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Weighted Models for Higher-Order Computation I

James Laird

Department of Computer Science, University of Bath,
Claverton Down, Bath, UK

Abstract

We study a class of quantitative models for higher-order computation: Lafont
categories with (infinite) biproducts. These are models of intuitionistic linear
type theory with a canonical enrichment over the modules of a internal com-
plete semiring: we give a semantics of non-deterministic PCF weighted over the
elements of this semiring. The fixed points in our model are obtained by con-
structing a bifree algebra for the comonad which gives its exponential structure.
By characterizing these fixed points more concretely as infinite sums of finitary
approximants indexed over the nested finite multisets, we prove computational
adequacy with respect to an operational semantics which evaluates a term by
taking a weighted sum of the residues of its terminating reduction paths.

We investigate the construction of Lafont categories with biproducts by
weighting intensional models such as categories of games over a complete semir-
ing. This transition from a qualitative semantics to a quantitative one is charac-
terized as a “change of base” of enriched categories: it is induced by a monoidal
functor from the category of coherence spaces to the category of free modules
over a complete semiring. Using the properties of this functor, we characterise
some requirements for the change of base to preserve the structure of a Lafont
category. As an example, we show that the game semantics of Idealized Algol
bears a natural enrichment over the category of coherence spaces, and thus gives
rise by change of base to a semiring weighted model, which is fully abstract. We
relate this to existing categories of probabilistic games and slot games.

Keywords: Quantitative models, Complete semirings, Game semantics, Fixed
points, Linear logic, Computational adequacy

1. Introduction

We study a class of quantitative models of higher-order computation — La-
font categories with (infinite) biproducts: that is, models of intuionistic type
theory with a “free” exponential structure, in which the product and coproduct
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functors coincide. The biproducts imply a natural enrichment over the category
of R-modules, where R is the complete “internal semiring” of the category:
values of this semiring can be assigned as weights to different outcomes of eval-
uation, capturing properties such as probability of failure, minimal or maximal
cost [1], security level, etc. The free exponentials play a key role in soundly
capturing these weights in the denotational semantics of functional programs,
by faithfully representing the multiplicity of calls to each argument.

This paper examines these models in an abstract setting: we show that
they can be used to give a computationally adequate representation of recur-
sive higher-order computation, weighted over the internal semiring, and give a
general recipe for constructing examples from qualitative models such as game
semantics. In doing so, we use some basic ideas from axiomatic domain theory
— to construct fixed points without any partial order enrichment — and en-
riched category theory — to change the base category over which our categories
are enriched from coherence spaces to free R-modules. As an illustrative exam-
ple, we apply this change of base to a coherence-enriched category of games and
strategies, to give a fully abstract semantics of R-weighted Idealized Algol.

Related Work. Quantitative interpretations of programs as linear functionals —
with the direct sum and product as additive and multiplicative connectives, and
cofree comonoids as exponentials — played key roles (explicitly and implicitly)
in the development of linear logic [2]. Where the direct sum is a biproduct this
already implies the existence of a finite sum operation on morphisms (semi-
additivity). The construction of the free exponential by forms of Taylor expan-
sion requires certain infinite sums, forcing a choice between models in which
these are strictly limited (cf. Ehrhard’s finiteness spaces [3]) and those in which
all such sums exist. One of our contributions is to show that in the latter case,
we can construct fixed points for all endomorphisms. We hope to arrive at a
more complete understanding of the relationship between these alternatives.

Our approach generalizes and extends the results presented in [1], which
describes a denotational model for nondeterministic PCF with scalar weights
from a continuous semiring, R (based on a semantics of linear logic introduced
by Lamarche [4]) in the category of sets and matrices over R (also known as
the category of free R-modules and their homomorphisms), which is a particular
example of a Lafont category with biproducts. This internal semiring is complete
but not necessarily continuous. So to construct fixed points in the absence
of any order theoretic structure, we turn to the abstract characterization of
such operators provided by axiomatic domain theory. Specifically, we use the
observation [5, 6] that uniform fixed point operators exist (and are unique)
for any comonad which is an algebraically compact functor [7] — i.e. it has a
bifree algebra (an initial algebra for which the inverse is a terminal coalgebra).
In an example of the utility of this theory, we define such an algebra for the
cofree exponential by iterating Lafont’s construction of a cofree commutative
comonoid as a sum of finite multisets [8, 9], to obtain a bifree algebra which
is a biproduct over the nested finite multisets. Computationally, this gives a
precise representation of the computational resources consumed in evaluating
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a function in the style of the resource λ-calculus [10] — in this case extended
with nested multiset resource bounds capturing the call patterns of recursively
defined procedures. This suggests further relationships with the rich theory
underlying quantitative models, including the differential λ-calculus [11]: on
the syntactic side, via their correspondence with the resource calculus [12], and
on the semantic side, via the notion of differential category [13], which shares
many properties and examples with our notion of categorical model.

Our second objective is to describe further examples of Lafont categories with
biproducts: in particular, to show how to derive them from existing qualitative
models such as game semantics, which has been used to describe intensional
models of a wide variety of programming language features, including state
[14]. With some notable exceptions, these models are qualitative rather than
quantitative in character, possessing an order-theoretic structure which may be
characterized as a categorical enrichment over certain categories of domain (such
as dI-domains, qualitative domains or prime algebraic lattices). Our aim is to
show that this enriched category theory perspective may be used systematically
to construct quantitative models (and describe existing ones), by applying the
notion of change of base [15, 16] to vary the enrichment of the model, indepen-
dently of its intensional structure. Specifically, we describe a monoidal functor
from the category of coherence spaces [17] to the category of free modules over a
complete semiring (so we go from using weighted relations directly to interpret
programs directly to using them as an enrichment for intensional models).

Change of base thus provides a simple way to identify further examples of
our categorical model with richer internal structure than sets and weighted re-
lations. This allows more language features such as side effects to be captured,
resolving the full abstraction problem for these models (the R-module models
for R-weighted PCF are shown not to be fully abstract in [1]). As an illustrative
example we study the games model of Idealized Algol introduced by Abramsky
and McCusker [14]. It is known that this possesses coherence structure — cf.
the projection into a category of (ordered) coherence spaces [18]. We show that
a strictly linear (rather than affine) decomposition of this category of games
bears a natural enrichment over coherence spaces. Previous quantitative se-
mantics based on the original model include Danos and Harmer’s probabilistic
games [19], in which strategies are defined by attaching probabilities to posi-
tions of the game, and Ghica’s slot games [20], which attach resource weightings
to positions in a rather different way — by introducing a class of moves which
are persistent when other moves are hidden during composition, allowing the
cost of computation to be made explicit. We show that both may be viewed as
examples obtained by our change of base construction, and that the correspond-
ing programming languages may be subsumed into a version of Idealized Algol
with weights from a complete semiring, for which we describe a denotational
semantics. Full abstraction for this model follows from the result in [14] with
very little effort.

Change of base allows an approach to constructing Lafont categories de-
scribed in [21] to be extended to start with any symmetric monoidal category
enriched over coherence spaces: we may change its base to free R-modules and
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build a Lafont category by freely completing with biproducts and idempotents
(giving, in particular, symmetric tensor powers) and thus the cofree commuta-
tive comonoid on A via Lafont’s construction: !A =

⊕
i∈N

Ai. However, we focus

on cases (such as the games model of Idealized Algol) in which our coherence-
enriched category already has a free exponential given by the generalization of
Lafont’s construction by Melliès, Tabareau and Tasson [9]. We describe a sim-
ple condition under which change of base preserves this structure (and thus the
meaning of λ-terms), and show that this is satisfied by our category of games.

Organization of the paper. Our aim is to describe both a general framework for
quantitative semantics (Lafont categories with biproducts), and how to apply
it to construct examples, based on a change of base functor. Even numbered
sections describe the first strand of this approach: biproducts and complete
monoid enrichment (Section 2), the free exponential and its construction using
biproducts (Section 4), the construction of fixed points from a bifree algebra
for the free exponential (Section 6), and a computationally adequate categorical
model of R-weighted PCF (Section 8).

The odd-numbered sections describe the second strand: each illustrates
change of base and the structure defined in the preceding section using a run-
ning example based on game semantics: Section 3 introduces change of base,
and applies it to a coherence-space enriched category of games, Sections 5 and
7 show how change of base can preserve the free exponential and fixedpoints
(respectively) and Section 9 describes a fully abstract model of R-weighted PCF
extended with state (Idealized Algol). Each odd-numbered section depends on
the previous even-numbered sections, but not vice-versa.

2. Biproducts and Complete Monoid Enrichment

We recall the definition of biproducts and describe their relationship to en-
richment over the category of complete monoids.

Definition 2.1. A category C has (specified, small) biproducts if for for any set-
indexed family of objects {Ai | i ∈ I} there is an object

⊕
i∈I

Ai which is a product

and coproduct of the Ai, and for any family of morphisms {fi : Ai → Bi | i ∈ I},
the product 〈πi; fi | i ∈ I〉 and coproduct [fi; ιi | i ∈ I] of the fi are equal (giving
a morphism

⊕
i∈I

fi :
⊕
i∈I

Ai →
⊕
i∈I

Bi).

The biproduct of the empty family — the zero object — is both terminal and
initial, and thus for objects A,B there is a unique zero map — 0A,B : A → B
obtained by composing the terminal map from A with the initial map into B.
More generally, it is known that any category with finite biproducts carries
a canonical enrichment in the category of commutative monoids. Similarly,
categories with all biproducts bear an enrichment over the monoidal category
of complete monoids, which we now describe.

4



Recall that if V is a monoidal category then a V-enriched category (or
simply, V-category) C is given by a set of its objects, a V-object C(A,B) for
each pair of C-objects A and B, and V-morphisms idA : I → C(A,A) and
compA,B,C : V(A,B) ⊗ V(B,C) → V(A,C) for each A,B,C, satisfying the
following associativity and identity diagrams in V:

(C(A,B)⊗ C(B,C))⊗ C(C,D)

assocC(A,B),C(B,C),C(C,D)

��

compA,B,C⊗C(C,D)
// C(A,C)⊗ C(C,D)

compA,C,D

��
C(A,D)

C(A,B)⊗ (C(B,C)⊗ C(C,D))
C(A,B)⊗compB,C,D // C(A,B)⊗ C(B,D)

compA,B,D

OO

I ⊗ C(A,B)

idA⊗C(A,B)
��

lC(A,B) // C(A,B) C(A,B)⊗ I

C(A,B)⊗idB

��

rC(A,B)oo

C(A,A)⊗ C(A,B)

compA,A,B

33hhhhhhhhhhhhhhhhh
C(A,B)⊗ C(B,B)

compA,B,B

kkVVVVVVVVVVVVVVVVV

Definition 2.2. A complete monoid A is a pair (|A|,Σ) of a set |A| with a sum
operation (

∑
) on set-indexed families of elements of |A|, satisfying the axioms:

Partition Associativity For any partitioning of the set I into {Ij | j ∈ J}:∑
i∈I

ai =
∑
j∈J

∑
i∈Ij

ai.

Unary Sum For any singleton family {ai | i ∈ {j}},
∑
i∈{j}

ai = aj.

We write 0 for the sum of the empty family, which is a neutral element for the
sum by the above axioms. Any complete monoid is a commutative monoid in
the usual sense (with binary sum a1 + a2 =

∑
i∈{1,2}

ai).

A homomorphism of complete monoids from A to B is a function f : |A| →
|B| such that f(

∑
i∈I

ai) =
∑
i∈I

f(ai) for any family {ai}i∈I over |A|. The tensor

product of complete monoids A,B is the1 complete monoid A⊗B with a natural
equivalence (for any C) between the homomorphisms from A ⊗ B into C and
the functions from |A|× |B| into |C| which are bilinear — i.e. f(

∑
i∈I

ai,
∑
j∈J

bj) =∑
〈i,j〉∈I×J

f(ai, bj). We refer to [22, 23] for details of the construction of this tensor

1unique, up to isomorphism
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product, which yields symmetric monoidal structure on the category of complete
monoids and their homomorphisms. A category bears an enrichment over this
category of complete monoids if and only if every hom-set has the structure of
a complete monoid, such that composition is a bilinear function — i.e.

(
∑
i∈I

fi); (
∑
j∈J

gj) =
∑

〈i,j〉∈I×J

fi; gj

Proposition 2.3. Any category with biproducts bears an enrichment over the
category of complete monoids.

Proof. For a family of morphisms {fi : A→ B | i ∈ I}, let∑
i∈I

fi = ∆I
A;

⊕
i∈I

fi;∇IB

where ∆A
I : A→

⊕
i∈I

A = 〈idA | i ∈ I〉 and ∇IB :
⊕
i∈I

B → A = [idB | i ∈ I].

This satisfies the unary sum axiom by definition, and partition associativity as
follows: for any partitioning of I into {Ij | j ∈ J}:

∑
j∈J

∑
i∈Ij

fi =

∆J
A;

⊕
j∈J

(∆
Ij
A ; (

⊕
i∈Ij

fi);∇
Ij
B );∇JB = ∆J

A; (
⊕
j∈J

∆
Ij
A ); (

⊕
j∈J

⊕
i∈Ij

fi); (
⊕
j∈J
∇IjB );∇JB

= ∆I
A; (

⊕
i∈I

fi);∇IB =
∑
i∈I

fi.

Bilinearity of composition follows from naturality of the biproduct.

Conversely:

Lemma 2.4. In any category which bears a complete monoid enrichment and
has specified (small) products or coproducts, these are biproducts.

Proof. Supposing there are specified products, define coproduct structure on∏
i∈I

Ai by ιj : A→
∏
i∈I

Ai = 〈δij | i ∈ I〉 where δij =

{
idA if i = j

0A,A otherwise
.

The co-pairing of {fi : Ai → B | i ∈ I} is
∑
i∈I

πi; fi :
∏
i∈I Ai → B, so that

ιj ; [fi | i ∈ I] =
∑
i∈I
〈δij | i ∈ I〉;πi; fi = fi and for g :

∏
i∈I → B, [ιj ; g | j ∈ I] =∑

j∈I
(πj ; 〈δij | i ∈ I〉; g) = 〈

∑
j∈J

πj ; δij | i ∈ I〉; g = 〈πi | i ∈ I〉; g = g.

From this it follows that in any category with biproducts, ιi;πj = δij , and
∆I
A; ιj = idA, and hence that the complete-monoid enrichment is unique:

Proposition 2.5. If C is a category with biproducts which bears a complete
monoid enrichment then

∑
i∈I

(fi : A→ B) = ∆I
A;

⊕
i∈I

fi;∇IB.
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Proof. ∆I
A;

⊕
i∈I

fi;∇IB = ∆I
A; (〈ιi; fi | i ∈ I〉; (

∑
j∈I

πj)) = ∆I
A;

∑
j∈I

(ιj ; fj)

=
∑
j∈I

(∆I
A; ιj ; fj) =

∑
i∈I

fi.

Any complete monoid enriched category may be completed with biproducts:

Definition 2.6. For any complete monoid enriched category C, let CΠ be the
category in which objects are set-indexed families of objects of C, and morphisms
from {Ai | i ∈ I} to {Bj | j ∈ J} are I × J-indexed sets of morphisms {fi,j :
Ai → Bj | 〈i, j〉 ∈ I × J}, composed by setting (f ; g)ik =

∑
j∈J

(fij ; gjk). The

biproduct
⊕
j∈J
{Ai | i ∈ Ij} is the disjoint sum of families {Ak | k ∈

∐
j∈J Ij}.

2.1. Biproducts, Monoidal Categories and Complete Semirings

The correspondence between complete monoid enrichment and biproducts
extends to monoidal categories in which the monoidal product distributes over
the biproducts — i.e. there is a natural isomorphism (

⊕
i∈I

Ai) ⊗
⊕
j∈J

Bj ∼=⊕
i∈I,j∈J

(Ai⊗Bj). In monoidal closed categories this is always the case because ⊗

is a left adjoint and so preserves colimits. (We shall assume that for our specified
biproducts this isomorphism is an equality.) The complete monoid enrichment
thus extends to the monoidal structure — i.e. (

∑
i∈I

fi)⊗(
∑
j∈J

gj) =
∑

i∈I,j∈J
(fi⊗gj).

In any complete-monoid-enriched monoidal category, the endomorphisms on
the unit I form a complete semiring.

Definition 2.7. A complete semiring R is a tuple (|R|,Σ, ·, 1), where (|R|,Σ)
is a complete monoid and (|R|, ·, 1) is a monoid which distributes over Σ — i.e.∑
i∈I

(a · bi) = a ·
∑
i∈I

bi and
∑
i∈I

(bi · a) = (
∑
i∈I

bi) · a.

Definition 2.8. For any complete-monoid-enriched monoidal category C, the
internal (complete) semiring RC is the complete monoid C(I, I), with multipli-
cation being composition in C.

Lemma 2.9. The internal semiring is commutative (i.e. for all f, g ∈ C(I, I),
f ; g = g; f).

