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Abstract

The Minimum Quartet Tree Cost problem is to construct an optimal weight tree from the3
(

n

4

)

weighted quartet topologies onn objects, where optimality means that the summed weight of the

embedded quartet topologies is optimal (so it can be the casethat the optimal tree embeds all quartets

as nonoptimal topologies). We present a Monte Carlo heuristic, based on randomized hill climbing,

for approximating the optimal weight tree, given the quartet topology weights. The method repeatedly

transforms a dendrogram, with all objects involved as leaves, achieving a monotonic approximation

to the exact single globally optimal tree. The problem and the solution heuristic has been extensively

used for general hierarchical clustering of nontree-like (non-phylogeny) data in various domains and

across domains with heterogeneous data. We also present a greatly improved heuristic, reducing the

running time by a factor of order a thousand to ten thousand. All this is implemented and available,

as part of the CompLearn package. We compare performance andrunning time of the original and

improved versions with those of UPGMA, BioNJ, and NJ, as implemented in the SplitsTree package

on genomic data for which the latter are optimized.

Keywords— Data and knowledge visualization, Pattern matching–Clustering–

Algorithms/Similarity measures, Pattern matching–Applications,

Index Terms— hierarchical clustering, global optimization, Monte Carlo method, quartet tree,

randomized hill-climbing,

I. INTRODUCTION

If we want to find structure in a collection of data, then we canorganize the data into

clusters such that the data in the same cluster are similar and the data in different clusters
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are dissimilar. In general there is no best criterion to determine the clusters. One approach is

to let the user determine the criterion that suits his or hersneeds. Alternatively, we can let

the data itself determine “natural” clusters. Since it is not likely that natural data determines

unequivocal disjoint clusters, it is common to hierarchically cluster the data [19].

A. Hierarchical Clustering and the Quartet Method

In cluster analysis there are basically two methods for hierarchical clustering. In the bottom-

up approach initially every data item constitutes its own cluster, and pairs of clusters are merged

as one moves up the hierarchy. In the top-down approach the set of all data constitutes the initial

cluster, and splits are performed recursively as one moves down the hierarchy. Generally, the

merges and splits are determined in a greedy manner. The maindisadvantages of the bottom-up

and top-down methods are firstly that they do not scale well because the time complexity is

nonlinear in terms of the number of objects, and secondly that they can never undo what was

done before. Thus, they are lacking in robustness and uniqueness since the results depend on

the earlier decisions. In contrast, the method which we propose here is robust and gives unique

results in the limit.

The results of hierarchical clustering are usually presented in a dendrogram [23]. For a small

number of data items this has the added advantage that the relations among the data can be

subjected to visual inspection. Such a dendrogram is a ternary tree where the leaves or external

nodes are the basic data elements. Two leaves are connected to an internal node if they are more

similar to one another than to the other data elements. Dendrograms are used in computational

biology to illustrate the clustering of genes or the evolutionary tree of species. In the latter case

we want a rooted tree to see the order in which groups of species split off from one another.

In biology dendrograms (phylogenies) are ubiquitous, and methods to reconstruct a rooted

dendrogram from a matrix of pairwise distances abound. One of these methods is quartet tree

reconstruction as explained in Section II. Since the biologists assume there is a single right

tree (the data are “tree-like”) they also assume one quartettopology, of the three possible ones

of every quartet, is the correct one. Hence their aim is to embed (Definition 2.1) the largest

number of correct quartet topologies in the target tree.

B. Related Work

The quartet tree method is described in Section II. A much-used heuristic called the Quartet

Puzzling problem was proposed in [41]. There, the quartet topologies are provided with a
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probability value, and for each quartet the topology with the highest probability is selected

(randomly, if there are more than one) as the maximum-likelihood optimal topology. The goal

is to find a dendrogram that embeds these optimal quartet topologies. In the biological setting

it is assumed that the observed genomic data are the result ofan evolution in time, and hence

can be represented as the leaves of an evolutionary tree. Once we obtain a proper probabilistic

evolutionary model to quantify the evolutionary relationsbetween the data we can search for the

true tree. In a quartet method one determines the most likelyquartet topology for every quartet

under the given assumptions, and then searches for a ternarytree (a dendrogram) that contains

as many of the most likely quartets as possible. By Lemma 3.10, a dendrogram is uniquely

determined by the set of embedded quartet topologies that itcontains. These quartet topologies

are said to be consistent with the tree they are embedded in. Thus, if all quartets are embedded

in the tree in their most likely topologies, then it is certain that this tree is the optimal matching

tree for the given quartet topologies input data. In practice we often find that the set of given

quartet topologies are inconsistent or incomplete. Inconsistency makes it impossible to match

the entire input quartet topology set even for the optimal, best matching tree. Incompleteness

threatens the uniqueness of the optimal tree solution. Quartet topology inference methods also

suffer from practical problems when applied to real world data. In many biological ecosystems

there is reticulation that makes the relations less tree-like and more network-like. The data can

be corrupted and the observational process pollutes and makes errors.

Thus, one has to settle for embedding as many most likely quartet topologies as possible,

do error correction on the quartet topologies, and so on. Hence in phylogeny, finding the best

tree according to an optimization criterion may not be the same thing as inferring the tree

underlying the data set (which we tend to believe, but usually cannot prove, to exist). Forn

objects, there are(2n− 5)!! = (2n− 5) × (2n− 3)× · · · × 3 unrooted dendrograms. To find

the optimal tree turns out to be NP–hard, see Section III-A, and hence infeasible in general.

There are two main avenues that have been taken:

(i) Incrementally grow the tree in random order by stepwise addition of objects in the locally

optimal way, repeat this for different object orders, and add agreement values on the branches,

like DNAML [20], or Quartet Puzzling [41]. These methods arefast, but suffer from the usual

bottom-up problem: a wrong decision early on cannot be corrected later. Another possible

problem is as follows. Suppose we have just 32 items. With Quartet Puzzling we incrementally

construct a quartet tree from a randomly ordered list of elements, where each next element
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is optimally connected to the current tree comprising the previous elements. We repeat this

process for, say, 1000 permutations. Subsequently, we lookfor percentage agreement of subtrees

common to all such trees. But the number of permutations is about 2160, so why would the

incrementally locally optimal trees derived from 1000 random permutations be a representative

sample from which we can conclude anything about the globally optimal tree?

(ii) Approximate the global optimum monotonically or compute it, using a geometric

algorithm or dynamic programming [4], linear programming [44], or semi-definite programming

[39]. These latter methods, other methods, as well as methods related to the Minimum Quartet

Consistency (MQC) problem (Definition 2.2), cannot handle more than 15–30 objects [44],

[34], [36], [5], [39] directly, even while using farms of desktops. To handle more objects one

needs to construct a supertree from the constituent quartettrees for subsets of the original data

sets, [37], as in [34], [36], incurring again the bottom-up problem of being unable to correct

earlier decisions.

C. Present Work

The Minimum Quartet Tree Cost (MQTC) problem is proposed in Section III (Definition 3.2).

It is a quartet method for general hierarchical clustering of nontree-like data in non-biological

areas that is also applicable to phylogeny construction in biology. In contrast to the MQC

problem, it is used for general hierarchical clustering. Itdoes not suppose that for every quartet

a single quartet topology is the correct one. Instead, we aimat optimizing the summed quartet

topology costs. If we determine the quartet topology costs from a measure of distance, then

the data themselves are not required: all that is used is a distance matrix. To solve it we

present a computational heuristic that is a Monte Carlo method, as opposed to deterministic

methods like local search, Section IV. Our method is based ona fast randomized hill-climbing

heuristic of a new global optimization criterion. Improvements that dramatically decrease the

running speed are given in Section V. The algorithm does not address the problem of how to

obtain the quartet topology weights from sequence data [25], [30], [32], but takes as input the

weights of all quartet topologies and executes the step of how to reconstruct the hierarchical

clustering from there. Alternatively, we can start from thedistance matrix and construct the

quartet topology cost as the sum of the distances between thesiblings, dramatically speeding

up the heuristic as in Section V. Since the method globally optimizes the tree it does not suffer

from the the disadvantage treated in Item (i) of Section I-B.The running time is much faster
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than that of the methods treated in Item (ii) of Section I-B. It can also handle much larger

trees of at least 300 objects.

The algorithm presented produces a sequence of candidate trees with the objects as leaves.

Each such candidate tree is scored as to how well the tree represents the information in the

weighted quartet topologies on a scale of 0 to 1. If a new candidate scores better than the

previous best candidate, the former becomes the new best candidate. The globally optimal tree

has the highest score, so the algorithm monotonically approximates the global optimum. The

algorithm terminates on a given termination condition.

In contrast to the general case of bottom-up and top-down methods, the new quartet method

can undo what was done before and eventually reaches a globaloptimum. It does not assume

that the data are tree like (and hence that there is a single “right tree”), but simply hierarchically

clusters data items in every domain. The scalability is improved by the reduction of the running

time from Ω(n4) per generation in the original version (with an implementation of at least

O(n5)) to O(n3) per generation in the current optimised version in Section Vand implemented

in CompLearn [9] from version 1.1.3 onward. (Heren is the number of data items.) Recently,

in [17] several alternative approaches to the here-introduced solution heuristic are proposed.

Some of the newly introduced heuristics perform better bothin results and running times than

our old implementation. However, even the best heuristic in[17] appears to have a slower

running time for natural data (withn = 32 typically over 50%) than the current version of our

algorithm (CompLearn version 1.1.3 or later.)

In Section VI we treat compression-based distances and previous experiments with the

MQTC heuristic using the CompLearn software. In Section VIIcompare performance and

running time of MQTC heuristic in CompLearn versions 0.9.7 and 1.1.3 (before and after the

speedup in Section V) with those of other modern methods. These are UPGMA, BioNJ, and

NJ, as implemented in the SplitsTree version 4.6. We consider artificial and natural data sets.

