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F.-X. Dupéa,b,∗, M. J. Fadilia, J.-L. Starckb
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Abstract

In this paper, we propose a Bayesian MAP estimator for solving the deconvolution prob-
lems when the observations are corrupted by Poisson noise. Towards this goal, a proper
data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the
noise. On the other hand, as a prior, the images to restore are assumed to be positive
and sparsely represented in a dictionary of waveforms such as wavelets or curvelets. Both
analysis and synthesis-type sparsity priors are considered. Piecing together the data fi-
delity and the prior terms, the deconvolution problem boils down to the minimization
of non-smooth convex functionals (for each prior). We establish the well-posedness of
each optimization problem, characterize the corresponding minimizers, and solve them by
means of proximal splitting algorithms originating from the realm of non-smooth convex
optimization theory. Experimental results are conducted to demonstrate the potential
applicability of the proposed algorithms to astronomical imaging datasets.

Keywords: Deconvolution, Poisson noise, Proximal iteration, Iterative thresholding,
Sparse representations.

1. Introduction

Deconvolution is a longstanding problem in many areas of signal and image process-
ing (e.g. biomedical imaging [3, 31, 33], astronomy [3, 38], remote-sensing, to quote a
few). For example, research in astronomical image deconvolution has seen considerable
work, partly triggered by the Hubble space telescope (HST) optical aberration problem
at the beginning of its mission. In biomedical imaging, researchers are also increasingly
relying on deconvolution to improve the quality of images acquired using complex op-
tical systems, like confocal microscopes [31]. Deconvolution may then prove crucial for
exploiting images and extracting scientific content, and is more and more involved in
everyday research.
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An extensive literature exist on the deconvolution problem [1, 25, 41]. In presence
of Poisson noise, several deconvolution methods have been proposed such as Tikhonov-
Miller inverse filter and Richardson-Lucy (RL) algorithms; see [33, 38] for comprehensive
reviews. The RL has been extensively used in many applications, but as it tends to am-
plify the noise after a few iterations, several extension have been proposed. For example,
wavelet-regularized RL algorithm has been proposed by several authors [24, 36, 37]. The
interested reader may refer to [3, 13] for a more complete review on deconvolution with
Poisson noise.

In the context of deconvolution with either Gaussian or Poisson noise, sparsity-
promoting regularization over orthobasis or frame dictionaries has been recently proposed
[7, 10, 11, 13, 20, 21, 22, 32, 40].

For instance, in [13] the authors proposed to stabilize the Poisson noise using the
Anscombe variance stabilizing transform [2] to bring the problem back to deconvolution
with additive white Gaussian noise, but at the price of a non-linear data fidelity term.
However, stabilization has a cost, and the performance of such an approach degrades in
low intensity regimes. On the other hand, the authors in [32] use directly the data fidelity
term related to Poisson noise (see Section 3) and exploit its additive structure together
with some particularities of the composition of the convolution operator with tight frames
in order to solve the problem using a proximal framework. However, their framework only
applies to some special convolution kernels. Using the augmented Lagrangian method
with the alternating method of multipliers algorithm, [21] presented a deconvolution
algorithm with either a synthesis or an analysis prior. In fact, ADMM is nothing but the
Douglas-Rachford splitting [15] applied to the Fenchel-Rockafellar dual objective.

Contributions. In this paper, we propose an image deconvolution algorithm for data
blurred and contaminated by Poisson noise using analysis and synthesis-type sparsity pri-
ors. In order to form the data fidelity term, we take the exact Poisson likelihood. Putting
together the data fidelity and the prior terms, the deconvolution problem is formulated as
the minimization of a maximum a posteriori (MAP) objective functional involving three
terms: the data fidelity term; a non-negativity constraint (as Poisson data are positive by
definition); and a regularization term, in the form of a non-smooth penalty that enforces
the sparsity of the sought after image over a —possibly redundant— dictionary of wave-
forms. We establish the well-posedness of our optimization problems and characterize the
corresponding minimizers. We then solve them by means of proximal splitting algorithms
originating from the field of non-smooth convex optimization theory. More precisely we
take benefit from a generalization of Douglas-Rachford splitting to product spaces; see
Section 4.2. In order to use this proximal splitting algorithm, the proximity operator of
each individual term in the objective functional is established. Experimental results on
several imaging datasets are carried out to demonstrate the potential applicability of the
proposed algorithms and compare them with some competitors.

Notation and terminology. Let H a real Hilbert space, here a finite dimensional real
vector space. We denote by ‖.‖ the norm associated with the inner product 〈., .〉 in H,
and I is the identity operator on H. x and α are respectively reordered vectors of image
samples and coefficients. We denote by riC the relative interior of a convex set C.

A real-valued function f is coercive, if lim‖z‖→+∞ f (z) = +∞. The domain of f is
defined by dom f = {z ∈ H | f(z) < +∞} and f is proper if dom f 6= ∅. A real-valued
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function f is lower semi-continuous (lsc) if lim infz→z0 f(z) > f(z0). Γ0(H) is the class
of all proper lsc convex functions from H to (−∞,+∞]. The subdifferential of a function
f ∈ Γ0(H) at z ∈ H is the set ∂f(z) = {u ∈ H | ∀y ∈ H, f(y) > f(z) + 〈u, y − z〉}. Its
Legendre-Fenchel conjugate is f∗. We denote by ıC the indicator of the convex set

C: ıC(z) =

{

0, if z ∈ C ,
+∞, otherwise.

