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An adaptive finite element method (AFEM) for the numerical solution of an electromagnetic 
volume integral equation (VIE) is presented. To solve the model VIE, the problem is 
formulated as an optimal control problem for minimization of Tikhonov’s regularization 
functional. A posteriori error estimates in the obtained finite element reconstruction and in 
the underlying Tikhonov’s functional are derived. Based on these estimates, adaptive finite 
element algorithms are formulated and numerically tested on the problem of microwave 
hyperthermia in cancer treatment. In this problem, the temperature change of a target in 
the computational domain results in the change of its dielectric properties. Numerical 
examples of monitoring this change show robust and qualitative three dimensional 
reconstructions of the target using the proposed adaptive algorithms.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The paper is devoted to the efficient and reliable solution of an electromagnetic volume integral equation (VIE) in three 
dimensions using an adaptive finite element method (AFEM). Problems of solution of VIE arise in many applications related 
to biomedical imaging and specially, to the microwave medical imaging. The specific goal of our work is to test several 
developed algorithms on the problem of monitoring of hyperthermia in order to reconstruct a three-dimensional target in 
real time.

Different mathematical analytical methods applied for investigation of three-dimensional vector electromagnetic prob-
lems related to VIE are presented in [18,19]. Methods applied in computational electromagnetics are widely presented in 
[20–22], and the recently developed numerical methods for solution of inverse problems in electromagnetics are given in 
[23–25,33].

An adaptive finite element method for a Fredholm integral equation of the second kind was considered in [1]. In the 
current work, we consider more complicated case of the VIE since it is an ill-posed problem: the solution of it is sensitive 
to the small perturbations in the data function and the inverse operator of VIE is not a compact operator, see [7–9]. Thus, 
the problem of solution of VIE is formulated as an optimal control problem for minimization of Tikhonov’s regularization 
functional.
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In the paper, we derive a posteriori error estimates in the finite element solution of VIE and in the error of the underlying 
Tikhonov’s functional. To do that, we specify results of [10,29] for the case of electromagnetic volume integral equation and 
derive new a posteriori error estimates for our specific problem. Another novelty of the current work is that we allow 
reconstructed function to be discontinuous what leads to new terms with jumps in a posteriori error estimates. We are 
not aware about some results of application of an adaptive FEM for solution of electromagnetic VIE in three dimensions 
with application to real-life experiments. We have developed software implemented in Matlab and C++/PETSC for solution 
of real-life problem of monitoring of hyperthermia which is provided at [38]. Implementation of all algorithms proposed in 
this work is included in [38].

The main concept of an adaptive finite element method, which we use in this work for solution of VIE, is as follows: 
since it is not computationally efficient to use very fine mesh during the numerical solution of VIE, an adaptive finite 
element method allows to obtain good accuracy of the computed solution via local mesh refinements. To be able use this 
idea, we minimize Tikhonov functional on a sequence of locally refined meshes which are refined based on a posteriori 
error estimates derived in this work. Finally, different adaptive algorithms are formulated and numerically tested on the 
real-life problem of monitoring of hyperthermia.

Microwave hyperthermia [11] is used for treatment of cancer and is a good compliment to other types of traditional 
cancer therapies like radio- and chemo-therapy [12,13]. The main goal of microwave hyperthermia is to increase the tumor 
temperature to the therapeutic levels of 40 − 44◦C while keeping healthy tissue at the normal temperature. During this 
procedure, it is very important to control thermal dose. Thus, there is a need for robust and real-time reconstruction 
methods which are capable to solve this problem. The problem of microwave hyperthermia is considered as the problem 
of differential microwave imaging and is formulated in many works, see [14–16]. In the current work, we use similar 
experimental set-up as in [14–16], and consider an annular phased array system of 16 monopole antennas constructed 
to work at the ISM band of 915 MHz. This special frequency band is chosen because it provides a good compromise 
between the penetration depth of the EM waves into biological tissues and the imaging resolution. Moreover, the dielectric 
changes due to temperature change are significant enough at this frequency band to be detected through microwave imaging 
techniques. For instance, it is shown in [17] that 1% dielectric change per degree centigrade occurs between 28 ◦C and 53 ◦C 
and thus, it can be used in our experiment in the hyperthermic temperature range.

A linear least squares method combined with an adaptive finite element method has been presented in the recent 
work [5] for solution of microwave hyperthermia thermometry. However, the method considered in the present work is 
completely different from the AFEM method of [5]: in [5] AFEM was used for solution of image restoration problem in 
2D which was formulated as solution of a Fredholm integral equation of the first kind with standard convolution kernel 
and measurements taken from the solution of least squares problem, see more details in Test 1 of Section 8. Thus, the 
adaptive method of [5] can be considered as the second method in a two-stage procedure: on the first stage, standard least 
squares method obtains initial reconstruction of the target, and on the second stage, AFEM improves this reconstruction. 
AFEM method of [5] has shown significant improvement of reconstruction obtained by the least squares method, via local 
adaptive mesh refinements. However, VIE was not solved in adaptive algorithm of [5] and thus, real measurements of 
scattered parameters were not used in it.

In the current work, we fill this gap by solving VIE which describes the process of microwave thermometry in 3D via 
adaptive algorithms. Our numerical examples of Section 8 show that an adaptive finite element method is a reliable and 
fast tool to obtain reconstructed images in 3D and thus, this method can be adopted in different microwave applications to 
obtain real-time feedback.

The paper is outlined as follows. In Section 2, the model VIE is derived from the vector wave equation for the electric field 
in non-magnetic media, and in Section 3, the mathematical model of VIE is presented. In Section 4, an ill-posed problem 
is formulated, and Section 5 presents the finite element method for minimization of Tikhonov’s functional. Derivation of a 
posteriori error estimates is developed in Section 6. Section 7 describes different algorithms for solution of our ill-posed 
problem which are based on a posteriori error estimates of Section 6. Next, 3D numerical examples of reconstruction of 
the heated object during the process of hyperthermia are presented in Section 8. Finally, we end the work with concluding 
remarks in section 9.

2. Derivation of the volume integral equation

Let � ⊂R3 be a convex bounded domain with the boundary ∂� ∈ C2. Following the conventional physical notations of 
[2], r = (x, y, z) is taken as the position vector in Cartesian coordinates. Our model PDE problem corresponding to volume in-
tegral equation is the following vector wave equation (see, for example, [2]) for the electric field Ê(r) = (̂E1(r), ̂E2(r), ̂E3(r))
in a non-magnetic medium with the Silver-Müller radiation condition at infinity:

∇ × ∇ × Ê(r) − ω2
(

εr(r)

c2
+ iμ0

σ(r)

ω

)
Ê(r) = iωμ0 Ĵ (r), r ∈ R3. (1)

Here, εr(r) = ε(r)/ε0 and σ(r) are the relative dielectric permittivity and electric conductivity functions, respectively, ε0, μ0
are dielectric permittivity and permeability of free space, respectively, and c = 1/

√
ε0μ0 is the speed of light in free space. 

Equation (1) can be obtained by taking the time-dependent Maxwell’s equations for the electric field and then representing 
2
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in these equations the time-dependent field as E(r, t) = Ê(r)e−iωt and the source function as J source = Ĵ (r)e−iωt , where ω
is the angular frequency.

