
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Piecewise Linear Approximations of Digitized Space Curves with Piecewise Linear Approximations of Digitized Space Curves with

Applications Applications

Insung Ihm

Bruce Naylor

Report Number:
90-1036

Ihm, Insung and Naylor, Bruce, "Piecewise Linear Approximations of Digitized Space Curves with
Applications" (1990). Department of Computer Science Technical Reports. Paper 37.
https://docs.lib.purdue.edu/cstech/37

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PIECEWISE LINEAR APPROXIMATION
OF DIGITIZED SPACE CURVES

WITH APPLICATIONS

Insung Ihm
and

Bruce Naylor

Computer Sciences Department
Purdue University

Technical Report CSD-TR-1036
CAPO Report CER-90-42

November, 1990

Piecewise Linear Approximations
of Digitized Space Curves

with Applications

Insung Ibm
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Bruce Naylor
AT&T Bell Laboratories
Murray Hill, NJ 07974

November 6, 1990

Abstract

Generating piecewise linear approximations of digitized or "densely sampled" curves is an
important problem in image processing, pattern recognition, geometric modeling, and computer
graphics. Even though much attention bas been paid to the planar curve case, little work
has addressed space curve approximation. In this paper, we consider how to approximate an
arbitrary digitized 3-D space CUnlC, made of n+l points, with m line segments. First, we present
an algorithm which finds, using the dynamic programming technique, an optimal approximation
that. minimizes t.he maximum distance error of each line segment. While it computes an optimal
solution, the algorithm consumes 0(n3 ·logm) time and 0(n2 ·logm) space, which is excessive.
We then introduce a heuristic algorithm which quickly computes a good approximation of an
arbitrary space curve in O(N;/er .n) time and O(n) space. This heuristic algorithm is based upon
the notions of curve length and spherical image which are the fundamental concepts describing
intrinsic properties of space curves. Our heuristic algorithm consists of two parts, computation
oj an initial approximation and iterative refinement of the approximation. The performances
of the heuristic algorithm for selected test cases are examined. We apply this fast heuristic
algorithm to adaptively linearize implicit space curve segments formed by the intersection of
two algebraic surfaces and to adaptively polygonize implicit surface patches. We then use the
approximations to adaptively construct binary space partitioning trees for a class of objects made
by revolution. We show that the linear approximation of a curve can be naturally extended to
linearly approximate some class of curved 3D objects in bsp trees wit.h well-balanced structures.
The resulting trees appear to be near optimal in the light of e.xpected time for insertion into the
tree.

Keywords: Piecewise linear approximation, Digitized space curves, Dynamic pro
gramming, Optimization, Algebraic curves and surfaces, Binary space partitioning tree

1 Introduction

The piecewise linear approximation of a digitized, or densely sampled, curve is an important prob
lem in image processing, pattern recognition, geometric modeling, and computer graphics. Digitized
curves occur as boundaries of regions or objects. Such curves, usually represented as sequences of

1

points, may be measured by devices such as scanning digitizers or be generated by evaluating para
metric equations of space curves, or tracing intersectIon curves for given implicit surface equations.
They can also be obtained from an experiment. For the sake of efficient manipulation of digi
tized curves, they are represented in the form of sequences of line segments, which are inexpensive
primitives in image processing or computer graphics. While the original curves are made of large
sequences of points, their approximations are represented by a small number of line segments that
are visually acceptable.

The piecewise linear approximation problem has received much attention, and there exist many
heuristic based approximation algorithms for this problem. Standard line fitting methods such as
least squares approximation, Chebycheff approximation and any other nonlinear approximation [7,
8, 27, 17) are not well suited for use In a situation where fast and interactive response time is
required, sInce these approximation algorithms performs poorly in terms of computational time and
space. On the other hand, the literature In the related areas contains many heuristic methods that
are more direct and efficient even though, In general, they do not find an optimal approximation [25,
23, 2G, 35, 32, 22, 33, 28, 10, 11].

Most of these works, however, consider only planar curves as their inputs data. In many
applications, a three dimensional (3-D) object is designed with a set of boundary curves in 3-D
space which are represented as a set of equations or as a sequence of points in 3-D space. lIenee,
having a good approximation method for digitized space curves is essential. In Kehtarnavaz and
deFigueiredo [14], a quintic B-spline is constructed for noisy data, and the length of Darboux vector,
also known as total curvature, is used as the criterion for segmentation of 3-D curves. This method
requires construction of quintic B·splines, explicit computation of curvature and torsion, and root
solving of polynomials.

In this paper, we consider how to quickly produce a good piecewise linear approximation of a
digitized space curve with a small number ofline segments. Our algorithm is based upon the notions
of curve length and spherical image which are fundamental concepts in differential geometry {15].
mSection 2, we define some notations and give a mathematical formulation of the specific problem
we are dealing with. Tltis approximation problem is naturally reduced to a combinatorial minimax
problem which can be restated as "Given some number of points, choose a smaller number of
points such that the maximum error of approximation is minimized". In Section 3, an optimal
approximation is found In O(n3 .logm)-time and O(n2 .logm)-space. We describe, in Section 4, a
fast heuristic iterative algorithm which requires O(Niler . n)-time and O(n)-space, where Niter is a
number of iterations carried out. Also, the performances of the heuristic algorithm for some test
cases are analyzed. In Section 5, we illustrate applications of this fast heuristic algorithm in which
implicit space curves and implicit surfaces are adaptively linearized. In Section G, we also apply the
heuristic approximation algorithm to construct adaptive binary space partitioning trees for a class
of objects made by general revolution. It is shown that the linear approximation of a curve can
be naturally extended to linearly approximate some class of curved 3D objects in bsp trees with
well· balanced structure.

2 Preliminaries

We first define a dIgitized space curve.