Note that biological packages like SplitsTree assume tree-like data and are not designed to deal

with arbitrary hierarchical clustering like the MQTC heuristic. The artificial and natural data

sets we use are tree structured. Thus, the comparison is unfair to the new MQTC heuristic.

D. Origin and Computational Complexity

The MQTC problem and heuristic were originally proposed in [11], [12], [13]. There, the

main focus is on compression-based distances, but to visually present the results in tree form we

focused on a quartet method for tree reconstruction. We alsobelieved such a quartet tree method
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to be more sensitive and objective than other methods. The available quartet tree methods were

too slow when they were exact or global, and too inaccurate oruncertain when they were

statistical incremental. They also addressed only biological phylogeny. Hence, we developed

a new approach aimed at general hierarchical clustering. This approach is not a top-down or

bottom-up method that can be caught in a local optimum. In theabove references the approach

is described as an auxiliary notion in one or two pages. It is amajor new method to do general

hierarchical clustering. Here we give the first complete treatment.

Some details of the MQTC problem, its computational hardness, and our heuristic for

its solution, are as follows. The goal is to use a quartet method to obtain high-quality

hierarchical clustering of data from arbitrary (possibly heterogeneous) domains, not necessarily

only biological phylogeny data. Traditional quartet methods derive from biology. There, one

assumes that there exists a true evolutionary tree, and the aim is to embed as many optimal

quartet topologies as is possible. In the new method for general hierarchical clustering, forn

objects we consider all3
(

n
4

)

possible quartet topologies, each with a given weight. Our goal is

to find the tree such that the summed weights of the embedded quartet topologies is optimal. We

develop a randomized hill-climbing heuristic that monotonically approximates this optimum,

and a figure of merit (Definition 3.3) that quantifies the quality of the best current candidate

tree on a linear scale. We give an explicit proof of NP-hardness (Theorem 3.7) of the MQTC

problem. Moreover, if a polynomial time approximation scheme (PTAS) (Definition 3.8) for the

problem exists, then P=NP (Theorem 3.9). Given the NP–hardness of phylogeny reconstruction

in general relative to most commonly-used criteria, as wellas the non-trivial algorithmic and

run-time complexity of all previously-proposed quartet-based heuristics, such a simple heuristic

is potentially of great use.

E. Materials and Scoring

The data samples we used, here or in referred-to previous work, were obtained from standard

data bases accessible on the Internet, generated by ourselves, or obtained from research groups

in the field of investigation. Contrary to biological phylogeny methods, we do not have

agreement values on the branches: we generate the best tree possible, globally balancing all

requirements. The quality of the results depends on how wellthe hierarchical tree represents

the information in the set of weighted quartet topologies. The MQTC clustering heuristic

generates a tree together with a goodness score. The latter is called standardized benefit score

or S(T ) value in the sequel (Definition 3.3). In certain natural datasets, such as H5N1 genomic
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sequences, consistently highS(T ) values are returned even for large sets of objects of 100 or

more nodes, [10]. In other nontree-structured natural datasets however, as treated in [11], [12],

the S(T ) value deteriorates more and more with increasing number of elements being put in

the same tree. The reason is that with increasing size of a nontree-structured natural data set

the projection of the information in the cost function into aternary tree may get increasingly

distorted. This is because the underlying structure in the data is incommensurate with any tree

shape whatsoever. In this way, larger structures may induceadditional “stress” in the mapping

that is visible as lower and lowerS(T ) scores. Experience shows that in nontree-structured

data the MQTC hierarchical clustering method seems to work best for small sets of data, up

to 25 items, and to deteriorate for some (but by no means all) larger sets of, say, 40 items or

more. This deterioration is directly observable in theS(T ) scores and degrades solutions in

two common forms. The first form is tree instability when different or very different solutions

are returned on successive runs. The second form is tree “overlinearization” when some data

sets produce caterpillar-like structures only or predominantly.

In case a large set of objects, say 100 objects, clusters withhighS(T ) value this is evidence

that the data are of themselves tree-like, and the quartet-topology weights, or underlying

distances, truely represent to similarity relationships between the data. Generating trees from

the same weighted quartet topologies many times resulted inthe same tree in case of high

S(T ) value, or a similar tree in case of moderately highS(T ) value. This happened for every

weighting we used, even though the heuristic is randomized.That is, there is only one way to

be right, but increasingly many ways to be increasingly wrong.

II. THE QUARTET METHOD

Given a setN of n objects, we consider every subset of four elements (objects) from our

set ofn elements; there are
(

n
4

)

such sets. Such a set is called aquartet. From each quartet

{u, v, w, x} we construct a tree of arity 3, which implies that the tree consists of two subtrees of

two leaves each. Let us call such a tree aquartet topology. We denote a partition{u, v}, {w, x}

of {u, v, w, x} by uv|wx. There are three possibilities to partition{u, v, w, x} into two subsets

of two elements each: (i)uv|wx, (ii) uw|vx, and (iii) ux|vw. In terms of the tree topologies:

a vertical bar divides the two pairs of leaf nodes into two disjoint subtrees (Figure 1).

The set of3
(

n
4

)

quartet topologies induced byN is denoted byQ. Consider the classT of

undirected trees of arity 3 withn ≥ 4 leaves (external nodes of degree 1), labeled with the

elements ofN . Such trees haven leaves andn− 2 internal nodes (of degree 3).
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Fig. 1. The three possible quartet topologies for the set of leaf labelsu,v,w,x

Definition 2.1: For treeT ∈ T and four leaf labelsu, v, w, x ∈ N , we sayT is consistent

with uv|wx, or the quartet topologyuv|wx is embeddedin T , if and only if the path fromu

to v does not cross the path fromw to x.

It is easy to see that precisely one of the three possible quartet topologies of a quartet of

four leaves is consistent for a given tree fromT . Therefore a tree fromT contains precisely
(

n
4

)

different quartet topologies. Commonly the goal in the quartet method is to find (or

approximate as closely as possible) the tree that embeds themaximal number of consistent

(possibly weighted) quartet topologies from a given setP ⊆ Q of quartet topologies [24]

(Figure 2). A weight functionW : P → R, with R the set of real numbers determines the

weights. The unweighted case is whenW (uv|wx) = 1 for all uv|wx ∈ P .

Definition 2.2: The (weighted)Maximum Quartet Consistency (MQC) optimizationproblem

is defined as follows:

GIVEN: N , P , andW .

QUESTION: FindT0 = maxT∈T {
∑

{W (uv|wx) : uv|wx ∈ P anduv|wx is consistent with

T}.
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Fig. 2. An example tree consistent with quartet topologyuv|wx

III. M INIMUM QUARTET TREE COST

The rationale for the MQC optimization problem reflects the genesis of the method in

biological phylogeny. Under the assumption that biological species developed by evolution

in time, andN is a subset of the now existing species, there is a phylogenyTP ∈ T that

represents that evolution. The set of quartet topologies consistent with this tree has one quartet

topology per quartet which is the true one. The quartet topologies inTP are the ones which we

assume to be among the true quartet topologies, and weights are used to express our relative

certainty about this assumption concerning the individualquartet topologies inTP .

However, the data may be corrupted so that this assumption isno longer true. In the general

case of hierarchical clustering we do not even have a priori knowledge that certain quartet

topologies are objectively true and must be embedded. Rather, we are in the position that we

can somehow assign a relative importance to the different quartet topologies. Our task is then to

balance the importance of embedding different quartet topologies against one another, leading

to a tree that represents the concerns as well as possible. Westart from a cost-assignment to

the quartet topologies: Given a setN of n objects, letQ be the set of quartet topologies, and

let C : Q → R be a cost functionassigning a real valued costC(uv|wx) to each quartet

uv|wx ∈ Q.

Definition 3.1: The cost CT of a tree T with a set N of leaves is defined byCT =

9



∑

{u,v,w,x}⊆N{C(uv|wx) : T is consistent withuv|wx}—the sum of the costs of all its consistent

quartet topologies.

Definition 3.2: GivenN andC, the Minimum Quartet Tree Cost (MQTC)is minT∈T {CT :

T is a tree with the setN labeling its leaves}.

We normalize the problem of finding the MQTC as follows: Consider the list of all possible

quartet topologies for all four-tuples of labels under consideration. For each group of three

possible quartet topologies for a given set of four labelsu, v, w, x, calculate a best (minimal)

cost m(u, v, w, x) = min{C(uv|wx), C(uw|vx), C(ux|vw)}, and a worst (maximal) cost

M(u, v, w, x) = max{C(uv|wx), C(uw|vx), C(ux|vw)}. Summing all best quartet topologies

yields the best (minimal) costm =
∑

{u,v,w,x}⊆N m(u, v, w, x). Conversely, summing all worst

quartet topologies yields the worst (maximal) costM =
∑

{u,v,w,x}⊆N M(u, v, w, x). For some

cost functions, these minimal and maximal values can not be attained by actual trees; however,

the scoreCT of every treeT will lie between these two values. In order to be able to compare

the scores of quartet trees for different numbers of objectsin a uniform way, we now rescale

the score linearly such that the worst score maps to 0, and thebest score maps to 1:

Definition 3.3: The normalized tree benefit scoreS(T ) is defined byS(T ) = (M −

CT )/(M −m).

Our goal is to find a full tree with a maximum value ofS(T ), which is to say, the lowest

total cost. Now we can rephrase the MQTC problem in such a way that solutions of instances

of different sizes can be uniformly compared in terms of relative quality:

Definition 3.4: Definition of theMQTC optimization problem:

GIVEN: N andC.

QUESTION: Find a treeT0 with S(T0) = max{S(T ) : T is a tree with the setN labeling

its leaves}.

Definition 3.5: Definition of theMQTC decision problem:

GIVEN: N andC and a rational number0 ≤ k ≤ 1.

QUESTION: Is there a binary treeT with the setN labeling its leaves andS(T ) ≥ k.

