Purdue University

Purdue e-Pubs

Piecewise Linear Approximations of Digitized Space Curves with Applications

Insung Ihm

Bruce Naylor
Report Number:
90-1036

Ihm, Insung and Naylor, Bruce, "Piecewise Linear Approximations of Digitized Space Curves with Applications" (1990). Department of Computer Science Technical Reports. Paper 37.
https://docs.lib.purdue.edu/cstech/37

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

PIECEWISE LINEAR APPROXIMATION OF DIGITIZED SPACE CURVES WITH APPLICATIONS

Insung Ihm
and
Bruce Naylor

Computer Sciences Department
Purdue University
Technical Report CSD-TR-1036
CAPO Report CER-90-42
November, 1990

Piecewise Linear Approximations of Digitized Space Curves with Applications

Insung Ihm
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

Bruce Naylor
AT\&T Bell Laboratories
Murray Hill, NJ 07974

November 6, 1990

Abstract

Generating piecewise linear approximations of digitized or "densely sampled" curves is an important problem in image processing, pattern recognition, geometric modeling, and computer graphics. Even though much attention has been paid to the planar curve case, little work lias addressed space curve approximation. In this paper, we consider how to approximate an arbitrary digitized $\oint-D$ space curve, made of $n+1$ points, with m line segments. First, we present an algorithm which finds, using the dynamic programming technique, an optimal approximation that minimizes the maximum distance error of each line segment. While it computes an optimal solution, the algorithm consumes $O\left(n^{3} \cdot \log m\right)$ time and $O\left(n^{2} \cdot \log m\right)$ space, which is excessive. We then introduce a heuristic algorithm which quickly computes a good approximation of an arbitrary space curve in $O\left(N_{\text {iter }} \cdot n\right)$ time and $O(n)$ space. This heuristic algorithm is based upon the notions of curve length and spherical image which are the fundamental concepts describing intrinsic properties of space curves. Our heuristic algorithm consists of two parts, computation of an initial approximation and itcrative refinement of the approximation. The performances of the heuristic algorithm for selected test cases are examined. We apply this fast heuristic algorithm to adaptively linearize implicit space curve segments formed by the intersection of two algebraic surfaces and to adaptively polygonize implicit surface patches. We then use the approximations to adaptively construct binary space partitioning trees for a class of objects made by revolution. We show that the linear approximation of a curve can be naturally extended to linearly approximate some class of curved 3D objects in bsp trees with well-balanced structures. The resulting trees appear to be near optimal in the light of expected time for insertion into the tree.

Keywords : Piecewise linear approximation, Digitized space curves, Dynamic programming, Optimization, Algebraic curves and surfaces, Binary space partitioning tree

1 Introduction

The piecewise linear approximation of a digitized, or densely sampled, curve is an important problem in image processing, pattern recognition, geometric modeling, and computer graphics. Digitized curves occur as boundaries of regions or objects. Such curves, usually represented as sequences of
points, may be measured by devices such as scanning digitizers or be generated by evaluating parametric equations of space curves, or tracing intersection curves for given implicit surface equations. They can also be obtained from an experiment. For the sake of efficient manipulation of digitized curves, they are represented in the form of sequences of line segments, which are inexpensive primitives in image processing or computer graphics. While the original curves are made of large sequences of points, their approximations are represented by a small number of line segments that are visually acceptable.

The piecewise linear approximation problem has received much attention, and there exist many heuristic based approximation algorithms for this problem. Standard line fitting methods such as least squares approximation, Chebycheff approximation and any other nonlinear approximation [7, $8,27,17$] are not well suited for use in a situation where fast and interactive response time is required, since these approximation algorithms performs poorly in terms of computational time and space. On the other hand, the literature in the related areas contains many heuristic methods that are more direct and efficient even though, in general, they do not find an optimal approximation [25, $23,26,35,32,22,33,28,10,11]$.

Most of these works, however, consider only planar curves as their inputs data. In many applications, a three dimensional (3-D) object is designed with a set of boundary curves in 3-D space which are represented as a set of equations or as a sequence of points in 3-D space. Hence, having a good approximation method for digitized space curves is essential. In Kehtarnavaz and deFigueiredo [14], a quintic B-spline is constructed for noisy data, and the length of Darboux vector, also known as total curvature, is used as the criterion for segmentation of 3-D curves. This method requires construction of quintic B-splines, explicit computation of curvature and torsion, and root solving of polynomials.

In this paper, we consider how to quickly produce a good piecewise linear approximation of a digitized space curve with a small number of line segments. Our algorithm is based upon the notions of curve length and spherical image which are fundamental concepts in differential geometry [15]. In Section 2, we define some notations and give a mathematical formulation of the specific problem we are dealing with. This approximation problem is naturally reduced to a combinatorial minimax problem which can be restated as "Given some number of points, choose a smaller number of points such that the maximum error of approximation is minimized". In Section 3, an optimal approximation is found in $O\left(n^{3} \cdot \log m\right)$-time and $O\left(n^{2} \cdot \log m\right)$-space. We describe, in Section 4, a fast heuristic iterative algorithm which requires $O\left(N_{\text {iter }} \cdot n\right)$-time and $O(n)$-space, where $N_{\text {iter }}$ is a number of iterations carried out. Also, the performances of the heuristic algorithm for some test cases are analyzed. In Section 5, we illustrate applications of this fast heuristic algorithm in which implicit space curves and implicit surfaces are adaptively linearized. In Section 6, we also apply the heuristic approximation algorithm to construct adaptive binary space partitioning trees for a class of objects made by general revolution. It is shown that the linear approximation of a curve can be naturally extended to linearly approximate some class of curved 3D objects in bsp trees with well-balanced structure.

2 Preliminaries

We first define a digitized space curve.
Definition 2.1 Let C be a space curve in three dimensional space. A space curve segment $C(a, b)$ is a connected portion of a curve C with end points $a, b \in \Re^{3}$.

In order to define a curve segment without ambiguity, a tangent vector at a might be needed. But we assume this vector is implicitly given.

Definition 2.2 A digitized space curve segment $\bar{C}(a, b, n)$ of order n is an ordered sequence $\{a=$ $\left.p_{0}, p_{1}, p_{2}, \cdots, p_{n}=b\right\}$ of points $p_{i} \in \Re^{3}, i=0,1, \cdots n$, which approximates $C(a, b)$.

Approximation of a digitized space curve with a small number of line segments results in an approximation error. The quality of approximation is measured in terms of a given error norm that can be defined in many ways. Some of most commonly used ones are

1. infinite norm:

$$
L_{\infty}=\max e_{i}
$$

2. 2-norm:

$$
L_{2}=\left(\sum e_{i}^{2}\right)^{\frac{1}{2}}
$$

3. area norm : $L_{\text {area }}=$ absolute area between curve segment and approximating line segment.