Definition 2.1 Let C be a space curve in three dimensional space. A space curve segment C(a, b)
is a connected portion of a curve C with end points a l b E ;R3.

2

In order to define a curve segment without ambiguity, a tangent vector at a might be needed. But
we assume this vector is implicitly given.

Definition 2.2 A digitized space curve segment C(a, b, n) of order n is an ordered sequence {a =
Po, PI, 112, ... ,Pn = b} of points Pi E [R3, i = 0,1, ... n, which approximates C(a, b).

Approximation of a digitized space curve with a small number of line segments results in an
approximation error. The quality of approximation is measured in terms of a given error norm that
can be defined in many ways. Some of most commonly used ones are

1. infinite norm:

3. area norm: L area = absolute area between curve segment and approximating line segment.

In this paper, we use Loo as an error norm to measure a goodness of an approximation. Note
that our algorithms in the later sections are also compatible with L 2 •

Definition 2.3 A piecewise linear approximation LA(C, n, b, m) of order m to C(a, b, n) is an in
creasing sequence {O = qo, 91, q2, ... ,qm = n} of indices to points in C. An error E(LA(C, a, b, m))
of a piecewise linear approximation LA is defined as maXo<i<m_l E3eg (i) where the i-tit segment er
rOl' E6eg (i) is maXqiiqi+l dist(pi,line(pqi' Pqi+l)), and dist(x, line(y, z)) is the Euclidean distance
from a point x to a line, determined by two points y and z. 1

As pointed out in Pavlidis and Horowitz [23], the problem of finding a piecewise linear approx
imation LA can be expressed in two ways:

1. find a LA(C,a,b,m) such that E(LA) < E for a given bound € and m is minimized.

2. find a LA(C, a,b,m) that minimizes E(LA) for a given m.

In this paper, we focus mainly on the second type of problem. However, we wHI also discuss
briefly the first type of problem in Section 4.3.5. One more definition before describing our problem.

Definition 2.4 Given C(a,b, n) and an integer m (n ~ m), the optimal piecewise linear approxi
mation LA'"(C,a, b, m) of order m is a piecewise linear approximation such that E(LA"') ~ E(LA)
for any piecewise linear approximation LA of order m. (Note LA- is not unique.)

Given these definitions, the problem can be stated as :

I For any point x E !R3
, and lwo other points y, %E !R3

, (y =I- z), dist(x,line(y, %)) can be compacUy cxprcssed as
II y - x + (>:ii.."':liY) (z - y) 11'1 where (.,.) is a dot product of two vectors and II . II is a length of a vector.

3

3 An Optimal Solution

3.1 An Algorithm

A naive algorithm would be as following:

Algorithm 3.1 (NAIVE)

temp = 00;
for all the possible (~-=.~) LA(C, a, b, m) do

compute E(LA);
if E(LA) < temp then LA· = LA; temp = E(LA);

endfor

Note that the problem has a recursive nature, that is, it can be naturally divided into two
subproblems of the same type. Dynamic programming, which is a general problem-solving technique
widely used in many disciplines [1], can be applied in this case to produce a rather straightforward
algorithm. We first give an algorithm which works in case m is a power of 2. Then the algorithm
is slightly modified for an arbitrary m.

Define E!j to be the error of LA*((; 1 Pi, Pj, I), that Is, the smallest error of all piecewise linear

approximations with 1 segments to the portion of (; from Pi to Pj' Then E!j can be expressed in
L L

terms of Bit and Elj as following:

fOT 0 ~ i < j :=; nand d> O. (1)

(Note that E:j = 0 if j - i :=; 1.)
The recursive relation renders the following dynamic programming algorithm which computes

the minimum error E~ and its corresponding LA- :

Algorithm 3.2 (DYNAMIC)

r basis step */
fori=Oton-ldo

forj=i+ltondo
compute E~j;

endfor
endfor
/* inductive step */
for d = 1 to logm do

fori=Oton-2 d -ldo
(orj=i+2d tltondo

2' {E2d
-

1
2

d
-

1
}. {E2 d

-
1 E2d

-
1

}Eij ;;;: max ik' ,Eklj = llllDi<k<j max 'ik "kj ;
](f/..;;;: k'·., .

endfor
endfor

endfor
construct LA- from K1;i

4

In the basis step, Eli is computed by calculating the distances from the points pk, i < k < j

to the line passing through Pi and Pi, and taking their maximum. J(~ is needed to recursively
construct the optimal piecewise linear approximation once E~ is computed. Note the recursive
relation LA-(C, Pi, Pi, 2d) ::::: LA-(C, Pi, PKtJ.., 2d- 1) U LA-(C, PJ(rJ._, Pi, 2d- 1).

IJ IJ

3.2 The Time and Space Complexities

Since E1; is computed in OU - i) time, the basis step requires O(Ei::J Ei=i+lU - i))::::: O(n3)

time. Similarly, El/ can be computed in OU - i) time. So, the inductive step needs O(n3 . lagro)
time. Also, construction of LA- can be done in Oem) time. These three time bounds are combined
into O(n3 . lagro). ,

With regard to space, the algorithm needs O(n2) space for storing a table for E't. Also,
O(n2 ·logro) space is required to save J(fi' d ::::: 1,2,···, logm. Hence, the space complexity is
O(n2 ·logm). As is the case, dynamic programming exploits the traditional space-time trade-off.

3.3 An Algorithm for an Arbitrary m

When m is not a power of 2, we can break minto m' and m - m l
, where m' is the largest power

of 2 less than m. m - m' is then broken if it is not a power of 2. Applying this process repeatedly
produces two sequences of numbers, one made of powers of 2, and the other made of non-powers
of 2. By maintaining two tables, and synchronizing the order of merging operations, Elf:. can
be computed. It is not difficult to see that this modification only increases both time and space
complexities by constant factors.