. See [26] for a more comprehensive account on convex

analysis.

We denote by |||M||| = maxz 6=0
‖Mz‖
‖z‖ the spectral norm of M.

2. Sparsity prior

Let x ∈ R
n be an

√
n×√

n image. We denote byΦ the dictionary, i.e. the n×Lmatrix
whose columns are the generating waveforms (called atoms) (ϕi)1≤i≤L all normalized to
a unit ℓ2-norm. The forward (analysis) transform is then defined by a non-necessarily
square matrix ΦT ∈ R

L×n with L > n. When L > n the dictionary is said to be
redundant or overcomplete. A dictionary matrix Φ is said to be a frame with bounds

c1 and c2, 0 < c1 6 c2 < +∞, if c1 ‖x‖2 6

∥
∥
∥Φ

Tx
∥
∥
∥

2

6 c2 ‖x‖2 . A frame is tight when

c1 = c2 = c, i.e. ΦΦT = cI.
In a synthesis prior model, the image x can be written as the superposition of the ele-

mentary atoms ϕi according to the following linear generative model x =
∑L

i=1 α[i]ϕi =
Φα. x is said to be sparse (resp. compressible)1 in Φ if it can be represented exactly
(resp. approximately) as a superposition of a small fraction of the atoms in the dictionary
Φ compared to the ambient dimension n. In an analysis-type prior model, the transform
coefficients ΦTx of the image x are assumed to be sparse.

In the sequel, the dictionary Φ corresponds to a frame and will be built by taking
union of one or several transforms. For instance, for astronomical objects such as stars,
the wavelet transform is a very good candidate [27]. For more anisotropic or elongated
structures, ridgelets or curvelets would be a better choice [4].

3. Problem statement

Consider the image formation model where an input image of n pixels x is blurred by
a point spread function (PSF) h and contaminated by Poisson noise. The observed image
is then a discrete collection of counts y = (yi)16i6n which are bounded, i.e. y ∈ ℓ∞.
Each count yi is a realization of an independent Poisson random variable with a mean
(h⊛ x)i, where ⊛ is the circular convolution operator. Formally, this writes,

yi ∼ P ((h⊛ x)i) . (1)

This formula can be rewritten in a vector form as y ∼ P(Hx), where H is a circular
convolution matrix. The deconvolution problem at hand is to restore x from the observed
count image y.

1With a slight abuse of terminology, in both cases we will use the term sparse.
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A natural way to attack this problem would be to adopt a maximum a posteriori
(MAP) bayesian framework with an appropriate likelihood function — the distribution
of the observed data y given an original x — reflecting the Poisson statistics of the
noise. As a prior, the image is supposed to be economically (sparsely) represented in
a pre-chosen dictionary Φ as measured by a sparsity-promoting penalty Ψ supposed
throughout to be proper, lsc and convex but non-smooth, e.g. the ℓ1 norm.

From the probability density function of a Poisson random variable, the likelihood
writes:

p(y|x) =
∏

i

((Hx)[i])y[i] exp (−(Hx)[i])

y[i]!
, (2)

and the associated log-likelihood function is

ℓℓ(y|x) =
∑

i

(
y[i] log((Hx)[i]) − (Hx)[i]− log(y[i]!)

)
. (3)

These formula are extended to the case y = 0, using the convention 0! = 1. Taking
negative log-likelihood, we arrive at the following data fidelity term:

f1 : η ∈ R
n 7→

n∑

i=1

fpoisson(η[i]), (4)

if y[i] > 0, fpoisson(η[i]) =

{

−y[i] log(η[i]) + η[i] if η[i] > 0,

+∞ otherwise,

if y[i] = 0, fpoisson(η[i]) =

{

η[i] if η[i] ∈ [0,+∞),

+∞ otherwise.

Our aim is then to solve the following optimization problems, with either an analysis-
type prior,

argmin
x∈Rn

J(x),

J : x 7→ f1 ◦H(x) + γΨ ◦ΦT(x)
︸ ︷︷ ︸

f2◦ΦT(x)

+ ıC(x)
︸ ︷︷ ︸

f3(x)

, (Pγ,ψ)

or a synthesis-type prior,

argmin
α∈RL

J ′(α),

J ′ : α 7→ f1 ◦H ◦Φ(α) + γΨ(α)
︸ ︷︷ ︸

f2(α)

+ ıC ◦Φ(α)
︸ ︷︷ ︸

f3◦Φ(α)

. (P′
γ,ψ)

The penalty function Ψ is additive, i.e. Ψ(α) =
∑L

i=0 ψ(α[i]), γ > 0 is a regularization
parameter and ıC is the indicator function of the closed convex set C. In our case, C is
the positive orthant since we are fitting Poisson intensities, which are positive by nature.