Proof. In a monoidal category, there is a single isomorphism u : I⊗I → I which
is both a left and right unitor at I and so the following diagram commutes:
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I

I

��

I //

u−1
III

II

$$I
II

gXXXX
XXXXXX

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

XX

f

//
//
//

��/
//
//
//
//
//
//
//
/

I
g

&&LL
LLL

LLL
LLL

LL

I ⊗ I
urrr

88rrrrrrrr

uuu

zzuuu
uuu

uu
g⊗I

//

I⊗f
�� g⊗f

&&LL
LLL

LLL
LLL

LLL
LLL

LLL
LLL

LL
I ⊗ I

u
//

I &&LL
LLL

LLL
LL

I

u−1

��

f

$$I
II

II
II

II
II

f

//
//
//

��/
//
//
//
//
//
//
//
/I

f
$$I

II
II

II
II

II I ⊗ I

u

��

I

&&LL
LLL

LLL
LL

I ⊗ I

f⊗I
��

I
u−1

uu

zzuuu
uu
u

I

��

I
u−1

//

g

&&LL
LLL

LLL
LLL

LL
gXXXX

XXXXXX

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

XX
I ⊗ I

g⊗I // I ⊗ I

u
II

II

$$I
II

II

I
u−1
rr

88rrrrrrr

I
// I

From this point, in any reference to complete semirings commutativity should
be taken as read. We will also elide the associativity and unital isomorphisms of
a monoidal category, as if in a strict monoidal category, where it is not necessary
to make them explicit.

If C is a complete monoid enriched symmetric monoidal category then we
may define the (distributive) tensor product on its biproduct completion CΠ:

{Ai | i ∈ I}⊗{Bj | j ∈ J} = {Ai⊗Bj |〈i, j〉 ∈ I×J} and (f⊗g)ij,kl = fik⊗gjl.

In particular, taking the biproduct completion of a complete semiring R viewed
as a one-object symmetric monoidal (closed) category in which both composi-
tion and tensor product are multiplication gives a symmetric monoidal closed
category with distributive biproducts. By identifying its objects with their in-
dexing sets it may equivalently be presented as follows 2

Definition 2.10. For any complete semiring R, the objects of the category RΠ

are sets, and morphisms from X to Y are functions from X×Y into |R| — i.e.
X×Y matrices with entries in R. They are composed by matrix multiplication:
(f ; g)(x, z) =

∑
y∈Y

f(x, y) · g(y, z). Symmetric monoidal structure on R is given

by the cartesian product of sets, with (f ⊗ g)((a, b), (c, d)) = f(a, c) · g(c, d). The
biproduct of a family of sets is its disjoint union.

This category plays a key role in our semantics, both as a model itself, and
as base over which more intensional models may be enriched. (Observe that
if C is enriched over RΠ then the map from R to RC sending a to a.idI is

2RΠ is also equivalent to the category of free R-modules and their homomorphisms, and
thus the Kleisli category of the monadR on Set, which sends each set X to the freeR-module
on X (consisting of functions from X into |R|) — see [1].
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a homorphism of complete semirings, since (by Proposition 2.5) the complete
monoid enrichment on C(I, I) is unique, as is the multiplicative structure by the
Eckmann-Hilton argument.

2.2. Continuous Semirings and Cpo Enrichment

Important examples of complete semirings include:

• Any complete lattice, with
∑
i∈I

ai =
∨
{ai | i ∈ I}, 1 = > and a · b = a ∧ b.

In particular, the Boolean semiring B = ({>,⊥},
∨
,∧,>).

• The probability semiring, R∞+ = ({a ∈ {R | a ≥ 0} ∪ {∞},Σ, ·, 1) — the
non-negative real numbers, with arithmetic sum and product, completed
with an additively-absorptive infinite element, which is the value assigned
to any non-convergent sum.

• The tropical semiring T = (N∞,
∨
,+, 0) — the natural numbers, com-

pleted with an infinite element, with the join operator and arithmetic
addition as semiring addition and multiplication, respectively.

These examples are all continuous semirings, which were the basis of the
weighted relational models studied in [1].

Definition 2.11. A complete semiring is ordered if there is a partial order on
|R| such that multiplication is monotone, and I ⊆ J and ai ≤ bi for all i ∈ I
implies

∑
i∈I

ai ≤
∑
j∈J

bj. It is continuous if |R| is directed complete, multiplication

is continuous and for any set ∆ of I-indexed families such that {Ai | A ∈ ∆}
is directed for each i ∈ I:

∑
i∈I

∨
{Ai | A ∈ ∆} =

∨
{
∑
i∈I

Ai | A ∈ ∆}.3

We may obtain further examples of complete semirings by completing a
semiring which is positive (i.e. a+b = 0 implies a = b = 0) with its formal sum,
as follows:4

Definition 2.12. Given a positive semiring (R,+, 0, ·, 1), define the complete
semiring R∞ = {|R| ∪ {∞},Σ, ·, 1), where:

∑
i∈I

f(i) ,


∑

j∈I\f−1(0)

f(j) if I\f−1(0) is finite, and f−1(∞) = ∅

∞ otherwise

a · ∞ =∞ · a ,

{
0 if a = 0

∞ otherwise
.

3Thus it is determined by the binary and empty sum, since
∑
i∈I

ai =
∨

J⊆finI

∑
j∈J

aj .

4Every complete monoid is positive: suppose a + b = 0 and let ai = a and bi = b for all
i ∈ N. Then a = a + 0 = a0 +

∑
i∈N

(bi + ai+1) =
∑
i∈N

(ai + bi) = 0.
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Since we can obtain a positive semiring by adjoining a zero element to
any semigroup with a distributive multiplication, formal completion allows any
semiring to be used to weight computations. However:

Proposition 2.13. If |R| is finite then R∞ is not continuous.

Proof. Let n ,
∑

1≤i≤n
1. If R is ordered then 0 ≤ 1 ≤ . . . and so

∨
J⊆finN

∑
j∈J

1 =∨
m∈N

m = n for some n. But by definition of the formal sum,
∑
i∈N

1 =∞.

Any cpo-enrichment on a complete monoid enriched SMC lifts to its biprod-
uct completion — so in particular if R is a continuous semiring then RΠ bears
a cpo-enrichment. Conversely:

Proposition 2.14. In any cpo-enriched category with biproducts the internal
semiring is continuous.

Proof. For J ⊆ I, let δJA : A→
⊕
i∈I

A = 〈gi | i ∈ I〉, where gi =

{
idA if i ∈ J
0A,A otherwise

.

By uniqueness, 0A,A is the least element in C(A,A), and so δIA =
∨

J⊆finI

δJA.

So for any {fi : A→ B | i ∈ I},∑
i∈I

fi = δIA; [fi | i ∈ I] = (
∨

J⊆finI

δJA); [fi | i ∈ I] =
∨

J⊆finI

δJA; [fi | i ∈ I] =
∨

J⊆finI

∑
j∈J

fj

Hence if C is a category with biproducts for which the internal semiring RC
is not continuous then C cannot be cpo-enriched.

Remark 2.15. In Sections 8 and 9 we describe the semantics in categories
with biproducts of programming languages (PCF and Idealized Algol) weighted
with values from the internal semiring. If this is the formal completion of
a finite semiring, Propositions 2.13 and 2.14 imply that the model cannot be
cpo-enriched. Standard domain-theoretic techniques for defining fixed points
are therefore not available: in Section 6 we shall develop alternatives based on
biproducts and complete semiring enrichment.

3. Change of Base

We now describe a method for obtaining categories enriched over the cate-
gory of R-weighted relations from intensional semantics such as games models.
This is an instance of the notion of change of base [15, 16], which uses a monoidal
functor between monoidal categories V to W to transform any model in a V-
category to a model in a W-category satisfying the same equational theory.

10



Definition 3.1. Given monoidal categories V and W any monoidal functor
(F,m) : V → W induces a 2-functor ( change of base) F∗ from the category of
V-categories to the category of W-categories: if C is a V-category, then F∗(C) is
theW-category over the same objects, with F∗(C)(A,B) = F (C(A,B)), and com-
position and identity morphisms mC(A,B),C(B,C);F (compA,B,C) and mI ;F (idA).

A simple example is the change of base induced by the monoidal hom-functor
V(I, ) : V → Set, which sends each V-category C to its underlying category C0.
The change of base induced by a monoidal functor F comes with an identity-
on objects, F -on-morphisms functor F0 : C0 → F∗(C)0 (which is a natural
transformation from V(I, )∗ to W(I, F )∗).

We will describe a change of base from a class of “qualitative” models —
categories enriched over the category of coherence spaces — into a class of
quantitative ones — RΠ-enriched categories.

Definition 3.2. A coherence space [17] D is a pair (|D|,¨D) where ¨D⊆ |D|×
|D| is a symmetric and reflexive relation (coherence) on the set |D| (the web). A
clique of D is a set X ⊆ |D| which is pairwise coherent: d, d′ ∈ X =⇒ d ¨D d′.

Definition 3.3. The category CSpace has coherence spaces as objects; mor-
phisms from C to D are relations f ⊆ |C| × |D| such that:

if (c, d), (c′, d′) ∈ f then c ¨C c′ implies d ¨D d′ ∧ (d = d′ =⇒ c = c′)

with relational identity and composition — i.e. for morphisms g : D → E,

f ; g : C → E = {(c, e) ∈ |C| × |E| | ∃d ∈ D.(c, d) ∈ f ∧ (d, e) ∈ g}

The tensor product of coherence spaces is the cartesian product of their webs
and coherence relations, giving symmetric monoidal structure on CSpace. —
i.e. |D ⊗ E| = |D| × |E|, with (d, e) ¨D⊗E (d′, e′) if and only if d ¨D d′ and
e ¨E e′. On morphisms, f ⊗ g = {((a, b), (c, d) | (a, c) ∈ f ∧ (b, d) ∈ g}. The
unit I is the singleton coherence space {∗}.

Typically, models of linear type theory based on sets and relations augmented
with some notion of consistency — and thus a forgetful monoidal functor into
CSpace — may be enriched over coherence spaces: any symmetric monoidal
closed category enriches over itself, and thus change of base yields a CSpace-
category. Examples include categories of hypercoherences [24], event structures
[25] and concrete data structures [26].

3.1. From Cliques to Weighted Relations

We define a monoidal functor from coherence spaces into R-weighted rela-
tions which sends each coherence space to its web, and each morphism to its
characteristic function:

Definition 3.4. If R is a complete semiring, define ΦR : CSpace→ RΠ:

ΦR(D) = |D| and ΦR(f)(c, d) =

{
1 if (c, d) ∈ f
0 otherwise

11



To establish functoriality of ΦR we use the following property of composition
in CSpace.

Lemma 3.5. For any morphisms f : C → D and g : D → E, if (c, e) ∈ f ; g
then there exists a unique d ∈ D such that (c, d) ∈ f and (d, e) ∈ g.

Proof. Existence holds by definition. For uniqueness, suppose (c, d), (c, d′) ∈ f
and (d, e), (d′, e) ∈ g. Then d ¨D d′ by coherence of f and hence d = d′ by
coherence of g.

Lemma 3.6. ΦR(f); ΦR(g) = ΦR(f) : ΦR(g).

Proof. Suppose (c, e) ∈ f ; g. Then by Lemma 3.5 there exists a unique d′ ∈ |D|
such that (c, d′) ∈ f and (d′, e) ∈ g. Thus for all d ∈ |D|:

ΦR(f)(c, d).ΦR(g)(d, e) =

{
1 if d = d′

0 otherwise

Hence ΦR(f); ΦR(g)(c, e) =
∑
d∈D

ΦR(f)(c, d).ΦR(g)(d, e) = 1 = ΦR(f ; g)(c, e).

If (c, e) 6∈ f ; g then for all d ∈ D, either (c, d) 6∈ f or (d, e) 6∈ g and so
ΦR(f)(c, d).ΦR(g)(d, e) = 0.
Hence ΦR(f); ΦR(g)(c, e) =

∑
d∈D

ΦR(f)(c, d).ΦR(g)(d, e) = 0 = ΦR(f ; g)(c, e).

Evidently, ΦR is strict monoidal — ΦR(I) = I and ΦR(D⊗E) = ΦR(D)⊗
ΦR(E) — and faithful. So for each complete semiring R we have a change of
base sending each CSpace-category C. to a RΠ-category CR with a faithful
functor ΦR0 : C0 → CR0 .

Remark 3.7. We may also use change of base to move from models enriched
over one category of R-weighted relations to another. Any homomorphism of
complete semirings ψ : R → R′ lifts to an identity-on-objects, strict monoidal
functor ψ̂ : RΠ → R′Π by sending an R-weighted relation f : A × B → R to
ψ ·f : A×B → R′. This factorizes ΦR

′
— i.e. the following diagram commutes

CSpace
ΦR //

ΦR
′
$$I

II
II

II
II

RΠ

ψ̂
��
R′Π

— and thus induces a change of base functor from RΠ-categories to R′Π-categories
which factorizes change of base from CSpace-categories to RΠ-categories.

In particular, if R is idempotent then the unique homorphism into R from
the Boolean semiring B = ({>,⊥},

∨
,∧,>) induces a monoidal functor from the

category Rel of sets and relations (which is isomorphic to BΠ) into RΠ. This
can be used to change the base of Rel-enriched categories to relations weighted
over an idempotent semiring.

12



3.2. An Example: Games and History-Sensitive Strategies

We illustrate the change of base induced by ΦR : CSpace → RΠ by using
it to derive a family of quantitative games models from a CSpace-enriched
category of games and strategies. Its underlying category is essentially the
games model of Idealized Algol (IA) introduced by Abramsky and McCusker
in [14] and obtained by relaxing the innocence constraint on strategies in the
Hyland-Ong games model of PCF [27] (it is derived from a different “linear
decomposition” of this model).

We start with the notions of arena, justified sequence, strategy and composi-
tion which are essentially as defined and studied in the literature (e.g. [28, 29])
to which we refer for further details.

Definition 3.8. An arena A is a labelled, bipartite directed acyclic graph, given
as a tuple (MA,M

I
A,`A, λA) — where MA is a set of moves (nodes), M I

A ⊆
MA is a specified set of initial moves (source nodes), `A⊆ MA × (MA\M I

A)
is the enabling (edge) relation and λA : MA → {O,P} × {Q,A} is a function
partitioning the moves between Player and Opponent, and labelling them as
either questions or answers, such that initial moves belong to Opponent and
each answer is enabled by a question.

Definition 3.9. A justified sequence t over an arena A is a sequence over MA,
together with a function (justification) sending each non-empty prefix s v t to a
prefix j(s) @ s.

The set LA of legal sequences over A consists of Opponent/Player alter-
nating justified sequences t on A such that for each non-empty prefix sb v t,
j(sb) = ε if b is initial, and otherwise it is a prefix ra v s such that a ` b, and:

• visibility — ra is in the set view(s) of visible prefixes of s, which is defined:

view(s′) =

{
{s′} if s′ = ε or j(s′) = ε

view(r′) ∪ {s′} if j(s′) = r′a′

• well-bracketing — if b is an answer then ra is the pending question of s,

defined: pending(s′a′) =

{
s′a′ = if λQAA (a′) = Q

pending(s′) if λQAA (a′) = A ∧ pending(s′) ↓
.

We refer to the literature for further details of these conditions, which may be
relaxed or modified in various ways to model different combinations of compu-
tational effects: our results do not depend on their particular properties except
in that they lead to a well-defined symmetric monoidal category of games, and
ultimately a fully abstract model of Idealized Algol. Indeed, the well-bracketing
condition may be recovered from the linear structure of our model (cf. linear
continuation passing [30]: we include it for continuity with [14]).

We require the following constructions on arenas:

• Disjoint union: A ]B , (MA +MB ,M
I
A +M I

B ,`A + `B , [λA, λB ]).

• The graft of A onto the root nodes of B:
A⇒ B , (MA+MB , inr(M I

B), (`A + `B)∪inr(M I
B)×inl(M I

A), [λA, λB ]).
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Definition 3.10. A deterministic strategy on an arena A is set of even-length
legal sequences σ ⊆ LA which is even-branching — i.e. if s, t ∈ σ then s u t
(their greatest common prefix) is even-length, so they first differ (if at all) on
an Opponent move.

The only point of significant difference from the definitions of [14] is that strate-
gies are not required to be non-empty and even-prefix-closed. This does not
affect the proofs of key results nor change the denotations of programs in the
model, which possess both of these properties.

Strategies are composed by “parallel composition plus hiding”:

Definition 3.11. For S ⊆ LA⇒B and T ⊆ LB⇒C , let S|T be the set of “inter-
action sequences”, which are justified sequences u on MA+MB +MB such that
u�(A⇒ B) ∈ S and u�(B ⇒ C) ∈ T . We define:

ρ;σ = {t ∈ LA⇒B | ∃u ∈ σ|τ.t = u�A⇒ C}.

The identity idA : A ⇒ A is the strategy consisting of the sequences on
A ⇒ A for which each even prefix projects to the same (legal) sequence on
both components. Proof that composition is well-defined and associative, and
id is its unit on both sides follows similar results in the literature (e.g. [28, 29])
which do not depend fundamentally on even-prefix-closure and non-emptiness
of strategies.