4 Heuristic Solutions

Even though the algorithm DYN AMIC finds an optimal approximation, the time and space
requirement is excessive. As stated in Section 4.3.4, the algorithm is extremely slow even for
modest n, for example, n = 400. Practically, it is more desirable to generate quickly a reasonably
good approximation. In this section, we describe a heuristic algorithm which consists of two
parts, computation of an initial approximation and iterative refinement of the approximation. Our
heuristic algorithm is based upon the observation that the error of a segment is a function of the
length of the curve segment, and the total absolute change of the angles of tangent vectors along
the curve segment. It tends that the longer curve segment has the larger segment error. Also, the
total angle change is a measure of how much a curve segment is bent. However, it is illustrated in
the next 2 subsections that neither measure alone is a good heuristic. Our heuristic in Section 4.3
is a weighted sum of the two measures, and this simple combined measure yields a good initial
guess.

4.1 Curve Length Subdivision

Assume we have a parametric representation C(t) of a curve G. The first heuristic is to divide a
curve se~ent into subsegments with the same curve length where the curve length is defined to
be J: II ~~t) II dt. This quantity is usually approximated by the chord length as following.

Given a digitized curve C(a,b,n)::::: {a = Po,PJ.,···,Pr>::::: b}, consider a parametric curve G(t)
of a parameter t where C(O) ::::: Po and C(l) ::::: Pr>. Then,

5

r'lI dC(t) II dt
Jo dt

.-1
Pi+! - Pi'" L II d(. .) II d(p" Pi.,)

i=O P"P,+1
.-1

L II P'., - p, II
;=0
.-1

L d(p"p,.,)
;=0

where d(p, q) is the Euclidean distance between two points p and q in R3.

Algorithm 4.1 (LENGTJI)

/* let L~eg(i,j) be L:t:~ d(Pk,Pk+t) */
compute total = Lk':6 d(pk' pk+d;
seglength = ceil(total/m);
qo = 0; i = 0;
while i < m - 1 do

find the largest j such that Laeg(qj,j) < seglength;
qi+t = j; i = i +1;

endwhile

Figure 3(upper left) and Figure 4 (leftmost) indicate that this algorithm produces a LA which
approxlmates C quite well in flat regions of a curve, and poorly in highly curved regions.

4.2 Spherical Image Subdivision

Consider a curve C(s) with an arc length parameter s. When all unit tangent vectors T(s) of C(s)
are moved to the origin, their end points will describe a curve on the unit sphere. This curve is
called the spherical image or spherical indicatrix of C(s). Given a curve segment, the length of the
corresponding spherical image implies how much the unit tangent vector changes its direction along
the curve segment. Hence, it glves us a measure of the degree to wblch a curve segment is curved.
It is easlly shown that the curvature K(s) is equal to the ratio of the arc length of the spherical
image, and the arc length of C(s). So, the length of the spherical image corresponding to a curve
segment C(s) : [0, IJ is J~ li(S) ds. 2 Practically, the quantity must be approximated.

Given a digitized curve G(a, b, n):::: {a = po, PI, .. " Pn = b}, consider an imaginary parametric
curve C(s) of an arc length parameter s where C(O) = Po and C(l) = Pn. At a point Pi, S ~ cl(Po, Pi)
such that C(s) = Pi, where cl(Po, Pi) = I:~~1d(pj,pj+l). Then, the curvature is approximated as
following:

II lim T(s +5s) - T(s) II
550 os

'" II ti., - t, II (1)
d(Pi,Pi+l)

~f~ ,,(s) ds is sometimes called the total curl/atum [20]. while it also can mean lhe lengtlL oC Darboux veclor [IS].

6

where ti is an approximated unit tangent vector. (We will discuss how to get to shortly.) Then,

.-1
ti+l - tjI: II d(. .) II d(p" P'+1)

i=O PI,PI+I

.-1

I:ll t'+l-t,1I
;=0
.-1

I: d(t,. t'+1)'
;=0

The simple forward-difference approximation (1) to I'>:(s) can be replaced by the popular centmI

difference approximation d(_ d ti:-~~j ~ .) whlch is a much better approximation when the points
P,_l,P, P"P'+l

are close together. Integration can be also replaced by a better approximation formula. See [8J for
more numerical techniques.

In this second heuristic method, C(a,b,n) is subdivided into LA(e,a,b,rn) = {O =
qo, ql, g2, ... I qm = n} such that each subsegment has the same length of the sphercal image.

Algorithm 4.2 (IMAGE)

/* let lscg (i, j) be Lt~~ d(tk, tk+I) */
compute total = L:':::6 d(tk' tk+l);
segind = ceil(total/m);
go = 0; i = 0;
while i < m - 1 do

find the largest j such that lscy(qi, j) < segind;
qi+I = j; i = i + 1;

endwhile

The quantity lscy(gi, qi) is an approximating measure of the length of the spherical image of
the segment from Pqj to Pq;+l that is, lscy(qi, qi) is a total absolute change of the angles of tangent
vectors. Hence, this algorithm is sensitive to high curvature. We can see 1MAGE returns a LA
which approximates C poorly in flat portions of a curve, and very well in highly curved portions
in Figure 3 (upper right) and Figure 4 (the second from left).

