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Abstract

The Minimum Quartet Tree Cost problem is to construct annogitiweight tree from thé;(Z)
weighted quartet topologies am objects, where optimality means that the summed weight ef th
embedded quartet topologies is optimal (so it can be thetbaséhe optimal tree embeds all quartets
as nonoptimal topologies). We present a Monte Carlo hétyrisased on randomized hill climbing,
for approximating the optimal weight tree, given the quatideology weights. The method repeatedly
transforms a dendrogram, with all objects involved as Isaaehieving a monotonic approximation
to the exact single globally optimal tree. The problem arelgblution heuristic has been extensively
used for general hierarchical clustering of nontree-liken-phylogeny) data in various domains and
across domains with heterogeneous data. We also presesatlygmproved heuristic, reducing the
running time by a factor of order a thousand to ten thousatidthis is implemented and available,
as part of the CompLearn package. We compare performanceuanihg time of the original and
improved versions with those of UPGMA, BioNJ, and NJ, as enpénted in the SplitsTree package
on genomic data for which the latter are optimized.
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. INTRODUCTION

If we want to find structure in a collection of data, then we @aganize the data into

clusters such that the data in the same cluster are simithrttaan data in different clusters
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are dissimilar. In general there is no best criterion to mheitee the clusters. One approach is
to let the user determine the criterion that suits his or memsds. Alternatively, we can let
the data itself determine “natural” clusters. Since it i¢ licely that natural data determines

unequivocal disjoint clusters, it is common to hierarchycaluster the datal [19].

A. Hierarchical Clustering and the Quartet Method

In cluster analysis there are basically two methods foranédical clustering. In the bottom-
up approach initially every data item constitutes its owrst#r, and pairs of clusters are merged
as one moves up the hierarchy. In the top-down approach toé sk data constitutes the initial
cluster, and splits are performed recursively as one mowes dhe hierarchy. Generally, the
merges and splits are determined in a greedy manner. Thedisaidvantages of the bottom-up
and top-down methods are firstly that they do not scale walhbge the time complexity is
nonlinear in terms of the number of objects, and secondlyttiey can never undo what was
done before. Thus, they are lacking in robustness and umépsesince the results depend on
the earlier decisions. In contrast, the method which we @geghere is robust and gives unique
results in the limit.

The results of hierarchical clustering are usually presgint a dendrogram [23]. For a small
number of data items this has the added advantage that titeonsl among the data can be
subjected to visual inspection. Such a dendrogram is artetree where the leaves or external
nodes are the basic data elements. Two leaves are conneeednternal node if they are more
similar to one another than to the other data elements. Dgnaims are used in computational
biology to illustrate the clustering of genes or the evalnéry tree of species. In the latter case
we want a rooted tree to see the order in which groups of spepkt off from one another.

In biology dendrograms (phylogenies) are ubiquitous, amthiods to reconstruct a rooted
dendrogram from a matrix of pairwise distances abound. Oribese methods is quartet tree
reconstruction as explained in Sectioh II. Since the bigksgassume there is a single right
tree (the data are “tree-like”) they also assume one quepeiogy, of the three possible ones
of every quartet, is the correct one. Hence their aim is toesmefinition[2.1) the largest

number of correct quartet topologies in the target tree.

B. Related Work

The quartet tree method is described in Sediibn Il. A muaddeeuristic called the Quartet
Puzzling problem was proposed in_[41]. There, the quartpbltgies are provided with a
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probability value, and for each quartet the topology witk tiighest probability is selected
(randomly, if there are more than one) as the maximum-hike&ld optimal topology. The goal
is to find a dendrogram that embeds these optimal quartetagies. In the biological setting
it is assumed that the observed genomic data are the resait e¥olution in time, and hence
can be represented as the leaves of an evolutionary tree Waobtain a proper probabilistic
evolutionary model to quantify the evolutionary relatidredween the data we can search for the
true tree. In a quartet method one determines the most ldudytet topology for every quartet
under the given assumptions, and then searches for a tdrearya dendrogram) that contains
as many of the most likely quartets as possible. By Lerhmal &alendrogram is uniquely
determined by the set of embedded quartet topologies thahiains. These quartet topologies
are said to be consistent with the tree they are embeddedhus, Tf all quartets are embedded
in the tree in their most likely topologies, then it is centéhat this tree is the optimal matching
tree for the given quartet topologies input data. In pract@ often find that the set of given
guartet topologies are inconsistent or incomplete. Inistexscy makes it impossible to match
the entire input quartet topology set even for the optimaktbnatching tree. Incompleteness
threatens the uniqueness of the optimal tree solution. t@utpology inference methods also
suffer from practical problems when applied to real worlthdén many biological ecosystems
there is reticulation that makes the relations less tle®dnd more network-like. The data can
be corrupted and the observational process pollutes aneésrexkors.

Thus, one has to settle for embedding as many most likelytefutopologies as possible,
do error correction on the quartet topologies, and so oncelém phylogeny, finding the best
tree according to an optimization criterion may not be thmesahing as inferring the tree
underlying the data set (which we tend to believe, but uguadhnot prove, to exist). Fat
objects, there aré2n — 5)!! = (2n — 5) x (2n — 3) x --- x 3 unrooted dendrograms. To find
the optimal tree turns out to be NP-hard, see Se¢tionllll+&l hence infeasible in general.
There are two main avenues that have been taken:

() Incrementally grow the tree in random order by stepwiddiion of objects in the locally
optimal way, repeat this for different object orders, and agreement values on the branches,
like DNAML [20], or Quartet Puzzling[41]. These methods &aset, but suffer from the usual
bottom-up problem: a wrong decision early on cannot be ctecklater. Another possible
problem is as follows. Suppose we have just 32 items. Withrt@uRuzzling we incrementally

construct a quartet tree from a randomly ordered list of eletisy where each next element



is optimally connected to the current tree comprising thevious elements. We repeat this
process for, say, 1000 permutations. Subsequently, weftwglercentage agreement of subtrees
common to all such trees. But the number of permutations @ted'®°, so why would the
incrementally locally optimal trees derived from 1000 ramdpermutations be a representative
sample from which we can conclude anything about the glghlmdtimal tree?

(i) Approximate the global optimum monotonically or comeuit, using a geometric
algorithm or dynamic programming![4], linear programmidd], or semi-definite programming
[39]. These latter methods, other methods, as well as metteddted to the Minimum Quartet
Consistency (MQC) problem (Definitidn_2.2), cannot handlerenthan 15-30 objects [44],
[34], [36], [5], [39] directly, even while using farms of ddsps. To handle more objects one
needs to construct a supertree from the constituent questst for subsets of the original data
sets, [37], as in[[34], [36], incurring again the bottom-upldem of being unable to correct

earlier decisions.

C. Present Work

The Minimum Quartet Tree Cost (MQTC) problem is proposedant®nIIl (Definition[3.2).

It is a quartet method for general hierarchical clusterihgantree-like data in non-biological
areas that is also applicable to phylogeny constructioniahogy. In contrast to the MQC
problem, it is used for general hierarchical clusteringldés not suppose that for every quartet
a single quartet topology is the correct one. Instead, weadioptimizing the summed quartet
topology costs. If we determine the quartet topology cogimmfa measure of distance, then
the data themselves are not required: all that is used istands matrix. To solve it we
present a computational heuristic that is a Monte Carlo otktlas opposed to deterministic
methods like local search, Sectionl IV. Our method is based fast randomized hill-climbing
heuristic of a new global optimization criterion. Improvents that dramatically decrease the
running speed are given in Sectioh V. The algorithm does ddtess the problem of how to
obtain the quartet topology weights from sequence datg [38], [32], but takes as input the
weights of all quartet topologies and executes the step wof tooreconstruct the hierarchical
clustering from there. Alternatively, we can start from tistance matrix and construct the
guartet topology cost as the sum of the distances betweesilihiegs, dramatically speeding
up the heuristic as in Sectiénd V. Since the method globaltyntipes the tree it does not suffer
from the the disadvantage treated in Item (i) of Secfion IFBe running time is much faster



than that of the methods treated in Item (ii) of Section] I-Bcan also handle much larger
trees of at least 300 objects.

The algorithm presented produces a sequence of candieéate with the objects as leaves.
Each such candidate tree is scored as to how well the treeseqis the information in the
weighted quartet topologies on a scale of 0 to 1. If a new chatdi scores better than the
previous best candidate, the former becomes the new bedides® The globally optimal tree
has the highest score, so the algorithm monotonically aqppmates the global optimum. The
algorithm terminates on a given termination condition.

In contrast to the general case of bottom-up and top-dowhadst the new quartet method
can undo what was done before and eventually reaches a gipbalum. It does not assume
that the data are tree like (and hence that there is a siniglet tree”), but simply hierarchically
clusters data items in every domain. The scalability is mapd by the reduction of the running
time from Q(n) per generation in the original version (with an implemeptatof at least
O(n®)) to O(n?) per generation in the current optimised version in Se¢iiany implemented
in CompLearn([9] from version 1.1.3 onward. (Hetdas the number of data items.) Recently,
in [17] several alternative approaches to the here-inttedusolution heuristic are proposed.
Some of the newly introduced heuristics perform better lotfesults and running times than
our old implementation. However, even the best heuristiflifi appears to have a slower
running time for natural data (with = 32 typically over 50%) than the current version of our
algorithm (CompLearn version 1.1.3 or later.)

In Section[Vl we treat compression-based distances andope\experiments with the
MQTC heuristic using the CompLearn software. In Secfion ¥#impare performance and
running time of MQTC heuristic in CompLearn versions 0.9nd 4.1.3 (before and after the
speedup in SectionlV) with those of other modern methodss&laee UPGMA, BioNJ, and
NJ, as implemented in the SplitsTree version 4.6. We consid#icial and natural data sets.
Note that biological packages like SplitsTree assumelikeedata and are not designed to deal
with arbitrary hierarchical clustering like the MQTC hestic. The artificial and natural data

sets we use are tree structured. Thus, the comparison is tmthe new MQTC heuristic.

