by the base sequence of nucleotides in the gene coding for the
protein. Proteins are required for the structure, function, and regulation of the body
cells, tissues, and organs, and each protein has unique functions. Examples are hormones,
enzymes, and antibodies.

Protein sequencing Determination of the order of nucleotides (base sequences) in a DNA or
RNA molecule or the order of amino acids in a protein.

Quartet A quadruple of taxa, with an associated topology —a partition of the four taxa into
two pairs of taxa. This subdivision expresses the most likely topology induced by the
underlying n taxa phylogeny.

RNA (Ribonucleic Acid) A chemical found in the nucleus and cytoplasm of cells; it plays an
important role in protein synthesis and other chemical activities of the cell. The structure
of RNA is similar to that of DNA. There are several classes of RNA molecules, including
messenger RNA, transfer RNA, ribosomal RNA, and other small RNAs, each serving a
different purpose.
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Sequence The order in which subunits appear in a chain, such as amino acids in a polypeptide
or nucleotide bases in a DNA or RNA molecule.

Sequence Alignment It is the procedure of comparing two (pair-wise alignment) or more
(multiple sequence alignment) sequences by searching for a series of individual characters
or character patterns that are in the same order in the sequences.

Signature A set of characteristics for each fragment.

Single Nucleotide Polymorphism (SNP) DNA sequence variations that occur when a sin-
gle nucleotide (A, T, C, or G) in the genome sequence is altered.

Species Groups of populations (which are groups of individuals living together that are sepa-
rated from other such groups) which can potentially interbreed or are actually interbreed-
ing, that can successfully produce viable, fertile offspring (without the help of human
technology). The species is the most fundamental unit of evolution and is the most spe-
cific taxonomic level.

Syntenic Two genes appearing in the same chromosome.

Synteny The presence of a set of homologous genes in the same order on two genomes.

Systematics The process of classification of organisms into a formal hierarchical system of
groups (taxa).

Taxa A named group of related organisms identified by systematics. The single units being
compared, usually species.

Translocation Two chromosomes exchange contiguous blocks (usually prefixes or suffixes) of
genes.
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[Hüf03] Falk Hüffner. Graph Modification Problems and Automated Search Tree Gen-
eration. NWG Theoretische Informatik/Parametrisierte Algorithmen Wilhelm-
Schickard-Institut für Informatik Universität Tübingen, October 2003.
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