In the above algorithm, tangent vector information is used to subdivide a curve. If the digitized
space curve has been generated from equations, say, a parametric equation or two implicit equ.ations,
the tangent vector at each sample point can he computed directly from them. When instead a
digitized curve has been given in terms of a sequence of points, or direct computation of tangent
vectors from given equations is e.xpensive, the tangent vector tk to a curve C at Pk still can be
approximated by averaging the directions of the neighboring lines ofPk in C. In our implementation,
the tangent vector is approximated by 5 successive points as follows [24] :

where fr = II Vi-l X Vi II, {1 = II Vi+! X Vi+2 II, Vi = Pi - Pi-I, and x means a cross product of two
vectors. In case the digitized curve is open, the Bessel conditions are applied for the tangents at

7

the end points as follows [9] :

Vo = 2VI - V2, V_I = 2vO - VI,

Vn+1 = 2vn - Vn-I, Vn+2 = 2Vn+1 - Vn ·

4.3 Heuristic Subdivision

Now, we describe a heuristic algorithm which combines the two techniques. It consists of two steps
: generation of an initial piecewise linear approximation LAo, and iterative refinement of piecewise
linear approximation LAk.

4.3.1 Computation of An Initial Approximation: LAo

An initial LAo is computed by an algorithm which is a combination of LENGTH and 1MAGE.

Algorithm 4.3 (INIT)

select some value oj a (0 ~ 0' ~ 1);
compute total = Lk:~(a. d(Pk, PHI) +(1 - a) . d(tk, tk+l));
segsum = ceil(totaljm);
qo = OJ i = 0;
while i < m - 1 do

find the largest j such that a . L..eg(qi, j) + (1 - 0') . I ..e9 (Qi, j) < segsumj
qi+! = j; i = i + 1;

endwhile
qm = n;

The weight, a: is a parameter which controls the relative emphasis between curve length and
spherical image, and is empirically chosen. See Figure 3 (bottom left) and Figure 4 (the third from
left).

4.3.2 Iterative Refinement of Approximations: LAk

The "hybrid" algorithm INIT generally produces a good piecewise linear approximation. The next
step is to diffuse errors iteratively in order to refine the initial approximation. Note each segment
is made of a sequence of consecutive points of a digitized curve, and it is approximated by a line
connecting its end points. Usually, an error of a segment decreases as either of its end points is
assigned to its neighboring segment. Hence, the basic idea in the following iterative algorithm is to
move one of end points of a segment with larger error to its neighboring segment with less error,
expecting decrease of the total error of the new LA. In the kth step of the following algorithm
ITER, each segment of LAk is examined, diffusing, if possible, its error to one of its neighbors.
LAk tends to quickly converge to a minimal LA which js a local minimum. See Figure 3 (bottom
right), Figure 4 (rightmost), and Figure 5.

Algorithm 4.4 (ITER)

compute LAo from INIT;
k = 0;

8

do until (satisfied)
compute errors of segments in LAk;
curmax = E(LA,i,:(C,a,b,m);
fori=Otom-l do

if the error of i-th segment is large1' than
that of either of its neighboring segments

then move the i-th segment's end points to the neighbor
only if this change does not result in segment errors
larger than curmax;

endif
endfor
LAk+! = LAk;

enddo

4.3.3 The Time and Space Complexities

First, O(n) time is needed in order to approximate the tangent vector at each point. The algorithm
INIT needs to scan the points and tangent vectors to compute L"cg and I"cg first, and then L"cg
and 1"e.g are scanned to divide the digitized curve. Hence, it takes O(n) time. Now, consider the
algorithm ITER. First, the segment errors of LA,!,: is computed in O(n) time. In the for loop, each
segment and its two neighbors are examined, hence, each segment is examined twice. Since for
each segment, the segment error must be computed, O(n) computation is needed by the for loop.
So, ITER takes O(Nite.r· n) time where Niter is the number of iterations. So, the time complexity
of the heuristic algorithm is O(N;tcr . n), and it is easy to see O(n) space is sufficient for storing
input data and intermediate computations.

4.3.4 Performance

We have implemented both the optimal and heuristic algorithms on a Sun 4 workstation and a
Personal Iris workstation. Table 1- 5 in Appendix A show their performances for three test data.
The integer in the parenthesis is the number of iterations needed to arrive at the local minimum.
The bottom row (LAk/LA·) of each table indicates the performance of our heuristic algorithm,
and it is observed that it approximates the optimal solution reasonably well. The program for the
heuristic algorithm computes the approximate solution quickly (immediately or in a few seconds
depending on how many iterations are needed.) On the other hand, it takes about 45 minutes to
compute the optimal solution for (n = 404,m = 64) example of Table 4.

4.3.5 The Center of Mass

We now briefly consider the following type of the piecewise linear approximation problem: "find
a LA(C,a,b,m) such that E(LA) < (for a given bound f: and m is minimized." Even though
our heuristic algorithm was invented for an arbitrary number of subsegments, we can use it for
dividing a segment into 2 subsegments. One simple algorithm would be to recursively divide a
curve segment until the error of subsegment is less than E.

If a curve segment is to be divided into only two subsegments, the notion of the center of mass
can be applied. As before, assume we have a parametric representation C(s) of a curve C, where
s is an arc length parameter, and Ii(S) is its curvature. Consider a curve segment define by an

9

interval [0,1]' Then the center of curvature, defined by c'" ;=: J6 s~(s) dsj J6 ~(s) ds, can be used
as a heuristic that divides a curve segment C(s) : [0,1] into two subsegments C(s) : [O,c",] and
C(s) , [c<,/].

