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ABSTRACT

Inverse Electrocardiography (ECG) aims to noninvasively estimate the electrophysiolog- 

ical activity of the heart from the voltages measured at the body surface, with promising 

clinical applications in diagnosis and therapy. The main challenge o f this emerging tech

nique lies in its mathematical foundation: an inverse source problem governed by partial 

differential equations (PDEs) which is severely ill-conditioned. Essential to the success of 

inverse ECG are computational methods that reliably achieve accurate inverse solutions 

while harnessing the ever-growing complexity and realism of the bioelectric simulation. 

This dissertation focuses on the formulation, optimization, and solution o f the inverse ECG 

problem based on finite element methods, consisting of two research thrusts.

The first thrust explores the optimal finite element discretization specifically oriented 

towards the inverse ECG problem. In contrast, most existing discretization strategies are 

designed for forward problems and may become inappropriate for the corresponding inverse 

problems. Based on a Fourier analysis of how discretization relates to ill-conditioning, this 

work proposes refinement strategies that optimize approximation accuracy o f the inverse 

ECG problem while mitigating its ill-conditioning. To fulfill these strategies, two refinement 

techniques are developed: one uses hybrid-shaped finite elements whereas the other adapts 

high-order finite elements.

The second research thrust involves a new methodology for inverse ECG solutions 

called PDE-constrained optimization, an optimization framework that flexibly allows convex 

objectives and various physically-based constraints. This work features three contributions: 

(1) fulfilling optimization in the continuous space, (2) formulating rigorous finite element 

solutions, and (3) fulfilling subsequent numerical optimization by a primal-dual interior- 

point method tailored to the given optimization problem's specific algebraic structure. The 

efficacy o f this new method is shown by its application to localization o f cardiac ischemic 

disease, in which the method, under realistic settings, achieves promising solutions to 

a previously intractable inverse ECG problem involving the bidomain heart model. In 

summary, this dissertation advances the computational research of inverse ECG, making it 

evolve toward an image-based, patient-specific modality for biomedical research.



To My Beloved Father and Mother, Wang Haicheng and Mao Zhiyun
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CHAPTER 1

INTRODUCTION

At a philosophical level of causality, many problems in science and engineering can 

be categorized into two paradigms: forward problems and inverse problems. A  forward 

problem refers to  understanding a physical system and predicting its behavior from some 

known causes. An inverse problem consists o f determining causes that will result in a desired 

or observed effect, assuming the cause-effect relation is known. Inverse problems have wide 

applications in science and engineering, with motivations ranging from optimal control to 

estimating inaccessible quantities from indirect observations. M y dissertation investigates 

the inverse problems arising from electrocardiography.

Electrocardiography (ECG ) aims to noninvasively estimate the electrophysiological ac

tivity of the heart by measuring its resulting potential field at the body surface. Because 

of recent advances in computational modeling, computing power, and imaging technology, 

ECG is evolving from a basic clinical tool that relies on human interpretation to  a new era of 

personalized healthcare, an era in which computer models integrate not only unprecedented 

complexity and realism but also biophysical information specific to individual subjects [99]. 

Subject-specific computer models, typically in anatomical or physical aspects, are poised to 

promote mechanistic and functional studies at various biological levels ranging from cells up 

to organs, opening promising opportunities for clinical diagnosis [18, 19, 17], intervention 

planning, and therapy delivery [56, 35, 36, 58]. Essential to this emerging research paradigm 

is the development of computational methods that leverage modern computing power to 

harness quantitative models in ever-increasing complexity.

The mathematical foundation of ECG is an inverse source problem governed by partial 

differential equations (PDEs) which describe the bioelectric relation between heart activities 

(regarded as the source) and the body-surface potentials. Inverse problems involving PDEs 

are typically challenging both mathematically and computationally: mathematically, they 

are inherently ill-posed in that their solutions are either nonexistent, nonunique, or highly 

unstable; computationally, they require solving large-scale numerical systems over many
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iterations. In biomedical disciplines such as the ECG, the complexity o f biological systems 

is such that their simulation taxes even the most advanced computing power and software 

today. These fundamental challenges need to be overcome in order to attain solutions that 

are sufficiently accurate, reliable, and efficient for clinical practice.

The overarching theme o f this dissertation is the computational formulation, optimiza

tion, and solution o f the inverse ECG problem based on finite element methods (FEMs). 

This dissertation considers two types o f inverse ECG problems, hereafter referred to as 

the epicardium-based inverse ECG  problem  and the bidomain-based inverse ECG  problem, 

according to how the cardiac bioelectric source is modeled. The former type has been 

extensively studied whereas the latter is relatively new.

1.1 Thesis Statement
This dissertation comprises two main research thrusts: optimal discretization o f the 

inverse problem, and a new inverse solution methodology called PDE-constrained optimiza

tion. Each thrust contains two major goals, leading to four thesis goals stated as follows:

1 .1 .1  G o a l  1: F in it e  E le m e n t  D is c r e t iz a t io n  S t r a te g y

To investigate the impact o f discretization on the solution o f the epicardium-based inverse 

ECG  problem, and to design finite element refinement strategies specifically targeting the 

inverse problem.

Successful simulation requires sensible numerical discretization of model equations. Most 

existing finite-element refinement strategies, designed for forward problems, may become 

inappropriate for the corresponding inverse problems by worsening their ill-conditioning. 

Therefore, there is a need to develop discretization that optimizes the approximation ac

curacy o f the inverse problem while mitigating its ill-conditioning. The rationale o f the 

proposed study is that a sensible discretization will improve the conditioning o f the numer

ical inverse problem, which in turn will improve the inverse solutions. Such improvement, 

fulfilled during the “problem-formulation” stage, can be combined with many existing 

“inverse-problem-solving” methods so as to achieve extra improvement o f the inverse so

lutions. The proposed study is two-pronged in theory and practice. The theoretical 

facet comprises o f a Fourier analysis that quantifies how discretization is related to the 

inverse problem's conditioning. The practical facet involves numerical simulation o f various 

refinement scenarios in both two- and three-dimensional space.

Completion o f the proposed goal will result in a set of written guidelines for refining the 

finite element discretization of the inverse ECG problem. The simulation experiments in
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both two and three dimensions will verify the feasibility o f improving the inverse solution 

by judicious refinements.

1 .1 .2  G o a l  2: A d a p t a t io n  o f  h/p- t y p e  F in it e  E le m e n t  R e f in e m e n t

To fulfill the discretization guidelines proposed in Goal 1 by adapting spatial (h-type) 

and high-order (p-type) finite element refinements.

There are two basic types o f finite element refinement. The h-type spatially refines 

the mesh, whereas the p-type fixes the mesh but uses higher-order basis polynomials in 

each element. Both types o f refinement need adaptation in order to fulfill a so-called 

“selective refinement” required by our refinement guidelines: refining an element while 

fixing the resolution at some boundaries o f this element. For the h-refinement, we use 

hybrid-shaped elements involving triangular/quadrilateral elements in two dimensions and 

tetrahedral/prismatic elements in three dimensions, so as to overcome the aspect-ratio 

problem confronting pure triangular or tetrahedral meshes. For the p-refinement, wherever 

a low-order approximation is needed, we extract the element-wise linear component and 

discard all high-order components.

Completion o f the proposed goal will result in the development o f two methods that 

fulfill our refinement strategies. The efficacy o f both methods will be verified via numerical 

simulation experiments.

1 .1 .3  G o a l  3: In v e r s e  S o lu t io n  b y  P D E -C o n s t r a in e d  O p t im iz a t io n

To solve inverse E C G  problems within a framework o f PDE-constrained optimization 

that allows general form s o f objective functionals and constraints; to formulate finite element 

discretization o f this framework; and to fulfill the subsequent numerical optimization using 

algorithms tailored to the optimization problem ’s specific algebraic structure.

Inverse ECG problems are conventionally solved as follows: one derives (from the 

physical model) and then “inverts” a transfer matrix that relates the control variables 

to the observed data. The limitation o f this approach is that constraints are allowed 

only on the control variables and the observed variables, and therefore, the approach may 

become incompetent for optimizing complex PDE models. In contrast, the PDE-constrained 

optimization incorporates the whole PDE model as a constraint, and thereby offers greater 

flexibility for applying constraints. The PDE-constrained optimization currently used in 

ECG problems is limited to quadratic objectives and equality constraints. We propose 

a general optimization framework that enables convex objectives and constraints in both 

equality and inequality forms.
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Completion of the proposed goal will result in the development of a PDE-constrained 

optimization framework that features the following ingredients: (1) deriving optimality 

conditions in the continuous space, (2) closed-form finite element solutions for both the L 2- 

norm minimization and the L i-norm  total variation minimization, (3) inclusion of inequality 

constraints, and (4) numerical optimization fulfilled by a primal-dual interior-point method 

presented in a block-matrix form, tailored to  the given optimization problem's specific 

algebraic structure.

1 .1 .4  G o a l  4 : L o c a l iz a t io n  o f  M y o c a r d ia l  I s c h e m ia

To use the optimization methodology proposed in Goal 3 to solve the bidomain-based in

verse ECG  problem o f estimating the transmembrane potential throughout the myocardium. 

To use the estimation to localize myocardial ischemia.

Traditional ECG diagnosis of myocardial ischemia, relying on human interpretation of 

the body-surface signals, has limited ability to localize ischemic regions. As myocardial 

ischemia can be characterized by the transmembrane potentials (TM Ps), reconstructing 

a whole-heart TM P map will promote the determination of the location and extent of 

ischemia. Research on the TM P reconstruction has been limited to  2D synthetic heart 

models because of the problem's ill-posedness. Our new methodology of PDE-constrained 

optimization will advance this research to 3D heart models with real ischemia data.

Completion of the proposed goal will result in a computer simulation study using a 

realistic heart model that combines anatomical geometry, fiber structure, and experimental 

ischemia voltage data. The ischemia experiment involves inducing controlled ischemia to  a 

live canine heart, and recording its voltages at the heart surface and within the myocardial 

wall.

1.2 Contributions
This dissertation achieves the following major contributions.

1. A  systematic investigation of finite element discretization strategies specifically tar

geting the inverse ECG problem, fulfilled by (1) an h-refinement using hybrid finite 

elements and (2) an adapted p-refinement (Chapter 5). This work has resulted in two 

journal publications as follows:

• Wang, Kirby, and Johnson (2010). “Resolution strategies for the finite-element- 

based solution o f the ECG inverse problem.” IEEE Transactions on Biomedical 

Engineering, volume 57 (2): pp 220-237.
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• Wang, Kirby, and Johnson (2011). “Finite-element-based discretization and 

regularization strategies for 3D inverse electrocardiography.” IEEE Transactions 

on Biomedical Engineering, volume 58 (6): 1827-1838.