In (Pγ,ψ), the solution image x⋆A is directly targeted whose transform (analysis) co-

efficients ΦTx⋆A are the sparsest. While in problem (P′
γ,ψ), we are seeking a sparse set of

coefficients α⋆S and the solution signal or image is synthesized from these representation
coefficients and the dictionary Φ as x⋆S = Φα⋆S.
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Obviously, problems (Pγ,ψ) and (P′
γ,ψ) are not equivalent in general unless Φ is an

orthobasis. For overcomplete non-orthogonal dictionaries, the solutions to synthesis and
analysis formulations are different. Indeed, in the synthesis prior the set of solutions x⋆S
is confined to the column space of the dictionary, whereas in the analysis formulation,
the solutions x⋆A are allowed to be arbitrary vectors in R

n. Furthermore, for redundant
dictionaries, there are much fewer unknowns in the analysis formulation, hence leading to
a ”simpler” optimization problem, although the proximity operators become more com-
plicated because of composition even for simple functions. As opposed to the analysis
approach, the synthesis approach has a constructive form providing an explicit descrip-
tion of the signals it represents, and as such, can benefit from higher redundancy to
synthesize rich and complex signals. On the other hand, in the analysis approach, we
can ask a signal or image to simultaneously agree with many columns of Φ. This might
become impossible with a highly redundant dictionary.

It can be shown that for a Parseval tight frame (PTF) dictionary Φ, using the change
of variable α = ΦTx, an analysis-type prior formulation can be written as a linearly
constrained synthesis-type prior formulation. The constraint ensures that α remains in
the span of ΦT. Therefore, analysis-type prior forms can be seen as a subset of synthesis-
type prior ones; see [17] for another geometrical argument. If a global minimizer of
the synthesis-type prior satisfies the span analysis constraint, i.e. is a feasible analysis
solution, then both problems are equivalent. Other equivalence conditions can be drawn
if stronger assumptions (but useless to promote sparse solutions) are imposed on the
penalty Ψ; see e.g. [17].

With the notable exception of [17], and a recent paper by [14] on compressed sensing
(with PTF dictionaries), a little is known about the actual theoretical guarantees of
analysis-type priors in general. From a practical point of view, there is no consensus
either on the type of conclusions to be drawn from the experimental work reported in
the literature. Some authors have reported results where the analysis prior is superior to
its synthesis counterpart, e.g. [5, 17, 34]. Others have shown that they are more or less
equivalent. In our work here, the synthesis prior turns out to be better on the Saturn
image, presumably because the dictionary is very well suited to sparsely synthesize the
image (see Section 6.3).

In short, these phenomena are still not very well understood, especially for general
inverse problems operators and dictionaries Φ. More investigation is needed in this
direction to extricate the deep distinctions and similarities between the two priors.

3.1. Properties of the objective functions

From (Pγ,ψ) and (P′
γ,ψ), we have the following,

Proposition 1.

(i) f1 is a convex function and so are f1 ◦H and f1 ◦H ◦Φ.

(ii) f1 is strictly convex if ∀i ∈ {1, . . . , n}, y[i] 6= 0. f1 ◦ H remains strictly convex if
ker(H) = ∅, and so does f1 ◦H ◦Φ if Φ is an orthobasis and ker(H) = ∅.
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(iii) The gradient of f1 is

∇f1(η) = (g(η[i]))16i6n, (5)

if y[i] > 0, g(η[i]) =

{

1− y[i]
η[i] if η[i] > 0,

+∞ else.

if y[i] = 0, g(η[i]) =

{

1 if η[i] > 0,

+∞ else.

(iv) Suppose that (0,+∞) ∩ H ([0,+∞)) 6= ∅ and Ψ has full domain. Then both J ∈
Γ0(R

n) and J ′ ∈ Γ0(R
L).

Proof. The proof of (i) and (ii) follow from well-known properties of convex functions.
(iii) is obtained by straightforward calculations. (iv): J and J ′ are the sums of lsc
convex functions which entails their convexity and lower semicontinuity. Φ is a frame,
hence surjective. Thus under the assumptions of (iv), the domains of both J and J ′ are
non-empty, i.e. proper functions.

3.2. Well-posedeness of (Pγ,ψ) and (P′
γ,ψ)

Let M and M′ be respectively the sets of minimizers of problems (Pγ,ψ) and (P′
γ,ψ).

Suppose that ∃i ∈ {1, . . . , n} such that y[i] 6= 0, otherwise the minimizer would be
trivially 0. Thus J and J ′ are coercive (ΦT is injective). Therefore, the following holds:

Proposition 2.

1. Existence: each of (Pγ,ψ) and (P′
γ,ψ) has at least one solution, i.e. M 6= ∅ and

M′ 6= ∅.

2. Uniqueness: (Pγ,ψ) and (P′
γ,ψ) have unique solutions if Ψ is strictly convex, or

under (ii) of Proposition 1.

4. Iterative minimization algorithm

We are now ready to describe the proximal splitting algorithm to solve (Pγ,ψ) and
(P′

γ,ψ). At the heart of this splitting framework is the notion of proximity operator which
we are about to introduce.

