807 research outputs found

    Multiorder polygonal approximation of digital curves

    Get PDF
    In this paper, we propose a quick threshold-free algorithm, which computes the angular shape of a 2D object from the points of its contour. For that, we have extended the method defined in [4, 5] to a multiorder analysis. It is based on the arithmetical definition of discrete lines [11] with variable thickness. We provide a framework to analyse a digital curve at different levels of thickness. The extremities of a segment provided at a high resolution are tracked at lower resolution in order to refine their location. The method is thresholdfree and automatically provides a partitioning of a digital curve into its meaningful parts

    Polygonal Representation of Digital Curves

    Get PDF

    Piecewise Linear Approximations of Digitized Space Curves with Applications

    Get PDF

    Contour Extraction and Compression-Selected Topics

    Get PDF

    A structural representation for understanding line-drawing images

    Get PDF
    International audienceIn this paper, we are concerned with the problem of finding a good and homogeneous representation to encode line-drawing documents (which may be handwritten). We propose a method in which the problems induced by a first-step skeletonization have been avoided. First, we vectorize the image, to get a fine description of the drawing, using only vectors and quadrilateral primitives. A structural graph is built with the primitives extracted from the initial line-drawing image. The objective is to manage attributes relative to elementary objects so as to provide a description of the spatial relationships (inclusion, junction, intersection, etc.) that exist between the graphics in the images. This is done with a representation that provides a global vision of the drawings. The capacity of the representation to evolve and to carry highly semantic information is also highlighted. Finally, we show how an architecture using this structural representation and a mechanism of perceptive cycles can lead to a high-quality interpretation of line drawings

    A multi-objective approach for the segmentation issue

    Get PDF
    Special Issue: Multi-objective metaheuristics for multi-disciplinary engineering applicationsThis work presents and formalizes an explicit multi-objective evolutionary approach for the segmentation issue according to Piecewise Linear Representation, which consists in the approximation of a given digital curve by a set of linear models minimizing the representation error and the number of such models required. Available techniques are focused on the minimization of the quality of the obtained approximation, being the cost of that approximation considered, in general, only for certain comparison purposes. The multi-objective nature of the problem is analysed and its treatment in available works reviewed, presenting an a posteriori approach based on an evolutionary algorithm. Three representative curves are included in the data set, comparing the proposed technique to nine different techniques. The performance of the presented approach is tested according to single and multiobjective perspectives. The statistical tests carried out show that the experimental results are, in general, significantly better than available approaches from both perspectives.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02.Publicad

    On the Detection of Visual Features from Digital Curves using a Metaheuristic Approach

    Get PDF
    In computational shape analysis a crucial step consists in extracting meaningful features from digital curves. Dominant points are those points with curvature extreme on the curve that can suitably describe the curve both for visual perception and for recognition. Many approaches have been developed for detecting dominant points. In this paper we present a novel method that combines the dominant point detection and the ant colony optimization search. The method is inspired by the ant colony search (ACS) suggested by Yin in [1] but it results in a much more efficient and effective approximation algorithm. The excellent results have been compared both to works using an optimal search approach and to works based on exact approximation strateg

    Thinning-free Polygonal Approximation of Thick Digital Curves Using Cellular Envelope

    Get PDF
    Since the inception of successful rasterization of curves and objects in the digital space, several algorithms have been proposed for approximating a given digital curve. All these algorithms, however, resort to thinning as preprocessing before approximating a digital curve with changing thickness. Described in this paper is a novel thinning-free algorithm for polygonal approximation of an arbitrarily thick digital curve, using the concept of "cellular envelope", which is newly introduced in this paper. The cellular envelope, defined as the smallest set of cells containing the given curve, and hence bounded by two tightest (inner and outer) isothetic polygons, is constructed using a combinatorial technique. This envelope, in turn, is analyzed to determine a polygonal approximation of the curve as a sequence of cells using certain attributes of digital straightness. Since a real-world curve=curve-shaped object with varying thickness, unexpected disconnectedness, noisy information, etc., is unsuitable for the existing algorithms on polygonal approximation, the curve is encapsulated by the cellular envelope to enable the polygonal approximation. Owing to the implicit Euclidean-free metrics and combinatorial properties prevailing in the cellular plane, implementation of the proposed algorithm involves primitive integer operations only, leading to fast execution of the algorithm. Experimental results that include output polygons for different values of the approximation parameter corresponding to several real-world digital curves, a couple of measures on the quality of approximation, comparative results related with two other well-referred algorithms, and CPU times, have been presented to demonstrate the elegance and efficacy of the proposed algorithm