2. Introducing a general PDE-constrained optimization framework to the field of inverse 

ECG problems, and applying this new methodology to advance the research on 

myocardial ischemia localization (Chapter 6). This work has resulted in the following 

publication:

• Wang, Kirby, MacLeod and Johnson (2012). “Inverse electrocardiographic source 

localization o f ischemia: an optimization framework and finite element solution.” 

Journal o f Computational Physics, under review.

1.3 Organization
Chapter 2 provides the mathematical and biophysical background knowledge relevant 

to the work presented in this dissertation. Chapter 3 reviews the relevant research. Chap

ter 4 describes the mathematical formulation o f the two types o f inverse ECG problems 

investigated in this dissertation. Chapter 5 presents our first research thrust, the optimal 

discretization (Thesis Goal 1 and 2). Chapter 6 presents our second main thrust, the 

PDE-optimization for the bidomain-based inverse problem (Thesis Goal 3 and 4).

1.4 Notation and Abbreviation
We briefly describe the abbreviation and mathematical notation used in this dissertation 

in Table 1.1 and Table 1.2. The general rules o f notation are as follows. A  regular lower-case 

letter denotes a variable or a continuous function, and a boldface lower-case letter denotes 

a vector. Different fonts for the same letter usually mean the continuous or discrete version 

of the same physical quantity. For example, u denotes a continuous potential field, and its 

discrete version (obtained through numerical approximation) is denoted by a real vector 

u £ Rn . An upper-case calligraphic letter represents a continuous functional or an operator 

operating on a continuous function, e.g., Q in the expression Qu. A  bold capital letter 

denotes a matrix and is the discrete version o f the operator given by the same letter, if the 

letter exists. For example, Q  is the discrete version of Q.
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T ab le  1.1: Abbreviations used in this dissertation.

Term Full Name Term Full Name
BE Boundary Element BEM Boundary Element Method
ECG Electrocardiography EXP Extracellular Potential
FE Finite Element FEM Finite Element Method
ODE Ordinary Differential Equation PDE Partial Differential Equation
RE Relative Error CC Correlation Coefficient
TM P Transmembrane Potential TV Total Variation

T ab le  1.2: Mathematical notations used in this dissertation.

Symbol Meaning Additional Explanation
R The set o f real number
x The Euclidean coordinates in 

R 2 or R 3.
u, u Extracellular potential A  regular lower-case letter denotes a continuum 

quantity.The bold font denotes the discrete ver
sion o f the same quantity.

v, v Transmembrane potential
a Tissue conductivity
Hk (Q) The Sobolev space of kth- 

order weak derivatives.
A The stiffness matrix A  bold upper letter denotes a matrix.
& ^ Basis functions in finite ele

ment methods
L, L The Lagrange functional An upper-case calligraphic letter denotes a func

tional or operator in the continuous space. The 
bold font o f the same letter denotes the discrete 
matrix version of the functional/operator.



CHAPTER 2

BACKGROUND

This chapter presents background materials relevant to the research work described in 

this dissertation.

2.1 Bioelectric Background
2 .1 .1  C a r d ia c  E le c t r o p h y s io lo g y

The mechanical action of the heart is triggered and regulated by the electrical activity of 

cardiac cells originating from ionic currents. Subject to the biological activity o f cells, the 

ionic currents may flow between cells or flow between the inside and outside o f a cell across 

its membrane, generating a varying electric field that propagates throughout the body and 

is measurable at the body surface. This mechanism forms the bioelectric foundation of 

electrocardiography.

The electrical behavior o f a myocardial cell, also called a myocyte, can be characterized 

by its transmembrane potential (T M P ), defined as the voltage difference between the poten

tial inside the cell (intracellular potential) and the potential outside the cell (extracellular 

potential). Myocardial cells at rest maintain a stable TM P ranging from -90 to -60 mV. Once 

a myocardial cell is activated, either by an intrinsic or external stimulus, its TM P will rapidly 

change following a characteristic, cell-type-specific trajectory called an action potential, as 

shown in Figure 2.1. Action potentials reflect the movements o f ions (N a + ,K + ,C a 2+) 

through the voltage-gated ion channels embedded in cell membranes. Such movements also 

cause myocytes to contract, and the propagation o f action potentials coordinates the heart 

to contract efficiently as a whole, thereby demonstrating the close relationship between 

mechanical and electrical activities o f the heart. Figure 2.2 shows major cardiac cell types 

and their action potentials during one heart beat.

The electrical currents generated by the heart flow through the human torso, which 

acts as a passive volume conductor, producing measurable body-surface potentials, known 

as the electrocardiogram or ECG. Figure 2.2 shows a schematic ECG tracing and its
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F igu re  2.1: A  schematic plot o f the action potential o f a ventricular cell. Each period o f the 
action potential consists o f five phases: the rest phase (Phase 4), the depolarization (Phase 
0), the early repolarization (Phase 1), the plateau phase (Phase 2), and the repolarization 
(Phase 3). The directions o f ion flows are marked with respect to the cell. This figure 
is adapted from the Wikimedia Commons file “File:Action potential ventr myocyte.gif” , 
available at http://en.wikipedia.org/wiki/Cardiac_action_potential.

temporal relationship with cardiac action potentials. A  typical ECG tracing in one cardiac 

cycle consists of five deflections, denoted by P, Q , R, S, and T. The P-wave reflects the 

depolarization of the atria. The Q RS complex reflects the rapid depolarization of both 

ventricles, followed by the ST segment which correspond to  the plateau phase in action 

potentials. The T  wave represents the repolarization of the ventricles. The interval from the 

beginning of the Q RS complex to the apex of the T  wave is termed the absolute refractory 

period, during which the heart is believed to be irresponsive to extra stimuli [2].

2 .1 .2  B io e le c t r i c  M o d e ls  in  E le c t r o c a r d io g r a p h y

The bioelectric phenomena in electrocardiography are described as a “quasi-static” ap

proximation of the fundamental electromagnetic laws governed by Maxwell’s equations [42]. 

Because bioelectric phenomena are intrinsically of low frequencies, it has been validated 

that one can safely ignore the frequency-dependent effects such as the capacitive, propa

gation, and inductive effects, as their impacts are negligible compared with the frequency- 

independent portion o f the fields [42]. Therefore, although biological sources are time- 

varying in a strict sense, we can make the following assumption: at each time instant, the 

resulting electrical fields (currents or voltages) arise instantly to  the sources, and the fields 

behave as if they were in a steady state. It is under this assumption that the electrical fields

http://en.wikipedia.org/wiki/Cardiac_action_potential
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F igu re  2.2: Heart anatomy and electrophysiology. Schematic action potential waveforms 
o f cells in different parts o f the heart are shown along with the body-surface ECG signal 
(the bottom  wave). All waveforms are temporally aligned according to their sequence of 
occurrence in a real heart beat. Adapted with permission from J. Malmivuo [80].

are calculated in the area o f electrocardiography— hence the term “quasi-static.”

Under the quasi-static assumption, the potential field u in a volume conductor Q is 

described by the Poisson’s equation described as follows:

V -  (ff(x )V u (x )) =  — Isv(x ), x  e  Q, (2.1)

where a  is the conductivity tensor measured in “Siemens/meter.” The right side term, Isv, 

denotes the current source measured in “A m pere/m 3,” and is normally represented by a 

physiologically-based source model.

2 .1 .2 .1  T o r s o  C o n d u c t io n  M o d e l

Let B  denote the torso volume between the heart surface and the body surface. It is 

considered a passive volume conductor without electrical sources, and the above Poisson’s 

equation reduces to the Laplace’s equation as follows:

V  ■ (a (x )V u (x ))  =  0, x  e  B ; 

n ■ a (x )V u (x )  =  0, x  e  dB ;

(2.2)

(2.3)
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where n denotes the unit vector normal to the torso surface dB . The boundary condition 

on the torso surface means that no electric currents leave the body into the air. This torso 

model is to be coupled with some heart source model in order to simulate the body-surface 

ECG.

2 .1 .2 .2  B id o m a in  H e a r t  M o d e l

The bidomain model is currently the best compromise between fidelity to the underlying 

cellular/tissue behavior and achieving a computationally tractable approach to simulating 

the electrical behavior of cardiac tissue [42, 91, 12]. It is a macroscopic model that 

stems from the structure o f the myocardium (Figure 2.3), relating myocardial conductive 

properties, ion currents, and membrane kinetic models. Myocardial tissue consists of 

an intracellular space within each cell, and an extracellular (or interstitial) space that 

surrounds cells. The bidomain model homogenizes the discrete ensemble o f individual cells, 

assuming that the myocardium is composed o f one intracellular domain and one extracellular 

domain, both o f which are continuums that span the entire heart volume. At every point 

o f heart volume, both domains coexist, separated by the cell membrane and coupled by 

transmembrane currents flowing from the intracellular space to the extracellular space.

The bidomain model involves three potential fields: the intracellular potential ui , the 

extracellular potential ue, and the transmembrane potential v, all o f which are defined over 

the heart volume H . In each domain, employing the volume conductor Equation (2.1), we 

obtain the following equations:

F igu re  2.3: The bidomain model. (A ): the structure o f cardiac cells (myocytes). (B ): the 
schematic illustration of the bidomain model, adapted from [116] at courtesy o f the Cardiac 
Arrhythmia Research Package.
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V -  (a j(x )V u j(x ) =  Imv, x  £ H,

V -  (ffe(x)VU e(x) =  —Imv, X £ H, 

v (x ) =  Uj(x) — ue(x ), x  £ H.

(2.4a)

(2.4b)

(2.4c)

where a*, ae denote the conductivity of the intracellular and extracellular space, respectively. 

The term Imv denotes the transmembrane current density, typically linked to various 

membrane kinetic models or external stimuli [13]. Equations (2.4) may be rewritten in 

another form where the transmembrane potential v serves as the source:

Equation (2.5), often called the static bidomain model, is convenient to use when no external 

stimulus is considered. This dissertation mainly considers the static bidomain model.