Again, e", needs to be approximated. For a digitized curve C(a, b, n) ;=: {a ;=: Po, PI, . ", pn =
b}, consider an imaginary parametric curve C(s) of an arc length parameter s where C(O) ;=: Po
and C(l) ;=: Pn. Then, at a point pi, s ~ cl(Po,pd such that C(s) ;=: Pi, where cl(PO,Pi) =
E~:1 d(Pi, Pi+l)' Together with the approximation of the denominator given before, the following
expression results in an approximation of c'" :

.-1

L cl(po, p;) II
i=O
.-1

L cl(po,p;) II t;+l - t; II
;=0
.-1

I: cl(PO,pi)d(ti, ti+l)'
i=O

5 Application I : Display of Implicit Curves and Surfaces

Algebraic curves and surfaces that are represented by implicit polynomials are convenient and
efficient for many applications in geometric modeling. For instance, implicit curves and surfaces
naturally define half spaces, and ray-surface intersections are easily computed. Also, they lend
themselves well to the creation of blends and offsets [16, 30, 13, 34, 29, 4, 21]' In order for implicit
curves and surfaces to be effectively used in designing complex objects, they must be displayed
quickly. In this Section, we consider how implicit curves and surfaces are adaptively displayed
based upon the idea of digitized space curves approximation.

5.1 Adaptive Display of Implict Curve Segments

Consider the problem of piecewise linear approximation of an algebraic space curve defined by the
intersection of two implici t surfaces h(x, y, z) ;=: °and g(:z:, y, z) ;=: O.

Our heuristic algorithm is well suited to producing a piecewise linear approximation of an
algebraic space curve segment. First, the curve segment is traced using a space curve tracing
algorithm (see e.g. [3]), generating a digitized space curve which consists of a rather big number
of points. The linear approximation algorithm, then, filters it, resulting in a piecewise linear
approximation. The surface intersection tracing algorithm is very fast when the degrees of curves
are in a reasonable range, and there is no singular points along the curve segment. Figure 3, 4,
and 6 are examples of planar curves, and Figure 7, and 8 are those of nonplanar curves.

5.2 Adaptive Display of Implict Surface Patches

As algebraic surfaces have become increasingly important to geometric modeling, the algorithms
for displaying algebraic surfaces have emerged. Hanrahan [12] showed that algebraic surfaces lend
themselves well to ray tracing. Sederberg and Zundel [31] uses a scan line display method which
offers improvement in speed and correctly displays singularities. Even though both approaches
produce very good images, the computation cost is expensive and the process is static in the sense
that operations on objects, like rotation and translation, can not be done dynamically. On the other

10

P2

PI

PO

Q2

=-------Is<------r QI

PI

Figure 1: Recursive Refinement of a Triangle

hand, the polygornzation-and-shading technique uses the capability of the graphics hardware which
provides very fast rendering. Allgower [2] uses simplices to approximate a surface with polygonal
meshes. Bloomenthal [6] discusses a numerical technique that approximates an algebraic surface
with a polygonal representation. This technique is to surround tile algebraic surface with an octree,
at whose corners the implicit function is sampled to generate polygons. Although it successfully
samples the surface inside an initial box, the octree method is not well suited to displaying an
algebraic surface patch. Bajaj and Thill [5] are currently working on the problem of constructing a
complex object made of triangular algebraic surface patches. A difficult problem is how to isolate,
numerically, only the necessary part or the triangular patch from the whole surface. One possible
way is to add the clipping surfaces facility to the oetree method. Dllt in general, this is not an
easy problem. On the other hand, the space curve tracing and our heuristic algorithm together can
be used to adaptively polygonize the necessary portions of smooth algebraic surface patches. For
example, the following simple procedure produces adaptive polygonization of a triangular algebraic
surface patch.

Let f(x, y, z) = 0 be a primary surface whose triangular portion clipped by three planes
hj(x,y,z) = 0, i = 1,2,3 is to be polygonized. (See Figure 1.) Initially, the triangle To =
(Po, PI, P2) is a rough approximation of the surface patch. Each boundary curve decided by f
and hi is traced to produce a digitized space curve, then its LA of order 2d for some given d is
computed. Then To is refined into four triangles by introducing the 3 points Qo. Ql, and Q2 where
Qi, i = 0,1, 2is the center point of each LA of order 2d • The clipping planes of subdi vided triangles
can be computed by averaging the normals of the two triangles incident to the edge. Then, each
new edge is traced, and then its LA of order 2d - l is produced. In this way, this new approximation
is further refined by recursively subdividing each triangle unti! some criterion is met. Figure 9
shows an example of the resulting adaptive polygonizations when d = 3. A goal here is to put more
triangles on the highly curved portion.

Whlle the above method produces a regular (but adaptive) network of polygons, it could be
modified to generate more adaptive polygonization. Rather than subdivide all the triangles up to
the same level, each triangle is examined to see if it is already a good approximation to the surface
portion it is approximating. It is refined only when the answer is no. Some criterions for such
local refinement are suggested in for example, [6,2]' But it is still an open problem to design an
irregular adaptive polygonization algorithm with robust local refinement criterions.

11

6 Application II
Tree

Construction of Binary Space Partitioning

Binary space partitioning (bsp) tree has been shown to provide an effective representation of poly
hedra through the use of spatial subdivision, and are an alternative to the topologically based
b-reps. It represents a recUIslve, hierarchical partitioning, or subdivision, of d-dimensional space.
It is most easily understood as a process which takes a subspace and partitions it by any hyperplane
that intersects the subspace's interior. This produces two new subspaces that can be partitioned
further.

An examples of a bsp tree in 2D can be formed by using lines to recursively partition the
2D space. Figure 2(a) shows a bsp tree induced partitioning of the plane and (b) shows the
corresponding binary tree. The root node represents the entire plane. A binary partitioning of the
plane is formed by the line labeled u, resulting in a negative halfspace and a positive halfspace.
These two halfspaces are represented respectively by the left and right children of the root. A
binary partitioning of each of these two halfspaces may then be performed, as in the figure, and
so on recursively. When, along any path of the tree, subdivision is terminated, the leaf node will
correspond to an unparti tioned region, called a cell.