A. Computational Hardness

The hardness of Quartet Puzzling is informally mentioned inthe literature [44], [34], [36],

but we provide explicit proofs. To express the notion of computational difficulty one uses the

notion of “nondeterministic polynomial time (NP)”. If a problem concerningn objects is NP–

hard this means that the best known algorithm for this (and a wide class of significant problems)
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requires computation time at least exponential inn. That is, it is infeasible in practice. LetN

be a set ofn objects, letT be a tree of which then leaves are labeled by the objects, and let

Q be the set of quartet topologies andQT be the set of quartet topologies embedded inT .

Definition 3.6: The MQC decision problemis the following:

GIVEN: A set of quartet topologiesP ⊆ Q, and an integerk.

DECIDE: Is there a binary treeT such thatP
⋂

QT > k.

In [40] it is shown that the MQC decision problem is NP–hard. Sometimes this problem is

called theincompleteMQC decision problem. The less generalcomplete MQC decision problem

requiresP to contain precisely one quartet topology per quartet (thatis, per each subset of4

elements out of then elements), and is proved to be NP–hard as well in [5].

Theorem 3.7:(i) The MQTC decision problem is NP–hard.

(ii) The MQTC optimization problem is NP–hard.

Proof: (i) By reduction from the MQC decision problem. For every MQCdecision problem

one can define a corresponding MQTC decision problem that hasthe same solution: give the

quartet topologies inP cost 0 and the ones inQ − P cost 1. Consider the MQTC decision

problem: is there a treeT with the setN labeling its leaves such thatCT <
(

n
4

)

− k ? An

alternative equivalent formulation is: is there a treeT with the setN labeling its leaves such

that

S(T ) >
M −

(

n
4

)

+ k

M −m
?

Note that every treeT with the setN labeling its leaves has precisely one out of the three quartet

topologies of every of the
(

n
4

)

quartets embedded in it. Therefore, the costCT =
(

n
4

)

−|P
⋂

QT |.

If the answer to the above question is affirmative, then the number of quartet topologies inP

that are embedded in the tree exceedsk; if it is not then there is no tree such that the number

of quartet topologies inP embedded in it exceedsk. This way the MQC decision problem can

be reduced to the MQTC decision problem, which shows also thelatter to be NP–hard.

(ii) An algorithm for the MQTC optimization problem yields an algorithm for the MQTC

decision problem with the same running time up to a polynomial additive term: If the answer

to the MQTC optimization problem is a treeT0, then we determineS(T0) in O(n4) time. Let

k be the bound of the MQTC decision problem. IfS(T0) ≥ k then the answer to the decision

problem is “yes,” otherwise “no.”

The proof shows that negative complexity results for MQC carry over to MQTC.

Definition 3.8: A polynomial time approximation scheme (PTAS)is a polynomial time
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approximation algorithm for an optimization problem with aperformance guaranty. It takes

an instance of an optimization problem and a parameterǫ > 0, and produces a solution of an

optimization problem that is optimal up to anǫ fraction.

For example, for the MQC optimization problem as defined above, a PTAS would produce a

tree embedding at least(1 − ǫ)|P | quartets fromP . The running time of a PTAS is required

to be polynomial in the size of the problem concerned for every fixed ǫ, but can be different

for different ǫ. In [5] a PTAS for a restricted version of the MQC optimization problem,

namely the “complete” MQC optimization problem defined above, is exhibited. This is a

theoretical approximation that would run in something liken19. For general (what we have

called “incomplete”) MQC optimization it is shown that evensuch a theoretical algorithm does

not exist, unless P=NP.

Theorem 3.9:If a PTAS for the MQTC optimization problem exists, then P=NP.

Proof: The reduction in the proof of Theorem 3.7 yields a restrictedversion of the

MQTC optimization problem that is equivalent to the MQC optimization problem. There is an

isomorphism between every partial solution, including theoptimal solutions involved: For every

tree T with N labeling the leaves, the MQTC costCT =
(

n
4

)

− |P
⋂

QT | whereP
⋂

QT is

the set of MQC consistent quartets. The reduction is also poly-time approximation preserving,

since the reduction gives a linear time computable isomorphic version of the MQTC problem

instance for each MQC problem instance. Since [5] has shown that a PTAS for the MQC

optimization problem does not exist unless P=NP, it also holds for this restricted version of

the MQTC optimization problem that a PTAS does not exist unless P=NP, The full MQTC

optimization problem is at least as hard to approximate by a PTAS, from which the theorem

follows.

Is it possible that the bestS(T ) value is always one, that is, there always exists a tree that

embeds all quartets at minimum cost quartet topologies? Consider the casen = |N | = 4. Since

there is only one quartet, we can setT0 equal to the minimum cost quartet topology, and have

S(T0) = 1. A priori we cannot exclude the possibility that for everyN andC there always

is a treeT0 with S(T0) = 1. In that case, the MQTC optimization problem reduces to finding

thatT0. However, the situation turns out to be more complex. Note first that the set of quartet

topologies uniquely determines a tree inT , [6].

Lemma 3.10:Let T, T ′ be different labeled trees inT and let QT , QT ′ be the sets of

embedded quartet topologies, respectively. Then,QT 6= QT ′.
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A complete setof quartet topologies onN is a set containing precisely one quartet topology

per quartet. There are3(
n

4
) such combinations, but only2(

n

2
) labeled undirected graphs on

n nodes (and therefore|T | ≤ 2(
n

2)). Hence, not every complete set of quartet topologies

corresponds to a tree inT . This already suggests that we can weight the quartet topologies

in such a way that the full combination of all quartet topologies at minimal costs does not

correspond to a tree inT , and henceS(T0) < 1 for T0 ∈ T realizing the MQTC optimum.

For an explicit example of this, we use that a complete set corresponding to a tree inT must

satisfy certain transitivity properties, [15], [16]:

Lemma 3.11:Let T be a tree in the considered class with leavesN , Q the set of quartet

topologies andQ0 ⊆ Q. ThenQ0 uniquely determinesT if

(i) Q0 contains precisely one quartet topology for every quartet,and

(ii) For all {a, b, c, d, e} ⊆ N , if ab|bc, ab|de ∈ Q thenab|ce ∈ Q, as well as ifab|cd, bc|de ∈

Q thenab|de ∈ Q.

Theorem 3.12:There areN (with n = |N | = 5) and a cost functionC such that, for every

T ∈ T , S(T ) does not exceed4/5.

Proof: ConsiderN = {u, v, w, x, y} and C(uv|wx) = 1 − ǫ(ǫ > 0), C(uw|xv) =

C(ux|vw) = 0, C(xy|uv) = C(wy|uv) = C(uy|wx) = C(vy|wx) = 0, andC(ab|cd) = 1

for all remaining quartet topologiesab|cd ∈ Q. We see thatM = 5 − ǫ, m = 0. The

tree T0 = (y, ((u, v), (w, x))) has costCT0
= 1 − ǫ, since it embeds quartet topologies

uw|xv, xy|uv, wy|uv, uy|wx, vy|wx. We show thatT0 achieves the MQTC optimum.

Case 1:If a treeT 6= T0 embedsuv|wx, then it must by Item (i) of Lemma 3.11 also embed

a quartet topology containingy that has cost 1.

Case 2: If a tree T 6= T0 embedsuw|xv and xy|uv, then it must by Item (ii) of the

Lemma 3.11 also embeduw|xy, and hence have costCT ≥ 1. Similarly, all other remaining

cases of embedding a combination of a quartet topology not containing y of 0 cost with a

quartet topology containingy of 0 cost inT , imply an embedded quartet topology of cost 1

in T .

Altogether, the MQTC optimization problem is infeasible inpractice, and natural data can

have an optimalS(T ) < 1. In fact, it follows from the above analysis that to determine

the optimalS(T ) in general is NP–hard. If the deterministic approximation of this optimum

to within a given precision can be done in polynomial time, then that implies the generally

disbelieved conjecture P=NP. Therefore, any practical approach to obtain or approximate the

MQTC optimum requires some type of heuristics, for example Monte Carlo methods.
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IV. M ONTE CARLO HEURISTIC

Our algorithm is a Monte Carlo heuristic, essentially randomized hill-climbing where

undirected trees evolve in a random walk driven by a prescribed fitness function. We are

given a setN of n objects and a cost functionC.

Definition 4.1: We define asimple mutationon a labeled undirected ternary tree as one of

the following possible transformations:

1) A leaf interchange: randomly choose two leaves that are not siblings and interchange

them.

2) A subtree interchange: randomly choose two internal nodesu, w, or an internal nodeu

and a leafw, such that the shortest path length betweenu andw is at least three steps.

That is,u− x− · · ·− y−w is a shortest path in the tree. Disconnectu (and the subtree

rooted atu disjoint from the path) fromx, and disconnectw (and the subtree rooted at

w disjoint from the path ifw is not a leaf) fromy. Attachu and its subtree toy, andw

(and its subtree ifw is not a leaf) tox.

3) A subtree transfer, whereby a randomly chosen subtree (possibly a leaf) is detached and

reattached in another place, maintaining arity invariants.

Each of these simple mutations keeps the number of leaf nodesand internal nodes in the

tree invariant; only the structure and placements change. Clearly, mutations 1) and 2) can be

together replaced by the single mutation below. But in the implementation they are separated

as above.

• A subtree and/or leaf interchange, which consists of randomly choosing two nodes (either

node or both can be leaves or internal nodes), sayu, w, such that the shortest path length

betweenu andw is at least three steps. That is,u − x − · · · − y − w is a shortest path

in the tree. Disconnectu (and the subtree rooted atu disjoint from the path) fromx, and

disconnectw (and the subtree rooted atw disjoint from the path) fromy. Attach u and

its subtree toy, andw and its subtree tox.

A sequence of these mutations suffices to go from every ternary tree with n labeled leaves

andn− 2 unlabeled internal nodes to any other ternary tree withn labeled leaves andn − 2

unlabeled internal nodes, Theorem A.1 in Appendix A.

