115 research outputs found

    Integral equation models for image restoration: high accuracy methods and fast algorithms

    Full text link
    Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85415/1/ip10_4_045006.pd

    Wavelet and Multiscale Methods

    Get PDF
    [no abstract available

    An adaptive finite element method for solving 3D electromagnetic volume integral equation with applications in microwave thermometry

    Get PDF
    An adaptive finite element method (AFEM) for the numerical solution of an electromagnetic volume integral equation (VIE) is presented. To solve the model VIE, the problem is formulated as an optimal control problem for minimization of Tikhonov\u27s regularization functional. A posteriori error estimates in the obtained finite element reconstruction and in the underlying Tikhonov\u27s functional are derived. Based on these estimates, adaptive finite element algorithms are formulated and numerically tested on the problem of microwave hyperthermia in cancer treatment. In this problem, the temperature change of a target in the computational domain results in the change of its dielectric properties. Numerical examples of monitoring this change show robust and qualitative three-dimensional reconstructions of the target using the proposed adaptive algorithms

    Doctor of Philosophy

    Get PDF
    dissertationInverse Electrocardiography (ECG) aims to noninvasively estimate the electrophysiological activity of the heart from the voltages measured at the body surface, with promising clinical applications in diagnosis and therapy. The main challenge of this emerging technique lies in its mathematical foundation: an inverse source problem governed by partial differential equations (PDEs) which is severely ill-conditioned. Essential to the success of inverse ECG are computational methods that reliably achieve accurate inverse solutions while harnessing the ever-growing complexity and realism of the bioelectric simulation. This dissertation focuses on the formulation, optimization, and solution of the inverse ECG problem based on finite element methods, consisting of two research thrusts. The first thrust explores the optimal finite element discretization specifically oriented towards the inverse ECG problem. In contrast, most existing discretization strategies are designed for forward problems and may become inappropriate for the corresponding inverse problems. Based on a Fourier analysis of how discretization relates to ill-conditioning, this work proposes refinement strategies that optimize approximation accuracy o f the inverse ECG problem while mitigating its ill-conditioning. To fulfill these strategies, two refinement techniques are developed: one uses hybrid-shaped finite elements whereas the other adapts high-order finite elements. The second research thrust involves a new methodology for inverse ECG solutions called PDE-constrained optimization, an optimization framework that flexibly allows convex objectives and various physically-based constraints. This work features three contributions: (1) fulfilling optimization in the continuous space, (2) formulating rigorous finite element solutions, and (3) fulfilling subsequent numerical optimization by a primal-dual interiorpoint method tailored to the given optimization problem's specific algebraic structure. The efficacy o f this new method is shown by its application to localization o f cardiac ischemic disease, in which the method, under realistic settings, achieves promising solutions to a previously intractable inverse ECG problem involving the bidomain heart model. In summary, this dissertation advances the computational research of inverse ECG, making it evolve toward an image-based, patient-specific modality for biomedical research

    Computational Inverse Problems

    Get PDF
    Inverse problem typically deal with the identification of unknown quantities from indirect measurements and appear in many areas in technology, medicine, biology, finance, and econometrics. The computational solution of such problems is a very active, interdisciplinary field with close connections to optimization, control theory, differential equations, asymptotic analysis, statistics, and probability. The focus of this workshop was on hybrid methods, model reduction, regularization in Banach spaces, and statistical approaches

    Numerical Methods for Integral Equations

    Get PDF
    We first propose a multiscale Galerkin method for solving the Volterra integral equations of the second kind with a weakly singular kernel. Due to the special structure of Volterra integral equations and the ``shrinking support property of multiscale basis functions, a large number of entries of the coefficient matrix appearing in the resulting discrete linear system are zeros. This result, combined with a truncation scheme of the coefficient matrix, leads to a fast numerical solution of the integral equation. A quadrature method is designed especially for the weakly singular kernel involved inside the integral operator to compute the nonzero entries of the compressed matrix so that the quadrature errors will not ruin the overall convergence order of the approximate solution of the integral equation. We estimate the computational cost of this numerical method and its approximate accuracy. Numerical experiments are presented to demonstrate the performance of the proposed method. We also exploit two methods based on neural network models and the collocation method in solving the linear Fredholm integral equations of the second kind. For the first neural network (NN) model, we cast the problem of solving an integral equation as a data fitting problem on a finite set, which gives rise to an optimization problem. In the second method, which is referred to as the NN-Collocation model, we first choose the polynomial space as the projection space of the Collocation method, then approximate the solution of the integral equation by a linear combination of polynomials in that space. The coefficients of the linear combination are served as the weights between the hidden layer and the output layer of the neural network. We train both neural network models using gradient descent with Adam optimizer. Finally, we compare the performances of the two methods and find that the NN-Collocation model offers a more stable, accurate, and efficient solution

    Fast Numerical Methods for Non-local Operators

    Get PDF
    [no abstract available

    Convergence rates for variational regularization of inverse problems in exponential families

    Get PDF
    We consider statistical inverse problems with statistical noise. By using regularization methods one can approximate the true solution of the inverse problem by a regularized solution. The previous investigation of convergence rates for variational regularization with Poisson and empirical process data is shown to be suboptimal. In this thesis we obtain improved convergence rates for variational regularization methods of nonlinear ill-posed inverse problems with certain stochastic noise models described by exponential families and derive better reconstruction error bounds by applying deviation inequalities for stochastic process in some function spaces. Furthermore, we also consider iteratively regularized Newton-method as an alternative while the operator is non-linear. Due to the difficulty of deriving suitable deviation inequalities for stochastic processes in some function spaces, we are currently not able to obtain optimal convergence rates for variational regularization such that we state our desired result as a conjecture. If our conjecture holds true, then we can immediately obtain our desired results
    corecore