We introduce the spatially distributed complex dielectric function ε′(r):

ε′(r) = εr(r)
1

c2
+ iμ0

σ(r)

ω
. (2)

Then equation (1) transforms to the vector wave equation

∇ × ∇ × Ê(r) − ω2ε′(r)̂E(r) = iωμ0 Ĵ (r). (3)

Subtracting the term ∇ × ∇ × Ê(r) − ω2εb Ê(r) from both sides of (3), we get

−ω2(ε′(r) − εb )̂E(r) = iωμ0 Ĵ (r) − ∇ × ∇ × Ê(r) + ω2εb Ê, (4)

which can be rewritten as

∇ × ∇ × Ê(r) − ω2(ε′(r) − εb )̂E(r) = iωμ0 Ĵ (r) + ω2εb Ê. (5)

Here, εb is the dielectric permittivity corresponding to the background medium.
To proceed further, we introduce the dyadic Green’s function Ḡ(r, r′) for the problem in a homogeneous medium (see, 

for example, [2]):

∇ × ∇ × Ḡ(r, r′) − ω2εbḠ(r, r′) = Iδ(r − r′), r ∈ R3, (6)

where I is an identity operator. Rewriting equation (5) according to the form of equation (6), we have

∇ × ∇ × Ê(r) − ω2εb Ê(r) = iωμ0 Ĵ (r) + ω2(ε′(r) − εb )̂E(r). (7)

We multiply (7) by Ḡ(r, r′) and (6) by Ê(r), correspondingly, to get:

∇ × ∇ × Ê(r)Ḡ(r, r′) − ω2εb Ê(r)Ḡ(r, r′) = iωμ0 Ĵ (r)Ḡ(r, r′) + ω2(ε′(r) − εb )̂E(r)Ḡ(r, r′), (8)

∇ × ∇ × Ḡ(r, r′)̂E(r) − ω2εbḠ(r, r′)̂E(r) = δ(r − r′)̂E(r). (9)

Then subtracting (9) from (8) and integrating, we obtain

(∇ × ∇ × Ê(r), Ḡ(r, r′)) − (ω2εb Ê(r), Ḡ(r, r′)) − (∇ × ∇ × Ḡ(r, r′), Ê(r)) + (ω2εbḠ(r, r′), Ê(r))

= (iωμ0 Ĵ (r), Ḡ(r, r′)) + (ω2(ε′(r) − εb )̂E, Ḡ(r, r′)) − (δ(r − r′), Ê(r)).
(10)

Here, (·, ·) denotes the standard scalar product in space.
The above equation is reduced to the following equation

(∇ × ∇ × Ê(r), Ḡ(r, r′)) − (∇ × ∇ × Ḡ(r, r′), Ê(r))

= (iωμ0 Ĵ (r), Ḡ(r, r′)) + (ω2(ε′(r) − εb )̂E, Ḡ(r, r′)) − (δ(r − r′), Ê(r)).
(11)

We use integration by parts for the two terms on the left hand side of (11), see details in [6], and apply the Silver-Müller 
radiation condition at infinity, to get:

(∇ × ∇ × Ê(r), Ḡ(r, r′)) = (∇ × Ê(r),∇ × Ḡ(r, r′)),
(∇ × ∇ × Ḡ(r, r′), Ê(r)) = (∇ × Ḡ(r, r′),∇ × Ê(r)).

(12)

Applying (12) in the left hand side of (11), we obtain

(∇ × ∇ × Ê(r), Ḡ(r, r′)) − (∇ × ∇ × Ḡ(r, r′), Ê(r)) = 0. (13)

Using the principle of linear superposition, see details in [2], we finally get from (11) the following equation

Ê(r) = iωμ0

∫
�

Ĵ (r)Ḡ(r, r′) dr + ω2
∫
�

(ε′(r) − εb )̂E(r)Ḡ(r, r′) dr. (14)

The first term in the right hand side of the above equation corresponds to the incident electric field Ê inc , see [2]. Hence, 
(14) becomes

Ê(r) = Ê inc + ω2
∫

(ε′(r) − εb )̂E(r)Ḡ(r, r′) dr. (15)

�

3
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According to [4], the scattered field is defined as Ê sca = Ê(r) − Ê inc such that using the reciprocity Ḡ(r′, r) = Ḡ(r, r′) and 
O (r) = ε′(r) − εb(r), equation (15) transforms to

Ê sca = ω2
∫
�

Ê(r)O (r)Ḡ(r′, r) dr, (16)

which is the model volume integral equation.

3. The mathematical model

The main mathematical model considered in this work is given by the volume integral equation (16) for the scattered 
field Esca(r) in an inhomogeneous medium which is used in many microwave applications [2–5]. More precisely (see details 
in the previous section), our mathematical model is given by the volume integral equation in the domain � ⊂ R3:

Ê sca(r) = ω2
∫
�

Ḡ(r′, r)O (r)̂E(r)dr. (17)

Here, Ê sca(r) = Ê(r) − Ê inc(r) is the scattered field, Ḡ(r′, r) is the dyadic Green function, O (r) = ε′(r) − εb(r) is the object 
function, where ε′(r) and εb(r) are the complex dielectric permittivity of the medium under investigation and the dielectric 
permittivity of the background, respectively.

Using the Born approximation Ê(r) ≈ Ê inc(r) [2] in the right hand side of (17), we obtain the following volume integral 
equation

Ê sca(r) = ω2
∫
�

Ḡ(r′, r)O (r)̂Einc(r)dr. (18)

According to [4], equation (18) transforms to the following volume integral equation for a bi-static pair of antennas (i, j):

Ssca
j,i = C

∫
�

Ê inc, j(r)O (r)̂Einc,i(r)dr, (19)

with a constant C = −ω2εb/4iωμ. Using the reciprocity principle in the above equation, Ê inc,i is the incident electric 
field produced by the transmitter i and Ê inc, j is the incident electric field of the receiver j. In the left hand side of (18), 
the scattered field Ê sca(r) is replaced with the corresponding scattered S-parameter Sscat

j,i after introducing the appropriate 
scaling factor, i.e. C . Therefore, equation (19) uses the scattered S-parameter measurements obtained by a bi-static pair of 
antennas (i, j) instead of using the scattered electric field Ê sca(r) and is applied in many microwave applications [2–5] for 
image reconstruction.

4. Statement of an ill-posed problem

Let W1, W2, Q be three Hilbert spaces, Q ⊂ W1 be a space which is compactly embedded in W1. We denote scalar 
products and norms in these spaces, correspondingly, as

(·, ·) ,‖·‖ for W1,

(·, ·)2 ,‖·‖2 for W2

and [·, ·] , [·] for Q .

Let A : W1 → W2 be a bounded linear operator. The volume integral equation (19) can be written in the operator form

A(O ) = d (20)

with an operator A : W1 → W2 defined as

A(O ) := C

∫
�

Ê inc, j(r)O (r)̂Einc,i(r) dr (21)

and the vector of the right hand side d = Ssca .
j,i

4
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The Problem (P). Let O (r) ∈ W1 in

C

∫
�

Ê inc, j(r)O (r)̂Einc,i(r) dr = Ssca
j,i , (22)

be unknown in �. Determine O (r) for r ∈ � assuming that C = −ω2εb/4iωμ, ̂Einc, j(r), Ê inc,i(r) and Ssca
j,i in (22) are known.