A  leading cause o f death in the Western world, myocardial ischemia occurs when cardiac 

myocytes experience inadequate perfusion and thus an imbalance between the metabolic 

supply and demand o f oxygen and nutrients, often caused by restriction or occlusion of 

coronary arteries. The imbalance causes acidosis and anoxia in myocytes, leading to a 

progressive deterioration of electrical and mechanical activities in the affected heart regions. 

If left untreated, myocardial cells eventually die and form scars, with an associated block 

o f electrical activity, reduction in overall contractility o f the heart, and a substrate that 

invites potentially life threatening rhythm abnormalities.

Reliable techniques for clinical diagnosis o f myocardial ischemia include blood tests, 

angiogram (an imaging technique that visualizes the inside of blood vessels by injecting 

a radio-opaque contrast agent), and ECG. ECG has become the most common choice 

for the immediate detection and monitoring o f myocardial ischemia because it is rapid, 

noninvasive, and cheap. However, despite many years o f research and clinical practice, ECG 

has modest sensitivity and specificity (65-80%) in detecting and especially in localizing 

myocardial ischemia [31, 74, 106]. Ischemia manifests its electrophysiological effects by 

altering cell membrane kinetics and accordingly the transmembrane action potential, and 

such alteration in turn changes the body-surface electrocardiogram. See [98] for a review of 

electrophysiological modeling of myocardial ischemia. The clinical ECG hallmark o f acute 

myocardial ischemia is a shift o f the ST segment— either elevation or depression relative 

to the normal, depending on the locations of ischemic regions and o f recording electrodes. 

However, analyzing the morphology of body-surface ECG alone is not sufficient for localizing

V  ■ ( a  +  ae)V u e(x )  =  —V  ■ a jV v (x ), x  £ H (2.5)

2 .1 .3  M y o c a r d ia l  I s c h e m ia  a n d  Its  M o d e l in g
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ischemic regions [74, 98], so it is o f clinical interest to recover the bioelectric field within 

the myocardium.

The impact of myocardial ischemia on electrocardiography has been investigated by a 

number o f studies, although the mechanisms remain not fully understood [50, 74]. Figure 2.4 

shows an example o f ischemic action potentials and ischemic heart potentials during the 

plateau phase. During the plateau phase o f the action potential, there is normally about 

200 ms o f stable and uniform TM P amplitude, resulting in equipotential conditions through

out the heart and almost no body-surface ECG signal— the isopotential ST segment of the 

ECG. In ischemic cells, however, the plateau-phase TM P has lower amplitudes, forming 

a voltage difference between healthy and ischemic regions. The voltage difference results 

in extracardiac currents and ultimately ST-segment shifts in the body-surface potentials. 

The resulting ECG patterns are temporally stable and spatially fairly simple, suggesting 

that it may be feasible to reconstruct the TM P within the myocardium and to  use the 

reconstruction to localize ischemic regions. The bidomain heart model, in which the TM P 

forms the source, provides arguably the most effective and efficient means o f simulating 

myocardial ischemia and has been used extensively to  investigate the relation between the 

cellular origins and extracardiac (ST-segment) consequences o f ischemia [50, 74].

F igu re  2.4: Electrophysiology o f myocardial ischemia. (A ): typical action potentials o f an 
ischemic myocardial cell and a healthy one. (B ): extracellular potentials measured from a 
live ischemic canine heart at the plateau phase, shown in a longitudinal cross section view.
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2.2 Mathematical Background
2 .2 .1  G a le r k in  F in it e  E le m e n t  M e t h o d  fo r  E l l ip t ic  E q u a t io n s

Solving partial differential equations in realistic settings requires numerical methods such 

as the finite element method (FEM ), boundary element method (BEM ), or finite difference 

method (FD M ). Given that the bioelectric heart and torso models involve complex geometry 

and anisotropic, heterogeneous conductivity, this dissertation adopts the finite element 

method. In this section, we present formulation o f the Galerkin FEM  and its treatment of 

boundary conditions. The latter issue is worth discussing as the boundary conditions on the 

heart surface are the goal o f inverse calculations. Boundary conditions typically represent 

real physical quantities (e.g., voltage or current), and therefore, correct interpretation of 

their numerical values requires the thorough understanding o f their numerical formulation.

We illustrate the Galerkin FEM  using the general-form Poisson's equation with known 

boundary conditions, given as follows:

R(u) =  V  ■ ffVw(x) +  f  (x) = 0 ,  x £  Q; (2.6)

u(x) =  gD, x  £ r D; a V u (x ) ■ n =  gN , x £ r N ; (2.7)

where the domain Q is bounded by two boundaries: a Dirichlet-type boundary r D and a 

Neumann-type boundary r N , where gD and gN are known functions. The function f  (x) 

denotes the source term and is also known.

The formulation of the FEM comprises two principal procedures. The first procedure 

is to approximate the solution by a linear combination o f predefined functions (known as 

the basis or trial functions). The second procedure is to determine the coefficient for each 

trial function by enforcing certain optimization criterion, for which the Galerkin method 

was adopted in this dissertation. Other common criteria include the collocation method, 

the least-square method, the subdomain method and the Ritz method. Detailed discussion 

o f these methods is available in [70].

In the first procedure, we decompose the exact solution u into two parts: u (x) =  uD(x) +  

uH (x). The function uD (x) is chosen to satisfy the Dirichlet boundary condition, whereas 

the homogeneous part uH(x) is zero on the Dirichlet boundary. We approximate u by 

representing uH(x) with a finite expansion in the following form:

N
uH (x) «  uH(x) =  ^  uk (x),  (x) =  0 on r D, k =  1 . . .  N, (2.8)

k=l
u (x) «  u (x) =  uD(x) +  uH(x), (2.9)
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where {^ k} are called trial functions, and {u k} are the coefficients to be determined. It is 

in the construction o f the trial functions that the concept of “finite element discretization” 

arises, which involves tessellating the problem domain Q and representing the trial functions 

by piece-wise polynomials. A  basic but common choice is the linear finite element method, 

in which each trial function ^  is a piecewise linear function and accordingly, each coefficient 

uk gives the value of u (x) at node k.

Substituting u into Equation (2.6), the residual R (u) is no longer zero. The coefficients 

{{ik}  are determined by minimizing the residual in certain ways. There is a general approach 

called the weighted residual method, which requires the inner product o f the residual and 

some test functions be zero:

(R (u ),^ i)n  =  0, i =  1 , . . . , N ; (2.10)

where {^ i }  are called the test functions, and (■, -)n denotes the Legendre inner product of 

two functions in the space L 2(Q), defined as:

(g i(x ) ,g 2(x ))n  =  gi ■ g2 dx. (2.11)
n

The Galerkin method is a special case o f the weighted residual method. In the Galerkin 

method, the test functions are chosen to be the same as the trial functions, and Equation 

(2.10) becomes

(R (u ),0 i)n  =  ( (V  ■ (aV u ) +  f  =  0, i =  1, . . . , N ; (2.12)
n

Applying the divergence theorem to Equation (2.12), we obtain

f  a V u H ■ V ^ idQ =  f  f ^ idQ — f  a V u D ■ V ^ idQ +  f  -dl10 i dS, i =  1 , . . . ,  N, (2.13)
Jn Jn Jn JrN dn

where all terms on the right side are known. This equation is called the weak or variational 

form o f the original Poisson’s equation.

Expanding uH according to Equation (2.8), we can write Equation (2.13) in a matrix 

form as follows:

AU =  F  +  J +  D , (2.14)

where A i,j =  (V 0 i , a V ^ j)n , i =  1 . . .  N,  j  =  1 . . .  N ; (2.15)

Fi =  ( f , 0 i ) n ,  D i =  (a V u D, V ^ i)n ; (2.16)
/* du

Ji =  - - 0 i  dS, i =  1 . . . N .  (2.17)
./rN dn

Here the matrix A  is called the stiffness matrix. The vector F  represents the contribution 

of the source term f , J the contribution o f the Neumann boundary condition, and D  the
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contribution o f the Dirichlet condition. The presence o f these three terms depends on the 

specific conditions of the given PDE problem. The only unknown is the vector U, which 

contains the coefficients { uk} , k  =  1 . . . N . Solving Equation (2.14) yields the numerical 

solution for the original Poisson’s Equation (2.1). Note that the stiffness matrix A  is sparse, 

symmetric, and positive-definite, so Equation (2.14) is amenable to iterative methods such 

as the preconditioned conjugate gradient method.

2 .2 .1 .1  B o u n d a r y  C o n d i t i o n  E n fo r c e m e n t

Equation (2.13), the weak formulation, shows that the Neumann boundary condition is 

naturally incorporated into the Galerkin formulation via direct substitution. Because the 

Neumann condition is weighted by the test function 0j, the numerical solution u satisfies 

the Neumann boundary condition only approximately. In contrast, u satisfies the Dirichlet 

boundary condition exactly, because the Dirichlet condition is enforced independently o f the 

weak formulation (which computes only the homogeneous part uH). If given in an analytic 

form, the Dirichlet boundary is implemented according to Equation (2.16). In practice, the 

Dirichlet condition is often given in the form of values on a discrete set o f boundary nodes. 

In such a case, it is interpolated using some basis functions before being applied to Equation 

(2.16), but the resulting numerical solution u still exactly satisfies the Dirichlet condition 

on those boundary nodes.

2 .2 .1 .2  F in it e  E le m e n t  R e f in e m e n t

The finite element method calculates an approximate solution to the given PDE. The 

approximation error is reduced by refining the discretization. There are two basic refinement 

schemes: the h-type refinement, which spatially refines the finite element mesh, and the 

p-type refinement, which keeps the mesh fixed but increases the order of basis polynomials 

in each element. Refinement is typically performed based on some error estimates, and this 

is called adaptive refinement.

In this dissertation, we considered mainly the linear finite element and the h-type 

refinement. In the study o f the epicardium-based inverse ECG problem, we proposed an 

adapted p-type refinement method.

2 .2 .2  H ig h -O r d e r  F in it e  E le m e n ts  w ith  M o d a l  E x p a n s io n

The high-order finite element method, often known as the p-type refinement, keeps the 

spatial mesh fixed and increases the order of basis polynomial functions within each element. 

The construction o f suitable higher-order basis polynomials is also called polynomial expan
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sion. W ith the same number of degrees o f freedom, the p-refinement usually achieves more 

accurate numerical approximation than the h-refinement: for infinitely smooth solutions, 

the p-refinement typically attains an exponential decay o f approximation error (with respect 

to the number o f fidelities), whereas the h-refinement attains a polynomial convergence rate. 