In this paper, we use L_{∞} as an error norm to measure a goodness of an approximation. Note that our algorithms in the later sections are also compatible with L_{2}.

Definition 2.3 A piecewise linear approximation $L A(\bar{C}, a, b, m)$ of order m to $\bar{C}(a, b, n)$ is an increasing sequence $\left\{0=q_{0}, q_{1}, q_{2}, \cdots, q_{m}=n\right\}$ of indices to points in \bar{C}. An error $E(L A(\bar{C}, a, b, m))$ of a piecewise linear approximation $L A$ is defined as $\max _{0 \leq i \leq m-1} E_{\text {seg }}(i)$ where the i-th segment error $E_{\text {seg }}(i)$ is $\max _{q_{i} \leq j \leq q_{i+1}} \operatorname{dist}\left(p_{j}, \operatorname{line}\left(p_{q_{i}}, p_{q_{i+1}}\right)\right.$), and dist $(x$, line $(y, z))$ is the Euclidean distance from a point x to a line, determined by two points y and z. ${ }^{1}$

As pointed out in Pavlidis and Horowitz [23], the problem of finding a piecewise linear approximation $L A$ can be expressed in two ways:

1. find a $L A(\bar{C}, a, b, m)$ such that $E(L A)<\epsilon$ for a given bound ϵ and m is minimized.
2. find a $L A(\bar{C}, a, b, m)$ that minimizes $E(L A)$ for a given m.

In this paper, we focus mainly on the second type of problem. Ilowever, we will also discuss briefly the first type of problem in Section 4.3.5. One more definition before describing our problem.

Definition 2.4 Given $\bar{C}(a, b, n)$ and an integer $m(n \geq m)$, the optimal piecewise linear approximation $L A^{*}(\bar{C}, a, b, m)$ of order m is a piecewise linear approximation such that $E\left(L A^{*}\right) \leq E(L A)$ for any piecewise linear approximation $L A$ of order m. (Note $L A^{*}$ is not unique.)

Given these definitions, the problem can be stated as :
Problem 1 Given $\bar{C}(a, b, n)$ and m, find $L A^{*}(\bar{C}, a, b, m)$.

[^0]
3 An Optimal Solution

3.1 An Algorithm

A naive algorithm would be as following :

Algorithm 3.1 (NAIVE)

```
temp \(=\infty\);
for all the possible \(\binom{n-1}{m-1} L A(\vec{C}, a, b, m)\) do
    compute \(E(L A)\);
    if \(E(L A)<\) temp then \(L A^{m}=L A ;\) temp \(=E(L A)\);
endfor
```

Note that the problem has a recursive nature, that is, it can be naturally divided into two subproblems of the same type. Dynamic programming, which is a general problem-solving technique widely used in many disciplines [1], can be applied in this case to produce a rather straightforward algorithm. We first give an algorithm which works in case m is a power of 2 . Then the algorithm is slightly modified for an arbitrary m.

Define $E_{i j}^{l}$ to be the error of $L A^{*}\left(\bar{C}, p_{i}, p_{j}, l\right)$, that is, the smallest error of all piecewise linear approximations with l segments to the portion of \bar{C} from p_{i} to p_{j}. Then $E_{i j}^{l}$ can be expressed in terms of $E_{i k}^{\frac{1}{2}}$ and $E_{k j}^{\frac{1}{2}}$ as following :

$$
\begin{equation*}
E_{i j}^{2^{d}}=\min _{i<k<j} \max \left\{E_{i k}^{2^{d-1}}, E_{k j}^{2^{d-1}}\right\} \quad \text { for } \quad 0 \leq i<j \leq n \text { and } d>0 . \tag{1}
\end{equation*}
$$

(Note that $E_{i j}^{l}=0$ if $j-i \leq l$.)
The recursive relation renders the following dynamic programming algorithm which computes the minimum error $E_{0 n}^{m}$ and its corresponding $L A^{*}$:

Algorithm 3.2 (DYNAMIC)

```
/* basis step */
for \(i=0\) to \(n-1\) do
    for \(j=i+1\) to \(n\) do
        compute \(E_{i j}^{1}\);
    endfor
endfor
/* inductive step */
for \(d=1\) to \(\log m\) do
    for \(i=0\) to \(n-2^{d}-1\) do
        for \(j=i+2^{d}+1\) to \(n\) do
        \(E_{i j}^{2^{d}}=\max \left\{E_{i k^{\prime}}^{2^{d-1}}, E_{k^{\prime} j}^{2^{d-1}}\right\}=\min _{i<k<j} \max \left\{E_{i k}^{2^{d-1}}, E_{k j}^{2^{d-1}}\right\} ;\)
        \(K_{i j}^{d}=k^{\prime}\);
        endfor
    endfor
endfor
construct \(L A^{-}\)from \(K_{i j}^{d}\);
```

In the basis step, $E_{i j}^{1}$ is computed by calculating the distances from the points $p_{k}, i<k<j$ to the line passing through p_{i} and p_{j}, and taking their maximum. $K_{i j}^{d}$ is needed to recursively construct the optimal piecewise linear approximation once $E_{0 n}^{m}$ is computed. Note the recursive relation $L A^{\mathbf{*}}\left(\bar{C}, p_{i}, p_{j}, 2^{d}\right)=L A^{\mathbf{*}}\left(\bar{C}, p_{i}, p_{K_{i j}^{d}}, 2^{d-1}\right) \cup L A^{\mathbf{m}}\left(\bar{C}, p_{K_{i j}^{d}}, p_{j}, 2^{d-1}\right)$.

3.2 The Time and Space Complexities

Since $E_{i j}^{1}$ is computed in $O(j-i)$ time, the basis step requires $O\left(\sum_{i=0}^{n-1} \sum_{j=i+1}^{n}(j-i)\right)=O\left(n^{3}\right)$ time. Similarly, $E_{i j}^{2^{d}}$ can be computed in $O(j-i)$ time. So, the inductive step needs $O\left(n^{3} \cdot \log m\right)$ time. Also, construction of $L A^{\text {² }}$ can be done in $O(m)$ time. These three time bounds are combined into $O\left(n^{3} \cdot \log m\right)$.

With regard to space, the algorithm needs $O\left(n^{2}\right)$ space for storing a table for $E_{i j}^{2^{d}}$. Also, $O\left(n^{2} \cdot \log m\right)$ space is required to save $K_{i j}^{d}, d=1,2, \cdots, \log m$. Hence, the space complexity is $O\left(n^{2} \cdot \log m\right)$. As is the case, dynamic programming exploits the traditional space-time trade-off.

3.3 An Algorithm for an Arbitrary m

When m is not a power of 2 , we can break m into m^{\prime} and $m-m^{\prime}$, where m^{\prime} is the largest power of 2 less than $m . m-m^{\prime}$ is then broken if it is not a power of 2 . Applying this process repeatedly produces two sequences of numbers, one made of powers of 2 , and the other made of non-powers of 2. By maintaining two tables, and synchronizing the order of merging operations, $E_{0 \pi}^{m}$ can be computed. It is not difficult to see that this modification only increases both time and space complexities by constant factors.