Definition 4.2: A k-mutationis a sequence ofk simple mutations. Thus, a simple mutation

is a 1-mutation.
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Step 1: First, a random treeT ∈ T with 2n − 2 nodes is created, consisting ofn

leaf nodes (with 1 connecting edge) labeled with the names ofthe data items, and

n − 2 non-leaf orinternal nodes. When we need to refer to specific internal nodes,

we label them with the lowercase letter “k” followed by a unique integer identifier.

Each internal node has exactly three connecting edges.

Step 2: For this treeT , we calculate the summed total cost of all embedded quartet

topologies, and computeS(T ).

Step 3: The currently best known treevariableT0 is set toT : T0 ← T .

Step 4: Draw a numberk with probabilityp(1) = 1− c andp(k) = c/(k(log k)2) for

k ≥ 2, where1/c =
∑∞

k=2
1/(k(log k)2). By [7] it is known that1/c ≈ 2.1.

Step 5: Compose ak-mutation by, for each of the constituent sequence ofk simple

mutations, choosing one of the three types listed above withequal probability. For

each of these simple mutations, we uniformly at random select leaves or internal

nodes, as appropriate.

Step 6: In order to search for a better tree, we simply apply thek-mutation constructed

in Step 5to T0 to obtainT , and then calculateS(T ). If S(T ) > S(T0), then replace

the current candidate inT0 by T (as the new best tree):T0 ← T .

Step 7: If S(T0) = 1 or a termination conditionto be discussed below holds, then

output the tree inT0 as the best tree and halt. Otherwise, go toStep 4.

Fig. 3. The Algorithm

A. Algorithm

The algorithm is given in Figure 3. We comment on the different steps:

Comment on Step 2:A tree is consistent with precisely1
3

of all quartet topologies, one

for every quartet. A random tree is likely to be consistent with about 1
3

of the best quartet

topologies—but because of dependencies this figure is not precise.

Comment on Step 3:This T0 is used as the basis for further searching.

Comment on Step 4:This numberk is the number of simple mutations that we will constitute

the nextk-mutation. The probability mass functionp(k) for k ≥ 2 is p(k) = c/(k log2 k) with

c ≈ 2.1. In practice, we used a “shifted” fat tail probability mass function1/((k+2)(log k+2)2)

for k ≥ 1.
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Comment on Step 5:Notice that trees which are close to the original tree (in terms of number

of simple mutation steps in between) are examined often, while trees that are far away from

the original tree will eventually be examined, but not very frequently.

Remark 4.3:We have chosenp(k) to be a “fat-tail” distribution, with one of the fattest

tails possible, to concentrate maximal probability also onthe larger values ofk. That way,

the likelihood of getting trapped in local minima is minimized. In contrast, if one would

choose an exponential scheme, likeq(k) = ce−k, then the larger values ofk would arise so

scarcely that practically speaking the distinction between being absolutely trapped in a local

optimum, and the very low escape probability, would be insignificant. Considering positive-

valued probability mass functionsq : N → (0, 1], with N the natural numbers, as we do

here, we note that such a function (i)limk→∞ q(k) = 0, and (ii)
∑∞

k=1
q(k) = 1. Thus,

every function of the natural numbers that has strictly positive values and converges can be

normalized to such a probability mass function. For smooth analytic functions that can be

expressed as a series of fractional powers and logarithms, the borderline between converging

and diverging is as follows:
∑

1/k,
∑

1/(k log k),
∑

1/(k log k log log k) and so on diverge,

while
∑

1/k2,
∑

1/(k(log k)2),
∑

1/(k log k(log log k)2) and so on converge. Therefore, the

maximal fat tail of a “smooth” functionf(x) with
∑

f(x) < ∞ arises for functions at the

edge of the convergence family. The probability mass function p(k) = c/(k(log k)2) is as close

to the edge as is reasonable. Let us see what this means for ouralgorithm using the chosen

probability mass functionp(k) where we takec = 1

2
for convenience.

For n = 32 we can change any tree inT to any other tree inT with a squence of at most

5n − 16 = 144 simple mutations (Theorem A.1 in Appendix A). The probability of such a

complex mutation occurring is quite large with such a fat tail: ≈ 1/(2 · 144 · 72) = 1/14112.

The expectation is about 7 times in 100,000 generations. The5n− 16 is a crude upper bound;

we believe that the real value is more likely to be aboutn simple mutations. The probability

of a sequence ofn simple mutations occurring is≈ 1/(2 · 32 · 52) = 1/1600. The expectation

increases to about 63 times in 100.000 generations. If we canalready get out of a local minimum

with only a 16-mutation, then this occurs with probability is 1/512, so it is expected about

195 times in 100.000 generations, and with an 8-mutation theprobability is 1/144, so the

expectation is more than 694 times in 100.000 generations. ♦
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B. Performance

The main problem with hill-climbing algorithms is that theycan get stuck in a local

optimum. However, by randomly selecting a sequence of simple mutations, longer sequences

with decreasing probability, we essentially run a of simulated annealing [28] algorithm at

random temperatures. Since there is a nonzero probability for every tree inT being transformed

into every other tree inT , there is zero probability that we get trapped forever in a local

optimum that is not a global optimum. That is, trivially:

Lemma 4.4:(i) The algorithm approximates the MQTC optimal solution monotonically in

each run.

(ii) The algorithm without termination condition solves the MQTC optimization problem

eventually with probability 1 (but we do not in general know when the optimum has been

reached in a particular run).
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Fig. 4. Progress of a 60-item data set experiment over time

The main question therefore is the convergence speed of the algorithm on natural data in

terms ofS(T ) value, and a termination criterion to terminate the algorithm when we have

an acceptable approximation. Practically, from Figure 4 itappears that improvement in terms

of S(T ) eventually gets less and less (while improvement is still possible) in terms of the

expended computation time. Theoretically, this is explained by Theorem 3.9 which tells us

that there is no polynomial-time approximation scheme for MQTC optimization. Whether our

approximation scheme is expected polynomial time seems to require proving that the involved
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Metropolis chain is rapidly mixing [42], a notoriously hardand generally unsolved problem.

However, in our experiments there is unanimous evidence that for the natural data and the cost

function we have used, convergence to close to the optimal value is always fast.

The running time is determined as follows. We have to determine the cost of
(

n
4

)

quartets

to determine eachS(T ) value in each generation. Hence, trivially,

Lemma 4.5:The algorithm in Figure 3 runs in timeΩ(n4) per generation wheren is the

number of objects. (The implementation uses evenΩ(n5) time.)

Remark 4.6:The input to the algorithm in Figure 3 is the quartet topologycosts. If one

constructs the quartet-topology costs from more basic quantities, such as the cost ofab|cd

equals the sum of the distancesd(a, b) + d(c, d) for some distance measured(·, ·), then one

can use the additional structure thus supplied to speed up the algorithm as in Section V. Then,

while the original implementation of the algorithm uses as much asΩ(n5) time per generation

it is sped up toO(n3) time per generation, Lemma 5.2, and we were able to analyze a 260-node

tree in about 3 hours cpu time reachingS(T ) ≈ 0.98. ♦

In experiments we found that for the same data set different runs consistently showed the same

behavior, for example Figure 4 for a 60-object computation.There theS(T ) value leveled off

at about 70,000 examined trees, and the termination condition was “no improvement in 5,000

trees.” Different random runs of the algorithm nearly always gave the same behavior, returning

a tree with the sameS(T ) value, albeit a different tree in most cases since hereS(T ) ≈ 0.865,

a relatively low value. That is, there are many ways to find a tree of optimalS(T ) value if it

is low, and apparently the algorithm never got trapped in a lower local optimum. For problems

with high S(T ) value the algorithm consistently returned the same tree.

Note that if a tree is ever found such thatS(T ) = 1, then we can stop because we can be

certain that this tree is optimal, as no tree could have a lower cost. In fact, this perfect tree result

is achieved in our artificial tree reconstruction experiment (Section VII-A) reliably for 32-node

trees in a few seconds using the improvement of Section V. Forreal-world data,S(T ) reaches

a maximum somewhat less than1. This presumably reflects distortion of the information in

the cost function data by the best possible tree representation, or indicates getting stuck in a

local optimum. Alternatively, the search space is too largeto find the global optimum.

On typical problems of up to 40 objects this tree-search gives a tree withS(T ) ≥ 0.9

within half an hour (fot the unimproved version) and a few seconds with the improvement of

Section V. For large numbers of objects, tree scoring itselfcan be slow especially without the

improvements of Section V. Current single computers can score a tree of this size with the
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unimproved algorithm in about a minute. For larger experiments, we used the C program called

partree (part of the CompLearn package [9]) with MPI (Message Passing Interface, a common

standard used on massively parallel computers) on a clusterof workstations in parallel to find

trees more rapidly. We can consider the graph mapping the achievedS(T ) score as a function

of the number of trees examined. Progress occurs typically in a sigmoidal fashion towards a

maximal value≤ 1, Figure 4.

C. Termination Condition

The termination conditionis of two types and which type is used determines the number of

objects we can handle.

Simple termination condition:We simply run the algorithm until it seems no better trees are

being found in a reasonable amount of time. Here we typicallyterminate if no improvement

in S(T ) value is achieved within 100,000 examined trees. This criterion is simple enough to

enable us to hierarchically cluster data sets up to 80 objects in a few hours even without the

improvement in Section V and at least up to 300 objects with the improvement. This is way

above the 15–30 objects in the previous exact (non-incremental) methods (see Introduction).

Agreement termination condition:In this more sophisticated method we select a number

2 ≤ r ≤ 6 of runs, and we runr invocations of the algorithm in parallel. Each time anS(T )

value in runi = 1, . . . , r is increased in this process it is compared with theS(T ) values in

all the other runs. If they are all equal, then the candidate trees of the runs are compared. This

can be done by simply comparing the ordered lists of embeddedquartet topologies, in some

standard order. This works since the set of embedded quartettopologies uniquely determines

the quartet tree by [6]. If ther candidate trees are identical, then terminate with this quartet

tree as output, otherwise continue the algorithm.