One may adopt a combined hp-refinement by both spatially refining the meshes and using 

higher-order basis polynomials either uniformly or selectively in the domain.

The choice of polynomial expansion significantly influences the resulting finite element 

solutions in terms o f approximation accuracy, numerical efficiency, and the conditioning 

o f certain matrices resulting from finite element formulation. Numerical scientists have 

proposed various types of polynomial expansions and investigated their properties exten

sively, with a comprehensive overview o f this research domain available at [70]. Generally 

speaking, polynomial expansions fall into two categories: the modal expansion and the nodal 

expansion. In the nodal expansion, the definition of a basis polynomial depends on a given 

set o f “nodal” points spatially located within the element, e.g., the Lagrange polynomial. 

In the modal expansion, the construction of basis polynomials does not depend on interior 

nodal points, but rather follows certain predetermined forms.

In this dissertation, we considered a hierarchical modal expansion based on the Jacobi 

polynomials, which is a commonly used modal expansion in finite element methods. In the 

standard one-dimensional domain £ e  [-1 ,1 ] , let 0 P (£) denote the basis functions o f order 

P  defined as

f (1 -  0 / 2 ,  p =  0;
< ( £ )  =  f  ( ¥ )  ( ¥ )  Jp1-1i(£ ), 0 < p < P ; (2.18)

I ( 1 +  £ )/2 , p =  P ;

where Jp-11(£) denotes the Jacobi polynomial. Figure 2.5 illustrates the basis functions 

for P  =  5. Note that only the linear basis functions 0o(£) and ^s(£) are non-zero at the 

boundary points, and they are called the boundary modes. The rest of the basis functions 

are called interior modes as they are zero at the boundary. Also note that this expansion is 

hierarchical in the sense that an expansion set of order P  is built from, and encompasses, 

the expansion set of order P  -  1.

Based on one-dimensional (1D) basis functions, one may construct modal basis functions 

in higher dimensions. For quadrilateral regions in 2D or cubic regions in 3D, the basis 

functions are constructed by simply multiplying 1D basis functions along each Cartesian 

dimension, as shown below:
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F igu re  2.5: Examples of modal expansion functions for a polynomial order o f five as 
defined in Equation (2.18). The functions are normalized to the value range of [ -1 ,1 ].

$pq(Cl, ^2) =  <Pp(i l ) < P q - 1  <  Cl, 2̂ <  1; (2 .19)

where 0p, 0q are given by Equation (2.18), 0 <  p <  P l , 0 <  q <  P2. (2.20)

Figure 2.6 illustrates the construction o f 2D modal basis functions over a standard quadri

lateral region. By increasing the order Pl and P2, the basis expansion can represent higher 

spatial frequencies (fluctuations) in the underlying continuum field.

An important advantage of the above modal basis functions is their inherent decom posi

tion into three modes: the vertex mode, the edge mode, and the face mode, as illustrated in 

Figure 2.7. Each vertex mode is non-zero at one node. Each boundary mode has non-zero 

support at one boundary and becomes zero on the rest boundaries. The face modes are 

zero on all boundaries, with non-zero support only in the interior of an element. For 

three-dimensional regions, the decomposition includes an extra volume mode in which the 

basis functions have non-zero support only within the region volume.

Such decomposition gives rise to  two desirable properties for the finite element method. 

The first is the convenience for the global assembly procedure in the finite element method, 

a procedure that combines the numerical systems derived from each element into a global 

system. The classical Galerkin finite element approximation requires C 0 continuity on
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F ig u re  2.6: Construction o f two-dimensional modal basis functions from the product of 
two one-dimensional basis functions given by Equation (2.18). The basis functions are o f the 
order P  =  4 in each dimension. Courtesy of G. Karniadakis [70], (§2005 Oxford University 
Press. Reprinted by the permission o f Oxford University Press.

Edge modes

F ig u re  2.7: The modal basis functions shown in Figure 2.6 are decomposed into ver
tex /edge/face modes. The grid diagram illustrates where each mode is conceptually located 
in the element, with red nodes denoting the vertex modes, blue nodes denoting the edge 
modes, and green nodes denoting the face modes. Adapted from [70] courtesy o f G. 
Karniadakis.

interelement boundaries. This requirement is fulfilled by adjusting the vertex modes and 

boundary modes between adjacent elements. The second advantage is the flexibility to 

tune the order o f expansion within each individual element, both because o f the modal 

design that each face mode (or volume mode in 3D) is locally defined within one element, 

and because o f the hierarchical design that a high-order expansion encompasses low-order 

expansions.

The modal basis functions for triangular regions in 2D or tetrahedral regions in 3D 

are constructed in a similar way as elaborated in the Appendix. An extra procedure of 

coordinate transformation is needed to convert the quadrilateral basis functions into the
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triangular basis, or to convert the cubic basis functions into the tetrahedral basis. Figure 2.8 

shows the 2D modal basis functions over a standard triangle region. These basis functions 

again can be decomposed into the vertex-, edge-, and face-modes. For detailed discussion 

concerning the formulation of these basis functions and their properties, we refer to [70].

2 .2 .3  O p t im iz a t io n  C o n s t r a in e d  b y  P a r t ia l  D if fe r e n t ia l  E q u a t io n s

PDE-constrained optimization refers to optimization problems subject to constraints 

described by partial differential equations (PDEs), with many scientific and industrial 

applications such as optimal control, optimal design, and parameter estimation. It remains 

a frontier in scientific computing research, and abundant theoretical accomplishments over 

the past decade [48, 6, 8, 7] have laid the foundation for its practical application. Inverse 

problems can often be solved as a PDE-constrained optimization problem. This section 

aims to elucidate the basic concepts of PDE-constrained optimization.

Abstractly, a PDE-constrained optimization problem has the following structure:

m in J (u, v), subject to e(u, v) =  0, c i(u ) € Ku, c2(v) € K v. (2.21)V

where v is often called the control variable, the one we want to tune; u is known as the 

state variable, which depends on v as governed by the PDEs denoted by e(u, v). The last 

two constraints represent abstract inequality bounds for u and v, with Ku and Kv denoting 

proper cones in real Banach spaces.

F igu re  2.8: Construction o f triangular modal basis functions based on the one-dimensional 
basis functions given Equation (2.18). The basis functions are o f the order P  =  4 in each 
dimension. Courtesy of [70], © 2005 Oxford University Press. Reprinted by the permission 
of Oxford University Press..
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The term “proper cone” is frequently used in the optimization literature to  define some 

types o f generalized inequality relations. A  set K is called a convex cone if for all x 1, x 2 e  K 

and d1,0 2 >  0, we have d1x 1 +  d2x 2 e  K. A  cone is proper when it is convex, closed, solid 

and pointed (if x e  K and —x e  K, x must be zero). Given a proper cone K, its dual 

cone K* is defined by K* =  {y|xTy <  0, Vx e  K }. Note that K* is also convex. For more 

information about cones, see [14].

One characteristic of PDE-constrained optimization is that it is posed in infinite di

mensional spaces -  note that u and v are not necessarily a discrete set o f variables but 

continuous distributions (e.g., a voltage field), and the objective J  is typically a func

tional. Typical procedures for solving PDE-constrained optimization include deriving op

timality conditions in function spaces, making proper numerical realization, and fulfilling 

numerical computation efficiently. These procedures lead to  large-scale, complex numerical 

systems that are challenging to  contemporary optimization methods. Therefore, research 

on PDE-constrained optimization needs a synergy of two paths that traditionally evolve 

independently from each other. One path is the functional analysis and PDE theories 

towards computational solutions of PDEs, whereas the other is numerical optimization and 

high-performance computing for general computing goals.

It has been proven that the optimization problem given by Equation (2.21) admits a 

solution if the objective, the constraints, and the feasible sets all satisfy certain conditions 

on convexity, closure, and continuity [49]. (For the ECG problems considered in this 

dissertation, these conditions are normally satisfied.) Nearly all practical solutions to 

this optimization problem amount to  solving its optimality conditions, also known as the 

Karush-Kuhn-Tucker (K K T) conditions, described as:

where p, A are called Lagrange multipliers or adjoint variables associated with each con

straint; KU and K*k are the dual cones of K u and K k, respectively.

This dissertation centers around how to  carry out the abstract concept presented above 

in practical ECG simulations where the PDEs are tackled by finite element methods. The

e(u, v) =  0; 

c1(u) e  Ku, c2(v) e  Kv; 

Au e  KU, (Au,C1(u)) =  0; Av e  K*, (Au,c2(v)) =  0;

duJ (u, v) +  due(u, v )Tp +  duC1(u) =  0; 

dv J  (u, v) +  dv e(u, v )Tp +  dv C2(v) =  0.

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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goal is to translate the mathematical formulation into a numerical system for efficient and 

robust numerical optimization.



CHAPTER 3

RELEVANT WORK

This chapter presents how the work o f this dissertation is related to previous studies 

in the field of inverse problems o f electrocardiography (ECG ), and its contribution in the 

aspect o f modeling, computational methodology, and clinical application.

3.1 Review of Various Forms of Inverse ECG Problems
Electrocardiographic simulation comprises three basic components: a source model rep

resenting cardiac activities, a volume conductor model, and computational methods. In this 

dissertation, the inverse ECG problem involves quantitatively identifying the parameters 

o f the selected source model such that the resulting potentials at the body surface will 

closely match the measured values. Hereafter, we refer to the calculated source parameters 

as the inverse solution, and refer to the process o f solving an inverse problem as inverse 

calculation.

The inverse ECG problem has various formulations depending on the choice o f source 

models. The choice is basically a compromise between a m odel’s realism, accuracy, complex

ity, and the uniqueness o f the inverse solution for this model. Most source models in current 

clinical use are based on discrete dipoles or other simplifications, which are not measurable. 

In order to promote the credibility of inverse ECG solutions, it is desirable to use a source 

model that not only captures the pathophysiological activities o f the heart but also enables 

experimental measurement for validating the calculated solution. However, the complexity 

o f such a model may make the inverse problem difficult to solve: the problem may have 

nonunique solutions, or its solution may be highly unstable to input noise and modeling 

inaccuracy. On the other hand, a simple source model typically results in a better-posed 

inverse problem that promises an accurate solution, although the solution may offer limited 

information o f heart activities.