4.1. Proximity operator

The proximity operator is a generalization of the projection onto a closed convex set,
introduced by Moreau [28, 29, 30],

Definition 3 (Moreau[28]). Let f ∈ Γ0(H). Then, for every x ∈ H, the function

y 7→ f(y) + ‖x− y‖2 /2 achieves its infimum at a unique point denoted by proxf x. The
operator proxf : H → H thus defined is the proximity operator of f .
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The proximity operator enjoys many properties, among these, one can easily show
that ∀x, p ∈ H

p = proxf x ⇐⇒ x− p ∈ ∂f(p) ⇐⇒ 〈y − p, x− p〉+ f(p) 6 f(y) ∀y ∈ H , (6)

which means that proxf is the resolvent of the subdifferential of f [15]. Recall that the
resolvent of the subdifferential ∂f is the single-valued operator J∂f : H → H such that
∀x ∈ H, x− J∂f (x) ∈ ∂f(J∂f) ⇐⇒ J∂f = (I+ ∂f)−1.

4.2. A splitting algorithm for sums of convex functions

Suppose that the objective function can be expressed as the sum of K convex, lsc
and proper functions,

argmin
x∈H

(f(x) =

K∑

i=1

fi(x)) . (7)

Proximal splitting methods for solving (7) are iterative algorithms which may evaluate
the individual proximity operators proxfi (perhaps approximately), but never proximity
operators of sums of the fi, and a fortiori that of f . The key idea relies on the formulation
of (7) which is such that the proximity operator of each individual function has some
(relatively) convenient structure, while those of the sums do not in general. This turns
out to be true in our case for problems (Pγ,ψ) and (P′

γ,ψ).
Splitting algorithms have an extensive literature since the 1970’s, where the case

K = 2 predominates. Usually, splitting algorithms handling K > 2 have either explicitly
or implicitly relied on reduction of (7) to the caseK = 2 in the product spaceHK . For in-
stance, applying the Douglas-Rachford splitting to the reduced form produces Spingarn’s
method [35], which performs independent proximal steps on each fi, and then computes
the next iterate by essentially averaging the individual proximity operators. The method
proposed in [9] is very similar in spirit to Spingarn’s method, where moreover, it allows
for inexact computation of the proximity operators.

For every i ∈ {1, . . . ,K}, let (at,i)t∈N be a sequence in H. Let (xt)t∈N be the sequence
as constructed by Algorithm 1. The following result due to [9] establishes the convergence
of (xt)t∈N. We reproduce it here for the sake of completeness.

Theorem 4 ([9]). Suppose that f is coercive and let (xt)t∈N be a sequence generated by
Algorithm 1 under the following assumptions,

1. f is a proper function;

2. (0, . . . , 0) ∈ ri {(x − x1, . . . , x− xK) | x ∈ H, x1 ∈ dom f1, . . . , xK ∈ dom fK};

3.
∑

t∈N
θt(2 − θt) = +∞;

4. ∀i ∈ {1, . . . ,K} ∑

t∈N
θt
∥
∥a(t,i)

∥
∥ < +∞.

Then (xt)t∈N converges to a (non-strict) global minimizer.

Notice that the sequences (a(t,i))t∈N allow for some errors in the evaluation of the
different proximity operators, with the proviso that these errors remain summable. This
is useful when the closed forms of the proximity operators are difficult to construct and

7



Algorithm 1

Task: Solve the convex optimization problem (7).
Initialization:

Choose µ ∈ (0,+∞), (p(0,i))16i6K ∈ HK , (ωi)16i6K ∈ (0, 1]K satisfying
∑K
i=1 ωi = 1

and x0 =
∑K

i=1 ωip(0,i).
Main iteration:

For t = 0 to Next − 1,

∀i ∈ {1, . . . ,K} ξ(t,i) = proxµfi/ωi
p(t,i) + a(t,i) ,

ξt =

K∑

i=1

ωiξ(t,i) ,

Choose θt ∈]0, 2[ ,
∀i ∈ {1, . . . ,K} p(t+1,i) = p(t,i) + θt

(
2ξt − xt − ξ(t,i)

)
,

xt+1 = xt + θt(ξt − xt) .

End main iteration

Output: A solution of (7): xNext
.

rather, must be computed via an inner iteration. This will turn to be the case for some
terms involved in the two objective functions of (Pγ,ψ) and (P′

γ,ψ). More precisely, the
difficulty at stake is how to deal with the composition with a bounded linear operator,
here the circular convolution operator and/or the dictionary. This is what we are about
to handle.

4.3. Proximity operator of a pre-composition with a linear operator

The following result will manifest its importance as a building block to solve the two
problems (Pγ,ψ) and (P′

γ,ψ). Indeed, it expresses the proximity operator of a function
f ∈ Γ0(H) composed with an affine operator A : Rn → R

m, x 7→ Fx− y, y ∈ R
m where

F : Rn → R
m is a bounded linear operator.

Theorem 5.