3.3. Coherence Space Enrichment of Games

We will now define a CSpace-category of games based on the constructions
already described. The fact that the inclusion order on strategies provides an
enrichment over the category of cpos and continuous functions was already used
in [14], as in other games models, to construct fixed points. Our results amount
to showing that in fact composition is a bilinear and stable function. This is also
implicit in the definition in [18] of a monoidal functor from a similar category
of games into a category of ordered coherence spaces. However, this depends on
a number of particular features — notably the reconstruction of a strategy on
G1 ( G2 from its projections on G1 and G2, which is not always possible, so
CSpace-enrichment is in this sense a more general property.

Definition 3.12. A game is a pair (A,P ) of an arena A and a set of justified
sequences P ⊆ LA.

For any game G = (A,P ) let Coh(G) be the coherence space (PE ,¨), where
PE is the set of even-length sequences in P and s ¨ t if s u t is even length.
Thus the morphisms from I to Coh(G) in CSpace — i.e. the cliques of Coh(G)
— correspond precisely to the strategies on A which are subsets of P .

Definition 3.13. Let G be the CSpace-category in which objects are games,
and the coherence space of morphisms from G1 to G2 is Coh(G1 ( G2), where
G1 ( G2 is the game (A1 ⇒ A2, {s ∈ LA1⇒A2

| s�A1 ∈ P1 ∧ s�A2 ∈ P2}).
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• For each object G = (A,P ), the identity on G is the set of (∗, s) ∈ I →
CSpace(G( G) such that s ∈ idA.

• compG1,G2,G3
: Coh(G1 ( G2)⊗ Coh(G2 ( G3)→ Coh(G1 ( G3) is the

set of ((r, s), t) ∈ |Coh(G1 ( G2)| × |Coh(G2 ( G3)| × |Coh(G1 ( G3)|
such that ∃u ∈ {r}|{s}.u�G1 ( G3 = t.

To prove that this is well-defined we use two observations. First, that the
parallel composition with hiding of ρ : I → Coh(G1 ( G1) and σ : I →
Coh(G2 ( G3) as strategies on A1 ⇒ A2 and A2 ⇒ A3 (Definition 3.11) is
equal to the relational composition of ρ ⊗ σ with compG1,G2,G3

. The second is
essentially a version of the “zipping lemma” established in [31] for AJM games.
First, we prove:

Lemma 3.14 (Switching Lemma). Suppose sm v u ∈ σ|τ , then:

• If m is a move in B then s�A⇒ C is odd-length.

• If m is a move in C (resp. A) then s �A ⇒ B (resp. s �B ⇒ C) is
even-length.

Proof. By induction on length — e.g. suppose m is in B but the last move in
s is (w.l.o.g.) in A. Then by hypothesis s�B ⇒ C is even-length, so m must
be an Opponent move in B ⇒ C — and thus a Player move in A⇒ B. So the
preceding move is an Opponent move in A⇒ C and thus s�A⇒ C is odd-length
as required.

Note that this property holds independently of any “switching condition”
for play in ⇒, so it does not depend on the visibility condition.

Lemma 3.15 (Zipping Lemma). For any t ∈ σ; τ there exists a unique u ∈ σ|τ
such that t = u�A⇒ C.

Proof. Suppose u, u′ ∈ σ|τ such that u�A ⇒ C = u′�A ⇒ C = t. We show
by induction on length that every prefix of u is a prefix of u′ and vice-versa:
suppose rm v u, where r v u′. If m is a move in A⇒ C then r 6= u′ (since m
appears in u′) and if m is a move in B then by the switching lemma, r�A⇒ C is
odd-length and so r 6= u′ (since u�A⇒ C is even-length). So suppose rm′ v u′.

If m,m′ are both moves in A⇒ C then m = m′, since u�A⇒ C = u′�A⇒ C.
Otherwise, suppose m is a move in B, and thus a Player move in either B ⇒ C
or A⇒ B. Suppose, without loss of generality, the former. Then if m′ is a move
in A then it must be an Opponent move in A ⇒ B (since m is an Opponent
move in A⇒ B) and a Player move in A⇒ C (by Lemma 3.14, since r�A⇒ C
is odd-length). This is impossible and so m is also a Player move in A ⇒ B.
But (u�A⇒ B) u (u�A⇒ B) is even-length and therefore m = m′.

Proposition 3.16. G is a well-defined CSpace-enriched category.
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Proof. To show that compG1,G2,G3
is a well-defined morphism from Coh(G1 (

G2)⊗Coh(G2 ( G3)→ Coh(G1 ( G3) in CSpace, suppose ((r, s), t), ((r, s′), t′) ∈
compG1,G2,G3

, and (r, s) ¨ (r′, s′) — i.e. r ¨ r′ and s ¨ s′. Let ρ : G1 ( G2 =
{r, r′} and σ = {s, s′}. Then:

• By definition of composition, t, t′ ∈ ρ;σ and hence t ¨ t′.

• If t = t′ then there exist u ∈ {r}|{s} and u′ ∈ {r′}|{s′} such that u�G1 (
G3 = u′ �G1 ( G3 = t. Then u, u′ ∈ ρ|σ and hence by Lemma 3.15,
u = u′ and hence r = r′ and s = s′ as required.

CSpace is well-pointed with respect to morphisms from the tensor unit I (i.e.
f : X → Y = g : X → Y if x; f = x; g for all x : I → X). Hence by the
associativity and unitality properties of parallel composition with hiding, comp
and id satisfy the corresponding diagrams in CSpace, making G a well-defined
CSpace-category.

We define CSpace-enriched symmetric monoidal (closed) structure on G,
given by the enriched functor � with the action on objects:

G1 �G2 = (A1 ]A2, {s ∈ LA1]A2
| s�A1 ∈ P1 ∧ s�A2 ∈ P2})

and the CSpace-morphism from Coh(G1 ( G3)⊗Coh(G2 ( G4)| to Coh(G1�
G2 ( G3 � G4) consisting of triples ((r, s), t) ∈ |Coh(G1 ( G3) × Coh(G2 (
G4)|×|Coh(G1�G2 ( G3�G4)| such that r = t�G1 ( G3 and s = t�G2 ( G4.
The unit for � is the game over the arena with no moves, with ε as its only
play.

Remark 3.17. Unlike [14] (and similar games models) the underlying symetric
monoidal category of games is not affine — the unit for the tensor is not a termi-
nal object. This is a necessary requirement for non-trivial CSpace-enrichment
— in any CSpace-category C, each coherence space C(A,B) must contain the
empty clique ⊥A,B but since ⊥I,I ⊗ f = ⊥A,B for any f : A → B, the identity
on I is not equal to ⊥I,I unless C(A,B) is empty for every A,B. In G there are
two morphisms from the tensor unit to itself, one empty (⊥I,I) and the other
containing the empty sequence (idI).

In other respects, this corresponds to symmetric monoidal structure on the
underlying category of games already identified in [14], giving associator, unitor
and twist maps making the relevant diagrams commute. The (natural) isomor-
phism Coh(G1 ⊗ G2, G3) ∼= Coh(G1, G2 ( G3) in CSpace yields symmetric
monoidal closure.

3.4. Weighted Strategies

For any complete semiring R, change of base yields a symmetric monoidal
closed category GR , ΦR∗ (G) enriched in RΠ. Concretely, a morphism φ :
G1 → G2 in the underlying category GR0 is a R-weighted strategy — a map from
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the set of even-length plays PEG1(G2
intoR. Composition of φ with ψ : G2 → G3

may be defined directly — (φ;ψ)(t) =∑
{φ(u�A1 ⇒ A2) · ψ(u�A2 ⇒ A3) | u ∈ PEA1(A2

|PEA2(A3
∧ u�A1 ⇒ A3 = t}

The tensor product of R-weighted strategies φ : G1 → G2, ψ : G3 → G4 is given:

(φ� ψ)(s) = φ(s�A1 ⇒ A2) · ψ(s�A3 ⇒ A4)

The induced (identity-on-objects) monoidal functor between the underlying cat-
egories ΦR0 : G0 → GR0 sends each deterministic strategy σ : G1 → G2 to the

R-weighted strategy σR with σR(s) =

{
1 if s ∈ σ
0 otherwise

.

By choosing particular semirings we may relate our categories of weighted
strategies to examples in the literature. For instance, if R is the Boolean semir-
ing then morphisms in GR0 correspond to sets of even-length legal sequences —
i.e. non-deterministic strategies, as in the model of may-testing studied in [32]
and [21].

If R is the probability semiring, R∞+ then R-weighted strategies correspond
precisely to the “probabilistic pre-strategies”, introduced by Danos and Harmer
[19]. These may be refined further by imposing constraints requiring the weights
to correspond to probabilities, although the precursor model of prestrategies is
already fully abstract for Probabilistic Algol.

IfR is the tropical semiring T then GR0 corresponds to a sequential version of
Ghica’s category of slot games [33]. This was introduced as a model quantifying
resources used in stateful and concurrent computation, in a presentation rather
different to weighted strategies. Assuming a distinguished token $©, which does
not occur in the set of moves of any arena, we may define a sequence with
costs on the game A to be an interleaving of a sequence s ∈ PA of A with a
sequence of $© moves: a strategy-with-costs on a A is a set of such sequences,
closed under permutation of $© and non- $© moves, and erasure of $© moves.
Composition of strategies with costs does not hide $© moves, so that all $©
moves of σ and τ propagate to σ; τ . In other words, if we take the weight of a
sequence-with-costs to be the number of $© moves it contains, strategies-with-
costs correspond to T-weighted strategies on the underlying arena, and their
composition to composition in the category GT

0 .

Remark 3.18. We are able to enrich our category of games over coherence
spaces because the alternation condition on sequences leads to a simple notion
of coherence (branching on Opponent moves), with cliques corresponding to de-
terministic strategies. These can be used to interpret sequential programs with
various side-effects, but in games models for concurrent languages, including the
original category of slot games [33], the alternation condition is lifted, and so
this enrichment is not available. However, we may enrich over the category of
relations, using similar definitions for composition of strategies but no longer re-
quiring stability. As we have noted, we may change the base of any Rel-enriched
model to the category of free semimodules over an idempotent semiring — of
which the tropical semiring is an instance.
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4. Lafont Categories

We now return to our general notion of categorical model (symmetric monoidal
categories with biproducts). To allow controlled duplication and discarding of
resources in a weighted setting, we interpret the exponential !A of intuitionistic
linear type theory as the cofree commutative comonoid on A. Such a model is
known as a Lafont category.

Definition 4.1. A Lafont category [8] is a symmetric monoidal closed category
C with finite products such that the forgetful functor into C from its category of
commutative comonoids and comonoid morphisms has a right adjoint.

To spell this out: in the category comon(C) of commutative comonoids on C:

• Objects are commutative comonoids in C — triples (A, δA, εA) consisting
of an object A of C, and morphisms δA : A⊗A→ A and εA : A→ I in C
such that δA; (A⊗εA) = idA, δA; δA⊗A = δA; (A⊗δA) (up to associativity
and unity isomorphisms of C) and δA; γA = δA, where γA : A⊗A→ A⊗A
is the symmetry isomorphism:

A
δA //

idA

""F
FF

FF
FF

FF
A⊗A

A⊗εA
��
A

A
δA //

δA
��

A⊗A

A⊗δA
��

A⊗A
δA⊗A
// A⊗A⊗A

A
δA //

δA

""F
FF

FF
FF

F A⊗A

γ

��
A⊗A

• Morphisms from (A, δA, εA) to (B, δB , εB) are morphisms f ∈ C(A,B)
which satisfy δA; (f ⊗ f) = f ; δB and εA = f ; εB .

A cofree commutative comonoid on an object B in C is a commutative comonoid
!B with a natural equivalence between the morphisms into B in C, and the
comonoid morphisms into !B. To be more precise:

Definition 4.2. A commutative comonoid (!B, δ!B , ε!B) is a cofree commutative
comonoid on B if there is a morphism derB ∈ C(!B,B) and for each commuta-
tive comonoid (A, δA, εA) an operation ( )† sending each morphism f ∈ C(A,B)
to a comonoid morphism f† from (A, δA, εA) to (!B, δ!B , ε!B) such that:

f†; derB = f for all f ∈ C(A,B) and (g; derB)† = g for all g ∈ comon(C)(A, !B)

( )† should be natural in A — i.e. h; f† = (h; f)† for any comonoid morphism
h : C → A,

Thus C is a Lafont category if and only if there are cofree commutative
comonoids on all objects. In this case the (monoidal) adjunction between the
forgetful and cofree functors resolves a monoidal comonad ! : C → C, with Kleisli
triple (!, der, ( )†). Its co-Kleisli category C! is therefore Cartesian closed. We
will refer to such a comonad as the free exponential.
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4.1. The Lafont Construction

In fact, distributive biproducts are a key element of a general construction
of the cofree commutative comonoids from symmetric tensor powers.

Definition 4.3. A family of objects {Bi | i ∈ N} of a symmetric monoidal
category are symmetric tensor powers of the object B if:

• For each n there is a morphism eqn : Bn → B⊗n such that (Bn, eqn) is
an equalizer for the group perm(B⊗n) of automorphisms on B⊗n derived
from the permutations on {1, . . . , n}.

• These equalizers are preserved by the monoidal product — i.e. (Bm ⊗
Bn, eqm ⊗ eqn) is an equalizer for the monoidal products of pairs of per-
mutation automorphisms on {1, . . .m} and {1, . . . , n}.

An object !B in a SMC with biproducts is a Lafont exponential of B if it is the
biproduct of all symmetric tensor powers of B — i.e. if !B =

⊕
n∈N

Bn.

The Lafont exponential is given the structure of a commutative comonoid
by defining ε!B :!B → I = π0 and δ!B :!B →!B⊗!B = 〈πm+n; δm,n | m,n ∈ N〉,
where δm,n : Bm+n → Bm ⊗ Bn is the unique morphism such that eqm+n =
δm,n; (eqm ⊗ eqn).

Proposition 4.4. If !B is the Lafont exponential of B then (!B, δ!B , ε!B) is the
cofree commutative comonoid on B.

Proof. For details, see e.g. [9]: derB :!B → B = π1 and for any f : A → B,
f† : A →!B = 〈f i | i ∈ N〉, where fn : A → Bn is the unique morphism
such that fn; eqn = δ(n); f⊗n (where δ(n) : A → A⊗n is the unique n-ary
co-multiplication for A).

4.2. Constructing Lafont Categories with Biproducts

Thanks to the Lafont construction, any symmetric monoidal closed category
with biproducts is a Lafont category if it has symmetric tensor powers. In [21],
it was observed that if C is a symmetric monoidal category enriched over the cat-
egory of complete lattices, then its Karoubi envelope or idempotent completion
has symmetric tensor powers. We refer to loc. cit. for more detailed discussion,
but observe here that this construction may be carried through for any category
C in which the internal semiring RC has fractions.

Definition 4.5. A semiring R has fractions if n =
∑

1≤i≤n
1 has a multiplicative

inverse 1
n for each n > 0.

Definition 4.6. The Karoubi envelope K(C) of a category C is the category in
which:

• Objects are idempotent morphisms of C (i.e. pairs (A, d : A → A) such
that d; d = d).
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• Morphisms g : (A, d) → (B, e) are C-morphisms g : A → B such that
g = d; g; e. They are composed as in C, and the identity on (A, d) is d.

The fully faithful (identity-on-morphisms) functor from C to K(C) sending A
to (A, idA) preserves monoidal (closed) structure on-the-nose. If C has biprod-
ucts the so does K(C) — we specify

⊕
i∈I

(Ai, di) = (
⊕
i∈I

Ai,
⊕
i∈I

di).

Proposition 4.7. If RC has fractions then K(C) has symmetric tensor powers.

Proof. Let p : A⊗n → A⊗n be the idempotent 1
n! ⊗

∑
θ∈perm(A⊗n)

θ.

Then (A, f)n , (A⊗n, f⊗n; p) is the nth symmetric tensor power for (A, f), as
((A, fn), f⊗n) is the equalizer for the automorphisms in perm(A⊗n).

Thus we have a recipe for constructing a Lafont category with biproducts,
starting with any CSpace-enriched symmetric monoidal closed category C and
complete semiring R with fractions (such as any idempotent semiring, the com-
pleted reals, or any semifield extended with the formal sum):

1. Change the base of C from CSpace to RΠ, giving a category CR enriched
over R-modules.

2. Complete with biproducts.

3. Complete with idempotents.

(Since idempotent completion preserves biproducts, and vice-versa, steps 2 and
3 may be performed in either order.)

Remark 4.8. In [21], instead of Step 1 (change-of-base), the starting category
C is augmented with semi-additive structure by taking its sup-lattice completion
(in which morphisms from A to B are subsets of C(A,B), composed pointwise).
We can see this as a particular case of change-of-base: we may freely construct
a CSpace-category C• over the objects of C by taking the web |C•(A,B)| to be
the set C(A,B) with the discrete coherence, for which the underlying category is
the free pointed category on C (i.e. we adjoin an additional morphism ⊥A,B to
each hom-set, which is preserved by composition on both sides). Changing the
basis of C• to RB (i.e. Rel) corresponds to sup-lattice completion of the original
category C. More generally, changing the base of C• to RΠ corresponds to a free
R-module completion of C.