D. Origin and Computational Complexity

The MQTC problem and heuristic were originally proposeddd]] [12], [13]. There, the
main focus is on compression-based distances, but to lyqualsent the results in tree form we

focused on a quartet method for tree reconstruction. Wetabeved such a quartet tree method
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to be more sensitive and objective than other methods. Taiéable quartet tree methods were
too slow when they were exact or global, and too inaccuratenmertain when they were

statistical incremental. They also addressed only bicklgbohylogeny. Hence, we developed
a new approach aimed at general hierarchical clustering. dpproach is not a top-down or
bottom-up method that can be caught in a local optimum. Iratieve references the approach
is described as an auxiliary notion in one or two pages. Itnsagor new method to do general
hierarchical clustering. Here we give the first completatiresnt.

Some details of the MQTC problem, its computational harghesmd our heuristic for
its solution, are as follows. The goal is to use a quartet otetto obtain high-quality
hierarchical clustering of data from arbitrary (possibstdrogeneous) domains, not necessarily
only biological phylogeny data. Traditional quartet metbalerive from biology. There, one
assumes that there exists a true evolutionary tree, anditihésao embed as many optimal
guartet topologies as is possible. In the new method for rgéingerarchical clustering, fon
objects we consider a:ﬂ(Z) possible quartet topologies, each with a given weight. al ¢
to find the tree such that the summed weights of the embeddetetjitopologies is optimal. We
develop a randomized hill-climbing heuristic that monataily approximates this optimum,
and a figure of merit (Definition_3.3) that quantifies the quyatif the best current candidate
tree on a linear scale. We give an explicit proof of NP-hassn@heorem _317) of the MQTC
problem. Moreover, if a polynomial time approximation sctee(PTAS) (Definitioi 38) for the
problem exists, then P=NP (Theorém]3.9). Given the NP—tesiof phylogeny reconstruction
in general relative to most commonly-used criteria, as aslthe non-trivial algorithmic and
run-time complexity of all previously-proposed quartessbd heuristics, such a simple heuristic

is potentially of great use.

E. Materials and Scoring

The data samples we used, here or in referred-to previous were obtained from standard
data bases accessible on the Internet, generated by agsehobtained from research groups
in the field of investigation. Contrary to biological phykmy methods, we do not have
agreement values on the branches: we generate the bestossible, globally balancing all
requirements. The quality of the results depends on how thellhierarchical tree represents
the information in the set of weighted quartet topologiebe MQTC clustering heuristic
generates a tree together with a goodness score. The kattaled standardized benefit score

or S(T) value in the sequel (Definitidn 3.3). In certain natural dats, such as HSN1 genomic
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sequences, consistently highi7") values are returned even for large sets of objects of 100 or
more nodes, [10]. In other nontree-structured natural sletshowever, as treated in [11], [12],
the S(7") value deteriorates more and more with increasing numbeteofients being put in
the same tree. The reason is that with increasing size of ae®structured natural data set
the projection of the information in the cost function intdesinary tree may get increasingly
distorted. This is because the underlying structure in #ta & incommensurate with any tree
shape whatsoever. In this way, larger structures may indddéional “stress” in the mapping
that is visible as lower and lowes(T") scores. Experience shows that in nontree-structured
data the MQTC hierarchical clustering method seems to wesk for small sets of data, up
to 25 items, and to deteriorate for some (but by no meansaatiel sets of, say, 40 items or
more. This deterioration is directly observable in t#i€/") scores and degrades solutions in
two common forms. The first form is tree instability when drfént or very different solutions
are returned on successive runs. The second form is treelif@earization” when some data
sets produce caterpillar-like structures only or pred@mity.

In case a large set of objects, say 100 objects, clustershigthS(7") value this is evidence
that the data are of themselves tree-like, and the quametdagy weights, or underlying
distances, truely represent to similarity relationshipsaeen the data. Generating trees from
the same weighted quartet topologies many times resultebdeirsame tree in case of high
S(T') value, or a similar tree in case of moderately higti’) value. This happened for every
weighting we used, even though the heuristic is randomizadt is, there is only one way to

be right, but increasingly many ways to be increasingly wgron

Il. THE QUARTET METHOD

Given a setV of n objects, we consider every subset of four elements (objéctms our
set of n elements; there ar(aZ) such sets. Such a set is calledjaartet From each quartet
{u,v,w, z} we construct a tree of arity 3, which implies that the treesists of two subtrees of
two leaves each. Let us call such a treguartet topologyWe denote a partitiofiu, v}, {w, z}
of {u,v,w, x} by uv|wz. There are three possibilities to partiti¢n, v, w, x} into two subsets
of two elements each: (jv|wz, (i) vw|vz, and (i) ux|vw. In terms of the tree topologies:
a vertical bar divides the two pairs of leaf nodes into twdaiig subtrees (Figurg] 1).

The set ofS(Z) guartet topologies induced hy is denoted by). Consider the clasg of
undirected trees of arity 3 with > 4 leaves (external nodes of degree 1), labeled with the

elements ofN. Such trees have leaves and: — 2 internal nodes (of degree 3).
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Fig. 1. The three possible quartet topologies for the seeaf labelsu,v,w,x

Definition 2.1: For treeT € T and four leaf labels:, v, w,z € N, we sayT is consistent
with wv|wz, or the quartet topologyiv|wz is embeddedn 7', if and only if the path fromu
to v does not cross the path fromto z.

It is easy to see that precisely one of the three possibletejumpologies of a quartet of
four leaves is consistent for a given tree frgm Therefore a tree fronff contains precisely
(Z) different quartet topologies. Commonly the goal in the tptamethod is to find (or
approximate as closely as possible) the tree that embedmaxénal number of consistent
(possibly weighted) quartet topologies from a given getC () of quartet topologies [24]
(Figure[2). Aweight functioniV : P — R, with R the set of real numbers determines the
weights. The unweighted case is whBh(uv|wz) = 1 for all wv|wz € P.

Definition 2.2: The (weightedMaximum Quartet Consistency (MQC) optimizatfmoblem
is defined as follows:

GIVEN: N, P, andW.

QUESTION: FindTy = maxper{> _{W (uv|wz) : wv|wz € P anduv|wz is consistent with
T}.



Fig. 2. An example tree consistent with quartet topolegywz

[1l. MINIMUM QUARTET TREE COST

The rationale for the MQC optimization problem reflects thenesis of the method in
biological phylogeny. Under the assumption that biolobggecies developed by evolution
in time, and N is a subset of the now existing species, there is a phylogéng 7 that
represents that evolution. The set of quartet topologiesistent with this tree has one quartet
topology per quartet which is the true one. The quartet tagiek in7 are the ones which we
assume to be among the true quartet topologies, and weightssad to express our relative
certainty about this assumption concerning the individpadrtet topologies iff'p.

However, the data may be corrupted so that this assumption isnger true. In the general
case of hierarchical clustering we do not even have a prioowkedge that certain quartet
topologies are objectively true and must be embedded. Ratleeare in the position that we
can somehow assign a relative importance to the differestteutopologies. Our task is then to
balance the importance of embedding different quartetltgpes against one another, leading
to a tree that represents the concerns as well as possiblstaffefrom a cost-assignment to
the quartet topologies: Given a s&t of n objects, let() be the set of quartet topologies, and
let C : @ — R be acost functionassigning a real valued coét(uv|wz) to each quartet
wlwzx € Q.

Definition 3.1: The cost Cr of a treeT with a set N of leaves is defined by, =



> twvweyen1C(uvwz) : T is consistent withuw|wz }—the sum of the costs of all its consistent
guartet topologies.

Definition 3.2: Given N and C, the Minimum Quartet Tree Cost (MQTG3 minyc7{Cr :

T is a tree with the selV labeling its leaves

We normalize the problem of finding the MQTC as follows: Cdesithe list of all possible
guartet topologies for all four-tuples of labels under é¢desation. For each group of three
possible quartet topologies for a given set of four lahels, w, x, calculate a best (minimal)
cost m(u,v,w,z) = min{C(uwv|wz), C(uw|vx), C(uzjvw)}, and a worst (maximal) cost
M (u,v,w, ) = max{C(uv|wzx), C(uw|vz), C(ux|vw)}. Summing all best quartet topologies
yields the best (minimal) cost = >/, , , .1cn m(u, v, w, z). Conversely, summing all worst
quartet topologies yields the worst (maximal) cast= >, , , .,cy M (u, v, w,z). For some
cost functions, these minimal and maximal values can nottia@ad by actual trees; however,
the scoreC'r of every tre€l” will lie between these two values. In order to be able to campa
the scores of quartet trees for different numbers of objeces uniform way, we now rescale
the score linearly such that the worst score maps to 0, andebiescore maps to 1:

Definition 3.3: The normalized tree benefit scor8(7T") is defined byS(T) = (M —
Cr)/(M —m).

Our goal is to find a full tree with a maximum value 8{7"), which is to say, the lowest
total cost. Now we can rephrase the MQTC problem in such a Walydolutions of instances
of different sizes can be uniformly compared in terms oftredaquality:

Definition 3.4: Definition of theMQTC optimization problem

GIVEN: N andC.

QUESTION: Find a treély, with S(7p) = max{S(T") : T is a tree with the sel labeling
its leave$.

Definition 3.5: Definition of theMQTC decision problem

GIVEN: N andC and a rational number < k < 1.

QUESTION: Is there a binary trég with the setV labeling its leaves and(7") > k.

