2,798 research outputs found

    Stochastic Volatility Filtering with Intractable Likelihoods

    Full text link
    This paper is concerned with particle filtering for α\alpha-stable stochastic volatility models. The α\alpha-stable distribution provides a flexible framework for modeling asymmetry and heavy tails, which is useful when modeling financial returns. An issue with this distributional assumption is the lack of a closed form for the probability density function. To estimate the volatility of financial returns in this setting, we develop a novel auxiliary particle filter. The algorithm we develop can be easily applied to any hidden Markov model for which the likelihood function is intractable or computationally expensive. The approximate target distribution of our auxiliary filter is based on the idea of approximate Bayesian computation (ABC). ABC methods allow for inference on posterior quantities in situations when the likelihood of the underlying model is not available in closed form, but simulating samples from it is possible. The ABC auxiliary particle filter (ABC-APF) that we propose provides not only a good alternative to state estimation in stochastic volatility models, but it also improves on the existing ABC literature. It allows for more flexibility in state estimation while improving on the accuracy through better proposal distributions in cases when the optimal importance density of the filter is unavailable in closed form. We assess the performance of the ABC-APF on a simulated dataset from the α\alpha-stable stochastic volatility model and compare it to other currently existing ABC filters

    Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin

    Full text link
    Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F-statistic to surmount some of the challenges raised by spin wandering. Specifically it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F-statistic output from coherent segments with duration T_drift = 10d over a total observation time of T_obs = 1yr can detect signals with wave strains h0 > 2e-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital period and semi-major axis are known approximately from electromagnetic observations, HMM tracking of the Bessel-weighted F-statistic output can detect signals with h0 > 8e-26. An efficient, recursive, HMM solver based on the Viterbi algorithm is demonstrated, which requires ~10^3 CPU-hours for a typical, broadband (0.5-kHz) search for the low-mass X-ray binary Scorpius X-1, including generation of the relevant F-statistic input. In a "realistic" observational scenario, Viterbi tracking successfully detects 41 out of 50 synthetic signals without spin wandering in Stage I of the Scorpius X-1 Mock Data Challenge convened by the LIGO Scientific Collaboration down to a wave strain of h0 = 1.1e-25, recovering the frequency with a root-mean-square accuracy of <= 4.3e-3 Hz

    Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments

    Get PDF
    In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such DNA looping interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified (diffusive) hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern

    Linear State Models for Volatility Estimation and Prediction

    Get PDF
    This report covers the important topic of stochastic volatility modelling with an emphasis on linear state models. The approach taken focuses on comparing models based on their ability to fit the data and their forecasting performance. To this end several parsimonious stochastic volatility models are estimated using realised volatility, a volatility proxy from high frequency stock price data. The results indicate that a hidden state space model performs the best among the realised volatility-based models under consideration. For the state space model different sampling intervals are compared based on in-sample prediction performance. The comparisons are partly based on the multi-period prediction results that are derived in this report

    Estimation in threshold autoregressive models with correlated innovations

    Full text link
    Large sample statistical analysis of threshold autoregressive (TAR) models is usually based on the assumption that the underlying driving noise is uncorrelated. In this paper, we consider a model, driven by Gaussian noise with geometric correlation tail and derive a complete characterization of the asymptotic distribution for the Bayes estimator of the threshold parameter.Comment: to appear in Ann. Inst. Stat. Mat

    The chopthin algorithm for resampling

    Full text link
    Resampling is a standard step in particle filters and more generally sequential Monte Carlo methods. We present an algorithm, called chopthin, for resampling weighted particles. In contrast to standard resampling methods the algorithm does not produce a set of equally weighted particles; instead it merely enforces an upper bound on the ratio between the weights. Simulation studies show that the chopthin algorithm consistently outperforms standard resampling methods. The algorithms chops up particles with large weight and thins out particles with low weight, hence its name. It implicitly guarantees a lower bound on the effective sample size. The algorithm can be implemented efficiently, making it practically useful. We show that the expected computational effort is linear in the number of particles. Implementations for C++, R (on CRAN), Python and Matlab are available.Comment: 14 pages, 4 figure

    Elucidation of molecular kinetic schemes from macroscopic traces using system identification

    Get PDF
    Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully applied to accurately derive molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it may be useful in the study of a wide variety of biological systems

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area
    • …
    corecore