For the main examples of categories C considered in [21] — the terminal
SMCC (one-object, with one map); and a category of games corresponding to
the free SMCC generated by one object — there is no available enrichment over
coherence spaces other than the discrete one, and thus sup-lattice enrichment
gives the minimal R-enriched category with a faithful functor from our underly-
ing category of games — as is shown by universality results for a corresponding
resource calculus. However, as we have seen, our category of history sensitive
games does bear a non-trivial enrichment over coherence spaces, giving rise to a
R-enriched category of games which is not equivalent to R-module completion.
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Composing steps 1− 3 gives a Lafont category with biproducts — K(CΠ
R) —

with a faithful (strong monoidal) functor from C, so they represent a methodol-
ogy for building a quantitative model which retains the intensional character of
the base category C: e.g. in [21], it was shown that the full structure of Hyland-
Ong style games may be reconstructed by applying these steps to a basic SMCC
of tree traversals. However, a typical situation (as in the game semantics of Ide-
alized Algol) is that the underlying category of our coherence-enriched SMCC
has already been used to give a qualitative interpretation of the λ-calculus (and
possibly other features such as side-effects), and we want to preserve this struc-
ture through the change of base rather than having to reconstruct it using the
Karoubi envelope. In the next section, we consider conditions under which this
is possible.

5. Change of Base and the Free Exponential

Any functor interpreting the exponential of linear logic cannot be CSpace-
enriched.5 So we assume only that the underlying category of our CSpace-
category has cofree commutative comonoids. Since this is not an enriched notion
we do not show directly that these are preserved by change of base. However,
we can instead show that (under certain conditions, which are satisfied in our
CSpace-category of games) change of base preserves the construction of a cofree
commutative comonoid due to Melliès, Tabareau and Tasson [9]. This subsumes
Lafont’s construction, and characterizes the cofree exponential in many other
models — we will show that the cofree commutative comonoids in our coherence
category of games are an instance.

First, to outline the MTT-construction. If a symmetric monoidal category
(C,⊗, I) has the cartesian product B• = B × I (the “free pointed object” on
B) and the symmetric tensor power B≤i , (B•)

i exists for each i ∈ ω, then the
morphisms eqi+1; (B⊗i• ⊗ πr); θ : B≤i+1 → B⊗n are equal for each permutation
θ on B⊗i and hence by the universal property of the symmetric tensor power,
there is a unique morphism pi : (Bi+1

• ) → (B•)
i such that pi; eqi : Bi+1

• →
B⊗i• = eqi+1; (B⊗i• ⊗ πr).

In [9] it is shown that the cofree comonoid on B is given by the limit (where
it exists) of the diagram:

I
p0←− B≤1 p1←− B≤2 . . . B≤i

pi←− B≤i+1 . . .

This is a refinement of Lafont’s construction: in a category with distributive
biproducts, B≤n+1 =

⊕
i≤n+1

Bi and pn : B≤n+1 → B≤n is its left projection.

Hence the limit of the above diagram is
⊕
i∈N

Bi.

5For instance, !1 ∼= I implies that ! sends the identity on the terminal object to the identity
on the monoidal unit. The former must be the empty clique and so the latter is also the empty
clique if ! is CSpace enriched. But in this case 1 ∼= I and the model is degenerate.
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The definition of comonoid structure on !B, and the natural equivalence
between morphisms into B and comonoid morphisms into !B are defined in
[9]. They all derive from the universal properties of the free pointed object,
its symmetric tensor powers, and the limit of the above diagram. So if we can
show that change of base preserves these limits in the underlying category, then
it preserves the free exponential. To do so, we relate them to limits in the
enriching category in the following sense.

Definition 5.1. Let C be a V-category. A representable limit for a diagram
D : K → C0 is a cone (L, ~φ) to D in C0 such that for each object A of V,

(hA(L), hA(~φ)) is a limit of hA(D) : K → V in V (where hA : C0 → V is the
hom-functor sending an object B to C(A,B) and f : I → C(B,C) to (C(A,B)⊗
f); compA,B,C : C(A,B)→ C(A,C)).

In particular, any representable limit is already a limit for D in C0 (in other

words, a limit for D in C, weighted over the constant I functor): if (N, ~ψ)

is a cone into D in C0 then (I, ~ψ) is a cone into hN (D) in V and so has a
unique mediating morphism u : I → hN (L) — which is also a unique mediating

morphism from (N, ~ψ) into (L, ~φ) in C0.
This gives us a recipe for establishing that change of base via F : V → W

preserves limits in the underlying category: show that they are representable
limits and that the corresponding limits in V are preserved by F .

Lemma 5.2. Given a diagram D : K → C0, if F preserves the limit of each
hA(D) : K → V (where they exist) then F0 preserves the representable limit of
D, where it exists.

So, for example, change of base via ΦR preserves all products (and thus the
free pointed object, since is strict monoidal) because hA sends products in C to
products in CSpace, which are preserved by ΦR.

5.1. Preservation of Symmetric Tensor Powers

Given an object D in a category C, we write G : D ⇒ D to mean that G
is a finite group of C-automorphisms on D under composition. By Lemma 5.2,
change of base via ΦR preserves the symmetric tensor power Bn — the equalizer
of the the group perm(B⊗n) : B⊗n ⇒ B⊗n of permutation isomorphisms —
provided that hA(Bn) is the equalizer of the group hA(perm(B⊗n) : hA(B⊗n)⇒
hA(B⊗n) for each object A and that ΦR preserves these equalizers.

We give a necessary and sufficient condition on a CSpace-enriched category
for this to hold. Given an automorphism group G : D ⇒ D in CSpace, let ∼G
be the equivalence relation on |D| induced by G — i.e. d∼Gd′ if there exists
g ∈ G with (d, d′) ∈ g. Say that G is coherent if ∼G ⊆¨G.

Proposition 5.3. CSpace has equalizers for any coherent automorphism group
G : D ⇒ D.
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Proof. The equalizer for G in CSpace is the coherence space D/G for which
the web is the set of equivalence classes of ∼G — with coherence X ¨D/G

Y if
x ¨D y for all x ∈ X, y ∈ Y .
This comes with the stable map eq : D/G → D = {([d]G, d) | d ∈ |D/G}, which
evidently satisfies eq; g = g for all g ∈ G, and for any f : A → D such that
f ; g = f for all g ∈ G we have a unique mediating morphism uf : A → D/G =
{(a, [d]G) | (a, d) ∈ f}.

The equalizer of ΦR(G) : |D| ⇒ |D| in RΠ is the quotient of |D| by ∼G —
i.e. (|D|/G,ΦR(eq)). In other words:

Proposition 5.4. ΦR preserves the equalizer of G : D ⇒ D if G is coherent.

Remark 5.5. If G is not coherent it may have an equalizer in CSpace, but
this is not D/G (note that eq is not a well-defined clique of D/G). It is therefore
not preserved by ΦR. E.g. if B is the coherence space of Booleans (with two
incoherent atoms tt and ff) then the symmetric tensor power B2 (equalizer for
the two permutations on B⊗ B) has two incoherent atoms, {(tt, tt), (ff, ff)},
whereas ΦR(B)2 also has an element [(tt, ff)].

Motivated by Proposition 5.4 and Lemma 5.2, we define:

Definition 5.6. A symmetric tensor power Bn in a CSpace-category is co-
herent if hA(G) : C(A,B⊗n)⇒ C(A,B⊗n) is coherent for every object A, where
G is the group of permutation isomorphisms on B⊗n.

Proposition 5.7. The change of base induced by ΦR preserves coherent sym-
metric tensor powers.

5.2. Preservation of the MTT-exponential

Assuming that the symetric tensor powers are coherent we may establish that
change of base induced by ΦR preserves the limit of the chain of projections
〈pi : Bi+1

• → Bi• | i ∈ ω〉 (if it exists) by showing that for all objects A, the limit
of 〈hA(pi) : C(A,Bi+1

• )→ C(A,Bi•) | i ∈ ω〉 in CSpace is preserved by ΦR. We
establish this by characterising this limit in CSpace, using the fact that each
of the hA(pi) are projections in the following sense.

Definition 5.8. In a partial-order enriched category, p : D → C is a projection
if there exists e : C → D such that e; p = idC and p; e ≤ idD (i.e. (e, p) form an
embedding-projection pair from C to D).

A proof of the following fact is given in Appendix A.

Lemma 5.9. For each object A in a CSpace-enriched SMC with coherent sym-
metric tensor powers of B•, h

A(pn) : C(A,Bn+1
• )→ C(A,Bn• ) is a projection.

So it suffices to show that ΦR preserves limits of chains of projections.

Proposition 5.10. CSpace has limits for any ω-chain of projections.

23



Proof. Given a chain of e− p pairs, D0

e0,p0
� D1

e1,p1
� . . ., the web of

⊔
D is the

quotient of
∐
i∈ω |Di| by the reflexive, symmetric and transitive closure of the

relation {(c, i + 1), (d, i) | i ∈ ω ∧ (c, d) ∈ pi}, with the coherence [(c, i)] ¨⊔
D

[(d, i)] iff c ¨Di
d.

This comes with projections pi :
⊔
D → Di = {(d, [(d, i)]) | d ∈ |Di|}, and for

any cone (A, 〈fi : A → Di | i ∈ ω〉, a mediating morphism u : A →
⊔
D =⋃

i∈ω{(a, [(d, i)]) | (a, d) ∈ fi}.

Proposition 5.11. ΦR preserves the limit of any ω-chain of projections.

Proof. (|
⊔
D|, 〈ΦR(pi) | i ∈ ω〉 is the limit for |D0|

ΦR(p0)← |D1|
ΦR(p1)← . . . in RΠ

— for any cone (A, 〈fi : A→ |Di| | i ∈ ω〉) we may define a mediating morphism
f : A→

⊔
|D| by f(a, [(d, i)]) = fi(a, d).

Thus by Lemma 5.2, change of base preserves the construction of Melliès,
Tabareau and Tasson:

Proposition 5.12. In any CSpace-category C with coherent symmetric tensor

powers, if !B is a limit for the chain B0
•

p0←− B1
•

p1←− B2
• . . . in C0 then it is a

limit for I
ΦR0 (p0)←− B•

ΦR0 (p1)←− B2
• . . . in CR0 .

5.3. A CCC of Weighted Strategies

We now return to our example of a CSpace-enriched category of games
G. Its underlying category has cofree commutative comonoids for a collection
of “well-opened” games (essentially, structure which was used to construct a
cartesian closed category in [14]). We establish that these comonoids may be
constructed from (representable) limits in G à la Melliès, Tabareau and Tasson,
and are therefore preserved by change of base.

Lemma 5.13. For any games A and B, the group of permutations hA(perm(B⊗n)) :
Coh(A( B⊗n)⇒ Coh(A( B⊗n) is coherent.

Proof. For any permutation π on n, the action of π on the justified sequences
overMA](MB×{1, . . . , n}) by composition with the corresponding isomorphism
θπ : B⊗n → B⊗n satisfies:

• π(s(b, i)) = π(s)(b, π(i)) if (b, i) is a move from MB⊗n ,

• π(sa) = π(s)a if a is a move from MA.

For any t ∈ Coh(A ( B⊗n) we claim that if sa v t and s v π(t), where a is
a Player move, then sa v π(t) and so t is coherent with π(t). Observe that
π(s) = s. Either a is a move in A — in which case π(sa) = sa and so sa v π(t)
— or else a = (b, i) for some move b in B. In the latter case, a is justified by
an Opponent move of the form (b′, i) which occurs in s. Then π(i) = i since
π(s) = s, and so sa v π(t) as required.
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Thus cofree commutative comonoids in G0 given by the MTT-construction
are preserved by change of base to GR0 . Not all games have a MTT-exponential
— the free pointed object B• = B × I required does not always exist in G0,
which does not have all finite products — e.g. there is no object I× I such that
G(I, I × I) ∼= G(I, I) × G(I, I). However we may identify a class of objects
of G for which the free pointed objects, their symmetric tensor powers, and
the cofree commutative comonoid all exist and have a simple characterization.
These are essentially the well-opened games used to construct a cartesian closed
category in [14].

Definition 5.14. For an arena B, the set L1
B of well-opened sequences on B

consists of sequences in LB which contain precisely one initial move. Let B be
the game (B,L1

B).

For n ≤ ω, let L≤nB be the subset of LB consisting of those legal sequences

which contain at most n initial moves, and let B≤n = (B,L≤nB ).

Lemma 5.15. For any arena B, B≤n is the symmetric tensor power B≤n.

Proof. For any game G, Coh(G( B≤1) is the free pointed object on Coh(G(
B), since it includes an additional element (ε) which is coherent with every
element of Coh(G( B). Hence B≤1 is the free pointed object on B.

Thus it suffices to show that for any game G,

Coh(G( (B≤1)⊗n)/perm(B⊗n)
∼= Coh(G( B≤n)

. The map from Coh(G ( (B≤1)⊗n) to Coh(G ( B≤n) which simply erases
the tags on moves in B identifies two plays precisely when they are permutation
equivalent. It preserves (and reflects) coherence by Lemma 5.13. It is surjective:
we may define a pre-image for any play s on Coh(G( B≤n) by choosing a fresh
tag for each initial move. Thus it is the required isomorphism.

Proposition 5.16. For any arena B, there is a cofree commutative comonoid
on B in G0 given by the MTT-construction.

Proof. The projection pn : B≤n+1 → B≤n is the restriction of the identity
strategy to B≤n+1 ( B≤n. Therefore the limit for the diagram:

I
hA(p0)← hA(B)≤1 hA(p1)← hA(B)≤2 . . .

is given by Coh(A(!B), where !B = (B,LB).

Concretely, the cofree commutative comonoid onB in G0 is therefore (!B, δB , εB),
where εB = {ε} and δB :!B →!B⊗!B consists of sequences on B ⇒ (B ] B)
for which the left restriction of each even prefix is equal to the right restriction
with tags removed.

Thus we may define a “co-Kleisli” category G! in which objects are arenas,
morphisms from A to B are morphisms from !A to B in G0, the identity on A
is derA :!A→ A and the composition of f : A→ B with g : B → C is f†; g.
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Proposition 5.17. G! is cartesian closed:

Proof. The cartesian product of B with C is given by the disjoint sum B ]
C (note that Coh(A,B ] C) ∼= Coh(A,B) × Coh(A,C)), while A ⇒ B is the
exponential of B by A since !A( B = A⇒ B.

G! is the cartesian closed category of games constructed in [14], minus the
non-emptiness and even-prefix-closure condition on strategies. The change of
base functor ΦR : G0 → GR0 preserves all of this structure, yielding a cartesian
closed category GR! of well-opened games and R-weighted strategies with a
cartesian closed functor ΦR! : G! → GR! . Concretely, composition of weighted
strategies φ : A→ B and ψ : B → C in GR! is weighted composition of φ† with
ψ, where φ†(s) = φ(s1) · . . . · φ(sn) if s is the interleaving of the well-opened
sequences s1, . . . , sn.

6. Uniform Fixed Points

We now return to the general setting of Lafont categories with biproducts.
The co-Kleisli category of the free exponential furnishes us with a model of
the simply-typed λ-calculus (a cartesian closed category). Recursively defined
functions should therefore correspond to fixed points in this category. We will
show that it has a unique uniform fixed point operator.

Definition 6.1. A fixed point operator for a category C with a terminal object 1
is a map taking each endomorphism f ∈ C(A,A) to a morphism fix(f) ∈ C(1, A)
satisfying fix(f) = fix(f); f .

Let L : C → C be a comonad with co-Kleisli triple (L, ( )†, der). A fixed point
operator for the co-Kleisli category CL is uniform if for any morphisms (in C)
f : LA→ A, g : LB → B and h : A→ B which satisfy f ;h = L(h); g, we have
fix(g) = fix(f);h.

Proposition 6.2. If C and L are cpo-enriched then CL has a uniform fixed
point operator.

Proof. Taking fix(f) to be the least fixed point of f — the supremum of the

ω-chain f0 ≤ f1 ≤ . . . defined f0 = ⊥L1,B and fi+1 = f†i ; f , we may show by
induction that if f ;h = Lh; g then fi;h = gi for all i and hence

fix(f);h = (
∨
i∈ω

fi);h =
∨
i∈ω

(fi;h) =
∨
i∈ω

gi = fix(g).

However, by Proposition 2.14, categories with biproducts in which the in-
duced sum is not continuous cannot be cpo-enriched, and therefore the least
fixed point construction does not apply. Instead, we shall use the observation
of [5], further developed in [6], that any comonad which has a bifree algebra has
a unique uniform fixed point operator on its co-Kleisli category.
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Definition 6.3. Let F : C → C be an endofunctor. An initial algebra for F is
an initial object in the category of F -algebras. In other words, an F -algebra —
a pair (A,α) of an object A of C and a morphism α : FA → A — such that
for any F -algebra (B, f : FB → B) there is a unique morphism of F -algebras
from (A,α) to (B, f) — that is, a unique morphism ([f ]) : A → B in C (the
catamorphism of f) for which the following diagram commutes:

FA
α //

F ([f ])

��

A

([f ])

��
FB

f
// B

Dually, a final coalgebra is a terminal object in the category of F -coalgebras
— i.e. a F -coalgebra (C, γ : C → FC) such that for any F -coalgebra (D, g :
D → FD) there is a unique coalgebra morphism from (C, γ) into (D, g) (the
anamorphism of g).