In this section, we review recent progress on the inverse ECG problem according to 

the heart source models being used, including the two most popular approaches of source
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formulation— the epicardial potentials and the activation wavefronts. We also review less- 

popular source formulations such as surface transmembrane potentials, myocardial po

tentials, and the bidomain-based models. Given the limited space o f this dissertation, 

we omit simple source models such as single dipole, moving dipole, multipole series, or 

fixed-location multiple dipole in view o f their relatively low biological relevance and their 

difficulty o f experimental validation. Inverse solutions in terms o f these simple models have 

been summarized in [42, 41], and no significant progress has been reported ever since. For 

additional information, we refer the readers to [92] for a comprehensive and recent survey 

of inverse ECG problems, and to [77] for a review of fundamental theories and models.

3 .1 .1  In v e r s e  S o lu t io n  o f  E p ic a r d ia l  P o te n t ia ls

The most straightforward and popular inverse ECG problem is to reconstruct the ex

tracellular potential on the epicardial surface [9]. This inverse problem is also a major 

research subject of this dissertation and its formulation will be elaborated in Section 4.1. 

Besides its close physiological relevance, the epicardial potential solution has the advantage 

o f allowing direct validation [18, 19]. In recent years, this approach has advanced to 

the level o f human clinical studies [123, 121, 122, 120, 23, 24], such as understanding 

heart activation and repolarization [97]; diagnosing ventricular tachycardia [56], W P W  

syndrome [34], and arrhythmia [95]; planning cardiac resynchronization therapy [58]; and 

guiding catheter-based ablation for the W P W  syndrome [36, 35]. W ith the heart source 

acting as a Dirichlet boundary condition to the torso volume conductor, this inverse problem 

is linear and admits a unique solution [125], but is severely ill-posed.

Overcoming the ill-posedness has been a primary goal of the research on the inverse epi- 

cardial solution, and many regularization methods have been proposed. A  popular yet basic 

method is the Tikhonov regularization with a spatial constraint on epicardial potentials, 

with the regularization weighting parameter being determined by several methods [45, 67]. 

Other basic methods that have been used include the truncated SVD method [46], the 

total variation method [37], and the iterative Krylov-subspace-based GMRes method [96]. 

These methods share the common property that they solve the inverse problem at each time 

instant independently, without considering the temporal correlation o f epicardial potentials 

at adjacent time instants.

More advanced regularization methods attempt to incorporate both spatial and temporal 

constraints on the solution, exploiting either the temporal correlation o f cardiac activities 

or any prior knowledge about the temporal characteristic o f cardiac electrical signals. An 

initial effort called Twomey regularization [89] restrains the Tikhonov solution at one
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instant from changing too  drastically from preceding ones. Later, three approaches o f joint 

spatial-temporal regularization were separately proposed, hereby referred to as the multiple 

regularization, the state-space model, and the isotropy model. The multiple regulariza

tion [15] approach imposes one spatial and one temporal constraint simultaneously on the 

inverse solution over multiple time instants. Imposition o f multiple constraints makes the 

inverse solution more robust to regularization parameters, but the computational complexity 

grows significantly when more than two constraints are included. The state-space model [10] 

realizes the temporal constraint by a known evolution model for the epicardial potentials 

plus a random perturbation. This temporal model is coupled with the forward model (hence 

the name “state-space” ), and the pair o f equations are effectively solved via a Kalman 

filter algorithm. The isotropy model [39, 40] formulates the inverse problem across all 

time instants. This approach, based on the “isotropy” assumption that the spatial and 

temporal correlations are separable, first de-correlates the input data temporally, then 

solves the inverse problem instant by instant (with regular spatial regularizations), and 

finally re-correlates the inverse solutions temporally. The isotropy model has the attraction 

of needing no prior knowledge about the temporal behavior o f heart potentials, but the 

assumption o f isotropy (time-space separability) is not physically justified. A  comparative 

study showed that the above three apparently distinct approaches can be unified into the 

same statistical framework but express different assumptions [126]. Finally, another multiple 

spatial-temporal constraint approach was proposed based on convex optimization [3]. This 

approach, instead o f minimizing an objective, simply searches a solution that satisfies 

all the constraints, requiring no regularization parameter and no limit on the number of 

constraints. The correctness of the solution completely relies on the appropriateness of the 

applied constraints. This approach flexibly admits constraints that are less mathematically 

tractable in the Tikhonov framework.

As we reviewed above, extensive achievements have been made on the inverse epicardial 

solutions. However, there are still opportunities to further improve the inverse epicardial 

solution in terms o f its accuracy, robustness, and applicability to various cardiac scenarios. 

An important but often neglected way to improve inverse solution accuracy is to improve 

the numerical formulation of the inverse problem before seeking its inverse solution. In 

fact, a good numerical formulation can be built on top o f effective regularization methods 

to achieve additional gains in the inverse solution accuracy. This consideration forms the 

rationale that motivates our study presented in Chapter 5.
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3 .1 .2  In v e r s e  S o lu t io n  o f  A c t iv a t io n  T im e s

Another popular inverse problem approach is to reconstruct the time of activation at 

each point on the heart surface (which in this section means the union o f epicardial and 

endocardial surfaces). This approach is not investigated in this dissertation. The purpose 

o f presenting it here is to complete our review o f inverse ECG problems and to compare it 

with our bidomain-based inverse problem.

In this approach, the heart source is represented by a layer o f dipoles uniformly dis

tributed at the activation wavefront, pointing normal to the surface from the activated 

region toward the yet-to-activate region. By assuming the activation wavefront touches 

both the epicardial and endocardial surfaces, the above source representation is equivalent to 

dipoles located at the already-activated epicardial and endocardial surfaces. This approach 

imposes a strict constraint on the source model by assuming all dipoles act as a two-phase 

step function with a predetermined amplitude. Such formulation results in a nonlinear 

inverse model that relates body-surface potentials to the heart-surface activation time, the 

only unknown source parameter.

Because o f its restrictive parameterization o f the source model, the activation-time 

inverse problem is not only much better-posed than the inverse problem o f epicardial 

potentials, but is also more robust than the latter to errors in geometry and body-surface 

measurements. The two approaches were compared in details in [21]. On the other hand, 

the activation-time approach is limited to activation and poorly characterizes other cardiac 

electrical activities. Thus, this approach is most suitable for studying rhythmic disturbances 

and ectopic beats, but may not be appropriate for myocardial ischemia or infarction.

We now briefly review the major research progress in the activation-time inverse prob

lem. After its initial proposal in the 1980s [26, 25], researchers developed the Tikhonov 

regularization for its inverse solution [54], and investigated the effect o f torso geometry 

and heart position in this inverse approach [55]. These early studies carried out inverse 

calculation by constraining the activation isochrones, based on the belief that the activation 

isochrones were inherently smooth in space and therefore, regularizing them was more 

effective than regularizing the heart potential field. Later, a fundamentally different method 

to reconstructing activation isochrones was proposed [53, 38], based on the concept of 

“critical points,” which refer to the local minima, maxima, and saddle points in the map of 

heart-surface activation times. The basic procedure o f this method is to first identify the 

critical points and their associated activation time, and then to use this information as a 

constraint in the inverse calculation for the full activation-time solution. The key rationale
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of this method is that each critical point happens when a propagating transmural activation 

wavefront intersects the heart surface. Such intersection generates a sudden alteration in 

the body-surface potential recordings. The critical points were identified by processing 

body-surface potentials, for which two methods were developed: the initial one exploited 

the jum p in the temporal derivative o f body-surface potentials [38] whereas the other one 

applied a multiple-signal-classification algorithm on body-surface potentials [53].

3 .1 .3  In v e r s e  S o lu t io n  o f  S u r fa c e  T r a n s m e m b r a n e  P o te n t ia ls

As we have described, the epicardial-potential source model possesses high flexibility 

whereas the activation-based source model is strictly constrained so as to stabilize inverse 

solutions. Achieving a trade-off between the two approaches motivates the use o f the heart- 

surface transmembrane potential (TM P) as the source. Such source formulation enables 

one to impose physiologically-based temporal constraints on the TMP, thereby extending its 

applicability beyond the activation activity. This approach is not pursued in this dissertation 

so we briefly describe it here.

In this approach, the TM P is related to surface extracellular potentials via the bidomain 

model along with certain assumptions about the isotropy and homogeneity o f heart tissue 

conduction, and the rest o f the model formulation is similar to the epicardial-potential 

model. An early study o f this inverse problem employed a temporal constraint that required 

that the TM P at each site be nondecreasing in time during the QRS interval [83]. Such 

formulation translated the inverse problem into a convex optimization problem, which was 

then solved by a standard optimization package named MOSEK. This study reported a 

good recovery o f important propagation events in both normal and abnormal hearts. A 

later study reported that the inverse solution o f surface TM Ps compared favorably with the 

inverse solution of epicardial potentials [82].

3 .1 .4  In v e r s e  S o lu t io n  o f  M y o c a r d ia l  P o te n t ia ls

All the inverse solutions discussed earlier are defined on the heart surface, but they 

are often not sufficient to reveal cardiac activities within the myocardial volume. It is of 

great clinical interest, especially for localized therapy delivery, to reconstruct the electrical 

potentials throughout the myocardium. This inverse problem is typically formulated based 

on the bidomain heart model described in Section 2.1.2, in which the cardiac source is 

represented either by the myocardial transmembrane potential (TM P) or the current density 

derived from it. This inverse problem is more difficult than recovering epicardial sources, 

as it is less constrained and may not have a unique solution. Research on this problem has
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achieved limited progress, and it remains an open question to accurately reconstruct the 

myocardial potential at an arbitrary time instant. This problem is a main objective o f this 

dissertation and is presented in Chapter 6.

Studies on this problem have been limited. One approach [47] used a cellular automata 

model based on a predefined TM P characterization, and the inverse problem became iden

tifying the initial site of activation, which was solved by minimizing the spatial-temporal 

correlation between the simulated and measured body-surface potentials. This approach is 

more similar to the activation-time-based approach than a potential-based one. Another 

study made by the same group [75] attempted to reconstruct the current density (the gradi

ent of TM Ps) within the myocardium, with the ultimate goal of estimating the ventricular 

activation times. The rationale of this approach is that the activation time o f a site can 

be determined by the maximum of the site’s time course o f current density, even though 

the current density itself is inaccurate. This approach essentially reconstructs a vector field 

(the current density), for which there is no unique solution and it is difficult to design 

a physically justified constraint. In fact, we note that this study did not report to have 

obtained accurate current densities, and therefore its approach seems to be applicable only 

to recovering activation times.

Some researchers attempted to reconstruct the myocardial transmembrane potentials. 

