16 research outputs found

    Completeness of algebraic CPS simulations

    Full text link
    The algebraic lambda calculus and the linear algebraic lambda calculus are two extensions of the classical lambda calculus with linear combinations of terms. They arise independently in distinct contexts: the former is a fragment of the differential lambda calculus, the latter is a candidate lambda calculus for quantum computation. They differ in the handling of application arguments and algebraic rules. The two languages can simulate each other using an algebraic extension of the well-known call-by-value and call-by-name CPS translations. These simulations are sound, in that they preserve reductions. In this paper, we prove that the simulations are actually complete, strengthening the connection between the two languages.Comment: In Proceedings DCM 2011, arXiv:1207.682

    Confluence via strong normalisation in an algebraic \lambda-calculus with rewriting

    Full text link
    The linear-algebraic lambda-calculus and the algebraic lambda-calculus are untyped lambda-calculi extended with arbitrary linear combinations of terms. The former presents the axioms of linear algebra in the form of a rewrite system, while the latter uses equalities. When given by rewrites, algebraic lambda-calculi are not confluent unless further restrictions are added. We provide a type system for the linear-algebraic lambda-calculus enforcing strong normalisation, which gives back confluence. The type system allows an abstract interpretation in System F.Comment: In Proceedings LSFA 2011, arXiv:1203.542

    Normalizing the Taylor expansion of non-deterministic {\lambda}-terms, via parallel reduction of resource vectors

    Full text link
    It has been known since Ehrhard and Regnier's seminal work on the Taylor expansion of λ\lambda-terms that this operation commutes with normalization: the expansion of a λ\lambda-term is always normalizable and its normal form is the expansion of the B\"ohm tree of the term. We generalize this result to the non-uniform setting of the algebraic λ\lambda-calculus, i.e. λ\lambda-calculus extended with linear combinations of terms. This requires us to tackle two difficulties: foremost is the fact that Ehrhard and Regnier's techniques rely heavily on the uniform, deterministic nature of the ordinary λ\lambda-calculus, and thus cannot be adapted; second is the absence of any satisfactory generic extension of the notion of B\"ohm tree in presence of quantitative non-determinism, which is reflected by the fact that the Taylor expansion of an algebraic λ\lambda-term is not always normalizable. Our solution is to provide a fine grained study of the dynamics of β\beta-reduction under Taylor expansion, by introducing a notion of reduction on resource vectors, i.e. infinite linear combinations of resource λ\lambda-terms. The latter form the multilinear fragment of the differential λ\lambda-calculus, and resource vectors are the target of the Taylor expansion of λ\lambda-terms. We show the reduction of resource vectors contains the image of any β\beta-reduction step, from which we deduce that Taylor expansion and normalization commute on the nose. We moreover identify a class of algebraic λ\lambda-terms, encompassing both normalizable algebraic λ\lambda-terms and arbitrary ordinary λ\lambda-terms: the expansion of these is always normalizable, which guides the definition of a generalization of B\"ohm trees to this setting

    A System F accounting for scalars

    Full text link
    The Algebraic lambda-calculus and the Linear-Algebraic lambda-calculus extend the lambda-calculus with the possibility of making arbitrary linear combinations of terms. In this paper we provide a fine-grained, System F-like type system for the linear-algebraic lambda-calculus. We show that this "scalar" type system enjoys both the subject-reduction property and the strong-normalisation property, our main technical results. The latter yields a significant simplification of the linear-algebraic lambda-calculus itself, by removing the need for some restrictions in its reduction rules. But the more important, original feature of this scalar type system is that it keeps track of 'the amount of a type' that is present in each term. As an example of its use, we shown that it can serve as a guarantee that the normal form of a term is barycentric, i.e that its scalars are summing to one

    The Vectorial λ\lambda-Calculus

    Full text link
    We describe a type system for the linear-algebraic λ\lambda-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ\lambda-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ\lambda-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.Comment: Long and corrected version of arXiv:1012.4032 (EPTCS 88:1-15), to appear in Information and Computatio

    Lineal: A linear-algebraic Lambda-calculus

    Full text link
    We provide a computational definition of the notions of vector space and bilinear functions. We use this result to introduce a minimal language combining higher-order computation and linear algebra. This language extends the Lambda-calculus with the possibility to make arbitrary linear combinations of terms alpha.t + beta.u. We describe how to "execute" this language in terms of a few rewrite rules, and justify them through the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the field of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally, we prove the confluence of the entire calculus.Comment: The complementary note "On the critical pairs of a rewrite system for vector spaces" is provided in the source files. Short version : "Linear-algebraic Lambda-calculus : higher-order and confluence", Proceedings of RTA 08, Hagenberg, July 2008. LNCS 5117, 17, (2008). Long version : LMC

    Lineal: A linear-algebraic lambda-calculus

    Get PDF
    International audienceWe provide a computational de nition of the notions of vector space and bilinear functions. We use this result to introduce a minimal language combining higher-order computation and linear algebra. This language extends the lambda-calculus with the possibility to make arbitrary linear combinations of terms : alpha t + beta u. We describe how to \execute" this language in terms of a few rewrite rules, and justify them through the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the eld of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally, we prove the confluence of the entire calculus

    Weighted models for higher-order computation

    Get PDF
    We study a class of quantitative models for higher-order computation: Lafont categories with (infinite) biproducts. Each of these has a complete “internal semiring” and can be enriched over its modules. We describe a semantics of nondeterministic PCF weighted over this semiring in which fixed points are obtained from the bifree algebra over its exponential structure. By characterizing them concretely as infinite sums of approximants indexed over nested finite multisets, we prove computational adequacy. We can construct examples of our semantics by weighting existing models such as categories of games over a complete semiring. This transition from qualitative to quantitative semantics is characterized as a “change of base” of enriched categories arising from a monoidal functor from coherence spaces to modules over a complete semiring. For example, the game semantics of Idealized Algol is coherence space enriched and thus gives rise to to a weighted model, which is fully abstract.</p

    Call-by-value, call-by-name and the vectorial behaviour of the algebraic \lambda-calculus

    Get PDF
    We examine the relationship between the algebraic lambda-calculus, a fragment of the differential lambda-calculus and the linear-algebraic lambda-calculus, a candidate lambda-calculus for quantum computation. Both calculi are algebraic: each one is equipped with an additive and a scalar-multiplicative structure, and their set of terms is closed under linear combinations. However, the two languages were built using different approaches: the former is a call-by-name language whereas the latter is call-by-value; the former considers algebraic equalities whereas the latter approaches them through rewrite rules. In this paper, we analyse how these different approaches relate to one another. To this end, we propose four canonical languages based on each of the possible choices: call-by-name versus call-by-value, algebraic equality versus algebraic rewriting. We show that the various languages simulate one another. Due to subtle interaction between beta-reduction and algebraic rewriting, to make the languages consistent some additional hypotheses such as confluence or normalisation might be required. We carefully devise the required properties for each proof, making them general enough to be valid for any sub-language satisfying the corresponding properties

    An introduction to Differential Linear Logic: proof-nets, models and antiderivatives

    Get PDF
    Differential Linear Logic enriches Linear Logic with additional logical rules for the exponential connectives, dual to the usual rules of dereliction, weakening and contraction. We present a proof-net syntax for Differential Linear Logic and a categorical axiomatization of its denotational models. We also introduce a simple categorical condition on these models under which a general antiderivative operation becomes available. Last we briefly describe the model of sets and relations and give a more detailed account of the model of finiteness spaces and linear and continuous functions
    corecore