Observe that if (A,α) is an initial algebra then α : FA → A is an isomor-
phism in C (Lambek’s lemma). Thus we may define:

Definition 6.4. A bifree algebra for an endofunctor F : C → C is an initial
algebra (A,α) for F such that (A,α−1) is a final coalgebra for F . In other
words, F is algebraically compact [7].

Proposition 6.5. If a comonad L : C → C has a bifree algebra (Ψ, ψ : LΨ→ Ψ)
then CL has a unique uniform fixed point operator.

Proof. The L-comultiplication δ1 : L1→ L21 is a L-coalgebra and therefore has
a unique anamorphism ∞ : L1→ Ψ into the coalgebra (Ψ, ψ−1), satisfying:

L1
δ1 //

∞
��

∞†

!!D
DD

DD
DD

DD
L21

L∞
��

Ψ
ψ−1

// Ψ

i.e. ∞ is the unique morphism such that ∞ =∞†;ψ.
For any endomorphism f ∈ CL(A,A), (A, f : LA → A) is an L-algebra in

C and therefore has a unique catamorphism ([f ]) : Ψ → A such that ψ; ([f ]) =
L([f ]); f . Define the algebraic fixed point fix(f) , ∞; ([f ]). This satisfies the
following conditions:
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• Fixed Point Property: The following diagram commutes:

L1

δ1
��

∞

$$I
II

II
II

II
II

II
II

II
II

II
II

fix(f)

//
//
/

��/
//
//
//
//
//
//
//
//L21

L∞
JJ

$$JJ
JJJ

JJ

L(fix(f))

��7
77

77
77

77
77

77
77

7

LΨ
ψ //

L([f ])

��

Ψ

([f ])

��
LA

f // A

and so fix(f) = fix(f)†; f .

• Uniformity: Suppose g : LB → B and h : A → B satisfy f ;h = Lh; g.
Then ([f ]);h is a L-algebra morphism from ψ into g — i.e. the following
diagram commutes:

LΨ
ψ //

L([f ])

��

Ψ

([f ])

��
LA

f //

L([h])

��

A

h
��

LB
g // B

— and so by uniqueness of catamorphisms, ([g]) = ([f ]);h and fix(g) =
∞; ([g]) = fix(f);h.

• Uniqueness: Suppose fix( ) is a uniform fixed point operator. Then fix(ψ) :
L1 → Ψ is a coalgebra morphism from (δ1, L1) into (Ψ, ψ), since the
following diagram commutes:

L1
δ1 //

fix(ψ)

��

fix(ψ)† $$I
II

II
II

II
L21

L(fix(ψ))

��

L(fix(ψ))

zzttt
ttt

ttt
t

LΨ
ψ

zzuuu
uu
uu
uu
u

id

%%JJ
JJJ

JJJ
JJ

Ψ
ψ−1

// LΨ

and so fix(ψ) : L1→ Ψ =∞ by uniqueness of anamorphisms.

For any f : LA→ A, ψ; ([f ]) = L([f ]); f , by definition of ([f ]) as an algebra
morphism from ψ into f .
So by uniformity fix(ψ); ([f ]) = fix(f), and so fix(f) =∞; ([f ]) as required.
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6.1. The Bifree Algebra of Nested Finite Multisets

We now show that in any symmetric monoidal category with distributive
biproducts, if the cofree exponential exists then it has a bifree algebra (and
thus a uniform fixed point operator). We can prove that ! : C → C has an initial
algebra using Adámek’s theorem [34]: if the diagram

0
0!0−→!0

!0!0−→!!(0)
!!0!0−→ . . .

has a colimit A, which is preserved by ! — i.e. !A is also a colimit for this
diagram, yielding an isomorphism α : A→!A — then (A,α) is an initial algebra
for the cofree exponential. We establish existence of this colimit by showing
that it is the image under a colimit-preserving functor of a diagram in Set for
which the colimit is easy to construct.

Definition 6.6. For a set S, let M∗(S) be the set of finite multisets with
support in S: i.e. its elements are permutation-equivalence classes of finite
sequences of elements of S, which we can write in the form [a1, . . . , an] for
a1, . . . , an ∈ S.

Let M : Set → Set be the finite multiset functor — i.e. M(S) = M∗(S)
and M(f)[a1, . . . , an] = [f(a1), . . . , f(an)]. M restricts to a functor on the
category of sets and inclusions which is cocontinuous (i.e. preserves inclusions
and directed unions). Thus the initial ω-chain

∅
iM(∅)→ M(∅)

M(i)→ M2(∅)
M2i→ . . .

consists of inclusions, and its colimit M =
⋃
i∈ω

M i(∅) in Set (the set of nested

finite multisets) is preserved by M .

Proposition 6.7. The functor hI : C → Set has a left adjoint (̃ ) : Set→ C.

Proof. For each set S, let S̃ =
⊕
s∈S

I, and define ηS : S → C(I, S̃) by ηS(s) = ιs.

Given f : S → C(I,B), define f̃ : S̃ → B = [f(s) | s ∈ S]. Then for all

s ∈ S, (ηS ;hI(f̃))(s) = hI(f̃)(ιs) = ιs; f̃ = ιs; [; f(s′) | s′ ∈ S] = f(s).

We now show that ˜ sends the finite multiset functor on Set to the cofree
exponential functor on C — i.e. M̃ : Set→ C is naturally isomorphic to !(̃ ) —

by establishing that for any set S, M̃∗(S) is the cofree commutative comonoid

on S̃. This generalizes the proof from [1], thatM∗(S) is the Lafont exponential
of S in the category of R-weighted relations RΠ.

For each set S, let Mk(S) denote the set of finite multisets over S of cardi-
nality k.

Lemma 6.8. The objects {M̃k(S) | k ∈ N} are symmetric tensor powers of S̃.
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Proof. Mk(S) corresponds to the set of permutation equivalence classes of ele-

ments of Πi≤kS and so for each X ∈ Mk(S) there exists X̂ ∈ Πi≤kS such that

[X̂] = X.

S̃⊗k = Π̃i≤kS by distributivity of ⊗ over biproducts. Thus for each permu-

tation θ on {1, . . . , k}, the corresponding automorphism θS̃ : S̃⊗k → S̃⊗k is the
map 〈πθ−1(s) | s ∈ Πi≤kS〉. (Observe that every permutation automorphism on

I⊗k is the identity — i.e. I is a k-ary tensor power of itself by equality of the
left and right unitors rI , lI : I ⊗ I → I.)

Let eqk : M̃k(S) → S̃⊗k = 〈π[x] | x ∈ Πi≤kS〉. Then (M̃k(S), eqk) is an

equalizer for the permutation automorphisms on S̃⊗k (and these equalizers are
preserved by the tensor product):

• eqn; θS̃ = 〈π[x] | x ∈ Πi≤kS〉; 〈πθ−1(s) | s ∈ Sk〉 = 〈π[θ−1(s)] | s ∈ Sk〉 = eqn.

• For any f : B → Π̃i≤kS such that f ; θS̃ = f for all θ, let u : B → M̃k(S) =
〈f ;πX̂ | X ∈Mk(S)〉, so that g; eqn = f if and only if g = u.

For any set S, M̃∗(S) =
⊕
k∈N
M̃k(S) and hence M̃∗(S) is a Lafont expo-

nential for S̃. (The action of M on morphisms is also preserved by the Lafont

construction.) Thus we have a natural isomorphism αS :!S̃ ∼= M̃(S) and hence:

Proposition 6.9. (M̃, αM̃) is an initial algebra for the functor ! : C → C.

The proof that (M̃, α−1

M̃
) is a final coalgebra for the cofree exponential functor

uses a symmetric argument. The functor from Set to Cop sending S to S̃ and
f : S → S′ to

∑
s∈S

πf(s); ιS is right adjoint to the contravariant hom functor

hI : Cop → Set = C( , I) and therefore sends the colimit of the diagram

∅
iM(∅)−→ M(∅)

M(i)−→ M2(∅)
M2i−→ . . .

(the set of nested finite multisets) to the limit of the diagram

0
0!0←−!0

!0!0←−!!0
!!0!0←− . . .

in C, which must therefore be M̃. By Adàmek’s theorem, (M̃, α−1
M ) is therefore

a final coalgebra in C.

Proposition 6.10. (M̃, αM̃) is a bifree algebra for the free exponential on C.

So by Proposition 6.5, the free the co-Kleisli category of the free exponential
on C has a unique uniform fixed point operator. If C is cpo-enriched (e.g. RΠ

for a continuous semiring R), by Proposition 6.2, this operator sends each endo-
morphism to its least fixed point (note that the free exponential is continuous,
that is, it is a cpo-functor).
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6.2. Parameterised Fixed Points

To interpret fixed points of terms with free variables we will require a pa-
rameterised fixed point operator.

Definition 6.11. A parameterised fixed point operator for a category C with
Cartesian products is a family of operators fixA : C(A × B,B) → C(A,B) (in-
dexed over the objects of C) which satisfy:

• Fixed Point Property: For each A, 〈A, fixA(f)〉; f = fixA(f).

• Naturality: If g : C → A then g; fixA(f) = fixC((g ×B); f).

The following parametrization of our algebraic fixed points will be used in
our denotational model. For each object A we have a comonad !A⊗ on C with
a distributive law [35] l :!A⊗! →!(!A⊗ ), yielding a comonad !A on the category

C!A⊗ : it is sufficient to show that M̃ is a bifree algebra for each of these.

Theorem 6.12. If C is a symmetric monoidal category with distributive biprod-
ucts and cofree exponential then C! has a uniform parameterised fixed point op-
erator.

Proof. For any object A, the monoidal comonad !A ⊗ preserves biproducts
and thus its co-Kleisli category C!A⊗ is a symmetric monoidal category with
distributive biproducts and cofree commutative comonoids. So by Proposition
6.10 the comonad !A : C!A⊗ → C!A⊗ has ε!A ⊗ αM̃ :!A⊗!M̃ → M̃ as its bifree
algebra. Hence by Proposition 6.5, for each A there is a uniform fixed point
operator fixA on the co-Kleisli category of !A.

This family is natural in A: given f ∈ C!A⊗ (!B,B) with a catamorphism

([f ])A ∈ C!A⊗ (M̃, B), for any g :!C → A, g† ⊗ M̃); ([f ])A is a morphism of !C
algebras from ε!C ⊗ idM̃ to (g† ⊗B); f and is therefore equal to ([(g† ⊗B); f ])C .

Hence fixC(g†⊗B); f) = (!C⊗∞); ([(g†⊗M̃); f ])C = (!C⊗∞); (g†⊗M̃); ([f ])A =
g†; (!A⊗∞); ([f ])A = g†; fixA(f).

By the natural isomorphism !A⊗! ∼=!(A × ) the co-Kleisli category of !A :
C!A⊗ → C!A⊗ is isomorphic to the co-Kleisli category of the comonad A × :
C! → C!, Thus we have a family of uniform fixed point operators for the latter
which is natural in A and is therefore a parameterised fixed point operator for
C!.

Note that uniformity in !A implies parametric uniformity in ! — i.e. for any
f :!(A×B)→ B, g :!(A×C)→ C, and h : B → C such that f ;h =!(A× h); g,
fixA(g) = fixA(f);h.

6.3. Nested Multiset Approximants

By unpicking the definition of the fixed point a little we may describe the
action of this fixed point operator more directly as a sum of approximants
indexed over the nested finite multisets, relating it more closely to the resource
λ-calculus [10] and differential λ-calculus [11], and providing the basis for our
proof of computational adequacy for R-weighted PCF.
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The following identities relating the biproduct structure of the Lafont ex-
ponential to its comonoid structure follow directly from its definition (X ⊆ Y
denotes multiset inclusion of X in Y , X + Y denotes their multiset union and
X − Y their multiset difference).

Lemma 6.13. For any set S, the Lafont exponential !S̃ satisfies:

1. ι[ ]; ε!S̃ = idI and π[ ] = ε!S̃, and if X 6= [ ] then ιX ; ε!S̃ = 0I,I .

2. For all X ∈ M∗(S), ιX ; δ!S̃ =
∑
Y⊆X

(ιY ⊗ ιX−Y ) and for all Y ⊆ X,

πX = δ!S̃ ; (πY ⊗ πX−Y ).

3. For all x ∈ S, ι[x]; derS̃ = ιx and π[x] = derS̃ ;πx, and if X 6∈ M1(S) then
ιX ; derS̃ = 0I,S̃.

We may thus give a direct characterization of the anamorphism∞ : I → M̃.

Lemma 6.14. ∞ : I → M̃ =
∑
X∈M

ιX .

Proof. Observe that:

•
∑
X∈M

ιX ; εM̃ = ι[ ]; εM̃ +
∑

X∈M\{[ ]}
(ιX ; εM̃) = εM̃ + 0M̃,M̃ = εM̃ by (1).

• (
∑
X∈M

ιX); δM̃ =
∑
X∈M

∑
Y⊆X

(δM̃; (φY ⊗ φX−Y )) by (2)

= δM̃;
∑

X∈Mn+1

∑
Y⊆X

(ιY ⊗ ιX−Y ) = δM̃; ((
∑
Y ∈M

ιY )⊗ (
∑
Z∈M

ιZ)).

Therefore
∑
X∈M

ιX is a comonoid morphism. Moreover,

(
∑
X∈M

ιX); derM =
∑
X∈M

(ιX ; derM̃) =
∑
X∈M

(ι[X]; derM̃) +
∑

X∈M\M1(M)

(ιX ; derM̃)

=
∑
X∈M

ιX + 0I,M̃ =
∑
X∈M

ιX by (3).

Therefore (
∑
X∈M

ιX)† =
∑
X∈M

ιX . By uniqueness of anamorphisms, ∞ =
∑
X∈M

ιX .

Guided by Theorem 6.12, we obtain nested finite multiset approximants to
parameterized fixed points as follows:

Definition 6.15. Given f :!A⊗!B → B and X ∈ M, let fX :!A →!B =
(!A⊗ ιX); ([f ])†A so that fixA(f)† =:

(!A⊗∞); ([f ])†A = (!A⊗∞†); ([f ])†A = (!A⊗ (
∑
X∈M

ιX)); ([f ])†A =
∑
X∈M

fX .

We may think of each nested finite multiset X as representing a unique
forest of nested calls to f , which compute the approximant fX — i.e. f [X1,...,Xk]

corresponds to k calls to f at top level, each of which makes nested calls to f with
call-patterns X1, . . . , Xk, and so on. These approximants, and their properties,
are used directly in the semantics of the abstract machine with nested multiset
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resource bounds defined in Section 8, which may be considered as a form of
the resource λ-calculus [10], in which functions are supplied with multisets of
arguments. The following identities derive from the corresponding properties of
the Lafont exponential (Lemma 6.13) and its bifree algebra.

Lemma 6.16. For any f :!B → B:

(1) fX ; ε!B =

{
ε!A if X = [ ]

0I,I otherwise
.

(2) fX ; δ!B = δ!A;
∑
Y⊆X

(fY ⊗ fX−Y ).

(3) fX ; derB =

{
fY ; f if X = [Y ]

0!A,B if X 6= [Y ] for all Y ∈M
.

As a special case, “promotion” to a comonoid morphism may also be ex-
pressed as a sum of approximants (subsuming the approximation of promo-
tion as a sum of integer approximants implicit in the Lafont exponential).
Given f :!A → B, we have fixA((!A ⊗ ε!B); f) = f and so f† :!A →!B =∑
X∈M

ιX ; (!A⊗ ε!B); f.

7. Fixed Points and Change of Base

In this short section, we will show that for any CSpace-category with a
cofree exponential, change of base sends the least fixed points of the cpo-enriched
category C! to the algebraic fixed points of the complete monoid enriched cat-
egory CR! — i.e. for any endomorphism f :!A → A, in C0, ΦR0 (fix(f)) =
fix(ΦR0 (f)), where fix is the unique uniform fixed point operator in each cat-
egory.

This provides another way to understand algebraic fixed points more con-
cretely. Note in particular that if change of base preserves fixed points in this
sense then it preserves the fixed point combinator Y :!1 →!(!A ( A) ( A
given by the fixed point of the morphism

F :!(!A( A)( A ` λf.f(F f) :!(!A( A)( A

which satisfies ΦR0 (Y)(f) = f(ΦR0 (Y)(f)), allowing us to derive fixed points for
any endomorphism in CR! .

If R is continuous, then by Lemma 6.2 the least fixed point operator is
uniform and so equal to the algebraic fixed point. Thus change of base sends
least fixed points to algebraic fixed points. If R is not continuous, we may use
the fact that we can factor the change of base ΦR∗ into one which preserves least
fixed points followed by one which preserves algebraic fixed points.