4 Heuristic Solutions

Even though the algorithm $D Y N A M I C$ finds an optimal approximation, the time and space requirement is excessive. As stated in Section 4.3.4, the algorithm is extremely slow even for modest n, for example, $n=400$. Practically, it is more desirable to generate quickly a reasonably good approximation. In this section, we describe a heuristic algorithm which consists of two parts, computation of an initial approximation and iterative refinement of the approximation. Our heuristic algorithm is based upon the observation that the error of a segment is a function of the length of the curve segment, and the total absolute change of the angles of tangent vectors along the curve segment. It tends that the longer curve segment has the larger segment error. Also, the total angle change is a measure of how much a curve segment is bent. However, it is illustrated in the next 2 subsections that neither measure alone is a good heuristic. Our heuristic in Section 4.3 is a weighted sum of the two measures, and this simple combined measure yields a good initial guess.

4.1 Curve Length Subdivision

Assume we have a parametric representation $C(t)$ of a curve C. The first heuristic is to divide a curve segment into subsegments with the same curve length where the curve length is defined to be $\int_{a}^{b}\left\|\frac{d C(t)}{d t}\right\| d t$. This quantity is usually approximated by the chord length as following.

Given a digitized curve $\bar{C}(a, b, n)=\left\{a=p_{0}, p_{1}, \cdots, p_{n}=b\right\}$, consider a parametric curve $C(t)$ of a parameter t where $C(0)=p_{0}$ and $C(l)=p_{n}$. Then,

$$
\begin{aligned}
\int_{0}^{l}\left\|\frac{d C(t)}{d t}\right\| d t & \approx \sum_{i=0}^{n-1}\left\|\frac{p_{i+1}-p_{i}}{d\left(p_{i}, p_{i+1}\right)}\right\| d\left(p_{i}, p_{i+1}\right) \\
& =\sum_{i=0}^{n-1}\left\|p_{i+1}-p_{i}\right\| \\
& =\sum_{i=0}^{n-1} d\left(p_{i}, p_{i+1}\right)
\end{aligned}
$$

where $d(p, q)$ is the Euclidean distance between two points p and q in \Re^{3}.

Algorithm 4.1 (LENGTII)

```
\(/{ }^{*}\) let \(L_{\text {seg }}(i, j)\) be \(\sum_{k=i}^{j-1} d\left(p_{k}, p_{k+1}\right)^{*} /\)
compute total \(=\sum_{k=0}^{n-1} d\left(p_{k}, p_{k+1}\right)\);
seglength \(=\operatorname{ceil}(\) total \(/ m)\);
\(q_{0}=0 ; i=0 ;\)
while \(i<m-1\) do
    find the largest \(j\) such that \(L_{\text {seg }}\left(q_{i}, j\right)<\) seglength;
    \(q_{i+1}=j ; i=i+1 ;\)
endwhile
\(q_{m}=n ;\)
```

Figure 3(upper left) and Figure 4 (leftmost) indicate that this algorithm produces a $L A$ which approximates \bar{C} quite well in flat regions of a curve, and poorly in highly curved regions.

4.2 Spherical Image Subdivision

Consider a curve $C(s)$ with an arc length parameter s. When all unit tangent vectors $T(s)$ of $C(s)$ are moved to the origin, their end points will describe a curve on the unit sphere. This curve is called the spherical image or spherical indicatrix of $C(s)$. Given a curve segment, the length of the corresponding spherical image implies how much the unit tangent vector changes its direction aloug the curve segment. Hence, it gives us a measure of the degree to which a curve segment is curved. It is easily shown that the curvature $\kappa(s)$ is equal to the ratio of the arc length of the spherical image, and the arc length of $C(s)$. So, the length of the spherical image corresponding to a curve segment $C(s):[0, l]$ is $\int_{0}^{d} \kappa(s) d s .^{2}$ Practically, the quantity must be approximated.

Given a digitized curve $\bar{C}(a, b, n)=\left\{a=p_{0}, p_{1}, \cdots, p_{n}=b\right\}$, consider an imaginary parametric curve $C(s)$ of an arc length parameter s where $C(0)=p_{0}$ and $C(l)=p_{r}$. At a point $p_{i}, s \approx c l\left(p_{0}, p_{i}\right)$ such that $C(s)=p_{i}$, where $c l\left(p_{0}, p_{i}\right)=\sum_{j=0}^{i-1} d\left(p_{j}, p_{j+1}\right)$. Then, the curvature is approximated as following:

$$
\begin{align*}
\kappa(s) & =\left\|\lim _{\delta s \rightarrow 0} \frac{T(s+\delta s)-T(s)}{\delta s}\right\| \\
& \approx\left\|\frac{t_{i+1}-t_{i}}{d\left(p_{i}, p_{i+1}\right)}\right\| \tag{1}
\end{align*}
$$

[^1]where t_{i} is an approximated unit tangent vector. (We will discuss how to get t_{i} shortly.) Then,
\[

$$
\begin{aligned}
\int_{0}^{l} \kappa(s) d s & \approx \sum_{i=0}^{n-1}\left\|\frac{t_{i+1}-t_{i}}{d\left(p_{i}, p_{i+1}\right)}\right\| d\left(p_{i}, p_{i+1}\right) \\
& =\sum_{i=0}^{n-1}\left\|t_{i+1}-t_{i}\right\| \\
& =\sum_{i=0}^{n-1} d\left(t_{i}, t_{i+1}\right)
\end{aligned}
$$
\]

The simple forward-difference approximation (1) to $\kappa(s)$ can be replaced by the popular centraldifference approximation $\frac{d\left(t_{i-1}, t_{i+1}\right)}{d\left(p_{i}-1, p_{i}\right)+d\left(p_{i}, p_{i+1}\right)}$ which is a much better approximation when the points are close together. Integration can be also replaced by a better approximation formula. See [8] for more numerical techniques.

In this second heuristic method, $\bar{C}(a, b, n)$ is subdivided into $L A(\bar{C}, a, b, m)=\{0=$ $\left.q_{0}, q_{1}, q_{2}, \cdots, q_{m}=n\right\}$ such that each subsegment has the same length of the sphercal image.