An early study o f such effort [105, 104], using an anisotropic heart model, employed 

the Tikhonov method for spatial regularization and the Greensite method for temporal 

regularization [40]. However, this study did not achieve a meaningful reconstruction within 

the myocardium, while the reconstructed TM P on the epicardial surface was close to the 

results reported by the studies based on the surface TM P source model discussed in the 

preceding section. Another approach [59] sought the integral o f the TM P over the ST 

segment rather than at one time instant, thereby making the inverse solution more robust 

to input noise but meanwhile limiting its applicability to identifying activation.

Recently, a mathematical stability analysis decomposed the inverse problem of myocar

dial TM P into two subproblems: (1) recovering the epicardial potential and (2) computing 

the TM P from the epicardial potential. It reported that while the first subproblem was 

severely ill-posed, the second could be made well-posed with a proper prior [16].

Regardless of model assumptions and constraints, all the studies described above used 

the same methodology in their inverse calculation: they first transform the underlying phys

ical model into a transfer matrix that relates the source parameters to the measurements, 

and then carry out optimization based on the transfer matrix. An alternative methodology,
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PDE-constrained optimization, was recently introduced to ECG problems and used for 

reconstructing the myocardial TM P [85]. Instead o f forming the transfer matrix, the 

PDE-constrained optimization incorporates the whole physical model as a PDE constraint, 

thereby offering ample flexibility for applying various physically-based constraints. The 

work o f [85] was limited to quadratic objective functionals and equality-form constraints, 

and its simulation was limited to 2D models and synthetic data. A  major contribution 

of this dissertation is to extend that inaugural work into a general convex optimization 

framework, and to apply the inverse TM P solution to localizing myocardial ischemia (see 

Chapter 6).

Finally, a series o f studies, specifically aimed at myocardial ischemia localization, pur

sued a low-order parameterization o f myocardial TM Ps and thus a simplified, better-posed 

inverse problem. The initial study proposed a level-set framework to parameterize the 

myocardial TM P by the size and location o f ischemia [76, 86], with simulations based on 

a two-dimensional torso model. A  later study simplified the level-set method by assuming 

that ischemia has a spherical shape [100], and extended to a simple three-dimensional heart 

model, but its method did not work in the case of multiple ischemic regions.

3.2 Discretization of Inverse Problems
Mathematically, the primary challenge o f most inverse problems lies in their inherent 

ill-posedness in the Hadamard sense: their solutions may not exist, may be nonunique, or 

may be highly unstable with perturbations in input data. Regularization, which refers to the 

mathematical technique of constraining an ill-posed problem so as to convert it to a better- 

posed one, is a principal topic in inverse problem research, and there is a vast literature on 

regularization [110, 111, 57, 29, 72, 68]. W hen it comes to numerical simulation, it has been 

discovered that discretization o f an inverse problem is one form of regularization because it 

impacts the numerical conditioning o f the discretized problem, from the viewpoints of either 

functional analysis [81] or Bayesian statistics [69, 73]. Therefore, a sensible discretization 

can be combined with other regularization methods to achieve additional improvement in 

the inverse solution.

Speaking o f the inverse ECG problem specifically, while there have been plenty o f studies 

aiming at regularization during the problem-solving stage, few studies have been devoted 

to improving the numerical formulation o f the inverse problem before seeking its inverse 

solution. This observation motivates our research on the discretization o f the inverse ECG 

problem.

In this dissertation, we considered numerical discretization in the context of the finite
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element method (FEM ), whose adaptation is fulfilled by the “refinement” process. Adaptive 

FEMs have been applied to ECG problems, though most o f such efforts were aimed at the 

forward simulation rather than the inverse simulation [101, 90, 62, 64, 61]. In these studies, 

refinement was based on some element-wise error estimator and tended to refine the regions 

where the potential field had a high spatial gradient. One study [101] compared the efficacy 

o f such spatial adaptive refinement with conventional uniform refinements in simulating 

forward ECG problems, and its findings were supported by similar results reported by an 

adaptive BEM study [103].

Besides the spatial refinement, the p-type refinement using high-order finite elements 

has also been used in ECG problems. One study proposed both a finite element method 

and a boundary element method based on cubic Hermite interpolation [93]. Another study 

reported that high-order quadrilateral elements notably improved the numerical quality of 

the inverse ECG solution [30]. In [66], an algebraic multilevel method was proposed for ECG 

simulation which, compared with ordinary multigrid methods, achieved more automatic 

refinements and better stability in the presence o f discontinuous coefficients and boundary 

conditions. However, this multilevel study did not investigate the optimal discretization 

specifically for the inverse epicardial solution.

The refinement methods reviewed above are mostly oriented towards the forward prob

lem. In contrast, literature on inverse-problem-oriented discretization is limited. An early 

study explored how the resolution on the epicardium and on the body surface influenced 

the inverse ECG solution [90]. Another study that embodied the idea of “regularization-by- 

discretization” attempted to  combine a spatially-adaptive FEM  with local regularization for 

the inverse ECG problem [60, 63]. Its basic idea was to partition the transfer matrix (the one 

relating epicardial potentials to body-surface potential, derived from the FEM ) into several 

submatrices, each of which corresponds to  a local region o f the potential field, and then to 

apply a local regularization procedure tailored to  each submatrix. Finally, it is worth noting 

that adaptive FEMs are currently the state-of-art techniques in solving PDE-constrained 

inverse problems [8, 7], but such techniques have not made their application to ECG 

problems.

A  main argument proposed by this dissertation is that the discretization refinement that 

is effective for the forward ECG problem may become inappropriate for its corresponding 

inverse problem [118, 119]. Because of its ill-posed nature, the inverse problem requires 

different discretization considerations from its corresponding forward problem. However, 

there remains a notable gap in the current ECG literature concerning the impact of resolu
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tion on finite element simulation o f the inverse problem. It still remains an open question 

as to how discretization is related to the ill-posedness of the inverse ECG problem both 

qualitatively and quantitatively, and accordingly, how one should carry out discretization 

that optimizes the conditioning o f the numerical inverse problem whilst minimizing the 

approximation error. One goal o f this dissertation is to systematically address this open 

question at a practical level.



CHAPTER 4

FORMULATION OF ECG PROBLEMS

In this chapter, we present the mathematical formulation of the two types of inverse 

problems investigated in this dissertation. Our scientific research on the two problems 

are to be presented in Chapter 5 and Chapter 6, respectively. We separate the problem 

formulation from our research contribution in order to  facilitate readers’ comprehension.

4.1 Epicardium-Based Inverse ECG Problem
In the epicardium-based ECG problem, the heart source is represented by the potentials 

on the epicardium (or in general, a closed surface surrounding the heart). This epicardial 

potential source acts as the internal boundary conditions to  the torso volume conductor 

illustrated by Equation (2.2) and Figure 4.1, yielding the complete mathematical model 

described as follows:

V  ■ ff(x )V u (x ) =  0, x  e  Q; (4.1a)

u (x ) =  u0(x ), x  e  d H ; (4.1b)

n ■ a (x ) V u (x ) =  0, x  e  T, (4.1c)

where u is the potential field in the torso volume Q, which is bounded by the heart surface 

d H  and the torso surface T . u0(x) denotes the known epicardial potentials. a (x ) denotes 

the torso conductivity, which is a symmetric, positive-definite tensor.

W ith respect to  this ECG model, the forward problem is to calculate the torso potential 

u given the epicardial potential u0. Its corresponding inverse problem is to reconstruct u0 

based on measurements of u at the body surface. Both the forward and inverse problems 

assume that domain geometry and conductivities are known and remain fixed.

4 .1 .1  F in it e  E le m e n t  F o r m u la t io n

This section describes the Galerkin finite element formulation for numerically calculating 

the elliptic PDE problem given by Equation (4.1). The finite element discretization is 

defined as follows.
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F igu re  4.1: The problem domain for the epicardium-based ECG problem. The domain of 
interest is the torso volume Q, bounded by the heart surface d H  and the torso surface T . 
nT is the unit vector normal to the torso surface.

D e fin it io n  4.1. Let Qh denote a tessellation of Q. Let { 0 } N=Ui be the global finite 

element basis functions associated with this tessellation. The finite element discretization 

o f u is given by u «  uh =  ^ N=Ui ui^i . Let u =  (u i , u2, . . . ,  uNu)T denote the coefficient 

vector.

Linear finite elements are the most common choice in practice, in which case each basis 

0 i is an element-wise linear hat function associated with node i, and ui contains the voltage 

values at mesh nodes. Let the nodes o f Qh be grouped into three nonintersecting sets, on 

the heart surface (denoted by H ), in the torso volume (denoted by V), and on the torso 

surface (denoted by T ). The basis functions {^ i } are grouped in the same way. When 

high-order finite elements are used, the basis functions {^ i } are not only associated with 

mesh nodes but also with virtual points within elements. However, these high-order basis 

functions can be grouped in a similar way as we deal with linear elements.

Discretizing Equation (4.1) according to Definition 4.1, applying the Galerkin formula

tion, and using the test functions from the space {^ i (x ); i e  V U T } ,  we obtain a matrix 

system as follows:

( ATV A T T ) (  ut  )  =  ( —A T H )  u h , (4.2)

where u V =  (uk )T , k e  V , u H =  (uk )T , k e H  and uT =  (uk )T , k e T  denote the coefficient 

vectors corresponding to each node group. The matrices are given by:
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A v v  = (V 0 j ,a V 0 k )n, j  e  V ,k  e  V ; (4.3)

A VT = (V 0 j ,a V 0 k  )n, j  e V , k e  T ; (4.4)

A TV = (V 0 j ,o V $ k  )n, j  e  T , k e V ; (4.5)

A t t  = (V 0 j ,uV ^k  )n, j  e  T , k e  T ; (4.6)

A v h  = (V 0 j , o V $ k )n, j  e  V , k e  H; (4.7)

a t h  = (V 0 j ,a V 0 k  )n, j  e  T , k e  H. (4.8)

In the expression above, (■, -)n denotes the inner product defined as:

(^, ^ )n  =  f  0 (x ) ■ ^ (x )  dx. (4.9)
Jn

In Equation (4.2), the right side is the “forcing term” induced by the known Dirichlet 

boundary conditions. The left matrix, called a stiffness matrix, is symmetric and positive- 

definite, so the solution o f this linear system is amenable to iterative methods such as the 

preconditioned conjugate gradient method.