(a) (b)

Figure 2: Partitioning of a 2D ESP Tree (a), and its Binary Tree (b)

The primary use of bsp trees to date has been to represent polytopes. This is accomplished by
simply associating with each cell of the tree a single boolean attribute classification ::= { in, out
}. If, in Figure 2, we choose cells 1 and 5 to be in cells, and to the rest out cells, we will have
determined a concave polygon of six sides. This method, while conceptually very simply, is capable
of representing the entire domain of polytopes, including unbounded and non-manifold varieties.
Moreover, the algorithms that use the bsp tree representation of space are simple and uniform over
the entire domain. This is because the algorithms only operate on the tree one node at a time and
so are insensitive to the complexity of the tree.

A number of bsp tree algorithms are known, including affine transformations, set operations,
and rendering (see e.g. [19]). The computational complexity of these algorithms depends upon the
shape and size of each tree. Consider point classification for example. The point is inserted into the
tree and at each node the location of the point with respect to the node's hyperplane determines
whether to take the left or right branch; trus continues until a leaf is reached. The cost of this
is the length of the path taken. Now if this point is chosen from a uniform distribution of points
over some sample space of volume V, then for any cell C with volume Vc at tree depth dc, the

12

probability Pc ofreaching C is simply ~ and the cost is de. So an optimal expected case bsp tree
for point classification would be a tree for which the sum of pede over all C is minimized. If the
embedding space is one dimensional, then this is the classic problem of constructing an optimal
binary search tree; a problem solved by dynamic programming.

The essential idea here is that the largest cells should have the shortest paths and smallest cells
the longest. For example, satisfying this objective function globally generates bounding volumes
as a by-product: if a polytope's volume is somewhat smaller than the sample space's volume,
constructing a bounding volume with the first hyperplanes of the tree results is large "out" cells
with very small depths. Now, in the general case in which the "query" object Q has extent, i.e. is
not a point, then Q will lie in more than one cell, and a subgraph of the tree will be visited. Thus
the cost of the query is the number of nodes in this subgraph. This leads to a more complicated
objective function, which we do not intended to examine here, but the intuition taken from point
classification remains valid.

We use these ideas in conjunction with the linear approximation methods, described before, to
build "good" expected case trees for solids defined as surfaces of revolution (or should we say, that
we expect these trees to be good). First, we orthogonally project the curve to be revolved onto
the axis of rotation, which we take to be a vertical z-axis. We then partition space with horizontal
planes where each plane contains one of the linearly approximated curve points. The bsp tree
representing this is a nearly balanced tree, and each cell will contain the surface resulting from the
revolution of a single curve segment.

Now the revolution of the curve need not be along a circle, but can be any convex path for
which we have constructed a linear approximation. Thus each face of the solid will be a quadrilat
eral in which the "upper" and "lower" edges lie in consecutive horizontal partitioning planes, are
parallel, and are instances of a single path edge at some distance from the axis of revolution that is
determined by the revolved curve. Now the bsp subtree for the surface between horizontal planes
is obtained by recursively partitioning the path of revolution to form a nearly balanced tree.

The method we use is ODe that in 2D generates for any n-sided convex polygon a corresponding
nearly balanced bsp tree of size D(n) and height D(logn). The path curve is first divided into
four sub-curves, one for each quadrant, and a hyperplane containing the first and last points is
constructed. By convexity, a sub-curve lies entirely in one halfspace of its corresponding hyperplane,
and we call that halfspace the "outside" halfspace and the opposite halfspace the "inside" halfspace.
The intersection of the four inside halfspaces is entirely inside the polygon, and so forms an in-cell
of the bsp tree. ,~.re then construct independently a tree for each sub-curve recursively.

We first choose the median segment of the sub-curve and partition by the plane of the corre
sponding face. Since the path curve is convex, all of the faces will be in the inside halfspace of tIllS
plane and an out·cell can be created in its outside halfspace. Now each non-horizontal edge of the
median face is used to define a partitioning plane which also contains the first/last point of the
sub-curve. All of the faces corresponding to this sub-curves' edges are in the outside halfspace, and
so an in-cell can be created in its inside halfspace. We have now bisected the sub-curve by these
planes which contain no faces and can recurse with them. The recursion continues until only a small
number of faces/segments remain, say 6, at which point only face planes are used for partitioning,
since the cost of the non-face partitioning planes out-weights their contribution to balancing the
tree. The result for a path curve of n edges is a nearly balanced tree of size < 3n and height
O(logn).

In some sense, we have constructed a tree that is the cross product of the path curve and the
revolved curve; we build a tree of horizontal planes that partitions the revolved curve, and then we

13

form "slices" of the object by constructing a tree for the path curve. If the revolved curve has m
segments, then the number of faces is nm and the bsp tree is of size DCnm) and height D(1ognm)
(= O(logn+1ogm)).

The object in Figure 10 was made by rotating a curve in Figure 5 around an ellipse. Its bsp tree
is shown together which is quite well balanced. The goblet in Figure 11 was made by constructing
two objects using the curve in Figure 5, and then applying a difference operation to carve a hole
on the goblet. The bsp tree in Figure 11 was obtained after applying the difference operation, and
then a union operation for the red ball. It is observed that set operations on well-balanced bsp
trees result in well-balanced trees. The set operation and display were done in SCULPT [18} which
is an interface system for bsp trees.

7 Conclusion

In this paper, we have discussed the problem of piecewise linear approximation of an arbitrary dig
itized 3-D curve. Two algorithms have been presented. One finds an optimal linear approximation
at a high expense. The other computes a heuristic linear approximation, based on the fundamental
notions of curve length and spherical image of a space curve. This heuristic algorithm finds a good
linear approximation quickly. We have also shown that our heuristic algorithm can be applied to
adaptively display space curves and implicit surfaces, and to adaptively construct well-balanced
binary space partitioning trees of revolved objects. The piecewise linear approximation problem
can be generalized such that curve segments of some fixed degree as opposed to line segments are
used to optimaly compress a digitized space curve.