Algorithm 4.2 (IMAGE)

```
\(/{ }^{*}\) let \(I_{\text {seg }}(i, j)\) be \(\sum_{k=i}^{j-1} d\left(t_{k}, t_{k+1}\right)^{*} /\)
compute total \(=\sum_{k=0}^{n-1} d\left(t_{k}, t_{k+1}\right) ;\)
segind \(=\operatorname{ceil}(\) total \(/ m)\);
\(q_{0}=0 ; i=0 ;\)
while \(i<m-1\) do
    find the largest \(j\) such that \(I_{\text {seg }}\left(q_{i}, j\right)<\) segind;
    \(q_{i+1}=j ; i=i+1 ;\)
endwhile
\(q_{m}=n ;\)
```

The quantity $I_{\text {seg }}\left(q_{i}, q_{j}\right)$ is an approximating measure of the length of the spherical image of the segment from $p_{q_{i}}$ to $p_{q_{i+1}}$ that is, $I_{s e g}\left(q_{i}, q_{j}\right)$ is a total absolute change of the angles of tangent vectors. Hence, this algorithm is sensitive to high curvature. We can see $I M A G E$ returns a $L A$ which approximates \bar{C} poorly in flat portions of a curve, and very well in highly curved portions in Figure 3 (upper right) and Figure 4 (the second from left).

In the above algorithm, tangent vector information is used to subdivide a curve. If the digitized space curve has been generated from equations, say, a parametric equation or two implicit equations, the tangent vector at each sample point can be computed directly from them. When instead a digitized curve has been given in terms of a sequence of points, or direct computation of tangent vectors from given equations is expensive, the tangent vector t_{k} to a curve C at p_{k} still can be approximated by averaging the directions of the neighboring lines of p_{k} in \bar{C}. In our implementation, the tangent vector is approximated by 5 successive points as follows [24] :

$$
t_{k}=\left(1-\frac{\alpha}{\alpha+\beta}\right) \cdot v_{i}+\frac{\alpha}{\alpha+\beta} \cdot v_{i+1},
$$

where $\alpha=\left\|v_{i-1} \times v_{i}\right\|, \beta=\left\|v_{i+1} \times v_{i+2}\right\|, v_{i}=p_{i}-p_{i-1}$, and \times means a cross product of two vectors. In case the digitized curve is open, the Bessel conditions are applied for the tangents at
the end points as follows [9] :

$$
\begin{aligned}
v_{0} & =2 v_{1}-v_{2}, & v_{-1}=2 v_{0}-v_{1}, \\
v_{n+1} & =2 v_{n}-v_{n-1}, & v_{n+2}=2 v_{n+1}-v_{n} .
\end{aligned}
$$

4.3 Heuristic Subdivision

Now, we describe a heuristic algorithm which combines the two techniques. It consists of two steps : generation of an initial piecewise linear approximation $L A_{0}$, and iterative refinement of piecewise linear approximation $L A_{k}$.

4.3.1 Computation of An Initial Approximation : $L A_{0}$

An initial $L A_{0}$ is computed by an algorithm which is a combination of $L E N G T H$ and $I M A G E$.

Algorithm 4.3 (INIT)

$$
\begin{aligned}
& \text { select some value of } \alpha(0 \leq \alpha \leq 1) ; \\
& \text { compute total }=\sum_{k=0}^{n-1}\left(\alpha \cdot d\left(p_{k}, p_{k+1}\right)+(1-\alpha) \cdot d\left(t_{k}, t_{k+1}\right)\right) ; \\
& \text { segsum }=\text { ceil }(\text { total } / m) ; \\
& q_{0}=0 ; i=0 ; \\
& \text { while } i<m-1 \text { do } \\
& \quad \text { find the largest } j \text { such that } \alpha \cdot L_{\text {seg }}\left(q_{i}, j\right)+(1-\alpha) \cdot I_{\text {seg }}\left(q_{i}, j\right)<\text { segsum; } \\
& \quad q_{i+1}=j ; i=i+1 ; \\
& \text { endwhile } \\
& q_{m}=n ;
\end{aligned}
$$

The weight, α is a parameter which controls the relative emphasis between curve length and spherical image, and is empirically chosen. See Figure 3 (bottom left) and Figure 4 (the third from left).

4.3.2 Iterative Refinement of Approximations: $L A_{k}$

The "hybrid" algorithm INIT generally produces a good piecewise linear approximation. The next step is to diffuse errors iteratively in order to refine the initial approximation. Note each segment is made of a sequence of consecutive points of a digitized curve, and it is approximated by a line connecting its end points. Usually, an error of a segment decreases as either of its end points is assigned to its neighboring segment. Hence, the basic idea in the following iterative algorithm is to move one of end points of a segment with larger error to its neighboring segment with less error, expecting decrease of the total error of the new $L A$. In the k th step of the following algorithm $I T E R$, each segment of $L A_{k}$ is examined, diffusing, if possible, its error to one of its neighbors. $L A_{k}$ tends to quickly converge to a minimal $L A$ which is a local minimum. See Figure 3 (bottom right), Figure 4 (rightmost), and Figure 5.

Algorithm 4.4 (ITER)
compute $L A_{0}$ from INIT;
$k=0$;

```
do until (satisfied)
    compute errors of segments in \(L A_{k}\);
    curmax \(=E\left(L A_{k}(\bar{C}, a, b, m)\right.\);
    for \(i=0\) to \(m-1\) do
        if the error of \(i\)-th segment is larger than
                that of either of its neighboring segments
            then move the \(i\)-th segment's end points to the neighbor
                only if this change does not result in segment errors
                larger than curmax;
            endif
    endfor
    \(L A_{k+1}=L A_{k} ;\)
enddo
```


4.3.3 The Time and Space Complexities

First, $O(n)$ time is needed in order to approximate the tangent vector at each point. The algorithm INIT needs to scan the points and tangent vectors to compute $L_{s e g}$ and $I_{\text {seg }}$ first, and then $L_{s e g}$ and $I_{\text {seg }}$ are scanned to divide the digitized curve. Hence, it takes $O(n)$ time. Now, consider the algorithm ITER. First, the segment errors of $L A_{k}$ is computed in $O(n)$ time. In the for loop, each segment and its two neighbors are examined, hence, each segment is examined twice. Since for each segment, the segment error must be computed, $O(n)$ computation is needed by the for loop. So, ITER takes $O\left(N_{\text {iter }} \cdot n\right)$ time where $N_{\text {iter }}$ is the number of iterations. So, the time complexity of the heuristic algorithm is $O\left(N_{\text {iter }} \cdot n\right)$, and it is easy to see $O(n)$ space is sufficient for storing input data and intermediate computations.

4.3.4 Performance

We have implemented both the optimal and heuristic algorithms on a Sun 4 workstation and a Personal Iris workstation. Table 1-5 in Appendix A show their performances for three test data. The integer in the parenthesis is the number of iterations needed to arrive at the local minimum. The bottom row ($L A_{k} / L A^{*}$) of each table indicates the performance of our heuristic algorithm, and it is observed that it approximates the optimal solution reasonably well. The program for the heuristic algorithm computes the approximate solution quickly (immediately or in a few seconds depending on how many iterations are needed.) On the other hand, it takes about 45 minutes to compute the optimal solution for ($n=404, m=64$) example of Table 4.