Based on Equation (4.2), we can further derive the explicit relation between the torso 

potential uy  and the epicardial potential uh  . Normally, no elements span from the heart 

to the torso surface, so A TH =  0. Also note that A v v  is the stiffness matrix resulting from 

the finite element solution to a zero-Dirichlet boundary condition Laplace problem and is 

hence invertible. Exploiting these facts, we obtain the following relation:

u T =  K u H, K  =  M -1 N ; (4.10)

M  =  A t t  -  A y v A - V A v t ; (4.11)

N  =  A y v  A -V  A v h  . (4.12)

Here K  is often named the transfer matrix, as it “transfers” the potential information from 

the heart surface to the torso surface. The matrix M  is well-conditioned and invertible, but 

both N  and K  are severely ill-conditioned. The computational inverse problem involves 

solving Equation (4.10) for u H.

4.2 Bidomain-Based ECG Problem
The bidomain-based ECG model consists of a static bidomain heart model coupled with 

a monodomain torso model, respectively described by Equation (2.5) and (2.2). The full 

model is illustrated in Figure 4.2 and described below:
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F igu re  4.2: The problem domain for the bidomain-based ECG problem. The symbol B  
represents the torso volume bounded between the heart surface and the body surface. The 
symbol H  represents the heart volume (excluding heart chambers, which are regarded as 
part of B ). The unit vectors, nT and n u , are surface normals.

V -  (ae(x) +  ffj(x ))V u e(x) =  —V  ■ a jV v (x ), x  € H ; (4.13)

V  ■ at(x )V u b(x) =  0, x  € B. (4.14)

Here Equation (4.13) describes the static bidomain heart where ue and u  are the extra

cellular and intracellular potentials, respectively. The transmembrane potential v forms 

the source term of the model. The tensors, ai and ae, represent the intracellular and 

extracellular conductivity o f the myocardium, and these tensors are symmetric, positive- 

definite matrices dependent upon spatial location. Equation (4.14) states that the torso is 

a passive volume conductor. ub denotes the monodomain potential in the torso; at denotes 

the conductivity.

The above model satisfies the following boundary conditions at the torso surface T  and

the heart-torso interface d H :

(atV u b) ■ nT =  0, on T ; (4.15)

ue =  ub, on d H ; (4.16)

(aeV u e) ■ n u  =  (atVub) ■ n u , on d H ; (4.17)

(ffiV u i) ■ n u  =  0, on d H ; ui =  ue +  v. (4.18)

Here Equation (4.15) assumes that no current flows out o f the torso surface. Equation (4.16) 

assumes the continuity o f potentials on d H . Equation (4.17) dictates the conservation of
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electrical currents flowing across the heart boundary. Equation (4.18) means that the 

intracellular current, ^ V u ^  is bounded within the heart, therefore indicating that only the 

extracellular current flows into the torso, yielding Equation (4.17).

The above model and boundary conditions can be jointly expressed as a Poisson equation 

given below:

—V  ■ a V u (x )  =  f ( x ) ,  x  £ Q; (4.19a)

nT ■ a V u (x )  = 0 ,  x  £ T ; (4.19b)

where f  (x ) =  {  V  ■ ffjV v (x ), X £ H ; (4-19c)

u ( x ) = { x  £ H  « ■ « « )

* x )  =  {  « +  -  x  £  H ; (419e)

This formulation implicitly assumes the boundary conditions given by Equations (4.16)- 

(4.18). Details of this model can be found in [86, 85] and Chapter 5 o f [42].

The forward problem and the inverse problem associated with the bidomain-based ECG 

model are stated as follows. Given the transmembrane potential v, the forward problem is 

to calculate the potential u throughout the heart and torso by solving Equation (4.19a). 

Its corresponding inverse problem is to  reconstruct v based on a sampling o f u measured 

at the body surface. Both the forward and inverse problems assume that domain geometry 

and conductivities are known and remain fixed.

An important property of the forward problem and the inverse problem is that they 

admit nonunique solutions. From Equation (4.19a), one may see that the mapping between 

v and u is affine and noninjective: if u0 is the solution o f a given vo, so is u0 +  c for any 

constant c. We enforce the uniqueness in the forward problem by requiring that u satisfy 

the following constraint:

/  u (x )d S  =  /  d(x)dS, (4.20)
JT Jt

where d(x) denotes the measured body-surface potentials. This constraint enables one to 

consider u as a function of v. It also reasonably describes the situation o f the inverse 

problem where one needs to fit the unknown u to the known d.

The nonuniqueness o f the solution to the inverse problem refers to  the fact that both 

v0 and v0 +  c yield identical u for any constant c. Such nonuniqueness reflects the physical 

understanding that the electrical source is essentially induced by the current (gradient of 

potentials) rather than the potential field itself. In practice, all the potential fields that differ
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by a constant are treated as the same because the particular realization of the potential 

field within the infinite number of admissible ones depends on how one picks the ground 

reference.

4 .2 .1  F in it e  E le m e n t  F o r m u la t io n

This section presents the Galerkin finite element formulation for the elliptic problem 

given by Equation (4.19). Assume that u e  H 1 (Q) and v e  H 1(H ). (Here Hk(*) denotes 

the kth-order Sobolev space defined over a domain.) The variational form of Equation (4.19) 

after applying the Green’s divergence theorem and the natural boundary conditions is given 

as follows:

/  (a V u (x )) -V ^ (x )d x  =  — f  (a jV v (x ) -V ^ (x )d x , V^ e  H 0(Q). (4.21)
JQ JH

Our finite element discretization is described by the following definition.

D e fin it io n  4.2. Let Qh denote a tessellation o f Q and Hh denote a tessellation of H . 

Let { 0 } N=U1 be the global finite element basis functions associated with Qh and { '0 }NV1 be the 

global basis associated with H h. Assume u and v are discretized by u uh =  e  u*0i, 

and v «  vh =  E v ^ .  Let u =  (u 1, u2, . . . ,  uNu)T and v  =  (v1, v2, . . . ,  vNv)T denote the 

two coefficient vectors.

In this study, we adopted the linear finite element method, in which case each <pi and 

•0j is a hat function associated with the node i o f the mesh Qh or H h. Accordingly, u and 

v  contain the voltage values at mesh nodes. These implications are henceforth assumed for 

the bidomain simulation in this dissertation unless explicitly mentioned.

Applying Definition 4.2 to Equation (4.21) and choosing the test function ^  to be the 

same as the trial space of { ^ }  (the Galerkin formulation), we obtain a matrix system as 

follows:

A u  +  R v  =  0. (4.22)

where A  e  R NuXNu is the stiffness matrix, A j j  =  ( V ^ c t V ^ ) q ; R  e  R NuXNv, and R j j  =  

(V<fii,aiV^j)h . Here (■, -)Q denotes the inner product taken over the space L 2(Q), defined 

in Equation (4.9).

It is worth noting that ue and v may be discretized by different trial basis functions. This 

practice is desirable in inverse simulations, as we will see later that the inverse calculation 

prefers both a fine heart mesh for an accurate conduction model and a coarser heart mesh 

for representing the source term v.

When implementing the ECG simulation, one should ensure that boundary conditions 

at the heart-torso interface are applied properly. Another set of boundary conditions
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alternative to Equation (4.17) and (4.18) also lead the Poisson Equation (4.19a) to the 

same variational formulation Equation (4.21). The alternative boundary conditions state 

that nH ■ OtVv =  0 and nH ■ (ffi +  ct: )Vu: =  0. These conditions differ from Equation (4.18) 
in that they assume a zero Neumann condition on the transmembrane potential, whereas 

Equation (4.18) assumes a zero Neumann condition on the intracellular potential. There 

has been controversy over the choice between the two boundary condition sets. Studies have 

shown that Equation (4.18) matches experiments more faithfully, but simulation scientists 

are advised to be aware of this subtle difference. See Chapter 5.9 of [42] for more discussions.



CHAPTER 5

EPICARDIUM-BASED INVERSE ECG 
PROBLEM

In this chapter, we investigate the inverse ECG problem of reconstructing epicardial 

potentials from the body-surface potentials. The overarching goal is to systematically 
improve the numerical discretization and regularization for this inverse problem when 

the finite element method is used. Section 5.2 presents a Fourier analysis that quantifies 

how discretization influences the ill-conditioning. Based on that analysis, we investigated 
and concluded a set of finite-element refinement strategies in Section 5.3. To fulfill these 

strategies, we developed two techniques: the h-type refinement using hybrid-shaped finite 

elements (presented in Section 5.4 and 5.5), and an adapted p-type refinement (presented 
in Section 5.6). In Section 5.7, we proposed a new family of variational-form regularizers 

that maintain consistent regularization under multiple discretization resolutions.

The mathematical model of the epicardium-based inverse ECG problem has been elabo

rated in Chapter 4.1. All the variable notations in that section are inherited in this chapter.

5.1 Introduction
As we have mentioned in Chapter 3, the inverse ECG problem of computing epicardial 

potentials has received considerable investigation, and several solution approaches have 
been well established. A major objective of contemporary research on this inverse ECG 

problem is clinically-relevant simulations using torso and heart models that are realistic and 

subject-specific in biophysical and anatomical aspects. A critical step in such simulations is 
discretizing the model equations into numerical systems before conducting computation. In 

order to validate the numerical results, it is important to understand how well the numerical 

formulation represents the physical process being considered, a step known as Validation 

and Verification (V&V) in the engineering literature [5]. In the inverse ECG problem, the 
quality of numerical formulation becomes even more important for two reasons: (1) the 

discretized model equations have tremendous size and complexity; (2) given the inverse
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problem’s ill-posed nature, numerical formulation profoundly impacts the conditioning of 
the resulting numerical system to be “inverted,” and thereby predetermines the accuracy 

of inverse solutions. Moreover, the degree of ill-conditioning tends to increase with the 
growing model complexity inherent in subject-specific simulations, thus intensifying the 

need for sensible numerical discretization.

In the field of numerical computation, improvement of discretization is ubiquitously 

fulfilled by so-called “refinement” strategies, which specify how to decrease errors by in
creasing the resolution (or fidelity) of the numerical approximation at the cost of increased 

computational work. As we have reviewed in Section 3.2, most numerical refinement 

strategies adopted in bioelectric simulations are targeted towards the forward problem. 

However, a motivation of our study is that refinement strategies effective for the forward 
ECG problem may become inappropriate for the corresponding inverse problem because of 

its ill-posedness. To emphasize this point, we present in the next section a vivid example 
that illustrates how a refinement strategy beneficial to the forward problem practically 

undermines the inverse calculation.