The problem (P) of finding a solution to the volume integral equation (22) is an ill-posed problem since it is a Fredholm 
integral equation of the first kind [9]. To solve the problem (P), we introduce Tikhonov’s functional

Jα (O ) = 1

2
‖A(O ) − d‖2

2 + α

2
[O ]2 , d ∈ W2, O ∈ Q , (23)

where α > 0 is a regularization parameter.
Our goal is to find the function O  ∈ Q which minimizes Tikhonov functional (23). We search for a stationary point of 

the above functional with respect to O satisfying the following equation for any b ∈ Q :

J ′
α(O )(b) = 0, (24)

where J ′
α(O ) is the Fréchet derivative of the functional (23).

When the operator A in (20) is such that A : L2 → L2, then the following Lemma is valid:

Lemma 1. Let A : L2 → L2 in (20) be a bounded linear operator. Then the Fréchet derivative of the functional (23) is

J ′
α (O ) (b) = (

A∗ A(O ) − A∗d,b
) + α (O ,b) ∀b ∈ Q . (25)

For the proof see [9].

When Tikhonov’s functional (23) is considered in the form

Mα (O ) = 1

2
‖A(O ) − d‖2

2 + α

2
‖∇ O‖2, d ∈ W2, O ∈ Q , (26)

then the following Lemma is valid:

Lemma 2. Let A : H1 → L2 be a bounded linear operator. Then the Fréchet derivative of the functional (26) is

M ′
α(O )(b) = (A∗ A(O ) − A∗d,b) + α(∇ O ,∇b) ∀b ∈ H1(�), (27)

with a convex growth factor b, i.e., |∇b| < b. The proof follows from Lemma 2 in [26].

The next Lemma is known for a bounded linear operator. We formulate this lemma for our specific case of the functional 
(23).

Lemma 3. Let the operator A : W1 → W2 be a bounded linear operator which has the Fréchet derivative of the functional (23). Then 
the functional Jα (O ) is strongly convex on the space Q and(

J ′
α (O 1) − J ′

α (O 2) , O 1 − O 2
) ≥ γ [O 1 − O 2]2 ∀O 1, O 2 ∈ Q .

5. The finite element method for minimization of Tikhonov functional

We discretize the computational domain � ⊂R3 into elements K satisfying the minimal angle condition [27,28] by the 
mesh Kh = {K }. Let h = h(r) be the mesh function such that

h|K = hK ∀K ∈ Kh, (28)

where hK is the diameter of K which we define as the longest side of K .
We define the finite element space Vh ⊂ V as

Vh = {
v ∈ L2(�) : v ∈ C(�), v|K ∈ P1(K ) ∀K ∈ Kh

}
, (29)

where P1(K ) denotes the set of piecewise-linear functions on K .
Let us formulate the finite element method (FEM) for the functional (26). The FEM for the functional (23) with A : L2 →

L2 can be formulated in a similar fashion with only one distinction in the formulation of the regularization term.
5



L. Beilina, M. Ghaderi Aram and E.M. Karchevskii Journal of Computational Physics 459 (2022) 111122
To find optimal solution O of the functional (26), the following problem should be solved:

M ′(O )(v) = (A∗(A(O ) − d), v) + α(∇ O ,∇v) = 0. (30)

The finite element method for (30) reads: find O h ∈ Vh such that for all v ∈ Vh

M ′(O h)(v) = (A∗(A(O h) − d), v) + α(∇ O h,∇v) = 0. (31)

The function O is approximated by O h ∈ Vh , such that

O h =
N∑

i=1

O iϕi, (32)

where {ϕi}N
i=1 are the standard continuous piecewise linear functions and O i denote the unknown discrete function-values 

at the mesh point ri ∈ Kh .
Substituting (32) into (31) with v = ϕ j , we get the discrete system of equations

N∑
i, j=1

(Aϕi, Aϕ j)O i −
N∑

i, j=1

(dhi, Aϕ j) + α

N∑
i, j=1

(∇ϕi,∇ϕ j)O i = 0. (33)

This system can be rewritten as

N∑
i, j=1

(Aϕi, Aϕ j)O i + α

N∑
i, j=1

(∇ϕi,∇ϕ j)O i =
N∑

i, j=1

(dhi, Aϕ j), (34)

which is equivalent to the following linear system of equations

(A + αK)O = d. (35)

In system (35), matrices A, K are the finally assembled block matrices, corresponding to the first two terms in the left 
hand side of (34). O denotes the vector of nodal values of finite element approximation O h , and d is the finally assembled 
right hand side of (34). In (33), dh is the nodal interpolant of d.

From (33), we also get the discrete gradient which will be used in the iterative update of algorithms in Section 7:

M ′(O h)(ϕ j) =
N∑

i, j=1

(Aϕi, Aϕ j)O i −
N∑

i, j=1

(dhi, Aϕ j) + α

N∑
i, j=1

(∇ϕi,∇ϕ j)O i . (36)

6. A posteriori error estimates

In this section, we outline main derivations of a posteriori error estimates for the following errors:

• for the error ‖ Jα(O ) − Jα(O h)‖ in Tikhonov functional (23);
• for the errors ‖O  − O h‖ in the computed solution O h .

To make it clear how a posteriori error for the error in Tikhonov functional (23) can be obtained, we present general 
framework for it, see details in [29].

First we note that

Jα(O ) − Jα(O h) = J ′
α(O h)(O − O h) + R(O h), (37)

where R(O h) = O (‖O  − O h‖2) is the remainder of the second order. We assume that the computed finite element ap-
proximation O h of O is close to the regularized solution O of (23). Thus, the term R(O h) → 0 and we can neglect it in 
(37).

Let Ph be the L2(�) orthogonal projection operator. We define by f I
h the standard nodal interpolant [30] of f into the 

space of continuous piecewise-linear functions on the mesh Kh . Then by one of properties of the orthogonal projection, we 
have

‖ f − Ph f ‖L2(�) ≤
∥∥∥ f − f I

h

∥∥∥
L2(�)

. (38)

It follows from [32] that

‖ f − Ph f ‖L (�) ≤ C Ih ‖ f ‖H1(�) ∀ f ∈ H1(�), (39)

2
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where C I = C I (�) is a positive constant depending only on the domain �.
We now use the splitting

O − O h = (O − O I
h) + (O I

h − O h), (40)

together with the Galerkin orthogonality principle

J ′
α(O h)(b) = 0 ∀b ∈ Vh. (41)

Now by inserting (40) into (37), we get the following error representation:

Jα(O ) − Jα(O h) ≈ J ′
α(O h)(O − O I

h). (42)

In (40) and (42) functions O I
h ∈ Vh denote the interpolants of O .

To derive the error ‖O  − O h‖ in the reconstructed function O h , we will use the convexity property of Tikhonov functional 
(23) with the convexity parameter γ

γ ‖O 1 − O 2‖2 ≤ ∥∥( J ′
α(O 1) − J ′

α(O 2), O 1 − O 2)
∥∥ ∀O 1, O 2 ∈ H1, (43)

together with the interpolation property (39).
In the proofs of Theorems 1 and 2, we allow the function O to be discontinuous along the faces of elements K in Kh

and introduce notion of jump. We denote the jump of the function O h computed from the two neighboring elements K +
and K − sharing the common side as

[O h] = O +
h − O −

h . (44)

We now make both error estimates more explicit.