A. Computational Hardness

The hardness of Quartet Puzzling is informally mentionethin literature [[44],[34],[36],
but we provide explicit proofs. To express the notion of catagional difficulty one uses the
notion of “nondeterministic polynomial time (NP)”. If a dstem concerning: objects is NP—

hard this means that the best known algorithm for this (anéta wlass of significant problems)
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requires computation time at least exponentiakirirhat is, it is infeasible in practice. LeéY
be a set oz objects, letl" be a tree of which the leaves are labeled by the objects, and let
(@ be the set of quartet topologies afd be the set of quartet topologies embedded’in

Definition 3.6: The MQC decision problenms the following:

GIVEN: A set of quartet topologie® C @, and an integek.

DECIDE: Is there a binary tre& such thatP Qr > k.
In [40] it is shown that the MQC decision problem is NP—hardm®&times this problem is
called thencompleteMQC decision problem. The less generamplete MQC decision problem
requiresP to contain precisely one quartet topology per quartet (fhaper each subset df
elements out of the elements), and is proved to be NP-hard as wellin [5].

Theorem 3.7:(i) The MQTC decision problem is NP-hard.

(i) The MQTC optimization problem is NP—hard.

Proof: (i) By reduction from the MQC decision problem. For every M@Q€xision problem
one can define a corresponding MQTC decision problem thatheasame solution: give the
guartet topologies inP cost 0 and the ones i — P cost 1. Consider the MQTC decision
problem: is there a tre& with the set/NV labeling its leaves such th&t, < (Z) —k ? An
alternative equivalent formulation is: is there a tfBevith the set/V labeling its leaves such

that
M= () +k

S(T) > T

?

Note that every tre@' with the setV labeling its leaves has precisely one out of the three quarte
topologies of every of th¢};) quartets embedded in it. Therefore, the @@st= (}) —|P N Qr|.

If the answer to the above question is affirmative, then thmber of quartet topologies i

that are embedded in the tree excegdd it is not then there is no tree such that the number
of quartet topologies i embedded in it exceeds This way the MQC decision problem can
be reduced to the MQTC decision problem, which shows alsdatter to be NP—hard.

(i) An algorithm for the MQTC optimization problem yieldsraalgorithm for the MQTC
decision problem with the same running time up to a polynbauiitive term: If the answer
to the MQTC optimization problem is a trég, then we determiné(T;) in O(n*) time. Let
k be the bound of the MQTC decision problem.Sf7) > k then the answer to the decision
problem is “yes,” otherwise “no.” [ |

The proof shows that negative complexity results for MQQycawer to MQTC.

Definition 3.8: A polynomial time approximation scheme (PTAS)a polynomial time
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approximation algorithm for an optimization problem withparformance guaranty. It takes
an instance of an optimization problem and a parametei0, and produces a solution of an
optimization problem that is optimal up to arfraction.
For example, for the MQC optimization problem as defined ab@aPTAS would produce a
tree embedding at least — ¢)| P| quartets fromP. The running time of a PTAS is required
to be polynomial in the size of the problem concerned for y¥eed ¢, but can be different
for differente. In [5] a PTAS for a restricted version of the MQC optimizatiproblem,
namely the “complete” MQC optimization problem defined abois exhibited. This is a
theoretical approximation that would run in something lik€. For general (what we have
called “incomplete”) MQC optimization it is shown that evemch a theoretical algorithm does
not exist, unless P=NP.

Theorem 3.9:If a PTAS for the MQTC optimization problem exists, then P=NP

Proof: The reduction in the proof of Theorem B.7 yields a restrictedsion of the

MQTC optimization problem that is equivalent to the MQC agtiation problem. There is an
isomorphism between every partial solution, includingdp&mal solutions involved: For every
tree 7" with N labeling the leaves, the MQTC coét = (%) — |P(\Qr| where PN Qr is
the set of MQC consistent quartets. The reduction is alsg-fiwle approximation preserving,
since the reduction gives a linear time computable isononpérsion of the MQTC problem
instance for each MQC problem instance. Since [5] has shtvah & PTAS for the MQC
optimization problem does not exist unless P=NP, it alsa$dbr this restricted version of
the MQTC optimization problem that a PTAS does not exist sslB=NP, The full MQTC
optimization problem is at least as hard to approximate byfAS? from which the theorem
follows. [ |

Is it possible that the best(7") value is always one, that is, there always exists a tree that
embeds all quartets at minimum cost quartet topologies3i@enthe case = |N| = 4. Since
there is only one quartet, we can dgtequal to the minimum cost quartet topology, and have
S(Ty) = 1. A priori we cannot exclude the possibility that for evely and C' there always
is a treeTy with S(7y) = 1. In that case, the MQTC optimization problem reduces to figdi
that 7;,. However, the situation turns out to be more complex. Nos firat the set of quartet
topologies uniquely determines a tree7fin [6].

Lemma 3.10:Let T',7" be different labeled trees i and let Qr, Qr be the sets of
embedded quartet topologies, respectively. THgA#A Q7.
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A complete sebf quartet topologies oV is a set containing precisely one quartet topology
per quartet. There ara(1) such combinations, but only(g) labeled undirected graphs on
n nodes (and thereforgr | < 2(3)). Hence, not every complete set of quartet topologies
corresponds to a tree . This already suggests that we can weight the quartet tgpesio
in such a way that the full combination of all quartet topaésgat minimal costs does not
correspond to a tree iff, and henceS(7y) < 1 for Ty € T realizing the MQTC optimum.
For an explicit example of this, we use that a complete saesponding to a tree iffit must
satisfy certain transitivity properties, [15], [16]:

Lemma 3.11:Let T be a tree in the considered class with leayés() the set of quartet
topologies and), C Q. Then(@, uniquely determineq’ if

(i) Qo contains precisely one quartet topology for every quadet,

(i) For all {a,b,c,d,e} C N, if ablbc, ab|de € @ thenab|ce € Q, as well as ifab|cd, be|de €
Q thenab|de € Q.

Theorem 3.12:There areN (with n = |N| = 5) and a cost functior’ such that, for every
T €T, S(T) does not exceed/5.

Proof: ConsiderN = {u,v,w,z,y} and C(uv|lwz) = 1 — e(e > 0),C(uw|zv) =
C(uxjvw) = 0, C(zy|uv) = Clwy|luv) = Cluy|lwz) = C(vylwz) = 0, and C'(abled) = 1
for all remaining quartet topologiesb|cd € ). We see thatM = 5 —¢, m = 0. The
tree Ty = (y,((u,v), (w,x))) has costCr, = 1 — ¢, since it embeds quartet topologies
uw|zv, zy|uw, wy|uv, uy|wz, vy|wz. We show thatly achieves the MQTC optimum.

Case lif a treeT # T, embedsuwv|wz, then it must by Item (i) of Lemmia 3.1 also embed
a quartet topology containing that has cost 1.

Case 2:If a tree T # T, embedsuw|zv and zy|uv, then it must by Item (ii) of the
Lemmal3.11l also embedw|zy, and hence have cost; > 1. Similarly, all other remaining
cases of embedding a combination of a quartet topology niotaging y of O cost with a
guartet topology containing of 0 cost in7’, imply an embedded quartet topology of cost 1
inT. [ |

Altogether, the MQTC optimization problem is infeasiblegractice, and natural data can
have an optimalS(7) < 1. In fact, it follows from the above analysis that to deterenin
the optimal S(T") in general is NP-hard. If the deterministic approximatidrttos optimum
to within a given precision can be done in polynomial timegrtithat implies the generally
disbelieved conjecture P=NP. Therefore, any practicat@gh to obtain or approximate the

MQTC optimum requires some type of heuristics, for examplend Carlo methods.
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[V. MONTE CARLO HEURISTIC

Our algorithm is a Monte Carlo heuristic, essentially ramgmed hill-climbing where
undirected trees evolve in a random walk driven by a preedrifitness function. We are
given a setN of n objects and a cost functiof.

Definition 4.1: We define asimple mutatioron a labeled undirected ternary tree as one of
the following possible transformations:

1) A leaf interchangerandomly choose two leaves that are not siblings and inéerge
them.

2) A subtree interchangaandomly choose two internal nodesw, or an internal node:
and a leafw, such that the shortest path length betweesnd w is at least three steps.
That is,u —xz — --- — y — w is a shortest path in the tree. Disconnedand the subtree
rooted atu disjoint from the path) fromx, and disconnectv (and the subtree rooted at
w disjoint from the path ifw is not a leaf) fromy. Attach« and its subtree tg, andw
(and its subtree ifv is not a leaf) toz.

3) A subtree transferwhereby a randomly chosen subtree (possibly a leaf) ischethand

reattached in another place, maintaining arity invariants

Each of these simple mutations keeps the number of leaf naddsinternal nodes in the
tree invariant; only the structure and placements chan@garl@, mutations 1) and 2) can be
together replaced by the single mutation below. But in thpl@mentation they are separated
as above.

« A subtree and/or leaf interchangehich consists of randomly choosing two nodes (either
node or both can be leaves or internal nodes),say, such that the shortest path length
betweenu andw is at least three steps. That is.— x — --- — y — w IS a shortest path
in the tree. Disconneat (and the subtree rooted atdisjoint from the path) fromx, and
disconnectw (and the subtree rooted at disjoint from the path) fromy. Attach« and
its subtree ta;, andw and its subtree ta.

A sequence of these mutations suffices to go from every terinae withn labeled leaves
andn — 2 unlabeled internal nodes to any other ternary tree withbeled leaves and — 2
unlabeled internal nodes, TheorémJA.1 in Apperidix A.

Definition 4.2: A k-mutationis a sequence df simple mutations. Thus, a simple mutation

is a 1-mutation.
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Step 1: First, a random tred” € T with 2n — 2 nodes is created, consisting of
leaf nodes (with 1 connecting edge) labeled with the namethefdata items, and

n — 2 non-leaf orinternal nodes. When we need to refer to specific internal nodes,
we label them with the lowercase letter “k” followed by a wmginteger identifier.
Each internal node has exactly three connecting edges.