14

A The Performances

1.3631.3931.0141.000

...::n'-----'t-I----; -----;;--_ _ ----=,10'i-9_ ,-----;;-;;,-----,-.",---
m ~ 4 8 16 U M

LAo 5.2561ge-l 2.21325e-l 8.09768e-2 2.66073e-2 8.98677.-3
LA, 4.02838e-l 1.12507.-1 3.08774e-2 1.23695e-2 3.76437.-3
(k) (5) (9) (17) (16) (14)

LA" 4.02838e-l 1.12507e-l 3.04525e-2 8.94592e-3 2.76188.-3

"I LA,/LA ~ 1.000

Table 1: The curve in Figure 3

1.5881.4621.3461.0471.065

n ~ @8
l----'m::--~1-------;;2----4;---------;8;---Ir--1"6,-----,--;;;32,----,---"64.-----

LAo 3.41045e-l 2.24775e-l 5.47018e-2 1.42360e-2 3.80354e-3 1.1938ge-3
LA, 3.41045e-l 9.53494e-2 2.75688e-2 8.92481.-3 2.95337e-3 8.66971e-4
(k) (0) (86) (50) (80) (66) (381)

LA" 2.73563e-l 8.95572e-2 2.63278e-2 6.62991e-3 2.02041.-3 5.45924e-4

"ILA';LA ~ 1.247

Table 2: The curve in Figure 4

n ~ 237
l----'m::--~f-----,8,,-- -----;-1"6----" 1"---0302 - c----'6"'-4-

LAo 1.03375e-1 6.11455e-2 2.95784e-2 8.24535.-3
LA, 6.0774ge-2 2.90067e-2 7.76577e-3 5.63440.-3
(k) (12) (17) (20) (5)

LA" 5.87190e-2 2.06813.-2 5.12219e-3 1.75973e-3

"1 LA';LA ~_"'1."'03"'5_1_-=1.,,40"'3'----------,1"".5",16,----- -----,3::::.2",02,--

Table 3: The curve in Figure 5 (goblet)

15

1.2271.0921.0241.000

f_---"n---1~f_~-- __~__--,4~04"---- ~-~~~-
m ~ 4 8 16 n M

LAD 2.0139ge-0 3.63921e-l 9.66444e-2 2.67485e-2 8.39998e-3
LA, 1.86220e-0 2.26435e-l 7.78874e-2 2.24510e-2 6.9870ge-3
(k) (4) (32) (16) (10) (8)
LA' 1.85530e-0 2.26435e-l 7.6066ge-2 2.05613e-2 5.69636e-3

•ILA,/LA ~ 1.004

Ta.ble 4: The curve in Figure 7

l---,n~--1~f-_,.----_ ------,0---- _----"023"'-4_ ---=-- ,-------=--
m ~ 4 8 U n M

LAD 7_242140-1 1.72242e-l 5.3202ge-2 1.64083e-2 1.60168e-2
LA, 4_81844e-l 1.34728e-l 3.69400e-2 1.53000e-2 3.80315e-3
(k) (15) (15) (13) (2) (11)
LA' 4.818440-1 1.34728e-l 3.65433e-2 1.05332e-2 3.16273e-3

ILA,/LA' ~ 1.000 1.000 1.011 1.453 1.202

Table 5: The curve in Figure 8

B List of Figures

1. Figure 3 : Folium of Descartes

(a) equation: G(t) ::::: (1~tt3 'l~:3' 0) or (/(x, y,z) ::::: x3
- 3xy +y3, g(x, y, z)::::: z)

(b) n = 109, m = 20

2. Figure 4 : A cubic curve

(a) equation, C(t) = (t, t3 , 0) or (I(x, y,z) = x3 - Y + z, g(x, y, z) = z)

(b) n=408,m=11

3. Figure 5 : A human profile and a goblet

(a) Points were generated from 12 rational Bezier curves in [24J, and then slightly disturbed.

(b) (profile) n = 169, m = 20

(e) (goblet) n = 237, m = 20

4. Figure 6 : A four-leaved rose

(a) equation: ([(x, y,z) ::::: x6 + 3x 4y2 - 4x 2 y2 +3x2 y4 + y6, 9(X, y, z)::::: z)

(b) n = 400, m = 64

5. Figure 7 : A nonplanar quartic curve

(a) equation: (J(x, Y, z)::::: 36x2 +81y2 + 9z2 - 324, 9(X, y,z)::::: :z:2 + y2 - 3.94)

(b) n=404,m=32

16

6. Figure 8 : A nonplanar sextic curve

(a) equation: (J(x,y,z)=y2- x2- x3,g(x,y,z)=z-x2+x-2)

(b) n=234,m=20

7. Figure 9 : A quartic surface patch

(a) equation: f(x, y, z) = O.01853292z4 -1.14809166y2z2 -1.14809166x 2z 2 +O.99982830z2

1.16662458y'-1.14809166x'y'+2.1849858y'+0.01853292x'+0.99982830x'-0.72183450

(b) d = 3

8. Figure 10 A human proftle rotated

(a) The primary curve: the curve in Figure 5 with 32 segments.

(b) The auxiliary curve: an ellipse with 32 segments.

9. Figure 11 A goblet

(a) The primary curve: the curve in Figure 5 with 20 segments.

(b) The auxiliary curve: a circle with 32 segments.

17

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysys of Computer Algorithms.
Addison-Wesley, Readings, Mass., 1974.

[2] E.L. Allgower and S. Gnutzmann. Polygonal meshes for implicitly defined surfaces. menuscript ,
Nov. 1989.

[3] C. Bajaj, C. Hoffmann, J. Hopcroft, and R. Lynch. Tracing surface intersections. Computer
Aided Geometric Design, 5:285-307, 1988.