4.3.5 The Center of Mass

We now briefly consider the following type of the piecewise linear approximation problem : "find a $L A(\bar{C}, a, b, m)$ such that $E(L A)<\epsilon$ for a given bound ϵ and m is minimized." Even though our heuristic algorithm was invented for an arbitrary number of subsegments, we can use it for dividing a segment into 2 subsegments. One simple algorithm would be to recursively divide a curve segment until the error of subsegment is less than ϵ.

If a curve segment is to be divided into only two subsegments, the notion of the center of mass can be applied. As before, assume we have a parametric representation $C(s)$ of a curve C, where s is an arc length parameter, and $\kappa(s)$ is its curvature. Consider a curve segment define by an
interval $[0, l]$. Then the center of curvature, defined by $c_{\kappa}=\int_{0}^{l} s \kappa(s) d s / \int_{0}^{l} \kappa(s) d s$, can be used as a heuristic that divides a curve segment $C(s):[0, l]$ into two subsegments $C(s):\left[0, c_{\kappa}\right]$ and $C(s):\left[c_{\kappa}, l\right]$.

Again, c_{κ} needs to be approximated. For a digitized curve $\bar{C}(a, b, n)=\left\{a=p_{0}, p_{1}, \cdots, p_{n}=\right.$ $b\}$, consider an imaginary parametric curve $C(s)$ of an arc length parameter s where $C(0)=p_{0}$ and $C(l)=p_{n}$. Then, at a point $p_{i}, s \approx c l\left(p_{0}, p_{i}\right)$ such that $C(s)=p_{i}$, where $c l\left(p_{0}, p_{i}\right)=$ $\sum_{j=0}^{i-1} d\left(p_{j}, p_{j+1}\right)$. Together with the approximation of the denominator given before, the following expression results in an approximation of c_{κ} :

$$
\begin{aligned}
\int_{0}^{l} s \kappa(s) d s & \approx \sum_{i=0}^{n-1} c l\left(p_{0}, p_{i}\right)\left\|\frac{t_{i+1}-t_{i}}{d\left(p_{i}, p_{i+1}\right)}\right\| d\left(p_{i}, p_{i+1}\right) \\
& =\sum_{i=0}^{n-1} c l\left(p_{0}, p_{i}\right)\left\|t_{i+1}-t_{i}\right\| \\
& =\sum_{i=0}^{n-1} c l\left(p_{0}, p_{i}\right) d\left(t_{i}, t_{i+1}\right)
\end{aligned}
$$

5 Application I : Display of Implicit Curves and Surfaces

Algebraic curves and surfaces that are represented by implicit polynomials are convenient and efficient for many applications in geometric modeling. For instance, implicit curves and surfaces naturally define half spaces, and ray-surface intersections are easily computed. Also, they lend themselves well to the creation of blends and offsets [$16,30,13,34,29,4,21]$. In order for implicit curves and surfaces to be effectively used in designing complex objects, they must be displayed quickly. In this Section, we consider how implicit curves and surfaces are adaptively displayed based upon the idea of digitized space curves approximation.

5.1 Adaptive Display of Implict Curve Segments

Consider the problem of piecewise linear approximation of an algebraic space curve defined by the intersection of two implicit surfaces $h(x, y, z)=0$ and $g(x, y, z)=0$.

Our heuristic algorithm is well suited to producing a piecewise linear approximation of an algebraic space curve segment. First, the curve segment is traced using a space curve tracing algorithm (see e.g. [3]), generating a digitized space curve which consists of a rather big number of points. The linear approximation algorithm, then, filters it, resulting in a piecewise linear approximation. The surface intersection tracing algorithm is very fast when the degrees of curves are in a reasonable range, and there is no singular points along the curve segment. Figure 3, 4, and 6 are examples of planar curves, and Figure 7, and 8 are those of nonplanar curves.

5.2 Adaptive Display of Implict Surface Patches

As algebraic surfaces have become increasingly important to geometric modeling, the algorithms for displaying algebraic surfaces have emerged. Hanrahan [12] showed that algebraic surfaces lend themselves well to ray tracing. Sederberg and Zundel [31] uses a scan line display method which offers improvement in speed and correctly displays singularities. Even though both approaches produce very good images, the computation cost is expensive and the process is static in the sense that operations on objects, like rotation and translation, can not be done dynamically. On the other

Figure 1: Recursive Refinement of a Triangle
hand, the polygonization-and-shading technique uses the capability of the graphics hardware which provides very fast rendering. Allgower [2] uses simplices to approximate a surface with polygonal meshes. Bloomenthal [6] discusses a numerical technique that approximates an algebraic surface with a polygonal representation. This technique is to surround the algebraic surface with an octree, at whose corners the implicit function is sampled to generate polygons. Although it successfully samples the surface inside an initial box, the octree method is not well suited to displaying an algebraic surface patch. Bajaj and Ihm [5] are currently working on the problem of constructing a complex object made of triangular algebraic surface patches. A difficult problem is low to isolate, numerically, only the necessary part or the triangular patch from the whole surface. One possible way is to add the clipping surfaces facility to the octree method. But in general, this is not an easy problem. On the other hand, the space curve tracing and our heuristic algorithm together can be used to adaptively polygonize the necessary portions of smooth algebraic surface patches. For example, the following simple procedure produces adaptive polygonization of a triangular algebraic surface patch.

Let $f(x, y, z)=0$ be a primary surface whose triangular portion clipped by three planes $h_{i}(x, y, z)=0, i=1,2,3$ is to be polygonized. (See Figure 1.) Initially, the triangle $T_{0}=$ (P_{0}, P_{1}, P_{2}) is a rough approximation of the surface patch. Each boundary curve decided by f and h_{i} is traced to produce a digitized space curve, then its LA of order 2^{d} for some given d is computed. Then T_{0} is refined into four triangles by introducing the 3 points Q_{0}, Q_{1}, and Q_{2} where $Q_{i}, i=0,1,2$ is the center point of each LA of order 2^{d}. The clipping planes of subdivided triangles can be computed by averaging the normals of the two triangles incident to the edge. Then, each new edge is traced, and then its LA of order 2^{d-1} is produced. In this way, this new approximation is further refined by recursively subdividing each triangle until some criterion is met. Figure 9 shows an example of the resulting adaptive polygonizations when $d=3$. A goal here is to put more triangles on the highly curved portion.

While the above method produces a regular (but adaptive) network of polygons, it could be modified to generate more adaptive polygonization. Rather than subdivide all the triangles up to the same level, each triangle is examined to see if it is already a good approximation to the surface portion it is approximating. It is refined only when the answer is no. Some criterions for such local refinement are suggested in for example, [6,2]. But it is still an open problem to design an irregular adaptive polygonization algorithm with robust local refinement criterions.