Let F be a linear bounded operator such that the domain qualification condition ri(dom(f)∩
Im(A)) 6= ∅ holds. Then f ◦A ∈ Γ0(R

m) and

(i) If F is a tight frame. Then,

proxf◦A(x) = y + c−1FT(proxcf −I)A(x). (8)

(ii) If F is a general frame. Let τt ∈ (0, 2/c2). Let (ut)t∈N be sequence of iterates
provided by Algorithm 2. Then, (ut)t∈N converges to ū and (pt)t∈N converges to
proxf◦A x = x − FTū. More precisely, these two sequences converge linearly and
the best rate is attained for τt ≡ 2/(c1 + c2):

∥
∥pt − proxf◦A(x)

∥
∥ 6

√
c2
c1

(
c2 − c1
c2 + c1

)t
∥
∥p0 − proxf◦A(x)

∥
∥ . (9)
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Algorithm 2

Task: Forward-backward algorithm to compute proxf◦A(x).
Parameters: The function f , the linear bounded operator A, number of iterations Nint

and step-size τt ∈ (0, 2/c2).
Initialization: Choose u0 ∈ R

m, p0 = x− FTu0.
Main iteration:

For t = 0 to Nint − 1,

ut+1 = τt(I− proxf/τt)(ut/τt +Apt),

pt+1 = x− FTut+1.
(10)

End main iteration

Output: The proximity operator of f ◦A at x : pNint
.

(iii) In all other cases, apply Algorithm 2 with τt ∈ (0, 2/c2). Then, (ut)t∈N converges
to ū, and (pt)t∈N converges to proxf◦A x = x− FTū at the rate O(1/t).

See the appendix for a concise proof.

When F is a frame, the convergence speed of the one-step forward-backward scheme
[23, 39] depends clearly on the redundancy of the frame. The higher the redundancy, the
slower the convergence, i.e. the number of necessary iterations to obtain an ε-accurate

solution is O
(
c1
c2

log ε−1
)

. For the general case (iii) where F is not a frame, the algorithm

necessitates as large as O(1/ε) iterations to reach an ε-accuracy on the iterates.
Assessing the convergence rate as we have just done is important when this algorithm

will be used in a nested scheme as a sub-iteration to compute the proximity operator of
the composition with a linear operator. Indeed, Theorem 4 and the discussion thereafter,
clearly states the stability of Algorithm 1 to errors in the individual proximity operators
of the functions Fi, i = 1, · · · ,K, provided that the errors remain summable. In a
nutshell, this means that if Algorithm 2 is used within Algorithm 1, a sufficient number
of inner iterations Nint must be chosen to ensure error summability. This number of
inner iterations obviously depends on the convergence speed of Algorithm 2, hence on
the structure of F.

4.4. Proximity operator of a sparsity-promoting penalty

To implement the above iteration, we need to express proxγψ. The following result
gives us the formula for a wide class of penalties ψ :

Lemma 6. Suppose that ψ satisfies, (i) ψ is convex even-symmetric , non-negative and
non-decreasing on [0,+∞), and ψ(0) = 0. (ii) ψ is twice differentiable on R \ {0}. (iii)
ψ is continuous on R, it is not necessarily smooth at zero and admits a positive right

derivative at zero ψ
′

+(0) = limh→0+
ψ(h)
h > 0. Then, the proximity operator of γΨ(α),

proxγΨ(α) has exactly one continuous solution decoupled in each coordinate αi :

proxγψ(αi) =

{

0 if |αi| 6 γψ
′

+(0)

αi − γψ
′

(ᾱi) if |αi| > γψ
′

+(0)
(11)
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A proof of this lemma can be found in [19]. A similar result is also proposed in
[8]. Among the most popular penalty functions ψ satisfying the above requirements,
we have ψ(αi) = |αi|, in which case the associated proximity operator is the popular
soft-thresholding.

4.5. Proximity operator of the data fidelity f1

The following result can be proved easily by solving the proximal optimization prob-
lem in Definition 3 with f1 as defined in (4), see also [7].

Lemma 7. Let y be the count map (i.e. the observations), the proximity operator asso-
ciated to f1 (i.e. the Poisson anti log-likelihood) is,

proxβf1 x =

(

x[i]− β +
√

(x[i]− β)2 + 4βy[i]

2

)

16i6n

. (12)

5. Sparse iterative deconvolution

The game to play now is to plug the previous results to compute the proximity
operators involved in problems (Pγ,ψ) and (P′

γ,ψ) in Algorithm 1.

Algorithm 3

Task: Image deconvolution with Poisson noise, solve (P′
γ,ψ).

Parameters: The observed image counts y, the dictionary Φ, number of main iterations
Next, number of sub-iterations Nint for the proximal operator of the data fidelity term,
µ > 0 and regularization parameter γ.
Initialization:

∀i ∈ {0, 1, 2}, p(0,i) = ΦTy.

α0 = ΦTy.
Main iteration:

For t = 0 to Next − 1,

• Data fidelity (Lemma 7 and Theorem 5(i)-(iii)): ξ(t,0) = proxµf1◦H◦Φ/3 p(t,0).