Definition 7.1. Given a complete semiring R let N∞[R] be the “free complete
semiring” over the multiplicative structure of R — elements are functions from
|R| into N∞ with the following operations:
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• (
∑
i∈I

fi)(a) =
∑
i∈I

fi(a)

• (f.g)(a) =
∑
b·c=a

(f(b).g(c)), with unit u(a) =

{
1 if a = 1

0 otherwise
.

Then:

1. N∞[R] is a continuous semiring, with f ≤ g if f(a) ≤ g(a) for all a ∈ |R|.
2. We may define a homomorphism of complete semirings β : N∞[R]→ R:

β(f) ,
∑
a∈|R|

f(a) · a.

3. By Remark 3.7 this lifts to a functor β̂ : N∞[R]Π → RΠ which factorizes

ΦR — i.e. ΦR : CSpace→ RΠ = ΦN[R]; β̂.

Proposition 7.2. For any CSpace-category C, the uniform fixed operator on
C! is preserved by the change-of-base functor ΦR0 .

Proof. By (1), CN
∞[R]

! is cpo-enriched, and since change of base from C! to CN
∞[R]

!

preserves cpo-enrichment, it preserves the least fixed point operator, which is
uniform (Lemma 6.2) and thus equal to the algebraic fixed point operator on

CN
∞[R]

! by uniqueness of the latter.

Change of base from CN
∞[R]

! to CR! via the functor β̂ preserves all of the
symmetric monoidal and biproduct structure on which the algebraic fixed point
depends, and thus preserves algebraic fixed points themselves.

Thus change of base sends least fixed points in C! to algebraic fixed points
in CR! as required.

Finally, we note that our category GR0 of games and R-weighted strategies
does not have all biproducts. In particular it does not have a bifree algebra for
the cofree exponential (which is only given for well-opened games). However,
we may obtain free pointed objects, and thus Lafont exponentials, by biproduct
completion.

Proposition 7.3. If C has symmetric tensor powers, then its biproduct com-
pletion CΠ has symmetric tensor powers.

Proof. For A = {Ai | i ∈ I}, An = {AX | X ∈Mn(I)}, where if X has support

i1, . . . , ik then AX = A
X(1)
i1

⊗ . . .⊗AX(ik)
ik

.

Thus GRΠ
0 has all cofree commutative comonoids by the Lafont construction,

and hence a uniform fixed point operator on GRΠ
! . Since the “inclusion” of GR0

into GRΠ
0 is fully faithful, this restricts to a fixed point operator on GR! . Change

of base from G! to GR! preserves fixed points as above.
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8. Weighted PCF and its Semantics

To illustrate our quantitative semantics, we recall from [1] the syntax and
operational semantics of an extension of Scott’s prototypical functional pro-
gramming language PCF with bounded non-deterministic choice and “scalar”
weights from a given complete semiring. We will show that any monoid in a
Lafont category with biproducts gives rise to a model of this language in which
the weights come from its internal semiring. This generalizes to an abstract
setting the model presented in [1], in which each program denotes a matrix of
values in a continuous semiring.

Typing is Church-style — i.e. every variable has a fixed PCF type (generated
with the constructor → from a single ground type nat). The well-typed terms
are defined with respect to contexts (finite sequences) of variables according to
the rules in Table 1. So, in particular, every typable term has a unique type.
The operational semantics for PCFR determines a weight in R for each (normal

Γ,x:T,Γ′`x:T
Γ`M :S→T Γ`N :S

Γ`M N :T
Γ`M :nat

Γ`a.M :nata ∈ R

Γ,x:T`M :T
Γ`µx.M :T

Γ,x:S`M :T
Γ`λx.M :S→T

Γ`M :nat Γ`N :nat
Γ`M orN :nat

Γ`0:nat
Γ`M :nat

Γ`succ(M):nat
Γ`M :nat

Γ`pred(M):nat

Γ`M :nat
Γ`Ifz(M):nat→nat→nat

Table 1: Typing Judgments for PCFR

order) reduction path from a program (closed term of type nat) to a terminal
value (numeral), by assigning a weight to each reduction step and multiplying
together the weights from each step in the path. Since the only computation step
at which there is a choice of reduction rules to apply is the reduction of explicit
choice, each reduction path for a given program is uniquely determined by the
finite sequence of branching decisions (whether to choose left or right) made at
these points — i.e. by a unique element of the free monoid {l, r}∗ (for which the
elements are sequences over {l, r}, composed by concatenation). Thus we define
a reduction relation labelled with actions from the monoid {l, r}∗ × (|R|, ·, 1).

Definition 8.1. The operational semantics of PCFR is the labelled transition
system (LTS) in which the states are the programs (closed terms of type nat)
of PCFR, the set of actions is {l, r}∗ × |R| and the transitions are instances of

E[M ]
u,a−→ E[M ′] where M

u,a−→ M ′ is an instance of the rules defined in Table
2 and the evaluation context E[ ] is an element of the grammar:

E[ ] ::= [ ] | E N | Ifz(E) | succ(E) | pred(E)
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2(a) — Arithmetic, choice, control and weights

Ifz(0)
ε,1−→ λx.λy.x M orN

l,1−→ M

Ifz(n + 1)
ε,1−→ λx.λy.y M orN

r,1−→ N

pred(n + 1)
ε,1−→ n a.M

ε,a−→ M
2(b) — β-reduction and fixed point unfolding

(λx.M)N
ε,1−→ M [N/x] µx.M

ε,1−→ M [µx.M/x]

Table 2: Reduction Rules for PCFR

Definition 8.2. P
u,a
=⇒ Q if there exists i ∈ N such that P

u,a
=⇒i Q, where:

P
ε,1

=⇒iP

P
u,a−→P ′ P ′

v,b
=⇒iP

′′

P
u·v,a·b
=⇒j P ′′

i < j

Lemma 8.3. If P
u,a
=⇒ m and P

u,b
=⇒ n then a = a′ and m = n.

Proof. By induction on i that if P
u,a

=⇒i m and P
u,a′

=⇒ n then a = a′ and m = n.
If i = 0 then a = a′ = 1 and m = n. If i > 0 then:

P
v,b−→ P ′ for some P ′ such that P ′

w,c
=⇒i−1 m, where u = v ·w and a = b · c, and

P
v′,b′−→ P ′′ for some P ′′ such that P ′′

w′,c′

=⇒ n where u = v′.w′ and a′ = b′ · c′.
Observe that v = v′ (since either P = E[Q1 + Q2], and so v, v′ ∈ {l, r} and
v.w = v′.w′ implies v = v′, or v = v′ = ε), b = b′ and P ′ = P ′′. So we may apply
the inductive hypothesis to P ′ to get c = c′ (and thus a = a′) and m = n.

This allows us to make the following definition of a path-weighting function
for each sequence of branching choices.

Definition 8.4. For each u ∈ {l, r}∗, the path weight from P to n along u is:

wu(P, n) ,

{
a if P

u,a
=⇒ n

0 if ¬∃a ∈ |R|.P u,a
=⇒ n.

P is evaluated at n by taking the sum of the weights of all paths from P to n:

w(P, n) ,
∑

u∈{l,r}∗
wu(P, n)

As discussed in [1, 36] this value can represent aspects of the evaluation
behaviour of P , such as the number of distinct paths or length of the shortest
or longest path to a given value or the probability of reaching it, depending on
the choice of weighting semiring. From this notion of testing we derive a notion
of observational equivalence:

Definition 8.5. For terms Γ ` P,Q : T , P ≈Γ
T Q if for any context C[ : T ] :

nat binding the variables in Γ, and n ∈ N, w(C[P ], n) = w(C[Q], n).
If R is ordered then we have a notion of approximation: P .Γ

T Q if for any
closing context C[ : T ] : nat and n ∈ N, w(C[P ], n) ≤R w(C[Q], n).
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8.1. Denotational Semantics of PCFR

Let C be a Lafont category with biproducts, andR ⊆ RC a complete semiring
contained in its internal semiring. Following [1] we may interpret PCFR in C by
fixing an interpretation of nat as an “object of numerals” N in C with morphisms
z : I → N, s, p : N→ N and c : N→!N(!N( N which satisfy

s; p = idN, z; c = λx.λy.x and z; sn+1; c = λx.λy.y.

For any monoid M in C, the biproduct
⊕
i∈N

M gives an object of numerals in

which the numeral n denotes the map η; ιn : I → NM .

Definition 8.6. Let (M,µ : M ⊗ M → M,η : I → M) be a monoid in C
such that f ; η = g; η implies f = g for all f, g ∈ RC. The monoidal object of
numerals NM =

⊕
i∈N

M satisfies NM = M ⊕NM and so we may define z = η; ιl,

s = ιr, p = πr and c to be the currying of:

((π0 ⊗ der ⊗ η) +
∑

1≤i<ω

(πi ⊗ η ⊗ der));
⊕
i∈ω

µ : NM⊗!NM⊗!NM → NM

For example:

• Taking M to be the monoid given by the isomorphism I ∼= I ⊗ I (i.e.

NM = Ñ) gives an interpretation of PCFR in C equivalent to the weighted
relational model — i.e. the denotation of each term in C is the image of

its denotation in RΠ under the functor (̃ ).

• For an object A of C, taking M to be the monoid on !A ( A given by
function composition in C! yields (up to isomorphism) a call-by-name CPS
interpretation of PCF with answer object A. (Similarly, taking M to be
the monoid on A ( A given by composition in C yields a linear CPS
model.)

• In Section 9 we take M to be the monoid denoted by sequential composi-
tion in the games model of Idealized Algol (under change of base). This
yields an object of numerals equivalent to the interpretation of the nat-
ural numbers as the game with a single, initial Opponent question with
answers for each natural number (see [37, 27, 14] etc.)

Given an object of numerals N in a Lafont category C with biproducts, we
interpret

• A type as an object of C by setting [[nat]] = N and [[S → T ]] =![[S]]( [[T ]].

• A context Γ = x1 : S1, . . . , xn : Sn as ![[S1]] ⊗ . . .⊗![[Sn]] ∼=!([[S1]] × . . . ×
[[Sn]]).

• A term-in-context Γ ` P : T as a morphism [[P ]]Γ : [[Γ]]→ [[T ]] in C.
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The Cartesian closed structure of C! yields interpretations of the operations of
the λ-calculus and:

• µ-abstraction denotes a parameterised fixpoint — [[µx.M ]]Γ = fix[[Γ]]([[M ]]Γ).

• Choice and scalar weighting denote the corresponding operations on the
RC-modules of morphisms in C— [[M orN ]]Γ = [[M ]]Γ+[[N ]]Γ and [[a.M ]]Γ =
a⊗ [[M ]]Γ.

• Other operations denote composition (in C) with the corresponding mor-
phisms given by the object of numerals — [[0]]Γ = εΓ; z, [[succ(M)]]Γ =
[[M ]]Γ; s, [[pred(M)]]Γ = [[M ]]Γ; p and [[Ifz(M)]]Γ = [[M ]]Γ; c.

8.2. Computational Adequacy

The key result relating our operational and denotational semantics is a form
of computational adequacy — the denotation of a program P is the weighted
sum of terminals of its reduction paths — i.e. [[P ]] =

∑
n∈N

(w(P, n) ⊗ [[n]]). By

Lemma 8.3 we may define:

Definition 8.7. The path interpretation of a program P with respect to u ∈
{l, r}∗ is the morphism 〈[P ]〉u : I → N such that:

〈[P ]〉u =

{
a.[[n]] if P

u,a
=⇒ n

0 if P 6 u,a=⇒ n for all a, n

Then 〈[P ]〉u =
∑
n∈N

wu(P, n).[[n]] and so it suffices to show that
∑

u∈{l,r}∗
〈[P ]〉u =

[[P ]].
The proof of adequacy via logical relations for the weighted relational model

in [1] depends on continuity of the weighting semiring. Our proof for general
Lafont categories with biproducts requires a different approach. We define a
new operational semantics, more directly related to our interpretation of fixed
points — an abstract machine in which the environment is instrumented with
bounds characterizing a particular call-pattern for each variable, and show that
(a) this gives an equivalent notion of weighted reduction path to the original
operational semantics, and (b) its denotational semantics is computationally
adequate in the above sense.

An environment E is a finite sequence of triples, (x1,M1, r1), . . . , (xn,Mn, rn),
where each xi is a (distinct) variable, Mi is a term, and ri ∈ M is a nested fi-
nite multiset resource bound. Note that the latter are upper and lower bounds
— precise specifications of how many times a procedure may be and must be
called or a fixed point unfolded. We write |E| for the sequence of variables
x1 : T1, . . . , xn : Tn and define typing judgements Γ ` E for well formed envi-
ronments as follows:

Γ`ε
Γ`E Γ,|E|,x:T`M :T

Γ`E ,(xT ,M,X) X ∈ M
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E ; (λx.M)N
ε,1−→ E , (y,N,X);M [y/x]

E ;µx.M
ε,1−→ E , (y,M,X);M [y/x]

E , (x,M, [Y ] +X), E ′;x ε,1−→ E , (y,M [y/x], Y ), (x,M,X), E ′;M [y/x]

Table 3: Labelled Transitions for Configurations

(Variables occuring only on the right of a rule are assumed fresh.)

A configuration is a pair E ;P of an environment ` E and a term P such that
|E| ` P : nat.

Definition 8.8. The bounded abstract machine for PCFR is the LTS in which
the states are configurations (up to α-equivalence), actions are elements of

{l, r}∗ × |R| and transitions are instances of E ;E[M ]
u,a−→ E ′;E[M ′], where

either:

• E = E ′ and M
u,a−→M ′ is a rule from Table 2a, or

• E ;M
u,a−→ E ′;M ′ is a rule from Table 3.

Remark 8.9. The bounded abstract machine may be refined by assigning nat-
ural number bounds to non-recursive bindings (i.e. those arising from function
application). It is straightforward to show that any configuration E ;P cannot
terminate successfully if E contains a binding (x,M,X) where x does not occur
in M and X is not a natural number (i.e. in M1), and so all such paths can
safely be avoided. Observe also that where the bound is a natural number the
rule for calling x may be simplified to the expected form:

E , (x,M, k + 1), E ′;x ε,1−→ E , (x,M, k), E ′;M

Every reduction path of this LTS is, in fact, terminating (Lemma 8.22) —
we say that a reduction path terminates successfully if it both reaches a value
(a numeral) and consumes all of the resources in the environment — i.e. all
bounds in its final configuration are the empty multiset.

Definition 8.10. Let Env0 be the set of all environments in which all bounds
are empty (i.e. E , (x,M,X) ∈ Env0 if and only X = [ ] and E ∈ Env0).

We define the “many-step” evaluation relation E ;P
u,a
=⇒ n (E ;P successfully

reduces to n along the path u with weight a) if E ;P
u,a
=⇒i n for some i ∈ N,

where:

E ;n
ε,1

=⇒in
E ∈ Env0

E ;P
u,a−→E ′;P ′ E ′;P ′ v,b=⇒in

E ;P
u·v,a·b
=⇒j n

i < j

Although the abstract machine semantics is nondeterministic in the sense
that a state may have one-step reductions with the same label to (countably
many) different states, only at most one of those states is on a successfully
terminating reduction path.
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Proposition 8.11. If |E| = |E ′|, E ;P
u,a
=⇒i m and E ′;P u,b

=⇒ n then E = E ′,
m = n and a = b.

Proof. By induction on i:
If i = 0 then P = m = n and E , E ′ ∈ Env0 and hence E = E ′.
Otherwise E ;P

v,b−→ E ′′;Q and E ′;P v,b−→ E ′′′;Q′ such that |E ′′| = |E ′′′|, and

E ′;Q w,c
=⇒i−1 m and E ′′′;Q w,c

=⇒ n where u = v.w and a = b · c and hence by
inductive hypothesis, m = n and E ′′ = E ′′′ and so E = E ′ as required.

Thus we may define the path interpretation of configurations:

〈[E ;P ]〉u =

{
a.[[n]] if E ;P =⇒u,a n

0 if E ;P 6=⇒u,a n for all a, n

We now show that this agrees with the path interpretation of programs according
to the original operational semantics.

Lemma 8.12. For any (x,N,X), E ;P , where X ∈M:

• If (x,N,X), E ;P
u,a
=⇒in then (E ;P )[µx.M/x]

u,a
=⇒i n.

• If (E ;P )[µx.N/x]
u,a
=⇒i n then ∃X ′ ∈M such that (x,N,X ′), E ;P

u,a
=⇒ n.

Proof. By induction on i. The key cases are where P = E[x] — for example:

• If (x,N,X), E ;P
u,a
=⇒i+1 n then for some Y in the support of X,

(x,N,X − [Y ]), (y,N [y/x], Y ), E ;E[N [y/x]]
u,a
=⇒i n.

By hypothesis, ((y,N [y/x], Y ), E ;E[N [y/x]])[µx.N/x]
u,a
=⇒i n, and so

(E ;E[µx.N ])[µx.N/x]
u,a
=⇒i+1 n as required.

• If (E ;P )[µx.N/x] = (E ;E[µx.N ])[µx.N/x]
u,a
=⇒i+1 n then

E ;E[µx.N ])[µx.N/x]
ε,1−→ E , ((y,N [y/x], Y );E[N [y/x]])[µx.N/x] for some

Y ∈M such that E ; ((y,N [y/x], Y );E[N [y/x]])[µx.N/x]
u,a
=⇒i n.