6.1. A posteriori error estimate in the computed solution

In this section, we derive a posteriori error estimate for the error ‖O  − O h‖ in the computed solution O h of the functional 
(23). Let the scalar product be given by (·, ·)L2 := (·, ·), as well as norms ‖·, ·‖L2

:= ‖·, ·‖. Whenever the norm should be 
specified, we will write it henceforth. We denote by

V 1 (O ) = {
O ′ ∈ H1 : ∥∥O ′ − O

∥∥ < 1 ∀O ∈ H1
}
. (45)

Theorem 1. Let O h ∈ Vh be a finite element approximations of the regularized solution O  ∈ H1(�) on the finite element mesh Kh and 
O ∗ be the exact solution of (20). Then there exists a constant D = Const. > 0 satisfying Lipschitz continuity property∥∥ J ′

α (O 1) − J ′
α (O 2)

∥∥ ≤ D ‖O 1 − O 2‖ ∀O 1, O 2 ∈ V 1(O ∗) (46)

in a small neighborhood of the exact solution O ∗, such that the following a posteriori error estimate holds

‖O − O h‖ ≤ D

γ
C I (||hO h|| + ‖[O h]‖) ∀O h ∈ Vh. (47)

Here, the constant D can be chosen as D = ‖ J ′′
α(O h)‖.

Proof. Let O h be a finite element approximation of O and be the minimizer of Tikhonov functional (23). According to 
Lemma 3, the functional (23) is strongly convex on the space L2 with the strong convexity constant γ . This implies, see 
(43), that

γ ‖O − O h‖2
L2(�) ≤ ‖ (

J ′
α(O ) − J ′(O h), O − O h

)‖L2(�), (48)

where J ′
α (O h) , J ′

α(O ) are the Fréchet derivatives of the functional (23).
Next, we use the splitting

O − O h =
(

O − O I
h

)
+

(
O I

h − O h

)
and substitute it in (48) to obtain

γ ‖O − O h‖2
L2(�) ≤ ‖

(
J ′
α(O ) − J ′(O h), O − O I

h

)
‖L2(�) + ‖

(
J ′
α(O ) − J ′(O h), O I

h − O h

)
‖L2(�). (49)

Here, O I is the standard interpolant of O .
h

7
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Applying the Galerkin orthogonality principle (noting that J ′
α(O ) = 0)(

J ′
α(O h) − J ′

α(O ), O I
h − O h

)
= 0 (50)

in (49), we will get

γ ‖O − O h‖2
L2

≤ ‖( J ′
α(O ) − J ′

α(O h), O − O I
h)‖L2(�). (51)

The right hand side of (51) can be estimated using (46) as

‖
(

J ′
α (O ) − J ′

α(O h), O − O I
h

)
‖ ≤ D‖O − O h‖ · ‖O − O I

h‖.
Substituting the above equation into (51), we obtain

‖O − O h‖ ≤ D

γ
‖O − O I

h‖. (52)

Using the interpolation property

||O − O I
h||L2(�) ≤ C I ||h O ||H1(�),

we obtain a posteriori error estimate with the interpolation constant C I :

‖O − O h‖ ≤ D

γ
‖O − O I

h‖ ≤ D

γ
C I‖h O‖H1(�). (53)

We can estimate ‖h O‖H1(�) as

‖h O‖H1(�) ≤
∑

K

||hK O ||H1(K ) =
∑

K

||(O + ∇ O )hK ||L2(K )

≤
∑

K

(
||O hhK ||L2(K ) +

∥∥∥∥ [O h]
hK

hK

∥∥∥∥
L2(K )

)
≤ ‖hO h‖L2(�) + ‖[O h]‖.

(54)

In (54), [O h] is the jump of the function O h over the element K defined as in (44), hK is the diameter of the element K . In 
(54) we applied the estimate

|∇ O | ≤ |[O h]|
hK

,

which is used often in finite element analysis, see for example, [31].
Substituting the above estimates into the right hand side of (53), we get

‖O − O h‖ ≤ D

γ
C I‖hO h‖ + D

γ
C I ‖[O h]‖ ∀O h ∈ Vh.

The constant D can be estimated as follows. First we note that by the definition of the Frechét derivative of Tikhonov 
functional (23) we can write ∀O 1, O h ∈ V 1(O ∗):

J ′
α(O 1) − J ′

α(O h) = J ′′
α(O h)(O 1 − O h) + R(O 1, O h), (55)

where the remainder R(O 1, O h) = O (‖O 1 − O h‖2), (O 1 − O h) → 0 ∀O 1, O h ∈ Vh , is small and can be neglected. Then

‖ J ′
α(O 1) − J ′

α(O h)‖ ≤ ‖ J ′′
α(O h)‖ · ‖O 1 − O h‖. (56)

Comparing (56) with (46), we conclude that D = ‖ J ′′
α(O h)‖. �

6.2. A posteriori error estimates for Tikhonov functional

In Theorem 2, we derive a posteriori error estimates for the error in Tikhonov functional (23) obtained on the finite 
element mesh Kh .

Theorem 2. Suppose that there exists a minimizer O  ∈ H1(�) of Tikhonov functional (23) on the mesh Kh. Suppose also that there 
exists a finite element approximation O h of O for Jα(O ) on the mesh Kh with the mesh function h. Then the following approximate a 
posteriori error estimate for the error e = || Jα(O ) − Jα(O h)|| in Tikhonov functional (23) holds:

e = || Jα(O ) − Jα(O h)|| ≤ C I
∥∥ J ′

α(O h)
∥∥ (‖hO h‖ + ‖[O h]‖) . (57)
8
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Proof. By the definition of the Frechét derivative of Tikhonov functional (23) with O and approximation O h , we have

Jα(O ) − Jα(O h) = J ′
α(O h)(O − O h) + R(O , O h), (58)

where the remainder R(O , O h) = O (‖O  − O h‖2), (O  − O h) → 0 for all O , O h ∈ Vh . Thus, we can neglect the term R(O , O h)

in the estimate (58). We again use the splitting (49) and the Galerkin orthogonality [30]

J ′
α(O h)(O I

h − O h) = 0 ∀O I
h, O h ∈ Vh (59)

to get

Jα(O ) − Jα(O h) ≤ J ′
α(O h)(O − O I

h), (60)

where O I
h is a standard interpolant of O on the mesh Kh [30].

Taking norms in (60), we get

‖ Jα(O ) − Jα(O h)‖ ≤ ‖ J ′(O h)‖‖O − O I
h‖, (61)

where the term ‖O  − O I
h‖ can be estimated through the following interpolation estimate

‖O − O I
h‖L2(�) ≤ C I ||h O ||H1(�).

