1,267 research outputs found

    Optimum non linear binary image restoration through linear grey-scale operations

    Get PDF
    Non-linear image processing operators give excellent results in a number of image processing tasks such as restoration and object recognition. However they are frequently excluded from use in solutions because the system designer does not wish to introduce additional hardware or algorithms and because their design can appear to be ad hoc. In practice the median filter is often used though it is rarely optimal. This paper explains how various non-linear image processing operators may be implemented on a basic linear image processing system using only convolution and thresholding operations. The paper is aimed at image processing system developers wishing to include some non-linear processing operators without introducing additional system capabilities such as extra hardware components or software toolboxes. It may also be of benefit to the interested reader wishing to learn more about non-linear operators and alternative methods of design and implementation. The non-linear tools include various components of mathematical morphology, median and weighted median operators and various order statistic filters. As well as describing novel algorithms for implementation within a linear system the paper also explains how the optimum filter parameters may be estimated for a given image processing task. This novel approach is based on the weight monotonic property and is a direct rather than iterated method

    Face Detection and Recognition using Skin Segmentation and Elastic Bunch Graph Matching

    Get PDF
    Recently, face detection and recognition is attracting a lot of interest in areas such as network security, content indexing and retrieval, and video compression, because ‘people’ are the object of attention in a lot of video or images. To perform such real-time detection and recognition, novel algorithms are needed, which better current efficiencies and speeds. This project is aimed at developing an efficient algorithm for face detection and recognition. This project is divided into two parts, the detection of a face from a complex environment and the subsequent recognition by comparison. For the detection portion, we present an algorithm based on skin segmentation, morphological operators and template matching. The skin segmentation isolates the face-like regions in a complex image and the following operations of morphology and template matching help reject false matches and extract faces from regions containing multiple faces. For the recognition of the face, we have chosen to use the ‘EGBM’ (Elastic Bunch Graph Matching) algorithm. For identifying faces, this system uses single images out of a database having one image per person. The task is complex because of variation in terms of position, size, expression, and pose. The system decreases this variance by extracting face descriptions in the form of image graphs. In this, the node points (chosen as eyes, nose, lips and chin) are described by sets of wavelet components (called ‘jets’). Image graph extraction is based on an approach called the ‘bunch graph’, which is constructed from a set of sample image graphs. Recognition is based on a directly comparing these graphs. The advantage of this method is in its tolerance to lighting conditions and requirement of less number of images per person in the database for comparison

    Handbook of Computer Vision Algorithms in Image Algebra

    Full text link

    ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN METHOD OF STRUCTURED LIGHT 3D CAPTURE

    Get PDF
    The use of structured light illumination techniques for three-dimensional data acquisition is, in many cases, limited to stationary subjects due to the multiple pattern projections needed for depth analysis. Traditional Composite Pattern (CP) multiplexing utilizes sinusoidal modulation of individual projection patterns to allow numerous patterns to be combined into a single image. However, due to demodulation artifacts, it is often difficult to accurately recover the subject surface contour information. On the other hand, if one were to project an image consisting of many thin, identical stripes onto the surface, one could, by isolating each stripe center, recreate a very accurate representation of surface contour. But in this case, recovery of depth information via triangulation would be quite difficult. The method described herein, Modified Composite Pattern (MCP), is a conjunction of these two concepts. Combining a traditional Composite Pattern multiplexed projection image with a pattern of thin stripes allows for accurate surface representation combined with non-ambiguous identification of projection pattern elements. In this way, it is possible to recover surface depth characteristics using only a single structured light projection. The technique described utilizes a binary structured light projection sequence (consisting of four unique images) modulated according to Composite Pattern methodology. A stripe pattern overlay is then applied to the pattern. Upon projection and imaging of the subject surface, the stripe pattern is isolated, and the composite pattern information demodulated and recovered, allowing for 3D surface representation. In this research, the MCP technique is considered specifically in the context of a Hidden Markov Process Model. Updated processing methodologies explained herein make use of the Viterbi algorithm for the purpose of optimal analysis of MCP encoded images. Additionally, we techniques are introduced which, when implemented, allow fully automated processing of the Modified Composite Pattern image

    Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors

    Get PDF
    In this paper, we propose a Bayesian MAP estimator for solving the deconvolution problems when the observations are corrupted by Poisson noise. Towards this goal, a proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms such as wavelets or curvelets. Both analysis and synthesis-type sparsity priors are considered. Piecing together the data fidelity and the prior terms, the deconvolution problem boils down to the minimization of non-smooth convex functionals (for each prior). We establish the well-posedness of each optimization problem, characterize the corresponding minimizers, and solve them by means of proximal splitting algorithms originating from the realm of non-smooth convex optimization theory. Experimental results are conducted to demonstrate the potential applicability of the proposed algorithms to astronomical imaging datasets
    corecore