This termination condition takes (for the same number of steps per run) aboutr times as

long as the simple termination condition. But the termination condition is much more rigorous,

provided we chooser appropriate to the numbern of objects being clustered. Since all the

runs are randomized independently at startup, it seems veryunlikely that with natural data all

of them get stuck in the same local optimum with the same quartet tree instance, provided the

numbern of objects being clustered is not too small. Forn = 5 and the number of invocations

r = 2, there is a reasonable probability that the two different runs by chance hit the same tree

in the same step. This phenomenon leads us to require more than two successive runs with

exact agreement before we may reach a final answer for smalln. In the case of4 ≤ n ≤ 5,
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we require 6 dovetailed runs to agree precisely before termination. For6 ≤ n ≤ 9, r = 5. For

10 ≤ n ≤ 15, r = 4. For 16 ≤ n ≤ 17, r = 3. For all othern ≥ 18, r = 2. This yields a

reasonable tradeoff between speed and accuracy. These specifications ofr-values relative ton

are partially common sense, partially empirically derived.

It is clear that there is only one tree withS(T ) = 1 (if that is possible for the data), and it is

straightforward that random trees (the majority of all possible quartet trees) haveS(T ) ≈ 1/3.

This gives evidence that the number of quartet trees with large S(T ) values is much smaller

than the number of trees with smallS(T ) values. It is furthermore evident that the precise

relation depends on the data set involved, and hence cannot be expressed by a general formula

without further assumptions on the data. However, we can safely state that small data sets, of

say≤ 15 objects, that in our experience often lead toS(T ) values close to 1 and a single

resulting tree have very few quartet trees realizing the optimal S(T ) value. On the other hand,

those large sets of 60 or more objects that contain some inconsistency and thus lead to a low

final S(T ) value also tend to exhibit more variation in the resulting trees. This suggests that

in the agreement termination method each run will get stuck in a different quartet tree of a

similar S(T ) value, so termination with the same tree is not possible. Experiments show that

with the rigorous agreement termination we can handle sets of up to 40 objects, and with the

simple termination up to at least 80–200 objects on a single computer with varying degrees

of quality and consistency depending on the data involved, even without the improvements

of Section V. Basically the algorithm evaluates all quartettopologies in each generated tree,

which leads to anΩ(n4) algorithm per generation orO(n3) per generation for the improved

version in Section V. With the improvement one can attack problems of over 300 objects.

Recently, [17] has used various other heuristics differentfrom the ones presented here to

obtain methods that are both faster and yield better resultsthan our old implementation. But

even the best heuristic there appears to have a slower running time for natural data (withn = 32

typically over 50%) than our current implementation (in CompLearn) using the speedups of

Section V.

D. Tree Building Statistics

We used the CompLearn package, [9], to analyze a “10-mammals” example with zlib

compression yielding a10×10 distance matrix, similar to the examples in Section VII-B. The

algorithm starts with four randomly initialized trees. It tries to improve each one randomly

and finishes when they match. Thus, every run produces an output tree, a maximum score
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associated with this tree, and has examined some total number of trees,T , before it finished.

Figure 5 shows a graph displaying a histogram ofT over one thousand runs of the distance

matrix. Thex-axis represents a number of trees examined in a single run ofthe program,

measured in thousands of trees and binned in 1000-wide histogram bars. The maximum number

is about 12000 trees examined. The graph suggests a Poisson probability mass function. About

Fig. 5. Histogram of run-time number of trees examined before termination.

2/3rd of the trials take less than 4000 trees. In the thousand trials above, 994 ended with the

optimalS(T ) = 0.999514. The remaining six runs returned 5 cases of the second-highest score,

S(T ) = 0.995198 and one case ofS(T ) = 0.992222. It is important to realize that outcome

stability is dependent on input matrix particulars.

Another interesting probability mass function is the mutation stepsize. Recall that the

mutation length is drawn from a shifted fat-tail probability mass function. But if we restrict our

attention to just the mutations that improve theS(T ) value, then we may examine these statistics

to look for evidence of a modification to this distribution due to, for example, the presence

of very many isolated areas that have only long-distance ways to escape. Figure 6 shows the

histogram of successful mutation lengths (that is, number of simple mutations composing a

single kept complex mutation) and rejected lengths (both normalized) which shows that this is

not the case. Here thex-axis is the number of mutation steps and they-axis is the normalized

proportion of times that step size occurred. This gives goodempirical evidence that in this
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Fig. 6. Histogram comparing probability mass functions ofk-mutations per run.

case, at least, we have a relatively easy search space, without large gaps.

E. Controlled Experiments

With natural data sets, say genomic data, one may have the preconception (or prejudice)

that primates should be clustered together, rodents shouldbe clustered together, and so should

ferungulates. However, the genome of a marsupial may resemble the genome of a rodent more

than that of a monotreme, or vice versa—the very question onewants to resolve. Thus, natural

data sets may have ambiguous, conflicting, or counter intuitive outcomes. In other words, the

experiments on natural data sets have the drawback of not having an objective clear “correct”

answer that can function as a benchmark for assessing our experimental outcomes, but only

intuitive or traditional preconceptions. In Section VII-Athe experiments show that our program

indeed does what it is supposed to do—at least in these artificial situations where we know in

advance what the correct answer is.

V. IMPROVED RUNNING TIME

Recall that our quartet heuristic consists of two parts: (i)extracting the quartet topology costs

from the data, and (ii) repeatedly randomly mutating the current quartet tree and determining the

cost of the new tree. Both the MQTC problem and the original heuristic is actually concerned
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only with item (ii). To speed up the method we also look at how the quartet topology costs

can be derived from the distance matrix, that is, we also lookat item (i).

Speedup by faster quartet topology cost computation: Assume that the cost of a quartet

topology is the sum of the distances between each pair of neighbors

C(uv|wx) = d(u, v) + d(w, x), (V.1)

for a given distance measured. In the original implementation of the heuristic one used the

quartet topology costs to calculate theS(T ) value of a treeT without worrying how those

costs arose. Then, the heuristic runs in time ordern4 per generation (actuallyn5 if one counts

certain details proportional to the internal path length asthey were implemented). If the quartet

topology costs are derived according to (V.1), then we can reduce the running time of the

implementation by two orders of magnitude.

Subroutine with distance matrix input:

We compute the quartet topology costs according to (V.1). Let there ben leaves in a ternary

treeT . For every internal node (there aren− 2) determine a sum as follows. LetI be the set

of internal nodes (the nodes inT that are not leaves). There are three edges incident with the

internal nodep ∈ I, saye1, e2 ande3. Let the subtrees attached toei haveni leaves (i = 1, 2, 3)

so thatn = n1+n2+n3. For every edgeei there are
(

ni

2

)

pairs of leaves in its subtreeTi. Each

such pair can form a quartet with pairs(u, v) sich thatu is a leaf in the subtreeTj of ej andv is

a leaf in the subtreeTk of ek. DefineC(ei) =
(

ni

2

)
∑

u∈Tj ,v∈Tk
d(u, v) (1 ≤ i, j, k ≤ 3 andi, j, k

are not equal to one another). For internal nodep let the costC(p) = C(e1) +C(e2) +C(e3).

Compute the costCT of the treeT asCT =
∑

p∈I C(p).

Lemma 5.1:The costCT of the treeT satisfiesCT =
∑

p∈I C(p). If the treeT hasn leaves,

then the subroutine above runs in timeO(n2) per internal node and hence inO(n3) overall to

determine the sumCT .

Proof: An internal nodep has three incident edges, saye1, e2, e3. Let Ti be the subtree

rooted atp containing edgeei having ni leaves (1 ≤ i ≤ 3) so thatn = n1 + n2 + n3. Let

(u, v) be a leaf pair withu ∈ Ti and v∈Tj, andw 6= x be leaves inTk (1 ≤ i, j, k ≤ 3 and

i, j, k unequal). LetQ(p) be defined as the set of all these quartet topologiesuv|wx. Clearly, if

p, q ∈ I andp 6= q, thenQ(p)
⋂

Q(q) = ∅. The(u, v) parts of quartet topologiesuv|wx ∈ Q(p)

have a summed costC(ei) given byC(ei) =
(

ni

2

)
∑

u∈Tj ,v∈Tk
d(u, v). Then, the cost ofQ(p)

is C(p) = C(e1) + C(e2) + C(e3).

Every quartet topologyuv|wx in treeT is composed of two pairs(u, v) and (w, x). Every
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pair (u, v) determines an internal nodep such that the paths fromu to p and fromv to p are

node disjoint except for the end internal nodep. Every internal nodep determines a set of

such pairs(u, v), and for different internal nodes the associated sets are disjoint. All quartet

topologies embedded in the treeT occur this way. Hence,

⋃

p∈I

Q(p) = QT , (V.2)

whereQT was earlier defined as the set of quartet topologies embeddedin T . By (V.2), the

summed costCT (Definition 3.1) of all quartet topologies embedded inT satisfiesCT =
∑

p∈I C(p).

The running time of determiningC(p) for a p ∈ I is dominated by the summing of the

d(u, v)’s for the pairs(u, v) of leaves in different subtrees withp as root. There areO(
(

n
2

)

) =

O(n2) such pairs. Since|I| = n− 2 the lemma follows.

This immediately yields the following:

Lemma 5.2:With as input a distance matrix betweenn objects, the quartet topology costs

as in (V.1), the subroutine above lets the algorithm in Figure 3 (and its implementation) run in

time O(n3) per generation.