So by induction hypothesis there exists X ′ ∈M such that

(x,N,X ′), E , (y,N [y/x], Y );E[N [y/x]]
u,a
=⇒ n and so

(x,N,X ′+[Y ]), E ;E[x]
ε,1−→ (x,N,X ′), E , (y,N [y/x], Y );E[N [y/x]]

u,a
=⇒ n.

Lemma 8.13. P
u,a
=⇒ n if and only if ;P

u,a
=⇒ n.

Proof. We prove that ;P
u,a
=⇒i n implies P

u,a
=⇒ n by induction on i.

E.g. suppose P ≡ E[µx.N ]. If ;P
u,a
=⇒i+1 n then ;P

ε,1−→ (y,N,X);E[N [y/x]]

for some X ∈ M such that (y,N,X);E[N [y/x]]
u,a
=⇒i n. By Lemma 8.12,

;E[N [µx.N/x]]
u,a
=⇒i n and so by induction hypothesis, E[N [µx.N/x]]

u,a
=⇒ n.

Hence E[µx.N ]
u,a
=⇒ n by definition of the operational semantics.

We prove that if P
u,a
=⇒i n then ;P

u,a
=⇒ n by induction on i. Again giving

the case P ≡ E[µx.N ], if P
u,a
=⇒i+1 n, then E[N [µx.N/x]]

u,a
=⇒i n.
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By induction hypothesis ;E[N [µx.N/x]]
u,a
=⇒ n, and so by Lemma 8.12, there

exists X ∈ M such that (x,N,X);E[N ]
u,a
=⇒ n and hence ;E[µx.N ]

ε,a−→
(y,N,X);E[N [y/x]]

u,a
=⇒ n as required.

Hence by the definitions of 〈[ ]〉 for programs and configurations:

Proposition 8.14. For any u ∈ {l, r}∗, 〈[P ]〉u = 〈[ ;P ]〉u.

8.3. Denotational Semantics for Configurations

We now extend the denotational semantics of programs to configurations,
and show that it is computationally adequate. Environments are interpreted
using nested finite multiset indexed approximants derived from the construction
of the uniform fixed point operator (Definition 6.15).

Definition 8.15. An environment Γ ` E is interpreted as a morphism [[E ]]Γ :
[[Γ]]→ [[|E|]]. defined by induction on its length:

• [ε]]Γ : [[Γ]]→ I = ε[[Γ]],

• [[(x,M : T,X), E ]]Γ = δ[[Γ]]; ([[[[M ]]X|E|,x:T ⊗ [[Γ]]); [[E ]]x:T,Γ.

For Γ ` P and Γ, |E| ` P : nat define [[E ;P ]]Γ = δ[[Γ; ([[Γ]]⊗ [[E ]]Γ); [[P ]]|E| : [[Γ]]→
[[nat]] so that (up to coherence isomorphisms) [[E , E ′;P ]] = [[E ]] ; [[E ′;P ]]|E′|.

Lemma 8.16. If E ∈ Env0 then [[E ; n]] = z; sn. Otherwise, [[E ; n]] = 0.

Proof. [[E ; n]] = [[E ]]; ε|E|; z; s
n. So it suffices to observe that [[E ]]; ε|E| : I → I = idI

if E ∈ Env0, and [[E ]]; ε|E| = 0 otherwise, by Lemma 6.16 (1).

To prove soundness for the reduction rules we require an interpretation of
evaluation contexts as morphisms in C (rather than the C!), which is derived as
follows.

Proposition 8.17. If Γ, • : S ` E[•] : T there is a morphism [[E[•]]]Γ : [[Γ]] ⊗
[[S]]→ [[T ]] such that for all Γ `M : S, [[E[M ]]]Γ = δΓ; ([[Γ]]⊗ [[M ]]Γ); [[E[•]]]Γ.

Proof. [[E[•]]]Γ is defined inductively as follows:

• [[[•]]]Γ = (ε[[Γ]] ⊗ [[T ]])

• [[E[•]]]Γ = ((δ[[Γ]] ⊗ [[S]]); ([[N : T ′]]Γ ⊗ [[E′[•]Γ]]); app[[T ]],[[T ′]].

• [[Ifz(E[•])]]Γ = [[E[•]]]Γ; c, [[succ(E[•])]]Γ = [[E[•]]]Γ; s, [[pred(E[•])]]Γ =
[[E[•]]]Γ; p.

We use Proposition 8.17 (together with the properties of Lafont categories
with biproducts and fixpoint approximants) to establish a key soundness prop-
erty. Say that a configuration E ;P is silent if P is neither a value n for n ∈ N
nor of the form E[M orN ]. Any silent configuration denotes the weighted sum
of the denotations of configurations which are reachable in one reduction step.

Lemma 8.18. If E ;P is silent then [[E ;P ]] =
∑
{a.[[E ′;P ′]] | (E ;P )

(ε,a)−→ (E ′;P ′)}.

Proof. See Appendix B.
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8.4. The Nested Multiset Order

To give an inductive proof of the adequacy of the resource-bounded seman-
tics, we show that reduction is strictly decreasing with respect to a measure on
terms based on the nested multiset order [38].

Definition 8.19. For each i ∈ N, (Mi+1,�i+1) is the multiset order generated
by (Mi,�i) — i.e. X �i+1 Y if for all x ∈ sup(X − Y ) there exists y ∈
sup(Y −X) with x�i y.
This is a well-founded partial order [38], and �i⊆�i+1. Hence we may define
a well-founded order �∗=

⋃
i∈N �i on M. We write <∗ for the corresponding

strict inequality.

Note that if X �∗ X ′ and Y �∗ Y ′ then X + Y �∗ X ′ + Y ′. Let k.X
denote the k-fold multiset union of X with itself.

Lemma 8.20. k.X <∗ [X] for all k ∈ N and X ∈M.

Proof. Define X ≺ Y if for all x ∈ sup(X) there exists y ∈ sup(Y − X) such
that x ∈ sup(y), so that k.X ≺ [X]. Note that x ∈ sup(y) implies x ≺ y, since
if a ∈ supx, there exists b ∈ sup(y − x) such that a ∈ b by taking b = x (since
x 6∈ sup(x)).

We prove that X,Y ∈ Mi and X ≺ Y implies X �i Y by induction on i:
for the induction case, suppose X,Y ∈Mi and X ≺ Y . Then if x ∈ sup(X−Y )
there exists y ∈ sup(Y − X) such that x ∈ sup(y). Then x ≺ y and so by
induction hypothesis x�i y. Thus X �i+1 Y as required.

Definition 8.21. Let ` be the map from PCFR terms into M defined by:

`(x) = `(0) = 1 `(M orN) = `(N) + `(N)
`(µx.M) = [`(M)] `(M N) = `(M) + [`(N)]

`(λx.M) = `(Ifz(M)) = `(succ(M)) = `(pred(M)) = `(a.M) = `(M) + 1

` is extended to environments, and thus configurations, by setting:

`〈(xi,Mi, Xi) | i ≤ n〉 =
∑
i≤n
|Xi|.`(Mi) and `(E ;P ) = `(E) + `(P )

where |X| ∈ N is defined inductively by |[X1, . . . , Xk]| = 1 +
∑
i≤k
|Xi|.

Lemma 8.22. E ;P
u,a−→ E ′;P ′ implies `(E ′;P ′) <∗ `(E ;P ).

Proof. ` is extended to evaluation contexts by setting `(•) = ∅, so `(E[M ]) =
`(E[•]) + `(M). Then e.g.

• Suppose P = E[µx.N ], so E ′;P ′ = (E , (x,N,X);E[N ] for some X ∈ M.
Then `(E ′;P ′) = `(E) + |X|.`(N) + `(E[•]) + `(N)
<∗ `(E)+`(E[•])+[`(N)] (since (|X|+1).`(N) <∗ [`(N)] by Lemma 8.20)
= `(E ;P ).
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• Suppose E = E ′′, (x,N,X + [Y ]), E ′′′ and P = E[x],
so E ′ = E ′′, (x,N,X), E ′′′, (y,N [y/x], Y ), E ′′′ and P = E[N [y/x]]. Then:
`(E ′;P ′) = `(E ′′) + |X|.`(N) + |Y |.`(N) + `(E ′′′) + `(E[•]) + `(N [y/x])
= `(E ′′) + (|X|+ |Y |+ 1).`(N) + `(E ′′′) + `(E[•])
<∗ `(E ′′) + |X + [Y ]|.`(N) + `(E ′′′) + `(E[•]) + `(x)
= `(E ;P ).

The remaining cases are similar, or simpler.

We can now establish adequacy for the bounded abstract machine.

Proposition 8.23. For any configuration E ;P :
∑

u∈{l,r}∗
〈[E ;P ]〉u = [[E ;P ]].

Proof. By nested multiset induction on `(E ;P ):

• Suppose P = n. Then by Lemma 8.16:
If E ∈ Env0 then

∑
s∈{l,r}∗

〈[E ;P ]〉u = 〈[E ;P ]〉ε = z; sn = [[E ;P ]].

Otherwise
∑

u∈{l,r}∗
〈[E ;P ]〉u = 〈[E ;P ]〉ε = 0 = [[E ;P ]].

• Suppose P = E[Nl orNr]. Observe that {l, r}∗ = {ε} ∪ {lu, ru | u ∈
{l, r}∗}, so∑
u∈{l,r}∗

〈[E ;P ]〉 = 〈[E ;P ]〉ε +
∑

u∈{l,r}∗
〈[E ;P ]〉lu +

∑
u∈{l,r}∗

〈[E ;P ]〉ru

= 0 +
∑

u∈{l,r}∗
〈[E ;E[Nl]]〉u +

∑
u∈{l,r}∗

〈[E ;E[Nr]]〉u

= [[E ;E[Nl]]] + [[E ;E[Nr]]] (by the induction hypothesis)
= [[E ;P ]] (by Proposition 8.17 and bilinearity of composition).

• Otherwise, E ;P reduces silently and so∑
u∈{l,r}∗

〈[E ;P ]〉u =
∑

u∈{l,r}∗

∑
{〈[E ′;P ′]〉u | (E ;P )

(ε,1)−→ (E ′;P ′)} (by Lemma

8.18)

=
∑
{

∑
u∈{l,r}∗

〈[E ′;P ′]〉u | (E ;P )
(ε,1)−→ (E ′;P ′)} (by partition associativity)

=
∑
{[[E ′;P ′]] | (E ;P )

(ε,1)−→ (E ′;P ′)} by induction hypothesis
= [[E ;P ]] by Lemma 8.18.

Theorem 8.24. The semantics of PCFR in a Lafont category with biproducts,
an object of numerals and internal semiring RC ⊇ R is computationally ade-
quate.

Proof. For any program P , [[P ]] = [[ ;P ]] =
∑

u∈{l,r}∗
〈[ ;P ]〉u =

∑
u∈{l,r}∗

〈[P ]〉u by

Propositions 8.14 and 8.23.

Corollary 8.25. The semantics of PCFR in a Lafont category with biproducts,
a monoidal object of numerals and internal semiring RC ⊇ R is equationally
sound — i.e. if [[M : T ]]Γ = [[N : T ]]Γ then M ≈Γ

T N .
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Proof. If [[M : T ]]Γ = [[N ]]Γ then for any compatible, closing context C[ ] : nat,
[[C[M ]]] = [[C[N ]]] and so

∑
k∈N

w(C[M ], k).[[k]] =
∑
k∈N

w(C[M], k).[[k]] by Theorem

8.24. For each k ∈ N, w(C[M ], k); η = [[C[M ]]];πk = [[C[N ]]];πk = w(C[N ], k); η
and so w(C[M ], k) = w(C[N ], k).

If C is order enriched (thus RC is ordered) and f ; η ≤ g; η implies f ≤ g for
all f, g ∈ RC then we also have inequational soundness:
[[M ]] ≤ [[N ]] implies w(C[M ], k); η = C[M ];πk ≤ [[C[N ]]];πk = w(C[N ], k); η and
thus w(C[M ], k) ≤ w(C[N ], k).

9. Full Abstraction: R-Weighted Idealized Algol

As noted in [1], the weighted relational model of PCFR is not fully ab-
stract (although the weighted relational model of probabilistic PCF, which is
a sublanguage of PCF weighted over R∞+ , inherits full abstraction from the
probabilistic coherence spaces model [39]): for example, the terms λx.µy.0 or y
and λx.(µy.0 or y) or (Ifz(x) 0 µy.y) are observationally equivalent but denote
distinct weighted relations.

Arguably, this is due to the limited expressiveness of PCF, which allows only
indirect observation of the call-patterns for variables which are recorded in the
model. However, in the change of base we have a recipe for constructing quan-
titative interpretations from game semantics, which has furnished fully abstract
qualitative models of a wide range of functional languages with side-effects. In
this section, we show how change of base can preserve full abstraction results
by considering a basic example, Reynolds’ Idealized Algol [40]. By the results in
[14] we know that our CCC of games G! furnishes a semantics of Idealized Algol
— which may be considered as an extension of PCF with integer state (conserva-
tive with respect to the operational semantics). So applying the change-of-base
induced functor ΦR! : G! → GR! gives us a semantics of Idealized Algol in GR! .
The latter is also an instance of our categorical model of R-weighted PCF which
agrees with the semantics of Idealized Algol on their common part (PCF itself).
So by combining both models we obtain an interpretation of IAR— erratic Ide-
alized Algol with scalar weights from R. Moreover, this semantics inherits the
full abstraction property from the qualitative model, as we will now show.

Types of Idealized Algol are formed from ground types nat, com (commands)
and var (integer references). Terms of IAR are formed by extending the simply
typed λ-calculus with the operations of PCFR and the following constants for
imperative programming6:

• Sequential composition — seq : com→ B → B where B ∈ {com, nat},

• New variable declaration — new : nat→ (var→ B)→ B,

• Read and write — set : nat→ var→ com, deref : var→ nat,

6We consider the variant of IA with active expressions and bad variables as in [14].
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S; seq skip
ε,1−→ S;λx.x S; (set n) (mkvrM N)

ε,1−→ S;N n

S; (new n) P
ε,1−→ S, (a, n);P a S; deref(mkvrM N)

ε,1−→ S;M

S; (set n) a
ε,1−→ S[a 7→ n]; skip S[a 7→ n]; deref a

ε,1−→ S; n

Table 4: Operational Semantics for IAR— sequential composition and mutable variables

• “Bad variable” construction — mkvr : nat→ (nat→ com)→ var.

The operational semantics for IAR extends that given for PCFR in Definition
8.1, just as Idealized Algol extends PCF. We define a labelled transition system
over the same set of actions, in which states are pairs (S;P ) of a store (a
sequence (a1, n1), . . . , (an, nk) of pairs of a location name and integer value) and

a (ground-type) program. Transitions are all instances of S;E[M ]
u,a−→ S ′;E[M ′]

where the evaluation context E[ ] is given by the extended grammar:

E ::= [ ] | E M | succ(E) | pred(E) | Ifz(E)
| seqE | newE | (new n)E | setE | (set n)E | derefE

and either

• S = S ′ and M
u,a−→M ′ is an action from Table 2, or

• S;M
u,a−→ S;M ′ is an instance of one of the further rules in Table 4.

As for PCF, the relation
u,a−→ is deterministic, and so we may define the

weight in R of each configuration with respect to a sequence u ∈ {l, r}∗ of
branching choices:

wu(S;P ) =

{
a if S;P

u1,a1−→ . . .
un,an−→ S ′; skip and (u1 · . . . un, a1 · . . . · an) = (u, a)

0 if there is no such sequence of transitions

As in the case of PCF, the computational meaning of IAR depends on the
choice of semiring — it may be regarded as a metalanguage for a family of
“resource-sensitive” imperative programming languages and their semantics.
The weighted games models discussed previously may be viewed as instances
of this. Probabilistic games [19] are used to interpret Idealized Algol extended
with a constant coin : nat which reduces to either 0 or 1, both with proba-
bility 0.5. Thus we may interpret probabilistic Algol inside IAR∞+ by defining
coin , (0.5).0 or (0.5).1.

In [33] slot games are used to give an interpretation of Idealized (Concurrent)
Algol which is sound with respect to an operational semantics which keeps
track of the (time, memory, etc.) costs of evaluation as a natural number
— each reduction rule is decorated with such a cost, and the worst-case cost
is assigned to each program. Setting R to be the tropical semiring, we may
define a translation of IA into IAR which is sound with respect to this notion
of evaluation, by applying a weighting to each operation corresponding to the
cost of its evaluation.
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9.1. Denotational Semantics of IAR

We interpret IAR in the category of games and R-weighted strategies by
extending the semantics of PCFR in GR! with the image under ΦR0 of the se-
mantics of the types and constants of Idealized Algol defined in [14]. Thus com
denotes the game Σ over the arena with a single question enabling a single an-
swer, nat the arena with a single question enabling answers for each n ∈ N, and
var the arena [[nat]] × [[com]]ω. Each of the constants C : T of Idealized Algol
denotes a strategy [[C]] : I → [[T ]] in G!, and thus a R-weighted strategy in GR! .
In particular, new n λx.M denotes the composition of [[M ]]x:var (in G) with a
strategy celln : I → [[var]] which behaves as a reference cell initialized with the
value n.