• Sparsity-penalty (Lemma 6): ξ(t,1) = proxµγΨ/3 p(t,1) = STµγ/3(p(t,1)).

• Positivity constraint (Theorem 5(i)): ξ(t,2) = proxıC◦Φ/3(p(t,3)).

• Average the proximity operators: ξt = (ξ(t,0) + ξ(t,1) + ξ(t,2))/3.

• Choose θt ∈]0, 2[.

• Update the components: ∀i ∈ {0, 1, 2}, p(t+1,i) = p(t,i) + θt(2ξt − αt − ξ(t,i)).

• Update the coefficients estimate: αt+1 = αt + θt(ξt − αt)

End main iteration

Output: Deconvolved image x⋆ = ΦαNext
.
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5.1. Analysis-type prior

For problem (Pγ,ψ), the different proximity operator are computed as follows:

(1) proxf1◦H is obtained owing to Theorem 5(iii) and Lemma 7;

(2) proxf2◦ΦT = proxγΨ◦ΦT is given by Theorem 5(iii) and Lemma 6;

(3) proxf3 = proxıC is directly is the euclidean projection onto the closed convex set C.

5.2. Synthesis-type prior

As far as problem (P′
γ,ψ) is concerned, here is how the proximity operators are com-

puted:

(1) proxf1◦H◦Φ is computed using Theorem 5 and Lemma 7: use Theorem 5(i) and
Theorem 5(iii) if Φ is a tight frame, or Theorem 5(iii) otherwise;

(2) proxf2 = proxγΨ is given using Lemma 6;

(3) proxf3◦Φ = proxıC◦Φ is given by Theorem 5(i) or (ii) and the projector onto the
closed convex set C: use Theorem 5(i) if Φ is a tight frame, or Theorem 5(ii) if it is
a general frame;

For example, let f2 be the ℓ1-norm (i.e. ψ = |.|) and f3 = ıC ◦Φ, where C is the positive
orthant and Φ is a tight frame, then (P′

γ,ψ) is solved by Algorithm 3.

5.3. Computational complexity and implementation details

The bulk of computation of our deconvolution algorithm is invested in applying Φ

(resp. H) and its adjoint ΦT (resp. HT). These operators are never constructed ex-
plicitly, rather they are implemented as fast implicit operators taking a vector x, and
returning Φx (resp. ΦTx) and Hx (resp. HTx). Multiplication by H or HT costs
two FFTs, that is 2n logn operations (n denotes the number of pixels). The complexity
of Φ and ΦT depends on the transforms in the dictionary: for example, the orthogo-
nal wavelet transform costs O(n) operations, the translation-invariant discrete wavelet
transform (TI-DWT) costs O(n logn), the curvelet transform costs O(n logn), etc. Let
VΦ denote the complexity of applying the analysis or synthesis operator. Define Next and
Nint as the maximal number of outer and inner iterations respectively in Algorithm 1
and Algorithm 2, and recall that L is the number of coefficients. The computational
complexity of the algorithms for solving (Pγ,ψ) and (P′

γ,ψ) are summarized as follows:

Problem Computational complexity

Φ orthobasis or tight frame
(Pγ,ψ) Next (Nint (4O(n logn) + 2VΦ) +O(n))
(P′

γ,ψ) Next (4VΦ +Nint (4n logn) +O(L))

Φ general frame or linear bounded operator
(Pγ,ψ) Next (Nint (4O(n logn) + 2VΦ) +O(n))
(P′

γ,ψ) Next (Nint (4VΦ + 4n logn+O(L)))

11



6. Results

6.1. Experimental protocol

We applied the proposed algorithms on a simulated image of the Hubble Space Tele-
scope Wide Field Camera of a distant cluster of galaxies [38] and an image of the planet
Saturn. In the sequel, our algorithms are respectively dubbed Prox-FA (for the one
with the analysis prior) and Prox-FS (for that associated to the synthesis prior). For
both of them, the number of interior iterations Nint was set to 10 which was enough to
ensure convergence (i.e. the error terms in the computation of the proximity operators
were under control). The obtained results were compared with others state-of-the art
algorithms: the naive approach treating the noise as if it were additive white Gaussian
(NaiveG [42]), the Anscombe variance stabilizing approach (StabG [13]), and the algo-
rithms proposed in [21] with the synthesis (PIDAL-FS) and the analysis (PIDAL-FA)
priors. For all compared algorithms, the sparsity-promoting penalty was the ℓ1-norm
whose proximity operator is well-known soft-thresholding operator. For fair comparison,
all algorithms were stopped when the relative change between two consecutive iterates
was below a given tolerance δ > 0, i.e.

‖xt+1 − xt‖2 / ‖xt‖2 ≤ δ . (13)

The quantitative score of restoration quality was the the mean absolute error (MAE).
The MAE was chosen as it is well suited to Poisson noise [13].