[4J C. Bajaj and 1. Thm. Hermlte interpolation using real algebraic surfaces. In Proceedings of the
Fifth Annual ACM Symposium on Computational Geometry, pages 94-103, Germany, 1988.

[5] C. Bajaj and 1. Thm. Construction of a mesh of quintic implicit surface patches. menuscript,
1990.

[6] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric Design, 5:341
355, 1988.

[7] A. Cantoni. Optimal curve-fitting with piecewise linear functions. IEEE Transactions on
Computers, c·20:59--67, 1971.

[8] S.D. Conte and C. deBoor. Elementary Numerical Analysis: An Algorithmic Approach.
McGraw-Hill, New York, third edition, 1980.

[9] C. deBoor. A Pracitcal Guide to Splines. Springer-Verlag, New York, 1978.

[10] J.G. Dunham. Optimum uniform piecewise linear approximation of planar curves. IEEE
Transanctions on Pattern Analysis and Machine Intelligence, 8:67-75, Jan. 1986.

[11] C. Fahn, J. Wang, and J. Lee. An adaptive reduction procedure for the piecewise linear
approximation of digitized curves. IEEE Transanctions on Pattern Analysis and Machine
Intelligence, 11(9):967-973, Sep. 1989.

[12] P. Hanrahan. Ray tracing algebraic surfaces. Computer Graphics: SIGGRAPlJ'83 Conference
Proceedings, 17(3):83-90, 1983.

[13] C. Hoffmann and J. Hopcroft. Quadratic blending surfaces. Computer Aided Design, 18(6):301
306, 1986.

[14] N. Kehtarnavaz and R.J.P. deFigueiredo. A 3-D contour segmentation scheme based on
curvature and torsion. IEEE Transanctior1$ on Pattern Analysis and Machine Intelligence,
10(5):707-713, Sep. 1988.

[15] E. Kreyszig. Differential Geometry. University of Toronto Press, 1959.

[16] A. Middleditch and 1<. Scars. Blend surfaces for set theoretic volume modeling system. Com.
puter Graphics: SIGGRAPlJ'85 Conference Proceedings, 19(3):161-170, 1985.

[17] U. Montanari. A note on minimal length polygonal approximation to a digitized contour.
Comm. ACM, 13:41-47, 1970.

18

[18] B. Naylor. Sculpt: An interactive solid modeling tool. In Proc. of Graphics Interface, Halifax,
Nova Scotia, May 1990. Graphics Interface '90.

[19] B. Naylor, J. Amanatides, and W. Thibault. Merging bsp trees yields polyhedral set operations.
Computer Graphics: SIGGRAPH'90 Conference Proceedings, 24(4), Aug. 1990.

[20] B. O'Neill. Elementary Differential Geometry. Academic Press, 19GG.

[21] N.M. Patrikalakis and G.A.Kriezis. Representation of piecewise continuous algebraic surfaces
in terms of B-splines. The Visual Computer, 5(6):3GO-374, Dec. 1989.

[22] T. Pavlidis. Algorithms for Graphics and Image Processing, pages 281-297. Computer Sciences,
New York, 1982.

[23] T. Pavlidis and S.L. Horowitz. Segmentation of plane curves. IEEE Transactions on Comput
ers, c-23(8):860-870, Aug. 1974.

[24] L. Piegl. Interactive data interpolation by rational Bezier curves. IEEE Computer Graphics
and Applications, pages 45-58, July 1987.

[25J U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer
Graphics and Image Processing, 1:244-256, 1972.

[26] K. Reumann and A.P.M. Witkam. Optimizing curve segmentation in computer graphics. In
A. Gunther, B. Levrat, and H. Lipps, editors, International Computer Symposium, pages 467
472. American Elsevier, New York, 1974.

[27] J .R. Rice. The Approximation of Functions, volume 1. Addison-Wesley, Readings, Mass.,
1964.

[28] J. Roberge. A data reduction algorithm for planar curves. Computer Vision, Graphics and
Image Processing, 29:168-195, 1985.

[29] A.P. Rockwood and J.C. Owen. Blending surfaces in solid modeling. In G. Farin, editor,
Geometric Modeling: Algorithms and New Trends, pages 367-383. SIAM, Philadelphia, 1987.

[30] T.W. Sederberg. Piecewise algebraic surface patches. Computer Aided Geometric Design,
2:53-59, 1985.

[31] T.W. Sederberg and A.K. Zundel. Scan line display of algebraic surfaces. Computer Graphics
: SIGGRAPH'S9 Conference Proceedings, 23(3):147-156, 1989.

[32] J. Sklansky and V. Gonzalez. Fast polygonal approximation of digitized curves. Pattern
Recognition, 12:327-331, 1980.

[33] K. Wall and P.E. Danielsson. A fast sequential method for polygonal approximation of digitized
curves. Computer Vision, Graphics and Image Processing, 28:220-227, 1984.

[34] J. Warren. On Algebraic Surfaces Meeting With Geometric Continuity. PhD thesis, Cornell
University, 1986.

[35] C.M. Williams. An efficient algorithm for the piecewise linear approximation of planar curves.
Computer Graphics and Image Processing, 8:286-293, 1978.

19

Figure 3: Folium of Descartes

Figure 4: A cubic curve

20

Figure 5: A human profile and a goblet

21

Figure 6: A four-leaved rose

Figure 7: A nonplanar quartic curve

22

Figure g- A. nonplanar sextic curve

Figure g. A. quartic surface patch

23

Figure 10: A Human Profile Rotated

Figure 11: A Goblet

24

	Piecewise Linear Approximations of Digitized Space Curves with Applications
	Report Number:
	

	tmp.1307986960.pdf.LMUX4