Remark 9.1. The strategies denoted by sequential composition and the com-
mand skip correspond (up to currying and dereliction) to monoid structure on
the games [[com]]. The associated monoidal object of numerals NM =

⊕
n∈N

is

(up to isomorphism) the denotation of nat in GR0 . The denotation of var is
isomorphic to NM ⊕NM since × and ( )ω are biproducts.

Computational adequacy is now simply the requirement that the weight for a
program P : com computed by the operational semantics is equal to the weight
assigned by its denotation to the single well-opened sequence (qa) in [[com]].

Equivalently, letting 〈[P ]〉u : I → [[com]] =

{
a.[[skip]] if ;P

u,a
=⇒ S; skip for some u,S

0 otherwise
.

Proposition 9.2 (Adequacy). For every program P : com, [[P ]] =
∑

u∈{l,r}∗
〈[P ]〉u.

Proof. We extend the proof of adequacy for PCFR to include state — defining
a bounded abstract machine over the same set of labels in which states are
triples (S; E ;P ) of a store S = (a1, v1), . . . , (an, vn), a bounded environment
a1 : var, . . . , an : var ` E and a term P such that a1 : var, . . . , an : var, |E| `
P : com, and transitions are given by the rules of Tables 2(a), 3 and 4 and
showing that (a) this gives an equivalent notion of weighted reduction path
to the unbounded semantics (cf. Proposition 8.14) and (b) its denotational
semantics is computationally adequate (cf. Proposition 8.23).

The proof of these results follows the proofs of Propositions 8.14 and 8.23
— the denotation of (a1, v1), . . . , (an, vn); E ;P is given by composing [[E ;P ]] :
[[var]]n → [[B]] with cellv1 ⊗ . . . ⊗ cellvn : I → [[var]]⊗n We just need to extend
Lemma 8.18 with the new reduction rules for the constants of Idealized Algol, for
which soundness was established in [14] in proving adequacy for the qualitative
game semantics in G0.

9.2. Full Abstraction

Following [14], we give a fully abstract model of IAR by changing the mean-
ing of types to denote games in which the set of plays contains only justified
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sequences which are complete (i.e. every question has been answered). It is suffi-
cient to change the meaning of ground types to contain only complete sequences
for the denotations of all types to satisfy this condition. Terms now denote maps
from sets of complete sequences into R. The proof of adequacy extends to this
interpretation by modest adaptation. Full abstraction follows readily from the
following definability property for the complete play interpretation of Idealized
Algol in G0.

Theorem 9.3. [14] For any finite strategy σ : [[T ]] there exists a term Mσ : T
of Idealized Algol such that [[Mσ]] = σ.

A weighted strategy φ : A is finitary if the set {s ∈ PA | φ(s) 6= 0} of non-
zero-weighted complete plays is finite. Note that we may lift the weighting and
choice functions from nat to any type using the constructors and destructors in
the language — e.g. for M : com, let a.M = Ifz(a.(seqM 0)) skip skip.

Corollary 9.4 (Definability for IAR ). For any finitary R-weighted strategy
φ : [[T ]] there exists a term Mφ : T such that [[Mφ]] = φ.

Proof. Enumerating the non-zero-weighted sequences of φ as s1, . . . , sn, we have
φ = [[φ(s1).M{s1} or . . . or φ(sn).M{sn}]].

Theorem 9.5 (Full Abstraction). M≈Γ
T N if and only if [[M : T ]]Γ = [[N : T ]]Γ.

Proof. This closely follows the proof in the original model. Soundness holds by
Corollary 8.25; for completeness suppose [[M ]] 6= [[N ]], and thus there exists a
complete s ∈ P[[T ]] such that [[M ]](s) 6= [[N ]](s). By the definability property,
the strategy φ : [[T ]] → [[com]] such that φ(t) = 1 if t = qsa (and 0 otherwise)
denotes a term L : T → com of Idealized Algol and thus [[LM ]](qa) = [[M ]](s)
and [[LN ]](qa) = [[N ]](s). Hence by adequacy, w(LM) 6= w(LN) and so M 6≈ N
as required.

If R is ordered, then inequational completeness holds via the same argu-
ments.

Corollary 9.6. Observationally inequivalent terms of IARmay be separated by
a context of Idealized Algol.

So, for instance, our model is fully abstract for Probabilistic Algol.

10. Conclusions

We have established a series of basic results for quantitative semantics: that
Lafont categories with biproducts have uniform fixed points, and that these
provide a computationally adequate interpretation of non-deterministic PCF
with weights from a complete commutative semiring. We have described a
general way of constructing such a category from a qualitative model by change
of base, and applied it to a category of games, giving a fully abstract model of
weighted Idealized Algol.
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These results have been established in rather different ways — using the
principles of axiomatic domain theory, enriched category theory and game se-
mantics combined with some basic operational techniques. It is not yet clear
how closely these approaches may be combined: e.g. whether computational
adequacy may be established by purely axiomatic means.

The representation of fixed point approximants using nested finite multisets
suggests that we could extend the resource λ-calculus, and related formalisms
such as the differential λ-calculus [11] and differential nets [41] to reason about
fixed points. Other avenues include extension of our results to recursive types
using principles from [42] or models of linear logic which are not Lafont cate-
gories — for example, the notion of “new Lafont category” in [43].

The only really essential properties that we have used from our category
of games are that strategies may be viewed as certain cliques in a coherence
space and that composition is a stable, linear function. This rules out models
of concurrency in which non-determinism arises implicitly, except in the case of
idempotent semirings. Adding quantitative weighting to such models is a subject
of current research. For the sake of simplicity, we have sidestepped mention of
causal order (e.g. prefix order in games), which gives a finer characterization of
strategy behaviour. For example, we may enrich categories over event structures
[25, 44] (or dI-domains [45]) — thus a monoidal functor adding weights to event
structures may be used to change their base but needs to take account of both
the ordering and the coherence relation (e.g. the sum of the weights of two
events in “immediate conflict” should be less than the weight of their causing
event).
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7 (1988).

[9] P. Melliès, N. Tabareau and C. Tasson, An explicit formula for the free
exponential modality of linear logic, in: Proc. ICALP ’09, no. 5556 in
LNCS, 2009, pp. 247–260.

[10] G. Boudol, The lambda-calculus with multiplicities, in: E. Best (Ed.),
Proceeedings of CONCUR ’93, no. 715 in LNCS, 1993, pp. 1–6.

[11] T. Ehrhard, L. Regnier, The differential lambda-calculus, Theoretical Com-
puter Science 309.

[12] P. Tranquilli, Nets between determinism and non-determinism, Ph.D. the-
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Appendix A: Yoneda Embedding Preserves MTT-Projections

We need to show that the hA(pn) : C(A,B≤n+1) → C(A,B≤n) is the pro-
jection part of an e-p pair in CSpace for each object A. As we have noted,
hA(Bn• ) is the equalizer in CSpace for the group G = hA(perm(B⊗n• ) of per-
mutation automorphisms on C(A,B⊗n• ) = hA(B⊗n• ), so it is isomorphic to the
explicitly defined equalizer hA(B⊗n• )/G. Up to this isomorphism, therefore,
hA(pn) is equivalent to the unique mediating morphism Pn from hA(B⊗n+1

• )/G
to hA(B⊗n• )/G for the morphism eq;hA(p̆i) : hA(B⊗n+1

• )/G → hA(B⊗n• ), where

p̆n : B⊗n+1
• → B⊗n• , (B × I)⊗n ⊗ πr. So Pn = {([c]G, [d]G) | (c, d) ∈ hA(p̆n)},

and it suffices to show that this is a projection. We first establish lemmata
about CSpace-enriched symmetric monoidal categories.
Lemma A1 The symmetry isomorphism γB•,B• : B•⊗B• → B•⊗B• satisfies
γB•,B• ; ((⊥B,B × I)⊗ (⊥B,B × I)) = (⊥B,B × I)⊗ (⊥B,B × I).

Proof. ⊥B,B × I = πr; 〈⊥I,B , I〉 and therefore γ; ((⊥B,B × I) ⊗ (⊥B,B × I)) =
(πr ⊗ πr); γI,I ; (〈⊥I,B , I〉 ⊗ 〈⊥I,B , I〉).

But γI,I is the identity on I ⊗ I in any symmetric monoidal category, and
so this is equal to (πr ⊗ πr); (〈⊥I,B , I〉 ⊗ 〈⊥I,B , I〉) = (⊥B,B × I)⊗ (⊥B,B × I)
as required.

Lemma A2 If (c, d), (c′, d′) ∈ hA(p̆n) such that c∼Gc′ then there exists a
permutation π on n+ 1 such that c′ = π(c) and π(n+ 1) = n+ 1.
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Proof. If c′∼Gc then there is a permutation π on n + 1 such that π(c) = c′. If
π(n+ 1) = n+ 1 then we are done. So suppose without loss of generality that
π(n+1) = n. We claim that c′ = c′; (B⊗n−1

• ⊗γB•,B•) = π(c); (B⊗n−1
• ⊗γB•,B•)

— so that if π′ is the permutation with π(n+ 1) = n+ 1, π′(n) = π(n+ 1) and
π′(i) = π(i) for i < n then π′(c) = c′ as required.

Observe that if (c′, d′) ∈ hA(p̆n) then (c′, c′) ∈ hA(p̆n; ĕn) = hA(B⊗n• ⊗
(⊥B,B × I)) — i.e. c′; (B⊗n• ⊗ (⊥B,B × I)) = c′.

We also have (B⊗n• ⊗ (⊥ × I)); θπ = θπ; (B⊗n−1
• ⊗ (⊥B,B × I) ⊗ B), and

therefore c′; (B⊗n−1
• ⊗ (⊥B,B × I)⊗B) = (c; θπ); (B⊗n−1

• ⊗ (⊥B,B × I)⊗B•) =
c; (B⊗n• ⊗ (⊥B,B × I)); θπ = c; θπ = c′.

Hence c′; (B•⊗n− 1⊗ (⊥B,B × I)⊗ (⊥B,B × I)) = c′. But we have already
shown (Lemma A1) that γB•,B• ; (⊥B,B×I)⊗(⊥B,B×I) = (⊥B,B×I)⊗(⊥B,B×
I) and so c′; (B⊗n−1

• ⊗ γB•,B•) = c′ as required.

We can now prove our main result:
Lemma 5.9 For each object A in a CSpace-enriched SMC with coherent sym-
metric tensor powers of B•, h

A(pn) : C(A,Bn+1
• )→ C(A,Bn• ) is a projection.

Proof. In CSpace, a morphism f : D → C is a projection (and its converse
relation is the corresponding embedding) if and only if it satisfies

1. Coherence — If (c, d), (c′, d′) ∈ f then c ¨ c′ if and only if d ¨ d′.

2. Surjectivity — For every d ∈ D there exists c ∈ C with (c, d) ∈ f .

3. Injectivity — If (c, d), (c′, d′) ∈ f then c = c′ if and only if d = d′.

To show that Pn satisfies these properties we use the fact that hA(p̆n) is itself
a projection — we can define ĕn : B⊗n• → B⊗n+1

• , B⊗n• ⊗ 〈⊥I,B , I〉 making
(ĕn, p̆n) — and thus (hA(ĕn), hA(p̆n)) — e-p pairs. So Pn satisfies property 1:
if ([c]G, [d]G), ([c′]G, [d

′]G) ∈ Pn then [c]G ¨ [c′]G if and only if c ¨ c′ (by the
coherence of the group of permutations) if and only if d ¨ d′ (because hA(p̆n)
satisfies 1) if and only if [d]G ¨ [d′]G.
2 follows for Pn from the surjectivity of hA(p̆n): for any [d]G ∈ hA(B⊗n• )/G
there exists c ∈ hA(B⊗n+1

• ) such that (c, d) ∈ hA(p̆n) and so ([c]G, [d]G) ∈ Pn.
So it remains to prove property 3 (injectivity) for Pn. This is equivalent to

showing that if (c, d), (c′, d′) ∈ hA(p̆n) then c∼Gc′ iff d∼Gd′. Observe that if
π is a permutation on n, and π̂ is the permutation on n + 1 which extends π
by setting π(n + 1) = n + 1 then p̆n; θπ = θπ̂; p̆n, and so (c, d) ∈ hA(p̆n) if and
only if (π̂(c), π(d)) ∈ hA(p̆n). Hence for (c, d), (c′, d′) ∈ hA(p̆n), d∼Gd′ implies
c∼Gc′. The converse is a consequence of Lemma A2.

Appendix B: Soundness for Silent Reductions

We need to show that any configuration which is neither fully evaluated
nor an explicit choice denotes the weighted sum of denotations of all of its
reducts. The key cases are the rules in Table 3 — in particular for unwinding
the fixedpoint by calling a variable in the environment, for which we require the
following lemma based on the identities in Lemma 6.16. Writing s(X) for the
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support of the multiset X:
Lemma B1 For f :!A→ A, fX ; δ!A; (derA⊗!A) =

∑
Y ∈s(X)

(fY ; f ⊗ fX−[Y ]).

Proof. fX ; δ!A; (derA⊗!A) =
∑
Z⊆X

(fZ ⊗ fX−Z); (derA⊗!A)

=
∑
Z⊆X

(fZ ; der ⊗ fX−Z) =
∑

y∈s(X)

(fY ; f ⊗ fX−[Y ]), since for Z ⊆ X,

fZ ; derA =

{
fY ; f if Z = [Y ] for some Y ∈ s(X)

0 otherwise

Lemma B2 [[(x,M,X), E ;E[x]]] =
∑

Y ∈s(X)

[[(y,M [y/x], Y ), (x,M,X−[Y ]), E ;E[M [y/x]]]].

Proof. Suppose x : T `M : T .
Then [[(x,M,X), E ′′;E[x]]] = [[M ]]X ; δ[[T ]]; (![[T ]]⊗ [[E ]]); [[E[x]]]
= [[M ]]X ; δ[[T ]]; ([[T ]]⊗ [[E ]]); (δ[[T ]]; (der[[T ]]⊗![[T ]])⊗ [[|E ′′|]]); [[E[•]]] by Prop. 8.17
= [[M ]]X ; δ[[T ]]; (der[[T ]] ⊗ [[T ]]); ([[T ]]⊗ (δ[[T ]]; (![[T ]]⊗ [[E ]]))); [[E[•]]]
=

∑
Y ∈s(X)

([[M ]]Y; [[M ]])⊗ [[M ]]X−[Y ]);([[T ]]⊗ (δ[[T ]];(![[T ]]⊗ [[E ]])));[[E[•]]] by Lemma B1

=
∑

Y ∈s(X)

(([[M ]]Y ⊗ ([[M ]]X−Y ; ([[M ]]⊗ [[E ]]))); [[E[[[•]]]]]

=
∑

Y ∈s(X)

[[(y,M [y/x], Y ), (x,M,X − [Y ]), E ;E[M [y/x]]]] by Lemma 8.17.

(Since x does not occur in M [y/x].)

We now prove soundness for all silent reductions.

Lemma 8.18 If E ;P is silent then [[E ;P ]] =
∑
{a.[[E ′;P ′]] | (E ;P )

(ε,a)−→ (E ′;P ′)}.

Proof. Suppose P = E[x], and E = E ′, (x,M,X), E ′′, so that [[E ;P ]] = [[E]]; [[(x,M,X), E ′′]]|E′|,
and so by Lemma B2, we have
[[E ;P ]] =

∑
Y ∈S(X)

[[(y,M [y/x], Y ), (x,M,X − [Y ]), E ;E[M [y/x]]]] as required.

Suppose P = E[µx.N ]. Then by Proposition 8.17

[[E ;E[µx.M ]]] = [[E ]]; δ[[|E|]]; ([[|E|]]⊗ [[µx.M ]]|E|); [[E[•]]]|E|

= [[E ]]; δ[[|E|]]; ([[|E|]]⊗ (δ|E ; ([[|E|]]⊗ [[µx.M ]]†|E|); [[M ]]|E|,x)); [[E[•]]]|E|.

by definition of the fixed point, and so by Definition 6.15, this is∑
X∈M

[[E ]]; δ[[|E|]]; ([[|E|]]⊗ (δ|E ; ([[|E|]]⊗ [[M ]]X|E|,x); [[M ]]|E|,x)); [[E[•]]]|E|

=
∑
X∈M

[[E , (x, µx.M,X);E[M ]]] by Proposition 8.17.

Suppose P = E[(λx.M)N ] — then by an essentially similar argument to
the fixed point case above, [[E ;E[(λx.M)N ]]] =

∑
X∈M

[[E , (x,N,X);E[M ]]].

Suppose P = E[a.N ] — then [[E ;P ]] = a.[[E ;E[N ]]] by Proposition 8.17 and
bilinearity of composition in C.
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Suppose P = E[Ifz(n)] or P = E[pred(n + 1)] for some n ∈ N, — then

E ;P
(ε,1)−→ E ;P ′ for a unique P ′ such that [[E ;P ]] = [[E ;P ′]] by definition of an

object of numerals.
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