As usual in regularized inverse problems, the choice of the regularization parameter
γ is crucial. When the reference image is available, its choice can be tweaked manually
so as to maximize the restoration quality by minimizing some quality score; e.g. MAE.
But of course, this is a tedious task and cumbersome for real data. To circumvent these
difficulties, in [13], an objective model selection driven choice based on the GCV was
proposed. An approximate closed-form of the GCV was derived (see for [13] details),

GCV(γ) =

∥
∥
∥2
√

y + 3
8 − 2

√

Hx⋆ + 3
8

∥
∥
∥

2

(n− df)2
, (14)

with df ≈ card
{
i = 1, . . . , L

∣
∣ |α⋆i | ≥ γ

}
,

where x⋆ is the restored image provided by the estimator. It was shown in [13] that
the GCV-based choice of γ, although turned out to be close to the value that actually
minimizes the MAE and the MSE, was slightly upper-biased in practice. The GCV then
was used as a first good guess that might need refinement.

6.2. Simulated sky image

Figure 1(a) displays a simulated image of the sky. The maximal intensity (mean
photon count) in this image is ∼18000. The blurred version by h (using the Hubble’s
PSF before being repaired [38]) and the noisy ones are depicted in Figure 1(b) and
(c). For this image, the dictionary Φ contained a tight frame of translation-invariant
wavelets (TI-DWT). For this image, we also include in the comparative study the de-
convolution obtained with Richardson-Lucy regularized with the wavelet multiresolution
support (RL-MRS) as proposed in [36]. The latter was specifically designed for this kind
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RL-MRS [38] RL-TV [12] FTITPR [44] NaiveG [42] StabG [13]
MAE 63.5 52.8 60.9 39.8 43

PIDAL-FA [21] PIDAL-FS [21] Prox-FA Prox-FS
MAE 40 43.6 37.8 35.6

Table 1: MAE for the deconvolution of the sky image.

of objects. We also compare to the total-variation regularized Richardson-Lucy algorithm
(RL-TV) proposed in [12], and the fast translation invariant tree-pruning reconstruction
combined with an EM algorithm (FTITPR [44]). For each compared method, the reg-
ularization parameter was tuned manually to achieve its best performance level (i.e.
minimize MAE), and the convergence tolerance δ was set to 10−5.

For this image, the best algorithm is clearly RL-MRS where most of the small faint
structures as well as bright objects are well deconvolved. However, small artifacts from
the wavelet transform are also present. The StabG algorithm does a good job and
preserves most of the weak objects which are barely visible in the degraded noisy image.
At this intensity regime, the NaiveG algorithm yielded satisfactory results, which are
comparable to ours. FTITPR correctly restores most of the important structures with
a clean background, but many faint objects are lost. RL-TV leads to a deconvolution
similar to ours for bright objects, but the background is dominated by spurious artifacts.
The PIDAL approaches give quite similar results, PIDAL-FA leads here to a smoother
estimate than PIDAL-FS. In the other hand PIDAL-FS seems to preserve more sources,
as it can be seen for example on the bottom left, where one can notice objects that do
not appear in the results of PIDAL-FA. In the same way, our algorithms yield results
comparable to their respective parts of PIDAL as expected since they solve the same
optimization problems. Prox-FS shows one of the best deconvolution results with a
clean background and good restoration of most objects, although a few small details are
oversmooth (see on bottom left).

These qualitative results are confirmed by a quantitative score of the restoration
quality in terms of the MAE, see Table 1. Notice that the hight MAE value of RL-MRS,
which might seem surprising given its good visual result, might be explained by the
artifacts that locally destroy the photometry.

6.3. Intensity level influence

To assess the impact of the intensity level (average photon counts), the different
algorithms in the comparative study were applied to an image of the planet Saturn at
several intensity levels. In this experiment, the PSF was a 7 × 7 moving average. The
regularization parameter γ was chosen using the GCV criterion (14). Given that this
image is piecewise smooth away from smooth curvilinear structures (e.g. the rings), the
curvelet dictionary will be a very good candidate to sparsify it [4].

At each intensity value, ten noisy and blurred replications were generated and the
MAE was computed for each deconvolution algorithm. The average and relative (i.e.
divided by the mean intensity) MAE values over the ten realizations are summarized
in Table 2. As expected, for low intensity levels, the best results are obtained for the
methods using data fidelity terms that account properly for Poisson noise. For higher
levels, the performance of NaiveG gets better as the Poisson distribution tends to normal
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Intensity Level NaiveG StabG PIDAL-FA PIDAL-FS Prox-FA Prox-FS

5 0.70 (33.49) 1.14 (54.54) 0.34 (16.04) 0.24 (11.78) 0.42 (20.09) 0.25 (11.96)
30 1.27 (10.13) 6.62 (52.78) 4.22 (33.62) 1.41 (11.23) 2.35 (18.74) 2.09 (16.66)
100 3.24 (7.75) 26.73 (63.94) 23.40 (55.97) 12.46 (29.81) 7.88 (18.85) 7.31 (17.49)
255 7.48 (7.02) 80.45 (75.46) 73.83 (69.26) 49.36 (46.30) 21.02 (19.72) 18.78 (17.62)

Table 2: Average MAE values and relative MAE (in parentheses and in percent) for the Saturn image as
a function of the intensity level with the naive Gaussian (NaiveG) [43], stabilized gaussian (StabG) [13],
PIDAL-FA and PIDAL-FS [21], and our two algorithms Prox-FA and Prox-FS.

with increasing intensity. The difference in performance, especially for the high inten-
sity regime, between our approaches and the PIDAL ones seem to originate from the
optimization algorithms used (and their convergence then).