Speedup by MMC: A Metropolis Markov Chain (MMC) [35] is implemented inside the

mutation chains of the algorithm. So, instead of doing a qroup of mutations and at the end

check if the result improves upon the original (that is, hillclimbing), we do the following. After

every mutation, a Metropolis acceptance step is performed,rolling back the changes when the

step is rejected. Acceptance is calculated on the raw scoresof the tree (unnormalized, thus

being more selective with larger trees). During the Metropolis walk, the best tree found is

kept, at the end this best tree is returned and checked for improvement (hill climbing). This

serves three purposes:

• The search is faster because after every change, the trees are focused on improving the

S(T ) value. This gives less spurious drift.

• The global search behavior is maintained, as there is a nonzero probability that a tree is

transformed into any other tree.

• There is less dependency on the number of mutations to perform in an individual step.

It is no longer necessary to try a few mutations more often than many mutations, simply

because the trees are no longer allowed to drift away very farfrom the current best in an

unchecked manner.
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By Theorem A.1 in Appendix A, every tree withn− 2 unlabeled internal nodes andn labeled

leaves can be transformed in every other such tree in at most5n−16 simple mutations (n ≥ 4).

We believe that the real value of the number of required simple mutations is aboutn, and

therefore have set the trial length ton. The setting does influence the global search properties

of the algorithm, longer trial length meaning larger probability of finding the global optimum.

In the limit of infinite trial length, the algorithm will behave as a regular MMC algorithm with

associated convergence properties.

The newest version of the MQTC heuristic is at [26] and has been incorporated in CompLearn

[9] from version 1.1.3 onwards. Altogether, with both typesof speedup, the resulting speedup

is at least of the order of 1.000 to 10.000 for common sets of objects with, say,n ≤ 300.

VI. COMPRESSION-BASED DISTANCE

To be able to make unbiased comparisons between phylogeny reconstruction algorithms

that take distance matrices as input, we use the compression-based NCD distance. This metric

distance was co-developed by us in [30], [31], [32], as a normalized version of the “information

metric” of [2], [33]. The mathematics used is based on Kolmogorov complexity theory [33],

which is approximated using real-world compression software. Roughly speaking, two objects

are deemed close if we can significantly “compress” one giventhe information in the other,

the idea being that if two pieces are more similar, then we canmore succinctly describe one

given the other. LetZ(x) denote the binary length of the filex compressed with compressor

Z (for example ”gzip”, ”bzip2”, or ”PPMZ”). Thenormalized compression distance(NCD )

is defined as

NCD(x, y) =
Z(xy)−min{Z(x), Z(y)}

max{Z(x), Z(y)}
, (VI.1)

which is actually a family of distances parameterized with the compressorZ. The betterZ is,

the better the results are, [12]. This NCD is used as distanced in (V.1) to obtain the quartet

topology costs.

The NCD in (VI.1) and a precursor have initially been appliedto, among others, alignment-

free whole genome phylogeny, [30], [31], [32], chain letterphylogeny [3], constructing language

trees [32], and plagiarism detection [8]. It is in fact a parameter-free, feature-free, data-mining

tool. A variant has been experimentally tested on all time sequence data used in all the major

data-mining conferences in the last decade [27]. That papercompared the compression-based

method with all major methods used in those conferences. Thecompression-based method
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was clearly superior for clustering heterogeneous data, and for anomaly detection, and was

competitive in clustering domain data. The NCD method turnsout to be robust under change

of the underlying compressor-types: statistical (PPMZ), Lempel-Ziv based dictionary (gzip),

block based (bzip2), or special purpose (Gencompress). While there may be more appropriate

special-purpose distance measures for biological phylogeny, incorporating decades of research,

the NCD is a robust objective platform to test the unbiased performance of the competing

phylogeny reconstruction algorithms.

A. CompLearn Toolkit

Oblivious to the problem area concerned, simply using the distances according to the NCD

of (VI.1) and the derived quartet topology costs (V.1), the MQTC heuristic described in Sections

IV, V fully automatically clusters the objects concerned. The method has been released in the

public domain as open-source software: The CompLearn Toolkit [9] is a suite of simple utilities

that one can use to apply compression techniques to the process of discovering and learning

patterns in completely different domains, and hierarchically cluster them using the MQTC

heuristic. In fact, CompLearn is so general that it requiresno background knowledge about

any particular subject area. There are no domain-specific parameters to set, and only a handful

of general settings. From CompLearn version 1.1.3 onwards the speedups and improvements

in Section V have been implemented.

B. Previous Experiments

Using the CompLearn package, in [12] we studied hypotheses concerning mammalian

evolution, by reconstructing the phylogeny from the mitochondrial genomes of 24 species.

These were downloaded from the GenBank Database on the Internet. In another experiment,

we used the mitochondrial genomes of molds and yeasts. We clustered the SARS virus after its

sequenced genome was made publicly available, in relation to potentially similar viruses. The

NCD distance matrix was computed using the compressor bzip2. The resulting treeT (with

S(T ) = 0.988) was very similar to the definitive tree based on medical-macrobio-genomics

analysis, appearing later in the New England Journal of Medicine, [29]. In [10], 100 different

H5N1 sample genomes were downloaded from the NCBI/NIH database online, to analyze the

geographical spreading of the Bird Flu H5N1 Virus in a large example.

In general hierarchical clustering, we constructed language trees, cluster both Russian authors

in Russian, Russian authors in English translation, English authors, handwritten digits given as
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two-dimensional OCR data, and astronomical data. We also tested gross classification of files

based on heterogeneous data of markedly different file types: genomes, novel excerpts, music

files in MIDI format, Linux x86 ELF executables, and compiledJava class files, [12]. In [11],

MIDI data were used to cluster classical music, distinguishbetween genres like pop, rock, and

classical, and do music classification. In [43], the CompLearn package was used to analyze

network traffic and to cluster computer worms and viruses. CompLearn was used to analyze

medical clinical data in clustering fetal heart rate tracings [18]. Other applications by different

authors are in software metrics and obfuscation, web page authorship, topic and domain

identification, protein sequence/structure classification, phylogenetic reconstruction, hurricane

risk assessment, ortholog detection, and other topics. Using code-word lengths obtained from

the page-hit counts returned by Google from the Internet, weobtain a semantic distance between

namesfor objects (rather than the objects themselves) using the NCD formula and viewing

Google as a compressor.

Both the compression method and the Google method have been used many times to obtain

distances between objects and to hierarchically cluster the data using CompLearn [9]. In this

way, the MQTC method and heuristic described here has been used extensively. For instance,

in many of the references in Google scholar to [11], [12], [13]. Here we give a first full and

complete treatment of the MQTC problem, the heuristic, speedup, and comparison to other

methods.

VII. COMPARING AGAINST SPLITSTREE

We compared the performance of the MQTC heuristic as implemented in the CompLearn

package against that of a leading application to compute phylogenetic trees, a program

called SplitsTree [22]. Other methods include [14], [39], [1]. Our experiments were initially

performed with CompLearn version 0.9.7 before the improvements in Section V. But with

the improvements of Section V in CompLearn version 1.1.3 andlater, sets of say 34

objects terminated commonly in about 8 cpu seconds. Below weuse sets of 32 objects. We

choose SplitsTree version 4.6 for comparison and selected three tree reconstruction methods

to benchmark: NJ, BioNJ, and UPGMA. To make comparison possible, we require a tree

reconstruction implementation that takes a distance matrix as input. This requirement ruled out

some other possibilities, and motivated our choice. To score the quality of the trees produced

by CompLearn and SplitsTree we converted the SplitsTree output tree to the CompLearn output

format. Then we used theS(T ) values in the CompLearn output and the converted SplitsTree
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output to compare the two. The quartet topology costs were derived from the distance matrix

concerned as in Section V.

The UPGMA method consistently performed worse than the other two methods in SplitsTree.

In several trials it failed to produce an answer at all (throwing an unhandled Java Exception),

which may be due to an implementation problem. Therefore, attention was focused on the other

two methods. Both NJ [38] and BioNJ [21] are neighbor-joining methods. In all tested cases

they produced the same trees, therefore we will treat them asthe same (SplitsTree BioNJ=NJ)

in this discussion.

Our MQTC heuristic has through the Complearn package already been extensively tested

in hierarchical clustering of nontree-structured data as reviewed in Section VI-B. Therefore,

we choose to run the MQTC heuristic and SplitsTree on data favoring SplitsTree, that is,

tree-structured data, both artificial and natural.

A. Testing on Artificial Data 100 Times

We first test whether the MQTC heuristic and the SplitsTree methods are trustworthy. We

generated 100 random samples of an unrooted binary treeT with 32 leaves as follows: We

started with a linear tree with each internal node connectedto one leaf node, a prior internal

node, and a successive internal node. The ends have two leaf nodes instead. This initial tree

was then mutated 1000 times using randomly generated instances of the complex mutation

operation defined earlier. Next, we derived a metric from thescrambled tree by defining the

distance between two nodes as follows: Given the length of the path froma to b in an integer

number of edges asL(a, b), let

d(a, b) =
L(a, b) + 1

32
,

except whena = b, in which cased(a, b) = 0. It is easy to verify that this simple formula

always gives a number between 0 and 1, is monotonic with path length, and the resulting matrix

is symmetric. Given only the32×32 matrix of these normalized distances, our quartet method

precisely reconstructed the original tree one hundred times out of one hundred random trials.