Substituting above estimate into (61), we get

‖ Jα(O ) − Jα(O h)‖ ≤ C I
∥∥ J ′

α(O h)
∥∥‖h O‖H1�). (62)

We can estimate ‖h O‖H1(�) in the right hand side of (62) similar to (54) to get the final estimate as follows

‖ Jα(O ) − Jα(O h)‖ ≤ C I
∥∥ J ′

α(O h)
∥∥ (‖hO h‖ + ‖[O h]‖) ∀O h ∈ Vh. (63)

Here, J ′
α(O h) is the Frechet derivative given by (64) for A : H1 → L2. For A : L2 → L2 the Frechet derivative is derived in a 

similar fashion as in Section 5 and will be

J ′(O h)(ϕ j) =
N∑

i, j=1

(Aϕi, Aϕ j)O i −
N∑

i, j=1

(dhi, Aϕ j) + α

N∑
i, j=1

(ϕi,ϕ j)O i . � (64)

7. Algorithms for solution of the ill-posed problem

In this section, we formulate different algorithms for the solution of the ill-posed problem (P): conventional conjugate 
gradient algorithm (CG) and two different versions of adaptive finite element algorithms, AFEM2 and AFEM3.

The conjugate gradient Algorithm 1 (CG) can be used on the coarse as well as on the l times refined finite element 
mesh Kl := Khl . Let O l := O hl is the finite element reconstruction obtained on l times refined mesh Kl . The adaptive 
Algorithm 2 (AFEM2) is based on the solution of linear system of equation (35) obtained after finite element discretization 
of the functional (26) for A : H1 → L2, or the functional (23) for A : L2 → L2, to get the reconstruction O l on l times refined 
mesh Kl . The Adaptive Algorithm 3 (AFEM3) first uses the discrete gradient gl on the l times adaptively refined mesh Kl
and then the conjugate gradient method (Algorithm 1) to update the reconstruction O l .

7.1. Conjugate gradient algorithm

In this algorithm, we denote the gradient for A : H1 → L2 for the functional (26) by

gn := gn(r) = (A(O n
h) − dh)Av + α∇ O n

h∇v, (65)

where n is the number of iteration in the conjugate gradient Algorithm 1 and function O n
h is the computed finite element 

solution of (31) at the iteration n of this algorithm.
Similarly, we denote the gradient of the functional (23) for A : L2 → L2 by

gn := gn(r) = (A(O n) − dh)Av + αO n v. (66)
h h

9
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Algorithm 1 Conjugate Gradient algorithm (CG).
1: Discretize the computational space domain � using the finite element mesh Kh . Choose the regularization parameter α. Start with the initial approxi-

mations O 0
h = O 0 and compute the sequences of O n

h in the following steps:
2: Compute gradient gn via (65) for A : H1 → L2 or via (66) for A : L2 → L2.
3: Update the function O h := O n+1

h on Kh via the conjugate gradient method

O n+1
h = O n

h + ψdn,

where

dn = −gn + βn
O dn−1

with

βn
O = ‖gn‖2

‖gn−1‖2
.

Here, d0 = −g0, and ψ is the step-sizes in the gradient update.
4: For the chosen tolerance θ , stop computing O n

h at the iteration M := n and obtain the function O M
h := O n

h if either ‖gn‖L2(�) ≤ θ or norms ‖O n
h‖L2(�)

are stabilized. Otherwise set n := n + 1 and go to step 2.

7.2. Adaptive algorithms

In this section, we present two different adaptive algorithms for the solution of our ill-posed problem (P). The adaptive 
Algorithm 1 is based on solution of the system of linear equations (SLE) (35) while the adaptive Algorithm 2 uses computa-
tion of the discrete gradient (65) for the functional (26) when A : H1 → L2, or the discrete gradient (66) for the functional 
(23) in the case when A : L2 → L2.

Both algorithms refine the finite element mesh locally using a posteriori error estimates provided by Theorems 1 and 2. 
These estimates allow us to improve the accuracy of the reconstruction O h of the problem P. First, using the estimate (47) in 
Theorem 1, we can conclude that the maximum of the computed error |O  − O h| in the reconstructed function O h is located 
in neighborhoods of such points in the finite element mesh Kh where the computed |hO h| + |[O h]| achieves its maximal 
value. Next, the estimate (57) of Theorem 2 tells us that the maximum of the error in Tikhonov’s functional | Jα(O ) −
Jα(O h)| is bounded by the residual | J ′

α(O h)| multiplied by weights |hO h‖ + |[O h]| and is located in the neighborhoods of 
mesh points where the product of the residual by weights attains its maximal value.

Thus, the idea of the local finite element mesh refinement of both adaptive algorithms is that it should be refined all 
neighborhoods of all points in the mesh Kh where the computed |hO h| + |[O h]| achieves its maximum values or where 
| J ′

α(O h)| achieves its maximal values.
We define the minimizer of Tikhonov functional (23) as O , its approximated finite element solution O l

h on l times 
adaptively refined mesh Kl := Khl as O l and gradient computed on the mesh Kl as gl . Let us define by O M := O M

h and 
gM := gM

h values of approximated function and computed gradient, respectively, obtained after M iterations of the conjugate 
gradient algorithm.

Algorithm 2 Adaptive algorithm using solution of SLE (AFEM2).
1: Generate the initial FEM mesh K0 in �. Compute the sequence of reconstructions Ol, l ≥ 0, on the refined meshes, in the following steps:
2: Determine the optimal regularization parameter αl . Compute the finite element solution O l on Kl by solving the system of linear equations (35).
3: Use Theorems 1 and 2 for refinement: refine locally the mesh Kl at all points where

|R(Ol)| ≥ β1 max
�

|R(Ol)| , (67)

or where

|gl| ≥ β2 max
�

|gl| . (68)

Here, R(O l) = |hO l| + |[O h]|, gl is computed as in (65) and β1,2 ∈ (0,1) should be chosen computationally, see Remark 1.
4: Construct a new mesh Kl+1 in �. Interpolate dl to dl+1 and O l to O l+1.
5: For the chosen tolerance θ , stop computing Ol at the iteration M := l and obtain the function O M if either ‖gl‖L2(�) ≤ θ or norms ‖O l‖L2(�) are 

stabilized. Otherwise go to step 2.

Remark 1. In adaptive Algorithms 2 and 3, the number of elements in the refined mesh is controlled by the parameters 
β1,2 ∈ (0, 1). The values of these parameters depend on the values of computed max� |R(O l)| and max� |gl| at Step 3 of 
both algorithms. The computational mesh Kl will be refined in very narrow region if values of β1,2 will be chosen close to 
1. And opposite, if we will choose β1,2 close to 0, then almost all elements in the finite element mesh Kl will be refined. 
Numerical tests of Section 8 show that values β1,2 ∈ [0.3, 0.5] are optimal one since these values provide refinement exactly 
at such places of Kl where the inclusion is located.
10
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Algorithm 3 Adaptive algorithm using conjugate gradient algorithm (AFEM3).
1: Generate the initial FEM mesh K0 in �. Compute the sequence of reconstructions Ol, l ≥ 0, on the refined meshes, in the following steps:
2: Determine the optimal regularization parameter αl . Compute the gradient gl as in (65) and then the finite element solution O l on Kl as in the conjugate 

gradient Algorithm 1.
3: Refine locally the mesh Kl as at the step 3 of Algorithm 2.
4: Construct a new mesh Kl+1 in �. Interpolate dl to dl+1 and O l to O l+1.
5: For the chosen tolerance θ , stop computing Ol at the iteration M := l and obtain the function O M if either ‖gl‖L2(�) ≤ θ or norms ‖O l‖L2(�) are 

stabilized. Otherwise go to step 2.

