1,639 research outputs found

    A fault tolerant control allocation scheme with output integral sliding modes

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Automatica. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Automatica Vol. 49 (2013), DOI: 10.1016/j.automatica.2013.02.043In this paper a new fault tolerant control scheme is proposed, where only measured system outputs are assumed to be available. The scheme ensures closed-loop stability throughout the entire closed-loop response of the system even in the presence of certain actuator faults/failures. This is accomplished by incorporating ideas of integral sliding modes, unknown input observers and a fixed control allocation scheme. A rigorous closed-loop stability analysis is undertaken, and in fact a convex representation of the problem is created in order to synthesize the controller and observer gains. The efficacy of the proposed scheme is tested by applying it to a benchmark civil aircraft model

    A fault tolerant direct control allocation scheme with integral sliding modes

    Get PDF
    PublishedJournal Article© by Mirza Tariq Hamayun 2015. In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft is considered in the simulations in the presence of wind, gusts and sensor noise.This paper was partially funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under the grant no. Gr/33/5. The first and the last author, therefore, acknowledge with thanks the DSR financial support

    Integral sliding mode fault tolerant control allocation for a class of affine nonlinear system

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper develops novel fault tolerant integral sliding mode control allocation schemes for a class of over-actuated affine nonlinear system. The proposed schemes rely on an existing baseline controller and the objective is to retain the nominal (fault-free) closed-loop performance in the face of actuator faults/failures by effectively utilizing actuator redundancy. The online control allocation reroutes the control effort to the healthy actuators using knowledge of the actuator effectiveness level estimates. One of the proposed schemes is tested in simulation using a well known high fidelity model of a large civil transport aircraft (B747) from the literature. Good simulation results show the efficacy of the scheme

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Real-time implementation of an ISM Fault Tolerant Control scheme for LPV plants

    Get PDF
    Copyright © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a fault tolerant control scheme for linear parameter varying systems based on integral sliding modes and control allocation, and describes the implementation and evaluation of the controllers on a 6 degree-of-freedom research flight simulator called SIMONA. The fault tolerant control scheme is developed using a linear parameter varying approach to extend ideas previously developed for linear time invariant systems, in order to cover a wide range of operating conditions. The scheme benefits from the combination of the inherent robustness properties of integral sliding modes (to ensure sliding occurs throughout the simulation) and control allocation, which has the ability to redistribute control signals to all available actuators in the event of faults/failures

    Flight evaluation of an LPV sliding mode controller with online control allocation

    Get PDF
    Thiis is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper presents the results of flight tests of a fault tolerant sliding mode controller implemented on the Japan Aerospace Exploration Agency's Multi-Purpose Aviation Laboratory aircraft. These represent the first validation tests of a sliding mode control allocation scheme on a piloted flight test. In this scheme, information about the actuator faults is assumed to be estimated online from a fault detection unit and the available actuators are fully utilized in the presence of actuator faults, in an effort to retain nominal fault free performance. Specifically the flight tests results demonstrate good lateral-directional state tracking performance in the fault free case with no visible performance degradation in the presence of rudder and aileron faults. In fact, during the flight test, the evaluation pilot did not detect any degradation in manoeuvrability when the actuator faults occurred.European Union Horizon 2020Japan New Energy and Industrial Technology Development Organizatio

    Sliding Mode Propulsion Control Tests on a Motion Flight Simulator

    Get PDF
    This paper describes a fault-tolerant sliding-mode control allocation scheme capable of coping with the loss of all control surfaces resulting from a failure of the hydraulics system, during which time the scheme only uses the engines to control the aircraft. The paper presents tests of the scheme implemented on a six-degree-of-freedom motion research flight simulator at Delft University of Technology, using a realistic maneuver involving an emergency return to a near-landing condition on a runway in response to the failure. The simulator results show that not only does the controller provide high tracking performance during nominal fault-free conditions, this performance is also maintained after the total loss of all control surfaces. This shows the capability of the proposed sliding-mode control allocation scheme to achieve and maintain desired performance levels using only propulsion by redistributing the control signals to the engines when failures occur

    Active Fault Tolerant Control of MuPAL-a Using Sliding Modes

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper proposes a simple adaptive sliding mode observer to estimate the effectiveness level of actuators and uses this information as part of an active fault tolerant controller. These observers create an FDI scheme at a 'local' level and the effectiveness estimates are used to drive the online control allocation component in the overall scheme. The approach has been tested on a model of JAXA's MuPAL-a experimental aircraft. The nonlinear simulation results, in fault free and faulty situations, show the efficacy of the scheme. Furthermore, the proposed sliding mode observer has been tested offline using previously collected MuPAL-a flight data and good results are achieved.European Union Horizon 2020Japan New Energy and Industrial Technology Development Organizatio

    Fault Diagnosis and Fault-Tolerant Control of Unmanned Aerial Vehicles

    Get PDF
    With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults

    Design and analysis of an integral sliding mode fault-tolerant control scheme

    Get PDF
    This is the author's version of an artiucle subseqiently published in IEEE Transactions on Automatic Control. The definitive published version is available via doi: 10.1109/TAC.2011.2180090A novel scheme for fault-tolerant control is proposed in this paper, in which integral sliding mode ideas are incorporated with control allocation to cope with the total failure of certain actuators, under the assumption that redundancy is available in the system. The proposed scheme uses the effectiveness level of the actuators to redistribute the control signals to healthy actuators without reconfiguring the controller. The effectiveness of the proposed scheme against faults or failures is tested in simulation based on a large transport aircraft model. © 2011 IEEE
    corecore