For this image, it seems that the synthesis prior is slightly better than the analysis
one. This might seem contradictory with results reported in the Gaussian noise case
by a few authors where the analysis prior was observed to be superior to its synthesis
counterpart [5, 17, 34]. But one should avoid to infer strong conclusions from such limited
body of experimental work. For instance, the noise is different in our setting, and the
deep phenomena underlying differences and similarities between analysis and synthesis
priors are still not very well understood and more investigation is needed in this direction
both on the theoretical and practical sides.

The visual results obtained for a maximal intensity of 30 are portrayed in Figure 2. For
all the methods, the curvelet transform is able to capture most of the curved structures
inside the image and then leads to a good restoration of them. The original image
contains some tiny satellites at the bottom right that appear as localized spikes. Prox-
FA was able to recover one of them, though it is hardly visible in the restored image.
Prox-FS however recovers several structures that look like background artifacts including
the satellites. A wise solution would be to use another transform in the dictionary beside
curvelets, which is well-adapted to point-like structures (e.g. wavelets or even Diracs).

7. Conclusion

In this paper, a novel sparsity-based fast iterative thresholding deconvolution algo-
rithm that takes account of the presence of Poisson noise was presented. The Poisson
noise was handled properly using its associated likelihood function to construct the data
fidelity term. A careful theoretical study of the optimization problems and convergence
guarantees of the iterative algorithms were provided. Several experimental experiments
have shown the capabilities of our approach, which compares favorably with some state-
of-the-art algorithms.

The present work may be extended along several lines. For example, our approach
uses a proximal algorithm which is a generalization of the Douglas-Rachford splitting
applied to the primal problem, but to the best of our knowledge, its convergence rate
(even on the objective) is not known. Furthermore, in this paper, the regularization
parameter was chosen based on the GCV formula proposed, see (14). But this formula
was derived using some heuristics and was valid for the stabilized version of the deconvo-
lution problem. This objective and automatic selection of the regularization parameter
remains an open issue that is worth investigating in the future.
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Appendix A. Proof of Theorem 5

As A is an affine operator, it preserves convexity. Thus, f ◦A is convex. Moreover,
A is continuous and f is lsc, and so is f ◦ A. By the domain qualification condition,
we then have f ◦A ∈ Γ0(R

m). Note that the domain assumption in the theorem is not
needed for frames by surjectivity of F.

By Fenchel-Rockafellar duality [16, Section III.4], we have

p̄ = proxproxf◦A
⇐⇒ p̄ = arginf

p∈Rn

1

2
‖p− x‖2 + f ◦A(p) (A.1)

⇐⇒ ū = argmin
u∈Rm

1

2

∥
∥
∥x− FTu

∥
∥
∥

2

+ 〈u, y〉+ f∗(u) , (A.2)

and the primal solution p̄ is recovered from the dual solution ū as

p̄ = x− FTū .

(i) F is a tight frame with constant c > 0. Applying the minimality condition to (A.2),
using the fact that FFT = cI and Moreau Identity, we obtain

(Fx− y)− cū ∈ ∂f∗(ū)

c−1(Fx− y)− ū ∈ ∂(c−1f∗)(ū)

ū = proxc−1f∗

(
c−1(Fx− y)

)

ū = c−1
(
I− proxcf

)
(Fx− y) , (A.3)

which leads to (8).

(ii) F is a general frame operator. From (A.2), 1
2

∥
∥
∥x− FT.

∥
∥
∥

2

+ 〈., y〉 is continuous

with c2-Lipschitz continuous gradient. Therefore, applying the forward-backward
splitting to the minimization problem (A.2), we obtain (10). From strong convexity
of the dual problem (A.2), the dual minimizer is unique.

To get the linear convergence rate, the proof is very classical and is an extension of
the projected gradient descent one that can be found in classical monographs such
as [6, Theorem 8.6.2].

(iii) In all other cases, the forward-backward splitting applied to (A.2) converges pro-

vided that 0 < inft τt ≤ supt τt < 2/ |||F|||2 = 2/c2. The proof of the convergence
rate is technical and follows the same lines as [18, Theorem 1].
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[30] Moreau, J.-J., 1965. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: Deconvolution of the sky simulation. (a) Original, (b) Blurred, (c) Blurred and noisy, (d)
RL-MRS [38], (e) RL-TV [12], (f) FTITPR [44], (g) NaiveG [42], (h) StabG [13], (i) PIDAL-FA [21], (j)
PIDAL-FS [21], (k) Prox-FA, (l) Prox-FS. 18



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Deconvolution of Saturn image. (a) original, (b) Convolved, (c) Convolved and Noisy, (d)
NaiveG [43], (e) StabG [13], (f) PIDAL-FA [21], (g) PIDAL-FS [21], (h) Prox-FA, (i) Prox-FS.
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