6 Application II : Construction of Binary Space Partitioning Tree

Binary space partitioning (bsp) tree has been shown to provide an effective representation of polyhedra through the use of spatial subdivision, and are an alternative to the topologically based b-reps. It represents a recursive, lierarchical partitioning, or subdivision, of d-dimensional space. It is most easily understood as a process which takes a subspace and partitions it by any hyperplane that intersects the subspace's interior. This produces two new subspaces that can be partitioned further.

An examples of a bsp tree in 2D can be formed by using lines to recursively partition the 2D space. Figure 2(a) shows a bsp tree induced partitioning of the plane and (b) shows the corresponding binary tree. The root node represents the entire plane. A binary partitioning of the plane is formed by the line labeled u, resulting in a negative halfspace and a positive halfspace. These two halfspaces are represented respectively by the left and right children of the root. A binary partitioning of each of these two halfspaces may then be performed, as in the figure, and so on recursively. When, along any path of the tree, subdivision is terminated, the leaf node will correspond to an unpartitioned region, called a cell.

Figure 2: Partitioning of a 2D BSP Tree (a), and its Binary Tree (b)
The primary use of bsp trees to date has been to represent polytopes. This is accomplished by simply associating with each cell of the tree a single boolean attribute classification ::= \{ in, out \}. If, in Figure 2, we choose cells 1 and 5 to be in cells, and to the rest out cells, we will have determined a concave polygon of six sides. This method, while conceptually very simply, is capable of representing the entire domain of polytopes, including unbounded and non-manifold varieties. Moreover, the algorithms that use the bsp tree representation of space are simple and uniform over the entire domain. This is because the algorithms only operate on the tree one node at a time and so are insensitive to the complexity of the tree.

A number of bsp tree algorithms are known, including affine transformations, set operations, and rendering (see e.g. [19]). The computational complexity of these algorithms depends upon the shape and size of each tree. Consider point classification for example. The point is inserted into the tree and at each node the location of the point with respect to the node's hyperplane determines whether to take the left or right branch; this continues until a leaf is reached. The cost of this is the length of the path taken. Now if this point is chosen from a uniform distribution of points over some sample space of volume V, then for any cell C with volume v_{C} at tree depth d_{C}, the
probability p_{C} of reaching C is simply $\frac{v_{C}}{V}$ and the cost is d_{C}. So an optimal expected case bsp tree for point classification would be a tree for which the sum of $p_{C} d_{C}$ over all C is minimized. If the embedding space is one dimensional, then this is the classic problem of constructing an optimal binary search tree; a problem solved by dynamic programming.

The essential idea here is that the largest cells should have the shortest paths and smallest cells the longest. For example, satisfying this objective function globally generates bounding volumes as a by-product: if a polytope's volume is somewhat smaller than the sample space's volume, constructing a bounding volume with the first hyperplanes of the tree results is large "out" cells with very small depths. Now, in the general case in which the "query" object Q lias extent, i.e. is not a point, then Q will lie in more than one cell, and a subgraph of the tree will be visited. Thus the cost of the query is the number of nodes in this subgraph. This leads to a more complicated objective function, which we do not intended to examine here, but the intuition taken from point classification remains valid.

We use these ideas in conjunction with the linear approximation methods, described before, to build "good" expected case trees for solids defined as surfaces of revolution (or should we say, that we expect these trees to be good). First, we orthogonally project the curve to be revolved onto the axis of rotation, which we take to be a vertical z-axis. We then partition space with horizontal planes where each plane contains one of the linearly approximated curve points. The bsp tree representing this is a nearly balanced tree, and each cell will contain the surface resulting from the revolution of a single curve segment.

Now the revolution of the curve need not be along a circle, but can be any convex path for which we have constructed a linear approximation. Thus each face of the solid will be a quadrilateral in which the "upper" and "lower" edges lie in consecutive horizontal partitioning planes, are parallel, and are instances of a single path edge at some distance from the axis of revolution that is determined by the revolved curve. Now the bsp subtree for the surface between horizontal planes is obtained by recursively partitioning the path of revolution to form a nearly balanced tree.

The method we use is one that in 2D generates for any n-sided convex polygon a corresponding nearly balanced bsp tree of size $O(n)$ and height $O(\log n)$. The path curve is first divided into four sub-curves, one for each quadrant, and a hyperplane containing the first and last points is constructed. By convexity, a sub-curve lies entirely in one halfspace of its corresponding hyperplane, and we call that halfspace the "outside" halfspace and the opposite halfspace the "inside" halfspace. The intersection of the four inside halfspaces is entirely inside the polygon, and so forms an in-cell of the bsp tree. We then construct independently a tree for each sub-curve recursively.

We first choose the median segment of the sub-curve and partition by the plane of the corresponding face. Since the path curve is convex, all of the faces will be in the inside halfspace of this plane and an out-cell can be created in its outside halfspace. Now each non-horizontal edge of the median face is used to define a partitioning plane which also contains the first/last point of the sub-curve. All of the faces corresponding to this sub-curves' edges are in the outside hallspace, and so an in-cell can be created in its inside halfspace. We have now bisected the sub-curve by these planes which contain no faces and can recurse with them. The recursion continues until only a small number of faces/segments remain, say 6 , at which point only face planes are used for partitioning, since the cost of the non-face partitioning planes out-weights their contribution to balancing the tree. The result for a path curve of n edges is a nearly balanced tree of size $<3 n$ and height $O(\log n)$.

In some sense, we have constructed a tree that is the cross product of the path curve and the revolved curve; we build a tree of horizontal planes that partitions the revolved curve, and then we
form "slices" of the object by constructing a tree for the path curve. If the revolved curve has m segments, then the number of faces is $n m$ and the bsp tree is of size $O(n m)$ and height $O(\log n m)$ $(=O(\log n+\log m)$.

The object in Figure 10 was made by rotating a curve in Figure 5 around an ellipse. Its bsp tree is shown together which is quite well balanced. The goblet in Figure 11 was made by constructing two objects using the curve in Figure 5, and then applying a difference operation to carve a hole on the goblet. The bsp tree in Figure 11 was obtained after applying the difference operation, and then a union operation for the red ball. It is observed that set operations on well-balanced bsp trees result in well-balanced trees. The set operation and display were done in SCULPT [18] which is an interface system for bsp trees.

7 Conclusion

In this paper, we have discussed the problem of piecewise linear approximation of an arbitrary digitized 3-D curve. Two algorithms have been presented. One finds an optimal linear approximation at a high expense. The other computes a heuristic linear approximation, based on the fundamental notions of curve length and spherical image of a space curve. This heuristic algorithm finds a good linear approximation quickly. We have also shown that our heuristic algorithm can be applied to adaptively display space curves and implicit surfaces, and to adaptively construct well-balanced binary space partitioning trees of revolved objects. The piecewise linear approximation problem can be generalized such that curve segments of some fixed degree as opposed to line segments are used to optimaly compress a digitized space curve.