Similarly, SplitsTree NJ and BioNJ also reconstructed eachtree precisely in all trials. However

UPGMA was unable to cope with this test. It appears there is a mismatch of assumptions

in this experimental ensemble and the UPGMA preconditions,or there may be an error in

the SplitsTree implementation. The running time of CompLearn without the improvement of

Section V was about 3 hours per example, but with the improvement of Section V only at
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Acipenser dabryanus Yangtze sturgeon fish Lipotes vexillifer Yangtze river dolphin

Amia calva Bowfin fish Melanogrammus aeglefinusHaddock

Anguilla japonica Japanese eel Metaseiulus occidentalis Western predatory mite

Anopheles funestus Mosquito Neolamprologus brichard Lyretail cichlid fish

Arctoscopus japonicus Sailfin sandfish Nephila clavata Orb web spider

Asterias amurensis Northern Pacific seastar Oreochromis mossambicus Mozambique tilapia fish

Astronotus ocellatus Tiger oscar Oscarella carmela Sponge

Cervus nippon taiouanus Formosan sika deer Phacochoerus africanus Warthog

Cobitis sinensis Siberian spiny loach fish Plasmodium knowlesi Primate malaria parasite

Diphyllobothrium latum Broad tapeworm Plasmodium vivax Tersian malaria parasite

Drosophila melanogaster Fruit fly Polypterus ornatipinnis Ornate bichir fish

Engraulis japonicus Japanese anchovy Psephurus gladius Chinese paddlefish

Gavia stellata Red throated diver Pterodroma brevirostris Kerguelen petrel

Gymnogobius petschiliensisFloating goby fish Savalia savaglia Encrusting anemone

Gymnothorax kidako Moray eel Schistosoma haematobium Vesical blood fluke

Hexamermis agrotis Roundworm Nematode Schistosoma spindale Cattle fluke

Hexatrygon bickelli Sixgill stingray Synodus variegatus Variegated lizardfish

Homo sapiens Human Theragra finnmarchica Norwegian pollock fish

Hynobius arisanensis Arisian salamander Tigriopus californicus Tidepool copepod

Hynobius formosanus Formosa salamander Tropheus duboisi White spotted cichlid fish

Lepeophtheirus salmonis Sea lice

Fig. 7. Listing of scientific and corresponding common namesof 41 (out of 45) species used. The remaining four are dogs,

with common breed names Chinese Crested, Irish Setter, Old English Sheepdog, Saint Bernard. There are no scientific names

distinguishing them, as far as we know.

most 5 seconds per example. SplitsTree had a similar but slightly higher running time. Since

the performance of CompLearn and SplitsTree (both NJ and BioNJ) was 100% correct on the

artificial data we feel that all the methods except SplitsTree UPGMA perform satisfactory on

artificial tree-structured data.

B. Testing on Natural Data 100 Times

In the biological setting the data are (parts of) genomes of currently existing species, and

the purpose is to reconstruct the evolutionary tree that ledto those species. Thus, the species

are labels of the leaves, and the tree is traditionally binary branching with each branching

representing a split in lineages. The internal nodes and theroot of the tree correspond with
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extinct species (possibly a still existing species in a leafdirectly connected to the internal

node). The root of the tree is commonly determined by adding an object that is known to be

less related to all other objects than the original objects are with respect to each other. Where

the unrelated object joins the tree is where we put the root. In this setting, the direction from

the root to the leaves represents an evolution in time, and the assumption is that there is a true

tree we have to discover.

However, we can also use the method for hierarchical clustering, resulting in an unrooted

ternary tree. The interpretation is that objects in a given subtree are pairwise closer (more

similar) to each other than any of those objects is with respect to any object in a disjoint

subtree.

To evaluate the quality of tree reconstruction for natural genomic data, we downloaded 45

mitochondrial gene sequences, Figure 7, and randomly selected 100 subsets of 32 species each.

We used CompLearn with PPMD to compute NCD matrices for each of the 100 trials and

fed these matrices (as Nexus files) to both CompLearn and SplitsTree. CompLearn without

the speedup in Section V took about 10 hours per tree, but withthe speedup of Section V

CompLearn takes at most 6 seconds for collections of 32 objects in 66% of the cases, at

most 10 seconds in 90% of the cases, and occasionally (about 10% of the cases) between 10

seconds and 2 minutes. SplitsTree used about 10 seconds per trial. In all but one case out of

100 trials, CompLearn performed as good or better in the sense of producing trees with an

as good or higher S(T) score than the best method (with UPGMA performing badly and NJ

and BioNJ giving the same scores) from SplitsTree. The results are shown in the histogram

Figure 8, which shows that out of 100 trials CompLearn produced a better tree in 69% of the

trials. CompLearn had anaverageS(T ) of 0.99487068. SplitsTree achieved thebestS(T ) with

both NJ and BioNJ at 0.99243944. At this high level the absolute magnitude of the difference

is small, yet it can still imply significant changes in the structure of the tree. Figure 9 and

Figure 10 depict one example showing both BioNJ=NJ and CompLearn trees applied to the

same input matrix from one of the natural data test cases described above. In this case there

are important differences in placement of at least two species;Hexatrygon bickelliandSynodus

variegatus.

Although we can not know for sure the true maximum value that can be attained for the

S(T ), given an arbitrary distance matrix, we can still define a useful quantity. Let

R(T ) = 1.0− S(T ), (VII.1)
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Fig. 8. Histogram showing CompLearn S(T) advantage over SplitsTree S(T)

and termR(T ) the room for improvementfor tree T . This is especially apt in cases like

the present one where we know that the optimal treeTopt hasS(Topt) close to 1. Suppose

CompLearn produces treeT in trial t and SplitsTree produces treeT ′ in trial t. DefineRC(t) =

R(T ) andRS(t) = R(T ′) using (VII.1). We can compute the decibel gaindb(t) as the logarithm

of the ratio of room for improvement in trialt of SplitsTree’s answer versus CompLearn’s

answer with the formula

db(t) = 10 log10
RS(T )

RC(T )
. (VII.2)

Hence if db(t) = 1 then RS(T ) = 101/10RC(T ) ≈ 1.3RC(T ), and db(t) = 2 means that

RS(T ) = 101/5RC(T ) ≈ 1.6RC(T ). This is statistically significant according to almost every

reasonable criterion. Note that the room for improvement decibel gaindb(t) in (VII.2) represents

also a conservative estimate of the true improvement decibel gain in real error terms. This is

because the true maximumS(T ) score of a treeT resulting from a distance matrix is always

less than or equal to 1. Using theS(Topt) value of the real optimal treeTopt instead of 1

would only make the gain more extreme. We plot the decibel room for improvement gain in

Figure 11, using different binning boundaries than in Figure 8. On the horizontal axis the bins

are displayed where for every trialt we putdb(t) in the appropriate bin. On the vertical axis

the percentage of the number of elements in a particular bin to the total is depicted.

Because now we use different boundaries for each bin, the percentage of trials with the same

room for improvement for both CompLearn and SplitsTree is slightly higher than the percentage
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BioNJ tree score S(T) = 0.984490

BioNJ tree score S(T) = 0.984490

Acipenser dabryanus

Anopheles funestus

Arctoscopus japonicus

Asterias amurensis

Astronotus ocellatus

Cervus nippon taiouanus

Old English Sheepdog
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Drosophila melanogaster
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Gavia stellata

Gymnogobius petschiliensis

Hexamermis agrotis
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Homo sapiens
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Plasmodium vivax
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Fig. 9. NJ=BioNJ tree from SplitsTree
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S(T) = 0.993176
libcomplearn version 0.9.7

Lepeophtheirus salmonis

Schistosoma haematobium

Schistosoma spindale

Nephila clavata
Drosophila melanogaster

Anopheles funestus

Hexamermis agrotis

Plasmodium vivax

Oscarella carmela

Savalia savaglia

Synodus variegatus

Engraulis japonicus

Theragra finnmarchica

Gymnogobius petschiliensis

Arctoscopus japonicus

Astronotus ocellatus

Tropheus duboisi

Neolamprologus brichardi

Acipenser dabryanus

Psephurus gladius

Hexatrygon bickelli

Polypterus ornatipinnis

Pterodroma brevirostris

Gavia stellata

Homo sapiens

Old English Sheepdog

Saint Bernard

Phacochoerus africanus

Lipotes vexillifer

Cervus nippon taiouanus

Hynobius formosanus

Asterias amurensis

Fig. 10. CompLearn tree for comparison with previous Figure
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of trials with the sameS(T ) values between CompLearn and SplitsTree in Figure 8. Yet nowwe

can see the important difference in room for improvement between CompLearn and SplitsTree

expressed in decibels. Thus, about 38% of the CompLearn trials gives no positive integer decibel

reduction in room for improvement over the SplitsTree performance (and 1% gave a negative

reduction). About 27% gives a 1db reduction in room for improvement, about 22% gives a

2db reduction in room for improvement, about 10% gives a 3db in room for improvement.

Overall, about 61% of the CompLearn trials gives a 1 or more decibel reduction in room

for improvement over the SplitsTree performance. In more than 1/3 of the trials CompLearn

achieves at least a 2db reduction in room for improvement as compared to SplitsTree.
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VIII. C ONCLUSION

We have introduced a new quartet tree problem, the Minimum Quartet Tree Cost (MQTC)

problem, suited for general hierarchical clustering. Thisnew method relies on global optimiza-

tion of the constructed tree in contrast to bottom-up or top-down methods that can get stuck

in local optima, such as Quartet Puzzling, neighbor joining, and the like. Is is shown that this

MQTC problem is NP-hard by a reduction to the (weighted) Maximum Quartet Consistency

(MQC) problem that is more suited for the restricted case of biological phylogeny. Moreover, if

there is a polynomial time approximation scheme (PTAS) for the MQTC optimization problem,

then P=NP. Given the hardness of the MQTC problem we introduce a Monte Carlo heuristic

based on randomized hill climbing. This heuristic runs in time which is theoreticallyΩ(n4)

per generation wheren is the number of objects, andO(n5) per generation in the implemented

version. The improvement in Section V based on the distance matrix and quartet topology costs

in (V.1) runs in timeO(n3) per generation both as algorithm and implementation. The new

method including the improvement is available for general use in the open software CompLearn

Toolkit [9] from version 1.1.3 onward. It has been used widely for general hierarchical clustering

and also for biological phylogeny. Here, we tested our MQTC heuristic on artificial data

and natural data, and compared it with the neighbor-joiningmethod available in the (highly

competitive) SplitsTree package (version 4. 6) designed for tree-structured data in Biological

Phylogeny. (BioNJ and NJ in the SplitsTree package always gave the same results in our

experiments, so we treat them as one, and the UPMG method in the SplitsTree package did not

work for us.) To make the comparison more disadvantageous toour MQTC heuristic and more

advantageous to SplitsTree we tested it on tree-structureddata, rather than general hierarchical

clustering on data of unknown structure. SplitsTree was generally slower (sometimes 10 seconds

versus 6 seconds for CompLearn version 1.1.3 and later, thatis, 2/3rd more) than our MQTC

heuristic with the improvements in Section V. On our artificial data experiments both our

MQTC heuristic and the SplitsTree methods gave 100% correctresults. On the natural data

experiments theaverage caseof our MQTC heuristic was better than thebest caseof the

SplitsTree heuristics. To amplify the differences we compared the decibel gain in room for

improvement of SplitsTree’s answers versus our MQTC heuristic’s answers. In 61% of the

trials our MQTC heuristic’s performance gave a positive integer decibel reduction in room for

improvement over SplitsTree’s performance, and in 33% of the trials our MQTC heuristic’s

performance gave a 2db reduction in room for improvement over SplitsTree. Other heuristics
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for the MQTC optimization problem are recently given in [17]. But even the best method in

[17] has a slower running time for natural data (withn = 32 typically about 50%) than the

implementation of the MQTC heuristic in CompLearn from version 1.1.3 onward.