Fig. 1. Test 1. Convergence of fixed point algorithm for computation of the optimal regularization parameter α using balancing principle for the functional 
(23): top row is for the operator A : L2 → L2, bottom row is for the operator A : H1 → L2. Tests are done for the conjugate gradient Algorithm 1 without 
adaptive mesh refinement.

Remark 2. In some computations of Section 8 which results are reported in Tests 1, 2 and Table 2, the Balancing princi-
ple [34] was used at step 2 of adaptive Algorithms 2 and 3, for optimal computation of the regularization parameter α. 
The balancing principle was implemented via fixed point algorithm of [5]. Different algorithms can be chosen for optimal 
computation of regularization parameter α, see [9,34] and references therein for details of these algorithms.

8. Numerical results

In this section, we present numerical results for solution of the ill-posed problem (P) using all algorithms of Section 7
as well as the adaptive finite element algorithm (AFEM1) of [5]. The goal of our simulations is to demonstrate performance 
11
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Fig. 2. Simulation setup of CST showing the irregular target, imaging tank, and 16 monopole antennas.

Table 1
The cooling process of a target is simulated where its temperature changes from 55 ◦C to 29 ◦C 
over a ten-minute window of time. As a result of this temperature change, there are changes 
in permittivity and conductivity of the target.

Timeline (min) t = 0
(Baseline)

t = 2 t = 4 t = 6 t = 8 t = 10

εr(t) 26 28 29 29.8 30.5 31
σr(t) (S/m) 0.12 0.15 0.19 0.21 0.23 0.24
Coupling fluid 20:7 isopropyl : water (εr = 24.5, σ = 0.46)

of all algorithms to reconstruct the function O in terms of location/shape and computational time. All simulations were 
performed in linux on Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz computer with the software package WavES [37]. The 
software and perl scripts are provided at [38].

For the full-wave EM simulation, CST Microwave Studio [35] was used to simulate the scenario as shown in Fig. 2. We 
use the same antenna set-up for all experiments as in [5]. Let us briefly present it now. All of the 16 monopole antennas, 
optimized to work at 915 MHz, are immersed in a coupling fluid which is a 20:7 alcohol:water mixture as suggested in [15]. 
The choice of the matching liquid is based on a trade-off to achieve a balance between conductive loss, relative permittivity, 
and antenna matching.

An off-centered cylindrical inclusion with an irregular cross-section in the x-y plane is considered as the target, and its 
initial state at t = 0 is labeled as the baseline. The dielectric parameters of the target were then changed in a parametric 
sweep of CST according to Table 1 to imitate the dynamic process of the cooling over a 10-minute window of time. These 
changes in dielectric properties due to the temperature change are the extrapolated version of those reported in [15]. Finally, 
the obtained S-parameter at each time step is subtracted from that of the baseline to feed the reconstruction algorithms 
with a differential input.

Compared with 2D finite element reconstructions of [5], here we show performance of all adaptive algorithms in 3D. The 
dimensionless computational domain is set as

� = {(x, y, z) : x ∈ [0,39], y ∈ [0,41], z ∈ [0,25]}
and the mesh size h was h = 0.002 in x, y and z directions. The optimal value of the regularization parameter α in all 
methods was computed via balancing principle by the fixed point algorithm of [5] for an initial guess of the regularization 
parameter α0 = 1.0.

All computations were performed on a workstation with one processor. However, since it uses C++/PETSc [36], then 
in principle, it can be executed on many processors as PETSc supports parallel implementations. We have estimated the 
computational time using the following formula for relative time Tr

Tr = t

(l + 1)n
. (69)

Here, t is the total computational time, n is the total number of nodes in all refined meshes, and l = 0, 1, . . . is the number 
of mesh refinements.

Performance comparison of different reconstruction algorithms was computed and computational times (in seconds) are 
presented in Table 2 while Table 3 presents the relative computational time of the AFEM-based methods. The tolerance in 
the stopping criterion in all algorithms was θ = 5e–15. Fig. 3 also shows that an adaptive finite element method improves 
the reconstruction obtained by the least squares method via local adaptive mesh refinements.
12
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Fig. 3. Isosurfaces of reconstructions using different algorithms at t = 2 min. Table 2 presents the clarification for different colors of isosurfaces for the 
performed tests. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 2
Performance of different reconstruction algorithms for solution of the problem minO Jα (O ) =
minO

1
2 ‖A(O ) − d‖2

2 + α
2 [O ]2 for time t = 2 min. Here, different methods are: LS is the least squares method, 

AFEM2 is adaptive Algorithm 2 of Section 7, CG is conjugate gradient Algorithm 1 of Section 7, bal. is balancing 
principle.

Color in Fig. 3 Method Reg. term Reg. param. Reg. method Time (sec)

Blue LS ‖O‖2
2 α = 1 - 9

White AFEM2, β = 0.5 ‖∇ O‖2
2 α = 1.46 bal. 83

Red LS ‖∇ O‖2
2 α = 1.31 bal. 63

Green CG ‖O‖2
2 α = 0.1 bal. 11

- CG ‖∇ O‖2
2 α = 1 - 6

- CG ‖O‖2
2 α = 1 - 7

Fig. 4. Dynamics of reconstructed isosurfaces |O hl| on l times adaptively refined meshes at time t = 2 min using adaptive Algorithm 2 for solution of 
different problems: solution of problem (70) (blue isosurface) and solution of problem (71) (white isosurface). Both problems were computed with β1,2 =
0.5 in the refinement criterion. Exact scatterer is outlined by the finite element mesh. See Table 3 for computational time and Table 4 for convergence of 
this test at time t = 2 min and β = 0.5.

Test 1 (CG)
The goal of computations in this test was to check performance of the conjugate gradient Algorithm 1 (CG) and balancing 

principle for optimal choice of the regularization parameter α in the functional (23) for different regularization terms: 
namely, for regularization terms α

2 ‖O‖2
2 and α

2 ‖∇ O‖2
2.

We start running the conjugate gradient Algorithm 1 with the initial guess O 0
h = 0. The fixed point algorithm of [5] was 

used for optimal choice of the regularization parameter α which implemented balancing principle [34].
Convergence of the fixed point algorithm is presented in Fig. 1. As can be seen from the figure, for all test examples the 

optimal regularization parameter α was found on the interval α ∈ [0.4361, 0.4447] for the problem

min
O

Jα (O ) = min
O

1

2
‖A(O ) − d‖2

2 + α

2
‖O‖2 (70)

and on the interval [1.3392, 1.342] for the problem

min Jα (O ) = min
1 ‖A(O ) − d‖2

2 + α ‖∇ O‖2. (71)

O O 2 2

13
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Fig. 5. Test 2: Reconstructions obtained by the adaptive algorithm of [5] with β = 0.5 in the refinement procedure. Top and middle lines: 3D surface 
solution |uhl|, and |uhl| together with the refined mesh Kl , correspondingly. Bottom line: 2D slices of |uhl| passing through the point (36, 21, 7). Here, l
denotes the number of the locally refined mesh Khl where the solution uhl was obtained.

Fig. 6. Test 2: Reconstructions obtained by the adaptive algorithm of [5] with β = 0.5 in the refinement procedure. We present 3D slices of the reconstruc-
tion |uhl| at different times. Here, l denotes the number of the locally refined mesh Kl := Khl where the solution uhl was obtained.