Step 2: For this tre€l’, we calculate the summed total cost of all embedded quartet
topologies, and comput&(7T).

Step 3: The currently best known treeariableTy is set toT: Ty « T

Step 4: Draw a numbett with probabilityp(1) = 1 —c andp(k) = ¢/(k(log k)?) for

k> 2, wherel/c=>"",1/(k(logk)?). By [7] it is known thatl/c ~ 2.1.

Step 5: Compose &-mutation by, for each of the constituent sequencé sfmple
mutations, choosing one of the three types listed above edqtml probability. For
each of these simple mutations, we uniformly at random sdé&ayves or internal
nodes, as appropriate.

Step 6: In order to search for a better tree, we simply apply#hautation constructed

in Step 5to 7 to obtain7’, and then calculat&(T). If S(T") > S(Ty), then replace
the current candidate iy by 7' (as the new best treeJy < T.

Step 7: If S(7p) = 1 or atermination conditionto be discussed below holds, then
output the tree irfy as the best tree and halt. Otherwise, g&tep 4

Fig. 3. The Algorithm

A. Algorithm

The algorithm is given in Figurel 3. We comment on the differseps:

Comment on Step 2A tree is consistent with precisel%r of all quartet topologies, one

for every quartet. A random tree is likely to be consistenlthvﬂbout% of the best quartet

topologies—but because of dependencies this figure is eaiga.

Comment on Step Jhis 7T is used as the basis for further searching.

Comment on Step Zhis numbelk is the number of simple mutations that we will constitute
the nextk-mutation. The probability mass functigrik) for k > 2 is p(k) = ¢/(klog® k) with

c = 2.1. In practice, we used a “shifted” fat tail probability massétion1/((k+2)(log k+2)?)
for £ > 1.
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Comment on Step Motice that trees which are close to the original tree (imgof number
of simple mutation steps in between) are examined oftenlevitees that are far away from
the original tree will eventually be examined, but not vergguently.

Remark 4.3:We have chosem(k) to be a “fat-tail” distribution, with one of the fattest
tails possible, to concentrate maximal probability alsotloa larger values of. That way,
the likelihood of getting trapped in local minima is minira@ In contrast, if one would
choose an exponential scheme, likg) = ce™*, then the larger values df would arise so
scarcely that practically speaking the distinction betwbeing absolutely trapped in a local
optimum, and the very low escape probability, would be indigant. Considering positive-
valued probability mass functiong : ' — (0, 1], with N/ the natural numbers, as we do
here, we note that such a function {in_..q(k) = 0, and (i) > ;- ¢(k) = 1. Thus,
every function of the natural numbers that has strictly fpasivalues and converges can be
normalized to such a probability mass function. For smoatalydic functions that can be
expressed as a series of fractional powers and logarithmashdarderline between converging
and diverging is as followsy 1/k, > 1/(klogk), > 1/(klogkloglogk) and so on diverge,
while > 1/k* 3" 1/(k(logk)?),>- 1/(klog k(loglog k)?) and so on converge. Therefore, the
maximal fat tail of a “smooth” functionf(z) with > f(z) < oo arises for functions at the
edge of the convergence family. The probability mass famgti k) = ¢/(k(log k)?) is as close
to the edge as is reasonable. Let us see what this means fagmrithm using the chosen
probability mass functiop(k) where we take: = £ for convenience.

For n = 32 we can change any tree if to any other tree iry” with a squence of at most
5n — 16 = 144 simple mutations (Theorein_A.1 in AppendiX A). The probdbilbf such a
complex mutation occurring is quite large with such a fak tai 1/(2 - 144 - 7%) = 1/14112.
The expectation is about 7 times in 100,000 generations.5khe16 is a crude upper bound;
we believe that the real value is more likely to be abewgimple mutations. The probability
of a sequence of simple mutations occurring isr 1/(2 - 32 - 5?) = 1/1600. The expectation
increases to about 63 times in 100.000 generations. If walcaady get out of a local minimum
with only a 16-mutation, then this occurs with probabilig/1i/512, so it is expected about
195 times in 100.000 generations, and with an 8-mutationptiodability is 1/144, so the

expectation is more than 694 times in 100.000 generations. &
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B. Performance

The main problem with hill-climbing algorithms is that theyan get stuck in a local
optimum. However, by randomly selecting a sequence of @mpultations, longer sequences
with decreasing probability, we essentially run a of sinedaannealing([28] algorithm at
random temperatures. Since there is a nonzero probalaligvery tree i/ being transformed
into every other tree i/, there is zero probability that we get trapped forever in @alo
optimum that is not a global optimum. That is, trivially:

Lemma 4.4:(i) The algorithm approximates the MQTC optimal solutionmatonically in
each run.

(i) The algorithm without termination condition solvesettMQTC optimization problem
eventually with probability 1 (but we do not in general knovhem the optimum has been

reached in a particular run).
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Fig. 4. Progress of a 60-item data set experiment over time

The main question therefore is the convergence speed oflgloeitam on natural data in
terms of S(7") value, and a termination criterion to terminate the al@ponitwhen we have
an acceptable approximation. Practically, from Figure dpipears that improvement in terms
of S(T') eventually gets less and less (while improvement is stisde) in terms of the
expended computation time. Theoretically, this is ex@éditby Theoreni_319 which tells us
that there is no polynomial-time approximation scheme f@ N optimization. Whether our

approximation scheme is expected polynomial time seemsdoime proving that the involved
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Metropolis chain is rapidly mixing [42], a notoriously haahd generally unsolved problem.
However, in our experiments there is unanimous evidendefdhahe natural data and the cost
function we have used, convergence to close to the optimiakva always fast.

The running time is determined as follows. We have to deteenthe cost of(’;) quartets
to determine eacly(7") value in each generation. Hence, trivially,

Lemma 4.5:The algorithm in Figuré]3 runs in tim@(n?) per generation where is the
number of objects. (The implementation uses e&%¢n®) time.)

Remark 4.6:The input to the algorithm in Figurel 3 is the quartet topolaggts. If one
constructs the quartet-topology costs from more basic tifie®) such as the cost afb|cd
equals the sum of the distancég:, b) + d(c, d) for some distance measui-, -), then one
can use the additional structure thus supplied to speedeupljforithm as in SectidnlV. Then,
while the original implementation of the algorithm uses aschas((n°) time per generation
it is sped up taD(n?) time per generation, Lemnmab.2, and we were able to analys@®-a@de
tree in about 3 hours cpu time reachifgl") ~ 0.98. &

In experiments we found that for the same data set differamd consistently showed the same
behavior, for example Figufd 4 for a 60-object computatiimere theS(7") value leveled off
at about 70,000 examined trees, and the termination conditas “no improvement in 5,000
trees.” Different random runs of the algorithm nearly alwayave the same behavior, returning
a tree with the samg(7") value, albeit a different tree in most cases since &f€) ~ 0.865,

a relatively low value. That is, there are many ways to findea of optimalS(7") value if it

is low, and apparently the algorithm never got trapped irveetdocal optimum. For problems
with high S(7) value the algorithm consistently returned the same tree.

Note that if a tree is ever found such th&t7") = 1, then we can stop because we can be
certain that this tree is optimal, as no tree could have arlowst. In fact, this perfect tree result
is achieved in our artificial tree reconstruction experit@&@ectior VII-A) reliably for 32-node
trees in a few seconds using the improvement of Se€tion Vré&adrworld data,S(7") reaches
a maximum somewhat less than This presumably reflects distortion of the information in
the cost function data by the best possible tree represemtatr indicates getting stuck in a
local optimum. Alternatively, the search space is too laménd the global optimum.

On typical problems of up to 40 objects this tree-search gaetree withS(7') > 0.9
within half an hour (fot the unimproved version) and a fewasets with the improvement of
Section V. For large numbers of objects, tree scoring itsatf be slow especially without the

improvements of SectionlV. Current single computers cameseotree of this size with the
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unimproved algorithm in about a minute. For larger expentagwe used the C program called
partree (part of the CompLearn package [9]) with MPI (MessBgssing Interface, a common
standard used on massively parallel computers) on a clabtgorkstations in parallel to find
trees more rapidly. We can consider the graph mapping thievaehS(7") score as a function
of the number of trees examined. Progress occurs typically sigmoidal fashion towards a

maximal value< 1, Figure[4.

C. Termination Condition

The termination conditions of two types and which type is used determines the number of
objects we can handle.

Simple termination conditionVe simply run the algorithm until it seems no better trees are
being found in a reasonable amount of time. Here we typidaliyninate if no improvement
in S(T) value is achieved within 100,000 examined trees. Thisraviteis simple enough to
enable us to hierarchically cluster data sets up to 80 abjech few hours even without the
improvement in SectiohV and at least up to 300 objects withithprovement. This is way
above the 15-30 objects in the previous exact (non-incréaf)emethods (see Introduction).

Agreement termination conditiorin this more sophisticated method we select a number
2 <r <6 of runs, and we rum invocations of the algorithm in parallel. Each time &)
value in runi = 1,...,r is increased in this process it is compared with f{é") values in
all the other runs. If they are all equal, then the candidaest of the runs are compared. This
can be done by simply comparing the ordered lists of embeddeadet topologies, in some
standard order. This works since the set of embedded quapelogies uniquely determines
the quartet tree by [6]. If the candidate trees are identical, then terminate with thigtqta
tree as output, otherwise continue the algorithm.