A The Performances

\mid	109				
m	4	8	16	32	64
$L A_{0}$	$5.25619 \mathrm{e}-1$	$2.21325 \mathrm{e}-1$	$8.09768 \mathrm{e}-2$	$2.66073 \mathrm{e}-2$	$8.98677 \mathrm{e}-3$
$L A_{k}$	$4.02838 \mathrm{e}-1$				
(k)	(5)	$1.12507 \mathrm{e}-1$ (9)	$3.08774 \mathrm{e}-2$ (17)	$1.23695 \mathrm{e}-2$ (16)	$3.76437 \mathrm{e}-3$ (14)
$L A^{*}$	$4.02838 \mathrm{e}-1$	$1.12507 \mathrm{e}-1$	$3.04525 \mathrm{e}-2$	$8.94592 \mathrm{e}-3$	$2.76188 \mathrm{e}-3$
$L A_{k} / L A^{*}$	1.000	1.000	1.014	1.393	1.363

Table 1: The curve in Figure 3

n	408					
m	2	4	8	16	32	64
$L A_{0}$	$3.41045 \mathrm{e}-1$	$\overline{2.24775 \mathrm{e}-1}$	$5.47018 \mathrm{e}-2$	$1.42360 \mathrm{e}-2$	$3.80354 \mathrm{e}-3$	$1.19389 \mathrm{e}-3$
$L A_{k}$ (k)	$3.41045 \mathrm{e}-1$ (0)	$9.53494 \mathrm{e}-2$ (86)	$2.75688 \mathrm{e}-2$ (50)	$8.92481 \mathrm{e}-3$ (80)	$2.95337 \mathrm{e}-3$ (66)	$8.66971 \mathrm{e}-4$ (381)
$L A^{*}$	$2.73563 \mathrm{e}-1$	$8.95572 \mathrm{e}-2$	$2.63278 \mathrm{e}-2$	$6.62991 \mathrm{e}-3$	$2.02041 \mathrm{e}-3$	$5.45924 \mathrm{e}-4$
$L A_{k} / L A^{*}$	1.247	1.065	1.047	1.346	1.462	1.588

Table 2: The curve in Figure 4

n	237				
m	8	16	32	64	
$L A_{0}$	$1.03375 \mathrm{e}-1$	$6.11455 \mathrm{e}-2$	$2.95784 \mathrm{e}-2$	$8.24535 \mathrm{e}-3$ $L A_{k}$ (k)	
$6.07749 \mathrm{e}-2$ (12)	$2.90067 \mathrm{e}-2$ (17)	$7.76577 \mathrm{e}-3$ (20)	$5.63440 \mathrm{e}-3$ (5)		
$L A^{*}$	$5.87190 \mathrm{e}-2$	$2.06813 \mathrm{e}-2$	$5.12219 \mathrm{e}-3$	$1.75973 \mathrm{e}-3$	
$L A_{k} / L A^{-}$	1.035	1.403	1.516	3.202	

Table 3: The curve in Figure 5 (goblet)

n	404				
m	4	8	16	32	64
$L A_{\mathrm{D}}$	$2.01399 \mathrm{e}-0$	$3.63921 \mathrm{e}-1$	$9.66444 \mathrm{e}-2$	$2.67485 \mathrm{e}-2$	$8.39998 \mathrm{e}-3$
$L A_{k}$	$1.86220 \mathrm{e}-0$				
(k)	(4)	$2.26435 \mathrm{e}-1$ (32)	$7.78874 \mathrm{e}-2$ (16)	$2.24510 \mathrm{e}-2$ (10)	$6.98709 \mathrm{e}-3$ (8)
$L A^{*}$	$1.85530 \mathrm{e}-0$	$2.26435 \mathrm{e}-1$	$7.60669 \mathrm{e}-2$	$2.05613 \mathrm{e}-2$	$5.69636 \mathrm{e}-3$
$L A_{k} / L A^{*}$	1.004	1.000	1.024	1.092	1.227

Table 4: The curve in Figure 7

n	234				
m	4	8	16	32	64
$L A_{0}$	$7.24214 \mathrm{e}-1$	$1.72242 \mathrm{e}-1$	$5.32029 \mathrm{e}-2$	$1.64083 \mathrm{e}-2$	$1.60168 \mathrm{e}-2$
$L A_{k}$ (k)	$4.81844 \mathrm{e}-1$ (15)	$1.34728 \mathrm{e}-1$ (15)	$3.69400 \mathrm{e}-2$ (13)	$1.53000 \mathrm{e}-2$ (2)	$3.80315 \mathrm{e}-3$ (11)
$L A^{*}$	$4.81844 \mathrm{e}-1$	$1.34728 \mathrm{e}-1$	$3.65433 \mathrm{e}-2$	$1.05332 \mathrm{e}-2$	$3.16273 \mathrm{e}-3$
$L A_{k} / L A^{*}$	1.000	1.000	1.011	1.453	1.202