Table 2 shows performance of different reconstruction algorithms for solution of problems (70), (71) in terms of time. 
Using this table, we observe that all reconstruction algorithms with balancing principle usually requires more computational 
time than usual reconstruction algorithms with constant value of the regularization parameter α. Analyzing results of Fig. 1
and Table 2, we can conclude that the choice of the regularization parameter α = 1 is a good one for solution of both 
problems (70) and (71). Thus, all further tests to check performance of Algorithms 2 (AFEM2) and 3 (AFEM3) we will 
perform for the solution of the problem (70) or (71) with the constant value of the regularization parameter α = 1. See also 
Fig. 4.

Test 2 (AFEM1)
First we perform the three-dimensional AFEM computations using the adaptive algorithm of [5] which we will denote 

AFEM1 and briefly present below. Note that in [5] were performed only 2D AFEM computations. In AFEM1 algorithm, first 
the initial reconstruction O 0 has been obtained as minimization of the functional (23) with the operator A : L2 → L2. Thus, 
the method of normal equations was used to get the solution

O 0 = (K eT K e + α I)−1 K eT d. (72)

Here, K e is the known kernel matrix resulted from discretization of the operator A(O ) in (21). Then the SVD-decomposition 
of K e = U�V T was used in (72) to get the regularized least squares solution
14
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Fig. 7. Test 2: Reconstructions obtained by the adaptive algorithm of [5] with β = 0.3 in the refinement procedure. Top row: adaptively refined meshes for 
different times. Bottom line: 3D slices of the reconstruction |uhl| at different times. Here, l denotes the number of the locally refined mesh Kl := Khl where 
the solution uhl was obtained.

O 0 = V (�2 + α I)−1�U T d. (73)

Next, the adaptive finite element method was used for improvement of the already obtained least squares solution O 0

thorough the minimization of the following functional

Jα (u) = 1

2
‖F (u) − O 0‖2

2 + α

2
‖∇u‖2

2, (74)

where F (u) is the convolution operator similar to that of [10]. Thus, the adaptive algorithm developed in [5] can be consid-
ered as an algorithm for image restoration where the actual values of the operator A(O ) were not used. We summarize it 
in the Algorithm 4.

Algorithm 4 Adaptive algorithm for image restoration (AFEM1).
1: First stage: generate the initial FEM mesh K0 in �. Obtain the initial reconstruction O 0 on K0 via (73).
2: Second stage: compute the sequence of reconstructions ul, l ≥ 0, on the refined meshes, in the following steps:
3: Use the fixed point algorithm (balancing principle) for determining the optimal regularization parameter α. Compute the finite element solution ul on 

Kl using the finite element method for solution of the problem

min
u

Jα (u) = min
u

1

2
‖F (u) − O 0‖2

2 + α

2
‖∇u‖2

2. (75)

4: Refine locally the mesh Kl at all points where

R(ul) ≥ β max
�

R(ul), (76)

where β ∈ (0,1) and residual R(ul) := ‖hul‖ is computed on the mesh Kl .
5: Construct a new mesh Kl+1 in �. Interpolate O l to O l+1 and ul to ul+1 using barycentric interpolation.
6: For the chosen tolerance θ , stop computing ul at the iteration M := l and obtain the function uM if either ‖R(ul)‖L2(�) ≤ θ or norms ‖ul‖L2(�) are 

stabilized. Otherwise go to step 3.

The three-dimensional computations were performed with β = 0.3, 0.5 in the mesh refinement criterion (76). Such 
values of β allow locally refine the mesh exactly where the inclusion is located, see the middle line of Fig. 5 for β = 0.5
and the top line of Fig. 7 for β = 0.3.

The optimal value of the regularization parameter α in these computations was found on the interval α ∈ [0.47, 0.69]
for all refined meshes. The optimal reconstructed solution |uh | was found on a two times refined mesh for times t = 2 min 
and t = 4 min and on a three-times locally refined mesh for times t = 6, 8, 10 min, see Fig. 5. The top and middle lines of 
Fig. 5 present 3D surface solution (with and without mesh). The bottom line of Fig. 5 shows two-dimensional slices of the 
computed solution |uhl| on l times adaptively refined mesh Kl passing through the point (36, 21, 7). See also Fig. 6.
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Fig. 8. Test 3: Reconstructions obtained by the adaptive Algorithm 2 with β = β1 = β2 = 0.3 in the refinement procedure of this algorithm. We show 3D 
slices of |O hl| obtained at different times on the l times locally refined mesh. Top row: prospect view, second row: xy-projection, third row: yz-projection. 
Fourth row: zoomed view of obtained |O hl|. Bottom row: surface view of reconstructions. Exact scatterer on all figures is outlined by the finite element 
mesh.

Test 3 (AFEM2)
Now we test the performance of the adaptive Algorithm 2, AFEM2. Isosurfaces and surface plots of reconstructions 

are presented in Figs. 8 and 9, correspondingly, for β1,2 = 0.3 and β1,2 = 0.5 in the refinement criterion at step 3 of 
AFEM2.

Results in terms of computational time of AFEM2 for different parameters β1,2 are presented in Table 3. Convergence 
tests for all times t = 2, 4, 6, 8, 10 are shown in Tables 4–8 for β1,2 = 0.3, 0.5, and β1,2 = 0.7 in the refinement criterion 
at step 3 of AFEM2. Using these tables we observe that the parameters β1,2 control the number of the refined elements 
and thus, the number of the nodes in the refined mesh Khl: the computational mesh Khl is refined in very narrow re-
gion when β1,2 = 0.7, and when we choose β1,2 = 0.3 almost all elements in the finite element mesh Khl are refined. 
Also, it is required more mesh refinements for β1,2 = 0.7 than for β1,2 = 0.3, 0.5 in order to achieve desired tolerance 
in the stopping criterion. Analyzing convergence results of Tables 4–8 we can conclude that parameter β = 0.7 provides 
not only narrow mesh refinement which don’t cover the domain where the inclusion is located but also increasing in 
the computational gradient ‖gl‖2. We observe that values β1,2 = 0.3, 0.5 are optimal one and provide decreasing of the 
computational gradient ‖gl‖2 and refinement of the mesh Khl exactly where the inclusion is located, see Figs. 8 and 
9.

Analyzing results in Tables 4–8 and Figs. 8 and 9, we can conclude that the optimal reconstruction results in terms of 
time and convergence are obtained for β = 0.3 and β = 0.5. Using Figs. 8 and 9 we also observe that AFEM2 algorithm 
managed well reconstruct temperature changes in the object during the hyperthermia process.
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Fig. 9. Test 3: Reconstructions obtained by the adaptive Algorithm 2 with β = β1 = β2 = 0.5 in the refinement procedure of this algorithm. We show 3D 
slices of |O hl| obtained at different times on the l times locally refined mesh. Top row: prospect view, second row: xy-projection, third row: yz-projection. 
Fourth row: zoomed view of obtained |O hl| superimposed with exact scatterer. Fifth row: surface view of reconstruction. Bottom row: adaptively refined 
meshes Khl corresponding to the obtained reconstructions |O hl|. Exact scatterer in the first - fourth rows is outlined by the finite element mesh.