This termination condition takes (for the same number ogpsteer run) about times as
long as the simple termination condition. But the termimattondition is much more rigorous,
provided we choose appropriate to the number of objects being clustered. Since all the
runs are randomized independently at startup, it seemsuwreiigely that with natural data all
of them get stuck in the same local optimum with the same gquade instance, provided the
numbern of objects being clustered is not too small. Foe 5 and the number of invocations
r = 2, there is a reasonable probability that the two differemisrby chance hit the same tree
in the same step. This phenomenon leads us to require manetwltasuccessive runs with

exact agreement before we may reach a final answer for smé#tl the case oft < n < 5,
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we require 6 dovetailed runs to agree precisely before tetioin. For6 < n <9, r = 5. For
10 <n <15, r=4. For16 < n < 17, r = 3. For all othern > 18, r = 2. This yields a
reasonable tradeoff between speed and accuracy. Thesécgpiens ofr-values relative tom
are partially common sense, partially empirically derived

It is clear that there is only one tree wi{7T") = 1 (if that is possible for the data), and it is
straightforward that random trees (the majority of all plolesquartet trees) havé(7") ~ 1/3.
This gives evidence that the number of quartet trees withelai(7") values is much smaller
than the number of trees with smal(7") values. It is furthermore evident that the precise
relation depends on the data set involved, and hence caematressed by a general formula
without further assumptions on the data. However, we caglysatate that small data sets, of
say < 15 objects, that in our experience often lead46I") values close to 1 and a single
resulting tree have very few quartet trees realizing thénmdtS(7") value. On the other hand,
those large sets of 60 or more objects that contain some s$igtency and thus lead to a low
final S(T") value also tend to exhibit more variation in the resultinegt. This suggests that
in the agreement termination method each run will get stack different quartet tree of a
similar S(7") value, so termination with the same tree is not possible eExgents show that
with the rigorous agreement termination we can handle dettp @0 40 objects, and with the
simple termination up to at least 80—-200 objects on a singieputer with varying degrees
of quality and consistency depending on the data involvednewithout the improvements
of Section V. Basically the algorithm evaluates all quattgiologies in each generated tree,
which leads to af2(n*) algorithm per generation ad(n?®) per generation for the improved
version in Sectio V. With the improvement one can attaclkolenms of over 300 objects.

Recently, [17] has used various other heuristics diffefemin the ones presented here to
obtain methods that are both faster and yield better rethdiis our old implementation. But
even the best heuristic there appears to have a slower gitimia for natural data (with = 32
typically over 50%) than our current implementation (in Gumearn) using the speedups of
Section V.

D. Tree Building Statistics

We used the CompLearn package| [9], to analyze a “10-maminealsmple with zlib
compression yielding &0 x 10 distance matrix, similar to the examples in Secfion VlII-BieT
algorithm starts with four randomly initialized trees. Hets to improve each one randomly

and finishes when they match. Thus, every run produces arutotrge, a maximum score
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associated with this tree, and has examined some total nuofltieees, 7', before it finished.
Figure[® shows a graph displaying a histogranifobver one thousand runs of the distance
matrix. The z-axis represents a number of trees examined in a single ruheoprogram,
measured in thousands of trees and binned in 1000-widegngstobars. The maximum number

is about 12000 trees examined. The graph suggests a Poisgmabpity mass function. About
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Fig. 5. Histogram of run-time number of trees examined keetermination.

2/3rd of the trials take less than 4000 trees. In the thousaat$ tabove, 994 ended with the
optimal S(7") = 0.999514. The remaining six runs returned 5 cases of the second-$tighere,
S(T) = 0.995198 and one case aof(7") = 0.992222. It is important to realize that outcome
stability is dependent on input matrix particulars.

Another interesting probability mass function is the miotatstepsize. Recall that the
mutation length is drawn from a shifted fat-tail probalilhass function. But if we restrict our
attention to just the mutations that improve ") value, then we may examine these statistics
to look for evidence of a modification to this distributionedto, for example, the presence
of very many isolated areas that have only long-distancesvtayescape. Figui€ 6 shows the
histogram of successful mutation lengths (that is, numliesimple mutations composing a
single kept complex mutation) and rejected lengths (botimatized) which shows that this is
not the case. Here the-axis is the number of mutation steps and thaxis is the normalized

proportion of times that step size occurred. This gives geotpirical evidence that in this
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case, at least, we have a relatively easy search spaceutvidige gaps.

E. Controlled Experiments

With natural data sets, say genomic data, one may have tlemmeption (or prejudice)
that primates should be clustered together, rodents shmutdustered together, and so should
ferungulates. However, the genome of a marsupial may resetimd genome of a rodent more
than that of a monotreme, or vice versa—the very questionnargs to resolve. Thus, natural
data sets may have ambiguous, conflicting, or counter imtudutcomes. In other words, the
experiments on natural data sets have the drawback of natghan objective clear “correct”
answer that can function as a benchmark for assessing oeriexntal outcomes, but only
intuitive or traditional preconceptions. In Section VIltAe experiments show that our program
indeed does what it is supposed to do—at least in these @itiituations where we know in

advance what the correct answer is.

V. IMPROVED RUNNING TIME

Recall that our quartet heuristic consists of two partseXtyacting the quartet topology costs
from the data, and (ii) repeatedly randomly mutating theentrquartet tree and determining the

cost of the new tree. Both the MQTC problem and the originalriséc is actually concerned
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only with item (ii). To speed up the method we also look at htw fuartet topology costs
can be derived from the distance matrix, that is, we also ktoikem (i).
Speedup by faster quartet topology cost computation: Assume that the cost of a quartet

topology is the sum of the distances between each pair ohheig
C(w|wz) = d(u,v) + d(w, ), (V.1)

for a given distance measurk In the original implementation of the heuristic one used th
quartet topology costs to calculate t¢7") value of a tre€l” without worrying how those
costs arose. Then, the heuristic runs in time ordeper generation (actually® if one counts
certain details proportional to the internal path lengthhey were implemented). If the quartet
topology costs are derived according [0 (V.1), then we caluge the running time of the
implementation by two orders of magnitude.

Subroutine with distance matrix input:

We compute the quartet topology costs according tad (V.1) there ben leaves in a ternary
treeT'. For every internal node (there ane— 2) determine a sum as follows. Létbe the set
of internal nodes (the nodes i that are not leaves). There are three edges incident with the
internal nodep € I, saye;, e; andes. Let the subtrees attacheddphaven; leaves { = 1, 2, 3)
so thatn = ny +ny +n3. For every edge; there are(”y') pairs of leaves in its subtreg. Each
such pair can form a quartet with pairs, v) sich thatu is a leaf in the subtre®; of ¢; andv is
a leaf in the subtre@), of ¢,. DefineC/(e;) = (%) > uer;wer, dusv) (U<, 5,k < 3andi, j, k
are not equal to one another). For internal npdet the costC'(p) = C(ey) + C(ez) + Ces3).
Compute the cost’r of the treeT" asCr =} ., C(p).

Lemma 5.1:The costCr of the treeT” satisfiesCr = > _; C(p). If the treeT" hasn leaves,
then the subroutine above runs in tifén?) per internal node and hence @(n?*) overall to
determine the suni'r.

Proof: An internal nodep has three incident edges, say, e,, e3. Let T; be the subtree
rooted atp containing edge:; havingn; leaves { < i < 3) so thatn = n; + ny + n3. Let
(u,v) be a leaf pair withu € T; andv.T;, andw # x be leaves inl}, (1 <i,j,k < 3 and
i, 7, k unequal). Let)(p) be defined as the set of all these quartet topologiéaz. Clearly, if
p,q € I andp # ¢, thenQ(p) (N Q(¢) = @. The(u,v) parts of quartet topologies|wz € Q(p)
have a summed cost(e;) given by C(e;) = (%) > ,cr, ver, d(u,v). Then, the cost of)(p)
is C(p) = C(e1) + C(e2) + Cles).

Every quartet topologyw|wx in tree T is composed of two pairgu,v) and (w, x). Every
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pair (u,v) determines an internal nogesuch that the paths from to p and fromwv to p are
node disjoint except for the end internal nogeEvery internal node determines a set of
such pairs(u,v), and for different internal nodes the associated sets ajeii. All quartet
topologies embedded in the tréeoccur this way. Hence,

Jew) =Qr, (V.2)

pel

where () was earlier defined as the set of quartet topologies embedd&d By (V.2), the
summed costCr (Definition [3.1) of all quartet topologies embeddedTinsatisfiesCr =
et C(p).

The running time of determining’(p) for a p € I is dominated by the summing of the
d(u, v)’s for the pairs(u,v) of leaves in different subtrees withas root. There ar®((})) =
O(n?) such pairs. Sincé/| = n — 2 the lemma follows. |

This immediately yields the following:

Lemma 5.2:With as input a distance matrix betweenobjects, the quartet topology costs
as in [.1), the subroutine above lets the algorithm in Fefi(and its implementation) run in
time O(n?) per generation.

Speedup by MMC: A Metropolis Markov Chain (MMC)[[35] is implemented insidbet
mutation chains of the algorithm. So, instead of doing a profimutations and at the end
check if the result improves upon the original (that is, dlilinbing), we do the following. After
every mutation, a Metropolis acceptance step is performadlihg back the changes when the
step is rejected. Acceptance is calculated on the raw sadfrése tree (unnormalized, thus
being more selective with larger trees). During the Mettigpwalk, the best tree found is
kept, at the end this best tree is returned and checked farowament (hill climbing). This
serves three purposes:

« The search is faster because after every change, the tedscaised on improving the

S(T') value. This gives less spurious drift.

« The global search behavior is maintained, as there is a noqrebability that a tree is

transformed into any other tree.

« There is less dependency on the number of mutations to perioran individual step.