APPENDIX

A. Sufficiency of the Set of Simple Mutations

Theorem A.1:Every ternary tree withn leaves labeledl1, l2, . . . , ln and n − 2 unlabeled

internal nodes can be transformed in every other ternary tree withn leaves labeledl1, l2, . . . , ln

andn − 2 unlabeled internal nodes by a sequence off(n) mutations consisting of subtree to

leaf swaps or leaf to leaf swaps wheref(3) ≤ 3 andf(n) ≤ 5n− 16 for n ≥ 4.

Proof: For convenience of the discussion we attach labels to the internal nodes, but actually

the internal nodes are unlabeled, only the leaves are labeled.. The proof is by induction on the

number of nodes.

Base case:n = 3. There is one internal node, so the theorem is vacuously true.For n = 4

there are two internal nodes, so the theorem is true as well using at most one leaf swap.

Induction: Assume the theorem is correct for everyk with 4 ≤ k < n. We prove that it

holds for k = n. For n > 4 consider a ternary treeT0 with n − 2 unlabeled internal nodes

1, 2, . . . , (n − 2) andn labeled leaves that has to be transformed into a ternary treeT1 with

the same unlabeled internal nodes and labeled leaves.

Assume that the initial treeT0 has a pathz − x − y wherey is an end internal node with

two leaves andx is an internal node with one leaf. IfT0 is not of that form then we make

it of that form by a subtree to leaf swap: Take another end internal nodeu (possiblyz) and

swap the 3-node tree rooted atu (u and its two leaves) with a leaf ofy. This results in a path

x − y − u whereu is an end internal node with two leaves andy is an internal node with a

single leaf. We start from the resulting tree which we callT0 now.

For the sake of the argument we number the nodes so thatn − 2 is an end internal node

connected to an internal noden − 3 which has a single leafl. Glue the internal nodesn− 3

and n − 2 and the leafl together in a single internal node now denoted asn − 3. The new

n − 3 is an end internal node connected to two leaves formerly connected to the oldn − 2.

This results in ann− 3 unlabeled internal node ternary treeT ′
0 with n− 1 labeled leaves.

By the induction assumption we can transformT ′
0 into any ternary treeT ′

1 with n−3 unlabeled

internal nodes andn − 1 labeled leaves inf(n − 1) subtree to leaf or leaf to leaf mutations.

TakeT ′
1 to be a subtree ofT1 with the following exceptions. SinceT1 has one more internal
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node thanT ′
1 we can choose that extra internal node as an end internal nodeattached to tree

T ′
1 at the place where there is now a leaf. Let that leaf be leafl′. Note that leafl is not a leaf

of T ′
1 (since it is incorporated in internal noden− 3). If l should be a leaf ofT ′

1 to make it a

subtree ofT1 then we swapl with the leaf l′′ in the place wherel has to go in a leaf-to-leaf

swap. For convenience we still denote the leaf left in the composite noden− 3 by l.

Now expand inT ′
1 the internal noden− 3 into the path(n− 3)− (n− 2) together with leaf

l connected to(n − 3). This yields a ternary tree withn − 2 unlabeled internal nodes andn

labeled leaves. There are three cases.

Case 1. Initially, in T ′
1 the noden− 3 is an end internal node connected to an internal node

u as in the pathu − (n − 3). The expansion takes us to the situation that we have a path

u− (n− 3)− (n− 2) and leafl connected ton− 3.

The old internal noden − 3 being an end internal node had two leaves. In the path(n −

3) − (n − 2) both these leaves stay connected to the new end internal noden − 2 and leafl

stays connected ton− 3.

Assume first thatl′ is not in de 5-node subtree rooted at the newn− 3 containing the path

(n−3)− (n−2). We interchange this 5-node subtree with the leafl′. Next, we interchange the

3-node subtree rooted atn−2 with the leafl′ at its new location. In this way,n−3 being now

in the former position of leafl′ is the missing internal node ofT1. The new internal noden−3

is an end internal node with two leavesl, l′ of which l′ is in the correct position. There is still

the leafl′′ being possibly in the wrong position. All the other leaves are in the correct position

for T1. After we swap the leavesl, l′′ if necessary, all leaves are in the correct position.

Assume second thatl′ is in the subtree rooted atn−3 containing the path(n−3)− (n−2).

Then, the newn− 2 being an end internal node in the former position of leafl′ is the missing

internal node ofT1.

The total number of mutations used is at most three consisting of two subtree to leaf swaps

and possibly one leaf to leaf swap.

Case 2. Initially, the noden − 3 in T ′
1 is connected to two internal nodes yielding a path

u− (n− 3)− v such thatn− 3 is connected also to one leaf, sayl′′′. The expansion takes us

to the situation that we have a pathu − (n − 3) − (n − 2) − v. The old internal noden − 3

was connected to leafl′′′ which leaf is now connected ton− 2. The leafl is still connected to

the newn− 3.

Assume first thatl′ is not in the subtree rooted at the newn − 3 (containingu− (n− 3)).

We interchange the subtree rooted atn − 3 (containingu − (n − 3)) with leaf l′. Next we
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interchange the subtree rooted atu (not containingn − 3 and leafl) with l′ again. Now the

new n − 3 takes the place of the missing internal node ofT1 and it is an end internal node

connected to leavesl, l′. Of these, leafl′ is in correct position. All the other leaves except

possiblyl, l′′ are in correct position forT1. If necessary we interchange leavesl, l′′.

Assume second thatl′ is in the subtree rooted at the newn − 3 (containingu − (n − 3)).

Interchange the subtree rooted atn − 3 (containing(n − 3) − (n − 2)) with leaf l′. Next we

interchange the subtree rooted atn − 2 (not containingn − 3 and leafl) with l′ again. Now

the newn− 3 takes the place of the missing internal node ofT1 and it is an end internal node

connected to leavesl, l′. Of these, leafl′ is in correct position. All the other leaves except

possiblyl, l′′ are in correct position forT1. If necessary we interchange leavesl, l′′.

The total number of mutations used is at most three consisting of two subtree to leaf swaps

and possibly one leaf to leaf swap.

Case 3. Initially, in T ′
1 the noden− 3 is connected to three internal nodes forming the path

u− (n− 3)− v and there is a pathw − (n− 3) with w 6= u, v. The expansion yields the path

u− (n−3)− (n−2)−v with leaf l connected ton−3 andn−2 is also in a pathw− (n−2).

Assume first thatl′ is not in the subtree rooted at the newn − 3 (containingu− (n− 3)).

We interchange the subtree rooted at the newn− 3 containing the edgeu− (n− 3) and leaf

l with the leaf l′. Subsequently, we interchange the subtree rooted atu (not containingn − 3

and the connected leafl) with l′ again. Now noden − 3 is in the position of the missing

internal node ofT ′
1 and it is an end internal node with two leavesl, l′. Of these,l′ is in correct

position. Moreover, all the other leaves are in correct position except possiblyl, l′′. If necessary

we interchange leavesl, l′′.

Assume second thatl′ is in the subtree rooted at the newn − 3 (containingu − (n − 3)).

Interchange the subtree rooted at the newn − 3 containing the edge(n − 3) − (n − 2) and

leaf l with the leafl′. Subsequently, we interchange the subtree rooted atn−2 (not containing

n− 3 and the connected leafl) with l′ again. Now noden− 3 is in the position of the missing

internal node ofT ′
1 and it is an end internal node with two leavesl, l′. Of these,l′ is in correct

position. Moreover, all the other leaves are in correct position except possiblyl, l′′. If necessary

we interchange leavesl, l′′.

The total number of mutations used is at most three consisting of two subtree to leaf swaps

and possibly one leaf to leaf swap.

We count the number of mutations as follows. Initially, treeT ′
1 required at mostf(n − 1)

mutations to be obtained from treeT ′
0. By the above analysisf(n) ≤ f(n−1)+5 (remember the
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possibly necessary initial subtree to leaf swap to bringT0 in t he required form, and the possibly

ncessary leaf to leaf swap betweenl comprised in the composite noden− 3 and l′′ just before

Case 1). The base case shows thatf(3) ≤ 3 andf(4) ≤ 4. Hence,f(n) ≤ 4+(n−4)5 = 5n−16

for n > 4.

Remark A.2:Note that the only mutations used are leaf-to-leaf swaps andsubtree to leaf

swaps. This shows that the other mutations, that is subtree to subtree swaps, and subtree

transfers are superfluous in terms of completeness. However, they may considerably reduce

the number of total mutations required to go from one tree to another. Using the full set of

mutations we believe it is possible to go from a ternary tree as above to another one in at most

n mutations as given. ♦
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