    Contribuciones sobre métodos óptimos y subóptimos de aproximaciones poligonales de curvas 2-D

    Get PDF
    Esta tesis versa sobre el an álisis de la forma de objetos 2D. En visión articial existen numerosos aspectos de los que se pueden extraer información. Uno de los más usados es la forma o el contorno de esos objetos. Esta característica visual de los objetos nos permite, mediante el procesamiento adecuado, extraer información de los objetos, analizar escenas, etc. No obstante el contorno o silueta de los objetos contiene información redundante. Este exceso de datos que no aporta nuevo conocimiento debe ser eliminado, con el objeto de agilizar el procesamiento posterior o de minimizar el tamaño de la representación de ese contorno, para su almacenamiento o transmisión. Esta reducción de datos debe realizarse sin que se produzca una pérdida de información importante para representación del contorno original. Se puede obtener una versión reducida de un contorno eliminando puntos intermedios y uniendo los puntos restantes mediante segmentos. Esta representación reducida de un contorno se conoce como aproximación poligonal. Estas aproximaciones poligonales de contornos representan, por tanto, una versión comprimida de la información original. El principal uso de las mismas es la reducción del volumen de información necesario para representar el contorno de un objeto. No obstante, en los últimos años estas aproximaciones han sido usadas para el reconocimiento de objetos. Para ello los algoritmos de aproximaci ón poligonal se han usado directamente para la extracci ón de los vectores de caracter ísticas empleados en la fase de aprendizaje. Las contribuciones realizadas por tanto en esta tesis se han centrado en diversos aspectos de las aproximaciones poligonales. En la primera contribución se han mejorado varios algoritmos de aproximaciones poligonales, mediante el uso de una fase de preprocesado que acelera estos algoritmos permitiendo incluso mejorar la calidad de las soluciones en un menor tiempo. En la segunda contribución se ha propuesto un nuevo algoritmo de aproximaciones poligonales que obtiene soluciones optimas en un menor espacio de tiempo que el resto de métodos que aparecen en la literatura. En la tercera contribución se ha propuesto un algoritmo de aproximaciones que es capaz de obtener la solución óptima en pocas iteraciones en la mayor parte de los casos. Por último, se ha propuesto una versi ón mejorada del algoritmo óptimo para obtener aproximaciones poligonales que soluciona otro problema de optimización alternativo.This thesis focus on the analysis of the shape of objects. In computer vision there are several sources from which we can extract information. One of the most important source of information is the shape or contour of objects. This visual characteristic can be used to extract information, analyze the scene, etc. However, the contour of the objects contains redundant information. This redundant data does not add new information and therefore, must be deleted in order to minimize the processing burden and reducing the amount of data to represent that shape. This reduction of data should be done without losing important information to represent the original contour. A reduced version of a contour can be obtained by deleting some points of the contour and linking the remaining points by using line segments. This reduced version of a contour is known as polygonal approximation in the literature. Therefore, these polygonal approximation represent a compressed version of the original information. The main use of polygonal approximations is to reduce the amount of information needed to represent the contour of an object. However, in recent years polygonal approximations have been used to recognize objects. For this purpose, the feature vectors have been extracted from the polygonal approximations. The contributions proposed in this thesis have focused on several aspects of polygonal approximations. The rst contribution has improved several algorithms to obtain polygonal approximations, by adding a new stage of preprocessing which boost the whole method. The quality of the solutions obtained has also been improved and the computation time reduced. The second contribution proposes a novel algorithm which obtains optimal polygonal approximations in a shorter time than the optimal methods found in the literature. The third contribution proposes a new method which may obtain the optimal solution after few iterations in most cases. Finally, an improved version of the optimal polygonal approximation algorithm has been proposed to solve an alternative optimization problem
    corecore