It is no longer necessary to try a few mutations more oftem tmany mutations, simply
because the trees are no longer allowed to drift away verfrdan the current best in an

unchecked manner.
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By Theoren Al in Appendik A, every tree with— 2 unlabeled internal nodes amdlabeled
leaves can be transformed in every other such tree in at moesi6 simple mutationsi{ > 4).
We believe that the real value of the number of required smpltations is about, and
therefore have set the trial length #0 The setting does influence the global search properties
of the algorithm, longer trial length meaning larger prabgbof finding the global optimum.
In the limit of infinite trial length, the algorithm will belva as a regular MMC algorithm with
associated convergence properties.

The newest version of the MQTC heuristic is/at/[26] and has lie&rporated in CompLearn
[9] from version 1.1.3 onwards. Altogether, with both typ#sspeedup, the resulting speedup
is at least of the order of 1.000 to 10.000 for common sets @gabb with, sayy < 300.

VI. COMPRESSIONBASED DISTANCE

To be able to make unbiased comparisons between phylogeoynsteuction algorithms
that take distance matrices as input, we use the comprelsaged NCD distance. This metric
distance was co-developed by us[in|[30],/[31],/[32], as a mdized version of the “information
metric” of [2], [33]. The mathematics used is based on Kolotog complexity theory([33],
which is approximated using real-world compression safew&oughly speaking, two objects
are deemed close if we can significantly “compress” one githeninformation in the other,
the idea being that if two pieces are more similar, then wemare succinctly describe one
given the other. LetZ(z) denote the binary length of the file compressed with compressor
7 (for example "gzip”, "bzip2”, or "PPMZ"). Thenormalized compression distan@dCD )

is defined as

Z(xy) —min{Z(x), Z(y)}
max{Z(z), Z(y)}

which is actually a family of distances parameterized with tompressoZ. The betterZ is,

the better the results are, [12]. This NCD is used as distdnoe(\V.1) to obtain the quartet

NCD(x,y) = (VI.1)

topology costs.

The NCD in [VL.1) and a precursor have initially been appliedamong others, alignment-
free whole genome phylogeny, [30], [31], [32], chain leftaylogeny[3], constructing language
trees [32], and plagiarism detectiaon [8]. It is in fact a paeter-free, feature-free, data-mining
tool. A variant has been experimentally tested on all timgusace data used in all the major
data-mining conferences in the last decade [27]. That pep&pared the compression-based

method with all major methods used in those conferences. cbimepression-based method
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was clearly superior for clustering heterogeneous datd, fan anomaly detection, and was
competitive in clustering domain data. The NCD method twuasto be robust under change
of the underlying compressor-types: statistical (PPMZmipel-Ziv based dictionary (gzip),
block based (bzip2), or special purpose (Gencompress)leiliere may be more appropriate
special-purpose distance measures for biological phyggecorporating decades of research,
the NCD is a robust objective platform to test the unbiasedop@ance of the competing

phylogeny reconstruction algorithms.

A. CompLearn Toolkit

Oblivious to the problem area concerned, simply using tséadces according to the NCD
of (VI.1) and the derived quartet topology costs (V.1), th@ MC heuristic described in Sections
V] Mfully automatically clusters the objects concernedheTmethod has been released in the
public domain as open-source software: The CompLearn itd8]kis a suite of simple utilities
that one can use to apply compression techniques to the ggr@tediscovering and learning
patterns in completely different domains, and hierardhjicaluster them using the MQTC
heuristic. In fact, CompLearn is so general that it requimesbackground knowledge about
any particular subject area. There are no domain-specifanpeters to set, and only a handful
of general settings. From CompLearn version 1.1.3 onwdrdsspeedups and improvements

in SectionV have been implemented.

B. Previous Experiments

Using the CompLearn package, in_[12] we studied hypothesegerning mammalian
evolution, by reconstructing the phylogeny from the mitmatirial genomes of 24 species.
These were downloaded from the GenBank Database on theéhtén another experiment,
we used the mitochondrial genomes of molds and yeasts. \Bteohd the SARS virus after its
sequenced genome was made publicly available, in relatiggotentially similar viruses. The
NCD distance matrix was computed using the compressor bZip@ resulting tred” (with
S(T) = 0.988) was very similar to the definitive tree based on medical+otaio-genomics
analysis, appearing later in the New England Journal of Medj [29]. In [10], 100 different
H5N1 sample genomes were downloaded from the NCBI/NIH @salonline, to analyze the
geographical spreading of the Bird Flu H5N1 Virus in a largareple.

In general hierarchical clustering, we constructed laggueees, cluster both Russian authors

in Russian, Russian authors in English translation, Ehglighors, handwritten digits given as
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two-dimensional OCR data, and astronomical data. We aledegross classification of files
based on heterogeneous data of markedly different file tygesomes, novel excerpts, music
files in MIDI format, Linux x86 ELF executables, and compiléava class files| [12]. In [11],
MIDI data were used to cluster classical music, distinglistween genres like pop, rock, and
classical, and do music classification. In[[43], the Comphgaackage was used to analyze
network traffic and to cluster computer worms and virusesngloearn was used to analyze
medical clinical data in clustering fetal heart rate trgsifl8]. Other applications by different
authors are in software metrics and obfuscation, web pageorsiip, topic and domain
identification, protein sequence/structure classificatjghylogenetic reconstruction, hurricane
risk assessment, ortholog detection, and other topicsigJsbde-word lengths obtained from
the page-hit counts returned by Google from the Internepbtain a semantic distance between
namesfor objects (rather than the objects themselves) using t@® Normula and viewing
Google as a compressor.

Both the compression method and the Google method have lseehnuany times to obtain
distances between objects and to hierarchically clusted#ta using CompLearnl[9]. In this
way, the MQTC method and heuristic described here has besh aidensively. For instance,
in many of the references in Google scholarlto [11],/ [12],][X3ere we give a first full and
complete treatment of the MQTC problem, the heuristic, dppe and comparison to other

methods.

VIlI. COMPARING AGAINST SPLITSTREE

We compared the performance of the MQTC heuristic as impheadein the CompLearn
package against that of a leading application to computdogkpetic trees, a program
called SplitsTreel[22]. Other methods include![14],|[349]]. [Our experiments were initially
performed with CompLearn version 0.9.7 before the impramets in Sectiori_ V. But with
the improvements of SectionlV in CompLearn version 1.1.3 &atdr, sets of say 34
objects terminated commonly in about 8 cpu seconds. Belowseesets of 32 objects. We
choose SplitsTree version 4.6 for comparison and seleties ttree reconstruction methods
to benchmark: NJ, BioNJ, and UPGMA. To make comparison ptssive require a tree
reconstruction implementation that takes a distance rmatriinput. This requirement ruled out
some other possibilities, and motivated our choice. Toestloe quality of the trees produced
by CompLearn and SplitsTree we converted the SplitsTregubtitee to the ComplLearn output

format. Then we used th&(7") values in the CompLearn output and the converted SplitsTree
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output to compare the two. The quartet topology costs werwatefrom the distance matrix
concerned as in Sectidn V.

The UPGMA method consistently performed worse than therdtin® methods in SplitsTree.
In several trials it failed to produce an answer at all (thrgvan unhandled Java Exception),
which may be due to an implementation problem. Therefotenibn was focused on the other
two methods. Both NJ [38] and BioNJ [21] are neighbor-joghimethods. In all tested cases
they produced the same trees, therefore we will treat thetheasame (SplitsTree BioNJ=NJ)
in this discussion.

Our MQTC heuristic has through the Complearn package alréaeén extensively tested
in hierarchical clustering of nontree-structured dataeasewed in Sectiofi VI-B. Therefore,
we choose to run the MQTC heuristic and SplitsTree on datarifay SplitsTree, that is,
tree-structured data, both artificial and natural.

A. Testing on Atrtificial Data 100 Times

We first test whether the MQTC heuristic and the SplitsTre¢hous are trustworthy. We
generated 100 random samples of an unrooted binaryTiragéth 32 leaves as follows: We
started with a linear tree with each internal node connetideshe leaf node, a prior internal
node, and a successive internal node. The ends have twoddatnnstead. This initial tree
was then mutated 1000 times using randomly generated oesaof the complex mutation
operation defined earlier. Next, we derived a metric from sbeambled tree by defining the
distance between two nodes as follows: Given the lengthep#th froma to b in an integer

number of edges ak(a, b), let
L(a,b) +1
32 ’

except wheru = b, in which cased(a,b) = 0. It is easy to verify that this simple formula

d(a,b) =

always gives a number between 0 and 1, is monotonic with eaiith, and the resulting matrix

is symmetric. Given only th82 x 32 matrix of these normalized distances, our quartet method
precisely reconstructed the original tree one hundredsimé of one hundred random trials.
Similarly, SplitsTree NJ and BioNJ also reconstructed gaeh precisely in all trials. However
UPGMA was unable to cope with this test. It appears there isismatch of assumptions

in this experimental ensemble and the UPGMA preconditiansthere may be an error in
the SplitsTree implementation. The running time of Compheaithout the improvement of

Section[\¥ was about 3 hours per example, but with the impreverof Sectior V' only at
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Acipenser dabryanus
Amia calva

Anguilla japonica
Anopheles funestus
Arctoscopus japonicus
Asterias amurensis
Astronotus ocellatus
Cervus nippon taiouanus
Cobitis sinensis
Diphyllobothrium latum
Drosophila melanogaster
Engraulis japonicus
Gavia stellata
Gymnogobius petschiliensi
Gymnothorax kidako
Hexamermis agrotis
Hexatrygon bickelli
Homo sapiens

Hynobius arisanensis
Hynobius formosanus

Lepeophtheirus salmonis

Yangtze sturgeon fish
Bowfin fish
Japanese eel
Mosquito
Sailfin sandfish
Northern Pacific seastar
Tiger oscar
Formosan sika deer
Siberian spiny loach fish
Broad tapeworm
Fruit fly
Japanese anchovy
Red throated diver

s Floating goby fish
Moray eel
Roundworm Nematode
Sixgill stingray
Human
Arisian salamander
Formosa salamander