Test 4 (AFEM3)
Isosurfaces of reconstructions using adaptive Algorithm 3 are the same as for the adaptive Algorithm 2, see Figs. 8 and 9

and Tables 4–8, and we are not presenting them here.
Results in terms of computational time of the adaptive Algorithm 3 for different parameters β1,2 are also similar to the 

results obtained in adaptive Algorithm 2. Thus, both algorithms have the same performance.

9. Concluding remarks

An adaptive finite element method for the numerical solution of an electromagnetic volume integral equation was pre-
sented and applied to the real experimental scenario.
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Table 3
Test 3: Performance of AFEM2 in terms of computational time in seconds 
and relative time for solution of the problem (71) with α = 1 and different 
parameters β := β1,2. Here, Kl := Khl represents the finite element mesh 
refined l times where the final reconstruction O hl was obtained. See Ta-
bles 4–8 for number of nodes and convergence on the refined meshes Kl .

β Kl := Khl Time (sec) Relative time

t = 2 min
0.3 K2 17 7.1138ee-05
0.5 K5 26 1.6405e-05
0.7 K6 21 1.0651e-05

t = 4 min
0.3 K2 17 7.2430e-05
0.5 K3 16 3.3410e-05
0.7 K5 26 1.2177e-05

t = 6 min
0.3 K3 24 4.0676e-05
0.5 K3 16 3.3848e-05
0.7 K6 26 1.2323e-05

t = 8 min
0.3 K3 24 4.1655e-05
0.5 K4 21 2.2746e-05
0.7 K6 25 1.1938e-05

t = 10 min
0.3 K3 23 4.0213e-05
0.5 K4 31 1.7863e-05
0.7 K6 25 1.1956e-05

Table 4
Test 3: Convergence of the adaptive Algorithm 3 (AFEM3) on a locally refined meshes Kl := Khl for different β := β1,2

at the time t = 2 min. Here, l is the number of the refinements of the mesh Kl , nno is the number of nodes in the 
mesh Kl .

β l nno ‖gl‖2

t = 2 min
0.3 1 50161 0.1056 · 10−14

2 69325 0.0819 · 10−14

0.5 1 45309 0.1173 · 10−14

2 49959 0.1279 · 10−14

3 55526 0.1259 · 10−14

4 67176 0.1133 · 10−14

5 99010 0.078 · 10−14

0.7 1 44254 0.1158 · 10−14

2 45868 0.1301 · 10−14

3 47874 0.1396 · 10−14

4 52057 0.1487 · 10−14

5 62955 0.1448 · 10−14

6 75613 0.1255 · 10−14

The problem was formulated as an optimal control problem for minimization of Tikhonov’s regularization functional. A 
posteriori error estimates in the obtained finite element reconstruction and error in Tikhonov’s functional were derived. 
Based on these estimates, adaptive finite element algorithms were formulated and tested on 3D reconstructions of a target 
during the process of microwave thermometry. Our numerical results show that AFEM-based algorithms are a reliable 
and efficient tool for solution of microwave thermometry problem in real time. Our numerical tests also show that an 
adaptive finite element method improves the reconstruction obtained by the least squares method via local adaptive mesh 
refinements.

Future work can be related to the testing of the developed algorithms on large computational meshes using MPI in 
real time. The computational time for a large number of meshes processed in a single-core processor can be estimated 
by applying the results of Table 3. For example, using formula (69) and Table 3, we can estimate computational time of 
both algorithms, AFEM2 or AFEM3, on the coarse mesh consisting of 2 · 106 nodes without any adaptive refinement: the 
computational time will be computed for l = 0 as t = T r · nno ≈ Const. · 10−5 · 2 · 106 ≈ Const. · 20, Const. ∈ [1.0651, 7.243]
seconds which is appropriate for real-time monitoring in different microwave applications.
L. Beilina, M. Ghaderi Aram and E.M. Karchevskii Journal of Computational Physics 459 (2022) 111122
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Table 5
Test 3: Convergence of the adaptive Algorithm 3 (AFEM3) on a locally refined meshes Kl := Khl for different β := β1,2

at the time t = 4 min. Here, l is the number of the refinements of the mesh Kl , nno is number of nodes in the mesh 
Kl .

β l nno ‖gl‖2

t = 4 min
0.3 1 49660 0.1737 · 10−14

2 67694 0.1379 · 10−14

0.5 1 46054 0.1891 · 10−14

2 52927 0.1962 · 10−14

3 60654 0.1837 · 10−14

0.7 1 44486 0.1880 · 10−14

2 46795 0.2094 · 10−14

3 49499 0.2206 · 10−14

4 55297 0.2247 · 10−14

5 71024 0.1965 · 10−14

6 88752 0.1577 · 10−14

Table 6
Test 3: Convergence of the adaptive Algorithm 3 (AFEM3) on a locally refined meshes Kl := Khl for different β := β1,2

at the time t = 6 min. Here, l is the number of the refinements of the mesh Kl , nno is number of nodes in the mesh 
Kl .

β l nno ‖gl‖2

t = 6 min
0.3 1 49017 0.1984 · 10−14

2 65024 0.1670 · 10−14

3 82634 0.1300 · 10−14

0.5 1 45881 0.2127 · 10−14

2 52250 0.2269 · 10−14

3 59435 0.2162 · 10−14

0.7 1 44444 0.2099 · 10−14

2 46629 0.2375 · 10−14

3 49238 0.2530 · 10−14

4 54744 0.2615 · 10−14

5 69797 0.2335 · 10−14

6 86801 0.1895 · 10−14

Table 7
Test 3: Convergence of the adaptive Algorithm 3 (AFEM3) on a locally refined meshes Kl := Khl for different β := β1,2

at the time t = 8 min. Here, l is the number of the refinements of the mesh Kl , nno is number of nodes in the mesh 
Kl .

β l nno ‖gl‖2

t = 8 min
0.3 1 48660 0.2239 · 10−14

2 63520 0.1954 · 10−14

3 79876 0.1553 · 10−14

0.5 1 45769 0.2380 · 10−14

2 51835 0.2585 · 10−14

3 58793 0.2488 · 10−14

4 74408 0.2091 · 10−14

0.7 1 44412 0.2336 · 10−14

2 46515 0.2673 · 10−14

3 49049 0.2867 · 10−14

4 54411 0.2993 · 10−14

5 69029 0.2710 · 10−14

6 85608 0.2215 · 10−14
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Table 8
Test 3: Convergence of the adaptive Algorithm 3 (AFEM3) on a locally refined meshes Kl := Khl for different β := β1,2

at the time t = 10 min. Here, l is the number of the refinements of the mesh Kl , nno is number of nodes in the mesh 
Kl .

β l nno ‖gl‖2

t = 10 min
0.3 1 48544 0.2381 · 10−14

2 63059 0.2104 · 10−14

3 79050 0.1685 · 10−14

0.5 1 45739 0.2523 · 10−14

2 51733 0.2760 · 10−14

3 58610 0.2665 · 10−14

4 73954 0.2255 · 10−14

5 117054 0.1371 · 10−14

0.7 1 44415 0.2473 · 10−14

2 46519 0.2844 · 10−14

3 49050 0.3058 · 10−14

4 54408 0.3201 · 10−14

5 68876 0.2911 · 10−14

6 85235 0.2389 · 10−14

We hope that the method presented in the paper can be adopted in different microwave applications to obtain real-time 
reconstructed images.
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