Table 5: The curve in Figure 8

B List of Figures

1. Figure 3 : Folium of Descartes
(a) equation: $C(t)=\left(\frac{3 t}{1+i^{3}}, \frac{3 t^{2}}{1+t^{3}}, 0\right)$ or $\left(f(x, y, z)=x^{3}-3 x y+y^{3}, g(x, y, z)=z\right)$
(b) $n=109, m=20$
2. Figure 4 : A cubic curve
(a) equation : $C(t)=\left(t, t^{3}, 0\right)$ or $\left(f(x, y, z)=x^{3}-y+z, g(x, y, z)=z\right)$
(b) $n=408, m=11$
3. Figure 5 : A human profile and a goblet
(a) Points were generated from 12 rational Bezier curves in [24], and then slightly disturbed.
(b) (profile) $n=169, m=20$
(c) (goblet) $n=237, m=20$
4. Figure 6: A four-leaved rose
(a) equation: $\left(f(x, y, z)=x^{6}+3 x^{4} y^{2}-4 x^{2} y^{2}+3 x^{2} y^{4}+y^{6}, g(x, y, z)=z\right)$
(b) $n=400, m=64$
5. Figure 7 : A nonplanar quartic curve
(a) equation: $\left(f(x, y, z)=36 x^{2}+81 y^{2}+9 z^{2}-324, g(x, y, z)=x^{2}+y^{2}-3.94\right)$
(b) $n=404, m=32$
6. Figure 8: A nonplanar sextic curve
(a) equation: $\left(f(x, y, z)=y^{2}-x^{2}-x^{3}, g(x, y, z)=z-x^{2}+x-2\right)$
(b) $n=234, m=20$
7. Figure 9 : A quartic surface patch
(a) equation: $f(x, y, z)=0.01853292 z^{4}-1.14809166 y^{2} z^{2}-1.14809166 x^{2} z^{2}+0.99982830 z^{2}-$ $1.16662458 y^{4}-1.14809166 x^{2} y^{2}+2.1849858 y^{2}+0.01853292 x^{4}+0.99982830 x^{2}-0.72183450$
(b) $d=3$
8. Figure 10 A human profile rotated
(a) The primary curve : the curve in Figure 5 with 32 segments.
(b) The auxiliary curve : an ellipse with 32 segments.
9. Figure 11 A goblet
(a) The primary curve : the curve in Figure 5 with 20 segments.
(b) The auxiliary curve : a circle with 32 segments.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysys of Computer Algorithms. Addison-Wesley, Readings, Mass., 1974.
[2] E.L. Allgower and S. Gnutzmann. Polygonal meshes for implicitly defined surfaces. menuscript, Nov. 1989.
[3] C. Bajaj, C. Moffmann, J. Hopcroft, and R. Lynch. Tracing surface intersections. Computer Aided Geometric Design, 5:285-307, 1988.
[4] C. Bajaj and I. Ihm. Hermite interpolation using real algebraic surfaces. In Proceedings of the Fiflh Annual ACM Symposium on Computational Geometry, pages 94-103, Germany, 1988.
[5] C. Bajaj and I. Ihm. Construction of a mesh of quintic implicit surface patches. menuscript, 1990.
[6] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric Design, 5:341355, 1988.
[7] A. Cantoni. Optimal curve-fitting with piecewise linear functions. IEEE Transactions on Computers, c-20:59-67, 1971.
[8] S.D. Conte and C. deBoor. Elementary Numerical Analysis: An Algorithmic Approach. McGraw-Hill, New York, third edition, 1980.
[9] C. deBoor. A Pracitcal Guide to Splines. Springer-Verlag, New York, 1978.
[10] J.G. Dunham. Optimum uniform piecewise linear approximation of planar curves. IEEE Transanctions on Pattern Analysis and Machine Intelligence, 8:67-75, Jan. 1986.
[11] C. Fahn, J. Wang, and J. Lee. An adaptive reduction procedure for the piecewise linear approximation of digitized curves. IEEE Transanctions on Pattern Analysis and Machine Intelligence, 11(9):967-973, Sep. 1989.
[12] P. Hanrahan. Ray tracing algebraic surfaces. Computer Graphics : SIGGRA PIf'83 Conference Proceedings, 17(3):83-90, 1983.
[13] C. Hoffmann and J. Hopcroft. Quadratic blending surfaces. Computer Aided Design, 18(6):301306, 1986.
[14] N. Kehtarnavaz and R.J.P. deFigueiredo. A 3-D contour segmentation scheme based on curvature and torsion. IEEE Transanctions on Pattern Analysis and Machine Intelligence, 10(5):707-713, Sep. 1988.
[15] E. Kreyszig. Differential Geometry. University of Toronto Press, 1959.
[16] A. Middleditch and K. Sears. Blend surfaces for set theoretic volume modeling system. Computer Graphics : SIGGRAPII'85 Conference Proceedings, 19(3):161-170, 1985.
[17] U. Montanari. A note on minimal length polygonal approximation to a digitized contour. Comm. ACM, 13:41-47, 1970.
[18] B. Naylor. Sculpt : An interactive solid modeling tool. In Proc. of Graphics Interface, IIalifax, Nova Scotia, May 1990. Graphics Interface '90.
[19] B. Naylor, J. Amanatides, and W. Thibault. Merging bsp trees yields polyhedral set operations. Computer Graphics : SIGGRAPH'90 Conference Proceedings, 24(4), Aug. 1990.
[20] B. O'Neill. Elementary Differential Geometry. Academic Press, 1966.
[21] N.M. Patrikalakis and G.A. Kriezis. Representation of piecewise continuous algebraic surfaces in terms of B-splines. The Visual Computer, 5(6):360-374, Dec. 1989.
[22] T. Pavlidis. Algorithms for Graphics and Image Processing, pages 281-297. Computer Sciences, New York, 1982.
[23] T. Pavlidis and S.L. Horowitz. Segmentation of plane curves. IEEE Transactions on Computers, c-23(8):860-870, Aug. 1974.
[24] L. Piegl. Interactive data interpolation by rational Bezier curves. IEEE Computer Graphics and Applications, pages 45-58, July 1987.
[25] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1:244-256, 1972.
[26] K. Reumann and A.P.M. Witkam. Optimizing curve segmentation in computer graphics. In A. Gunther, B. Levrat, and H. Lipps, editors, International Computer Symposium, pages 467472. American Elsevier, New York, 1974.
[27] J.R. Rice. The Approximation of Functions, volume 1. Addison-Wesley, Readings, Mass., 1964.
[28] J. Roberge. A data reduction algorithm for planar curves. Computer Vision, Graphics and Image Processing, 29:168-195, 1985.
[29] A.P. Rockwood and J.C. Owen. Blending surfaces in solid modeling. In G. Farin, editor, Geometric Modeling : Algorilhms and New Trends, pages 367-383. SLAM, Philadelphia, 1987.
[30] T.W. Sederberg. Piecewise algebraic surface patches. Computer Aided Geometric Design, 2:53-59, 1985.
[31] T.W. Sederberg and A.K. Zundel. Scan line display of algebraic surfaces. Computer Graphics : SIGGRAPH'89 Conference Proceedings, 23(3):147-156, 1989.
[32] J. Sklansky and V. Gonzalez. Fast polygonal approximation of digitized curves. Pattern Recognition, 12:327-331, 1980.
[33] K. Wall and P.E. Danielsson. A fast sequential method for polygonal approximation of digitized curves. Computer Vision, Graphics and Image Processing, 28:220-227, 1984.
[34] J. Warren. On Algebraic Surfaces Meeting With Geometric Continuity. PhD thesis, Cornell University, 1986.
[35] C.M. Williams. An efficient algorithm for the piecewise linear approximation of planar curves. Computer Graphics and Image Processing, 8:286-293, 1978.

Figure 3: Folium of Descartes

Figure 4: A cubic curve

Figure 5: A human profile and a goblet

Figure 6: A four-leaved rose

Figure 7: A nonplanar quartic curve

Figure 8: A nonplanar sextic curve

Figure 9: A quartic surface patch

Figure 10: A Human Profile Rotated

Figure 11: A Goblet

[^0]: ${ }^{1}$ For any point $x \in \Re^{3}$, and two other points $y, z \in \Re^{3},(y \neq z)$, dist $t\left(x, \operatorname{line}\left(y_{1} z\right)\right)$ can be compactly expressed as $\left\|y-x+\frac{\left(x-y_{,},-y\right)}{\|=-y\|}(z-y)\right\|_{2}$ where (\cdot, \cdot) is a dot product of two vectors and $\|\cdot\|$ is a length of a vector.

[^1]: ${ }^{2} \int_{0}^{t} \kappa(s) d s$ is sometimes called the total eurvature [20], while it also can mean the length of Darboux vector [15].