Sea lice

Lipotes vexillifer
Melanogrammus aeglefiny
Metaseiulus occidentalis
Neolamprologus brichard
Nephila clavata
Oreochromis mossambicu
Oscarella carmela
Phacochoerus africanus
Plasmodium knowlesi
Plasmodium vivax
Polypterus ornatipinnis
Psephurus gladius
Pterodroma brevirostris
Savalia savaglia
Schistosoma haematobiun
Schistosoma spindale
Synodus variegatus
Theragra finnmarchica
Tigriopus californicus

Tropheus duboisi

Yangtze river dolphin
sHaddock
Western predatory mite
Lyretail cichlid fish
Orb web spider
s Mozambique tilapia fish
Sponge
Warthog
Primate malaria parasite
Tersian malaria parasite
Ornate bichir fish
Chinese paddlefish
Kerguelen petrel
Encrusting anemone
n Vesical blood fluke
Cattle fluke
Variegated lizardfish
Norwegian pollock fish
Tidepool copepod
White spotted cichlid fish

Fig. 7. Listing of scientific and corresponding common namwied4l (out of 45) species used. The remaining four are dogs,

with common breed names Chinese Crested, Irish Setter, @jtish Sheepdog, Saint Bernard. There are no scientific aame

distinguishing them, as far as we know.

most 5 seconds per example. SplitsTree had a similar buitlsligigher running time. Since

the performance of CompLearn and SplitsTree (both NJ an8llBievas 100% correct on the

artificial data we feel that all the methods except SpliteTWHP GMA perform satisfactory on

artificial tree-structured

data.

B. Testing on Natural Data 100 Times

In the biological setting the data are (parts of) genomesuofeatly existing species, and

the purpose is to reconstruct the evolutionary tree thatdetthose species. Thus, the species

are labels of the leaves, and the tree is traditionally pifaanching with each branching

representing a split in lineages. The internal nodes anddbeof the tree correspond with
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extinct species (possibly a still existing species in a lgiaéctly connected to the internal
node). The root of the tree is commonly determined by addmglgect that is known to be

less related to all other objects than the original objectsvath respect to each other. Where
the unrelated object joins the tree is where we put the roothis setting, the direction from

the root to the leaves represents an evolution in time, aagsisumption is that there is a true
tree we have to discover.

However, we can also use the method for hierarchical clagteresulting in an unrooted
ternary tree. The interpretation is that objects in a givebhtree are pairwise closer (more
similar) to each other than any of those objects is with relsp@ any object in a disjoint
subtree.

To evaluate the quality of tree reconstruction for natuehanic data, we downloaded 45
mitochondrial gene sequences, Figure 7, and randomlytedld®0 subsets of 32 species each.
We used CompLearn with PPMD to compute NCD matrices for edctine 100 trials and
fed these matrices (as Nexus files) to both CompLearn ands¥pde. CompLearn without
the speedup in Sectidn] V took about 10 hours per tree, but thighspeedup of Sectidnl V
CompLearn takes at most 6 seconds for collections of 32 thjec66% of the cases, at
most 10 seconds in 90% of the cases, and occasionally (aéttof the cases) between 10
seconds and 2 minutes. SplitsTree used about 10 secondsabeintall but one case out of
100 trials, CompLearn performed as good or better in theesefgproducing trees with an
as good or higher S(T) score than the best method (with UPGR#opming badly and NJ
and BioNJ giving the same scores) from SplitsTree. The tesre shown in the histogram
Figure[8, which shows that out of 100 trials CompLearn predua better tree in 69% of the
trials. CompLearn had aaverageS(7") of 0.99487068. SplitsTree achieved thestS(7") with
both NJ and BioNJ at 0.99243944. At this high level the alisolnagnitude of the difference
is small, yet it can still imply significant changes in theusture of the tree. Figurgl 9 and
Figure[10 depict one example showing both BioNJ=NJ and Carapl trees applied to the
same input matrix from one of the natural data test casesidledcabove. In this case there
are important differences in placement of at least two gsekiexatrygon bickelland Synodus
variegatus

Although we can not know for sure the true maximum value tlzat be attained for the

S(T), given an arbitrary distance matrix, we can still define afulsguantity. Let

R(T) = 1.0 — S(T), (VI.1)
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Fig. 8. Histogram showing CompLearn S(T) advantage oveitsSpée S(T)

and term R(T") the room for improvemenfor tree 7. This is especially apt in cases like
the present one where we know that the optimal tfgg has S(7,,:) close to 1. Suppose
CompLearn produces tréein trial ¢ and SplitsTree produces tr&& in trial t. Define R (t) =
R(T)andRs(t) = R(T") using [VIL1). We can compute the decibel gdirit) as the logarithm
of the ratio of room for improvement in trial of SplitsTree’s answer versus CompLearn’s

answer with the formula
Rs(T)
R (T

Hence if db(t) = 1 then Rg(T) = 10Y°Rq(T) ~ 1.3Rc(T), and db(t) = 2 means that

db(t) = 10logy, . (VI1.2)

~—

Rs(T) = 10"°R(T) =~ 1.6Rc(T). This is statistically significant according to almost gver
reasonable criterion. Note that the room for improvemenits# gaindb(t) in (VIL2) represents
also a conservative estimate of the true improvement degdda in real error terms. This is
because the true maximu{7') score of a tred’ resulting from a distance matrix is always
less than or equal to 1. Using th&7,,;) value of the real optimal treé,, instead of 1
would only make the gain more extreme. We plot the decibeinrdor improvement gain in
Figure[11, using different binning boundaries than in F&j8r On the horizontal axis the bins
are displayed where for every trialwe putdb(t) in the appropriate bin. On the vertical axis
the percentage of the number of elements in a particulardthe total is depicted.

Because now we use different boundaries for each bin, treepege of trials with the same

room for improvement for both CompLearn and SplitsTreeighsly higher than the percentage
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—
Lipotes vexillfer Schistosoma spindale
Phacochoerus africanus
Cervus nippon taiouanus j
Schistosoma haematobium @ Nephila clavata

0 m Anopheles funestus
Homo sapiens Plasmodium vivax H

0ld English Sheepdog @ @
@ Drosophila melanogaster

Polypterus omatipinnis @ @ Lepeophtheirus salmonis

Pterodroma brevirostris @ Hynobius formosanus @
@ Savalia savaglia

@ @ Hexatrygon bickelli
Gavia stellata
Oscarella carmela

Engraulis japonicus @ Acipenser dabryanus

Theragra finnmarchica Psephurus gladius

Gymnogobius petschiliensis @

@ Arctoscopus japonicus
Neolamprologus brichardi
Astronotus ocellatus

Tropheus duboisi

Fig. 9. NJ=BioNJ tree from SplitsTree

Synodus variegatus
BioNJ tree score S(T) = 0.984490
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Drosophila melanogaster
Nephila clavata
Anopheles funestus
. Schistosoma spindale

Schistosoma haematobium

Plasmodium vivax .
Lepeophtheirus salmonis
Asterias amurensis Lipotes vexillifer
Oscarella carmela .

Cervus nippon taiouanus

- - Hynobius formosanus
S(T) =0.993176 Savalia savaglia
libcomplearn version 0.9.7 ‘ .
Phacochoerus africanus

Synodus variegatus ‘ ‘
. Saint Bernard

@
Engraulis japonicus
‘ ‘ Old English Sheepdog
Theragra finnmarchica ‘

Polypterus ornatipinnis
Gymnogobius petschiliensis ‘ . Hexatrygon bickelli Pterodroma brevirostris

Psephurus gladius
Arctoscopus japonicus .
. Acipenser dabryanus

Astronotus ocellatus .
Neolamprologus brichardi

Tropheus duboisi

Fig. 10. CompLearn tree for comparison with previous Figure
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Fig. 11. Decibel error reduction from CompLearn

of trials with the same(7") values between CompLearn and SplitsTree in Figure 8. Yetwmew
can see the important difference in room for improvemenivbeh CompLearn and SplitsTree
expressed in decibels. Thus, about 38% of the CompLealis f¢filges no positive integer decibel
reduction in room for improvement over the SplitsTree perfance (and 1% gave a negative
reduction). About 27% gives a 1db reduction in room for iny@ment, about 22% gives a
2db reduction in room for improvement, about 10% gives a 3dboom for improvement.
Overall, about 61% of the CompLearn trials gives a 1 or moreba® reduction in room
for improvement over the SplitsTree performance. In moenth/3 of the trials CompLearn

achieves at least a 2db reduction in room for improvemenbagpared to SplitsTree.
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VIII. CONCLUSION

We have introduced a new quartet tree problem, the Minimurar@uTree Cost (MQTC)
problem, suited for general hierarchical clustering. Tiesv method relies on global optimiza-
tion of the constructed tree in contrast to bottom-up ordops methods that can get stuck
in local optima, such as Quartet Puzzling, neighbor joinangd the like. Is is shown that this
MQTC problem is NP-hard by a reduction to the (weighted) Maxin Quartet Consistency
(MQC) problem that is more suited for the restricted casei@blgical phylogeny. Moreover, if
there is a polynomial time approximation scheme (PTAS) ierMQTC optimization problem,
then P=NP. Given the hardness of the MQTC problem we intredudlonte Carlo heuristic
based on randomized hill climbing. This heuristic runs imeiwhich is theoretically2(n?)
per generation where is the number of objects, ard(n°) per generation in the implemented
version. The improvement in Sectibn V based on the distaratexrand quartet topology costs
in (VI) runs in timeO(n?) per generation both as algorithm and implementation. The ne
method including the improvement is available for genesa i the open software CompLearn
Toolkit [9] from version 1.1.3 onward. It has been used wydel general hierarchical clustering
and also for biological phylogeny. Here, we tested our MQTé&lrfstic on artificial data
and natural data, and compared it with the neighbor-joimmethod available in the (highly
competitive) SplitsTree package (version 4. 6) designedrée-structured data in Biological
Phylogeny. (BioNJ and NJ in the SplitsTree package alway® ghe same results in our
experiments, so we treat them as one, and the UPMG methoe BlitsTree package did not
work for us.) To make the comparison more disadvantageoaant®1QTC heuristic and more
advantageous to SplitsTree we tested it on tree-structlaeal rather than general hierarchical
clustering on data of unknown structure. SplitsTree waggaly slower (sometimes 10 seconds
versus 6 seconds for CompLearn version 1.1.3 and laterjghat3rd more) than our MQTC
heuristic with the improvements in Sectiod V. On our art#icdata experiments both our
MQTC heuristic and the SplitsTree methods gave 100% corestilts. On the natural data
experiments theaverage caseof our MQTC heuristic was better than theest caseof the
SplitsTree heuristics. To amplify the differences we compathe decibel gain in room for
improvement of SplitsTree’s answers versus our MQTC heodsanswers. In 61% of the
trials our MQTC heuristic’s performance gave a positivegar decibel reduction in room for
improvement over SplitsTree's performance, and in 33% efttials our MQTC heuristic’s

performance gave a 2db reduction in room for improvement &gditsTree. Other heuristics
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for the MQTC optimization problem are recently given in|[1But even the best method in
[17] has a slower running time for natural data (with= 32 typically about 50%) than the
implementation of the MQTC heuristic in CompLearn from vens1.1.3 onward.

APPENDIX
A. Sufficiency of the Set of Simple Mutations

Theorem A.1:Every ternary tree withm leaves labeled,, [, ...,l, andn — 2 unlabeled
internal nodes can be transformed in every other ternaeyviith n leaves labeled,, 5, . . ., [,
andn — 2 unlabeled internal nodes by a sequence of) mutations consisting of subtree to
leaf swaps or leaf to leaf swaps whef&) < 3 and f(n) < 5n — 16 for n > 4.

Proof: For convenience of the discussion we attach labels to teenaknodes, but actually
the internal nodes are unlabeled, only the leaves are lhbdlbe proof is by induction on the
number of nodes.

Base casen = 3. There is one internal node, so the theorem is vacuously Eoen = 4
there are two internal nodes, so the theorem is true as wiell @& most one leaf swap.

Induction Assume the theorem is correct for everywith 4 < k£ < n. We prove that it
holds fork = n. For n > 4 consider a ternary tre@, with n — 2 unlabeled internal nodes
1,2,...,(n —2) andn labeled leaves that has to be transformed into a ternaryTireeith
the same unlabeled internal nodes and labeled leaves.

Assume that the initial tre&, has a path: — x — y wherey is an end internal node with
two leaves andr is an internal node with one leaf. Ify is not of that form then we make
it of that form by a subtree to leaf swap: Take another endmalenodeu (possiblyz) and
swap the 3-node tree rooted@a(u and its two leaves) with a leaf af. This results in a path
xr —y — u wherew is an end internal node with two leaves apds an internal node with a
single leaf. We start from the resulting tree which we dalinow.

For the sake of the argument we number the nodes sontha® is an end internal node
connected to an internal node— 3 which has a single leaf Glue the internal nodes — 3
andn — 2 and the leafl together in a single internal node now denotednas 3. The new
n — 3 is an end internal node connected to two leaves formerly @tted to the oldh — 2.
This results in am — 3 unlabeled internal node ternary trég with n — 1 labeled leaves.

By the induction assumption we can transfdffrinto any ternary treé’ with n—3 unlabeled
internal nodes anad — 1 labeled leaves irf(n — 1) subtree to leaf or leaf to leaf mutations.

Take 7] to be a subtree of’ with the following exceptions. Sinc#&, has one more internal
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node thanl] we can choose that extra internal node as an end internal attatghed to tree
T at the place where there is now a leaf. Let that leaf be lledote that leaf is not a leaf
of 77 (since it is incorporated in internal node— 3). If [ should be a leaf of] to make it a
subtree of7; then we swag with the leaf{” in the place wheré has to go in a leaf-to-leaf
swap. For convenience we still denote the leaf left in the posite noder — 3 by (.

Now expand in7} the internal node: — 3 into the path(n — 3) — (n — 2) together with leaf
[ connected tqn — 3). This yields a ternary tree with — 2 unlabeled internal nodes and
labeled leaves. There are three cases.

Case 1. Initially, in 77 the noden — 3 is an end internal node connected to an internal node
u as in the pathu — (n — 3). The expansion takes us to the situation that we have a path
u— (n—3) — (n—2) and leafl connected to: — 3.

The old internal node: — 3 being an end internal node had two leaves. In the path
3) — (n — 2) both these leaves stay connected to the new end internal med2 and leaf]
stays connected to — 3.

Assume first that’ is not in de 5-node subtree rooted at the new 3 containing the path
(n—3)—(n—2). We interchange this 5-node subtree with the [éalext, we interchange the
3-node subtree rooted at— 2 with the leafl’ at its new location. In this way; — 3 being now
in the former position of leaf is the missing internal node @f. The new internal node — 3
is an end internal node with two leaveg’ of which [’ is in the correct position. There is still
the leafl” being possibly in the wrong position. All the other leaves irthe correct position
for T7. After we swap the leavek!” if necessary, all leaves are in the correct position.

Assume second thétis in the subtree rooted at— 3 containing the patfin —3) — (n —2).
Then, the new: — 2 being an end internal node in the former position of [Ba$ the missing
internal node off.

The total number of mutations used is at most three congistinwo subtree to leaf swaps
and possibly one leaf to leaf swap.

Case 2. Initially, the noden — 3 in 77 is connected to two internal nodes yielding a path
u — (n — 3) — v such thatn — 3 is connected also to one leaf, sy The expansion takes us
to the situation that we have a path- (n — 3) — (n — 2) — v. The old internal node: — 3
was connected to ledf’ which leaf is now connected to — 2. The leafl is still connected to
the newn — 3.

Assume first that’ is not in the subtree rooted at the new- 3 (containingu — (n — 3)).

We interchange the subtree rootedrat- 3 (containingu — (n — 3)) with leaf I’. Next we
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interchange the subtree rootedwai{not containingn — 3 and leafl) with I’ again. Now the
new n — 3 takes the place of the missing internal nodelgfand it is an end internal node
connected to leaves!’. Of these, leafl’ is in correct position. All the other leaves except
possiblyl,[” are in correct position fof;. If necessary we interchange leavet'.

Assume second that is in the subtree rooted at the new— 3 (containingu — (n — 3)).
Interchange the subtree rootedrat- 3 (containing(n — 3) — (n — 2)) with leaf /. Next we
interchange the subtree rootedrat- 2 (not containingn — 3 and leafl) with I’ again. Now
the newn — 3 takes the place of the missing internal nodélpfand it is an end internal node
connected to leaveks!’. Of these, leafl’ is in correct position. All the other leaves except
possiblyl, !” are in correct position fof;. If necessary we interchange leaveg'.

The total number of mutations used is at most three congistinwo subtree to leaf swaps
and possibly one leaf to leaf swap.

Case 3. Initially, in 77 the noden — 3 is connected to three internal nodes forming the path
u— (n—3) —v and there is a pathv — (n — 3) with w # u,v. The expansion yields the path
u—(n—3)—(n—2)—wv with leaf/ connected to. — 3 andn — 2 is also in a pathu — (n — 2).

Assume first that’ is not in the subtree rooted at the new- 3 (containingu — (n — 3)).
We interchange the subtree rooted at the mew 3 containing the edge — (n — 3) and leaf
[ with the leafl’. Subsequently, we interchange the subtree rooted(abt containingn — 3
and the connected ledj with [’ again. Now node: — 3 is in the position of the missing
internal node off] and it is an end internal node with two leaves. Of these/’ is in correct
position. Moreover, all the other leaves are in correct pmsiexcept possibly, I”. If necessary
we interchange leavds!”.

Assume second thdt is in the subtree rooted at the new— 3 (containingu — (n — 3)).
Interchange the subtree rooted at the new 3 containing the edgén — 3) — (n — 2) and
leaf [ with the leafl’. Subsequently, we interchange the subtree rooted-a2 (not containing
n — 3 and the connected led&f with I’ again. Now node: — 3 is in the position of the missing
internal node off] and it is an end internal node with two leaves. Of these/’ is in correct
position. Moreover, all the other leaves are in correct pmsiexcept possibly, I”. If necessary
we interchange leavds!”.

The total number of mutations used is at most three congistinwo subtree to leaf swaps
and possibly one leaf to leaf swap.

We count the number of mutations as follows. Initially, tfBerequired at mosff(n — 1)

mutations to be obtained from tr&g. By the above analysis(n) < f(n—1)+5 (remember the
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possibly necessary initial subtree to leaf swap to biing t he required form, and the possibly
ncessary leaf to leaf swap betwelecomprised in the composite node- 3 and!” just before
Case 1). The base case shows thfd8) < 3andf(4) < 4. Hence,f(n) < 4+(n—4)5 = 5n—16
for n > 4. [ |
Remark A.2:Note that the only mutations used are leaf-to-leaf swapssamdree to leaf
swaps. This shows that the other mutations, that is subtresulbtree swaps, and subtree
transfers are superfluous in terms of completeness. Howtheyr may considerably reduce
the number of total mutations required to go from one treentotleer. Using the full set of
mutations we believe it is possible to go from a ternary treal@ove to another one in at most

n mutations as given. &
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