Despite the limited studies on discretization for the inverse problem (see our review in 

Chapter 3.2), the inverse ECG community still lacks a systematic investigation of how dis

cretization choices are related, both qualitatively and quantitatively, to the ill-conditioning 
of the numerical inverse problem. Accordingly, it remains an open question as to how a 

simulation scientist should develop discretizations that optimize the approximation accuracy 
whilst mitigating the ill-conditioning of the inverse problem. Furthermore, a sensible 

discretization brings extra regularization effects on top of other regularization techniques 

applied during the problem-solving stage, improving the accuracy and robustness of inverse 

solutions. These concerns form the rationale of our study, which aims to develop discretiza
tion strategies specifically targeting the inverse ECG problem, in the context of the finite 

element method (FEM) carried out at a practical level.

Another important issue addressed in our study is maintaining consistent regulariza
tion when the inverse problem is discretized into different scales. Regularizations are 
traditionally implemented at the level of numerical algebra, and thus neither perform 

consistently for an inverse problem discretized into different scales nor support adaptive 
refinement during an ongoing inverse calculation. To tackle these concerns, we proposed a 

new formulation of regularizers using the variational principle underlying the FEM. Such 
variational-formed regularizers work within the classic Tikhonov regularization framework 

but have several advantages over the traditional algebraic Tikhonov regularizers. First, the



40

variational regularizers keep the connection between the discretized model and its underlying 

continuous model, and automatically conform to certain variational properties inherently 

assumed by the numerical inverse problem discretized by the FEM. Second, the variational 
regularizers preserve their norms, and thereby maintain consistent regularization under 

multiscale inverse simulations. Third, the variational formulation enables easy construction 

of the discrete gradient operator, which is traditionally difficult to obtain over an irregular 

mesh. Fourth, it allows efficient imposition of multiple constraints simultaneously. The 
variational formulation is beneficial to a broader range of bioelectric problems.

5.1.1 M otiva tion

To motivate our study, we present an example that illustrates how the forward and 
inverse ECG problems differ in their respective discretization concerns. The example 

involves finite element simulation based on a simplified annulus model. The details will 

be discussed in Sections 5.4.2; here we distill for presentation only the salient features that 

help motivate our study.
Recall that the discretized inverse problem is given by Equation (4.10), which describes 

the transfer matrix K  that relates the epicardial potential uh and the torso-surface potential 
uT. We rephrase that equation here:

u t =  K  u h . (5.1)

The discretization by finite elements of boundary value problems of this type is well 

studied, with very clear theoretical and empirical guidelines as to how and where to place 
resolution in the form of adding additional, smaller elements or using higher-order basis 

functions to decrease the approximation error. For the ECG forward problem, a noticeable 

decrease in the error can be obtained by increasing the number of elements at and around 

the heart surface. The physical rationale for this strategy is that the accuracy of the forward 

problem approximation is jointly determined by the discretization’s ability to capture the 

electric potential on the surface of the heart, as well as the ability to capture the strong 
gradients of the potential moving away from the heart into the torso volume.

Figure 5.1 (left) presents a convergence plot showing that a uniform refinement decreases 

the error between the true and approximate solutions of the forward problem —precisely 

what traditional FEM theory would dictate. In Figure 5.1 (right), we present the singular 

values (a measure of numerical conditioning) of the transfer matrix K. The inverse calcu
lation consists of “inverting” this transfer matrix so as to yield epicardial potentials. The 

magnitudes of the singular values provide a measure of the invertibility of the system. This
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Figure 5.1: Effects of uniform refinement on the forward solution error and singular 
values of the transfer matrix. Left: Increasing the resolution both on and normal to the 
surface of the heart consistently reduces the error in the forward ECG simulation. |uH| 
is the resolution on the heart surface, |UT — uT| is the forward solution error on the torso 
surface. Four meshes are labeled as A-D in the ascending order of their resolutions. For 
simplicity, only Mesh B and C are displayed. Right: The increase in resolution worsens the 
conditioning of the transfer matrix to be inverted in the inverse problem. Curves A-D are 
singular values in their original length; these singular values are normalized to the length 
of A, as shown by curves B '-D ' .

figure shows that the uniform refinement actually worsens the conditioning of the inverse 

problem. Therefore, a refinement strategy developed solely based on considerations within 
the forward problem leads to an inappropriate discretization for the inverse problem.

5.2 Ill-Posedness of the Inverse Problem
This section analyzes the ill-posedness of the inverse ECG problem in both continuous 

and discrete settings. We also discuss how the ill-posedness impacts one’s discretization 

strategies.

The ill-posedness stems from the biophysics: it arises both from the attenuation of 
potentials as one moves away from the source and the fact that the potential at any point 

on the torso surface is a weighted superposition of all the individual sources within the heart. 

Hence, the recorded body-surface potentials represent an integration of many sources, the 

influence of which decreases sharply with distance. To find the inverse solution, we must 
perform the complementary operations of amplification and differentiation not only on the 

body-surface potentials but also on the inevitable noise that accompanies it. Consequently, 

the inverse solution is highly sensitive to fluctuations in input signals or geometric models.
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5.2.1 Fourier A nalysis  o f  the Ill-P osedness

Acting as a volume conductor, the human body is known to respond differently to 

different frequency components of the electrical source. As such, Fourier analysis, allowing 
a frequency decomposition of the solution space in infinite dimensions, is an effective analytic 

tool for quantitatively understanding the ill-posedness of inverse problems [87, 8 8 , 84] and 

thus provides a guideline for discretization considerations.

We now use the Fourier analysis to study the ill-posedness of our inverse ECG problem. 

To simplify our discussion, we analyze the problem in two dimensions, i.e., Q c S 2. Without 

loss of generality, we assume a is an identity matrix in Equation (4.1). We consider the 
equation in polar coordinates with the origin point being set within the interior boundary 

(the heart surface) H . The Dirichlet condition on the heart boundary, u0, is a univariate 
function of the azimuthal variable 9 and can be expanded into a Fourier series:

where Am and Bm are Fourier coefficients and m is the spatial frequency.

The general solution of Equation (4.1) can be regarded as a superposition of the solutions 
stemming from each frequency component of the source u0 in Equation (5.2). By separating 

the variables, we can derive the general solution in the following form:

where am, bm, cm, dm are coefficients determined by boundary conditions and domain ge

ometries. To simplify our discussion without losing generality, we consider an annulus 

model with the outer radius being of unit length and the inner radius being r0, i.e., 

r e [r0 , 1], 0 < r0 < 1. The zero Neumann boundary condition requires cm =  1 and 

dm =  1. Then Equation (5.3) is reduced to:

By setting r =  r0, Equation (5.4) should be equivalent to the heart-boundary Dirichlet 
condition given by Equation (5.2). In this way, we can derive the algebraic relation between 

the solution u and the Dirichlet condition u0 (expressed by its Fourier series):

A ^
U0 (9) =  A0  ^ (A m c o s (m 9 )  +  sin(m9)), 9 e [-n ,n ); (5.2)

m

(cmrm+rm)(am cos(m9)+bm sin(m9) +  a0 ln r +  60 (5.3)

(5.4)

A <x
u(r, 9) =  - 2  +  £ (Am cos(m9) +  Bm sin(m9)) (5.5)
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In particular, the torso-surface potentials uT can be derived by setting r =  1, given in the 
form:

( -x An n ^  Am cos(m6»)+Bm sin(m^)
UT =  u(r= 1 , 0 ) =  ^T +  2 ^  -----------rm +  r-m-----------. (5.6)

2 1 '0  +  ' 0m= 1 n n
Equation (5.6) makes concrete the forward operator K  that maps from the source space 

( i.e., the heart-surface potential) to the measurement space (i.e., the torso-surface poten

tial). The term m 2 -m describes the attenuation properties of K , indicating that the
r 0 + r 0

magnitude of attenuation is an exponential function with respect to the spatial frequency 

m. The magnitude of attenuation also depends on r0, which characterizes the ratio of the 

interior/exterior radius of the domain. The ill-posedness of the system can be understood 

in terms of 0 2 0— (the reciprocal term of the one above). Such ill-posedness is due to 
the “physical nature” of the problem being considered and therefore is independent of 

discretization choices.

Discretizing a function space is analogous to sampling a continuous signal, and the 
discretization resolution is similar to the sampling rate. After discretization, spatial fre

quencies of a continuous function are approximated by the number of sign changes in the 

corresponding discrete vector (a measure of variation). According to the sampling theorem, 

discretization resolution is proportional to the band-limit of the spatial frequency m. In 

this sense, given a discretization of the domain, the heart boundary resolution determines 
the spatial frequency band-limit of the epicardial potentials to be recovered and hence 
provides a measure of the intrinsic ill-conditioning of the discrete inverse problem. The 

ill-conditioning increases approximately as an exponential function with respect to the heart 

boundary resolution.
In the forward ECG problem, the heart potential information propagates through the 

volume conductor to reach the body surface where the information is recorded. The recorded 
information then forms the input to the inverse calculation. The amount of recorded 

information not only depends on the fidelities of the source, but also depends on how 
much information the volume conductor allows to pass. If a frequency component of the 

discretized heart potentials cannot pass through the volume conductor, this component can 
never be recovered in the inverse problem. However, since the heart boundary discretization 

already assumes this frequency component, the resulting numerical inverse problem still 

attempts to resolve this unrecoverable component, leading to what can be considered as 
“extra” (or supplementary) ill-conditioning. This extra ill-conditioning is due to discrepan

cies (or mismatches) in discretization rather than the physical nature of the inverse ECG 
problem. We conclude a key observation stated as follows: the recoverable band-limit of the
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heart-surface potentials is bounded by the minimum of two quantities: (a) the band-limit 

implied by the resolution of the heart surface, and (b) the band-limit specified by volume 
discretization.

According to our conclusion, increasing the desired resolution on the heart surface 

increases the ill-conditioning of the numerical inverse problem, because one is attempting 

to recover higher frequency components. We would consequently expect that arbitrarily 

uniform refinement may not be appropriate for the numerical inverse problem. On the 
other hand, the resolution of the torso volume mesh should be maintained to be no less 

than the pursued fidelity of the heart surface.

5.2.2 Singular V alue A nalysis  o f  the N um erica l Ill-C on d ition in g

In this section, we present a traditional means of evaluating the conditioning of the 
discretized problem -  examining the singular value spectrum of the forward operator. We 

will use this method to demonstrate how the conditioning of the discretized system affects 

the accuracy of the inverse solution.
Consider the numerical version of our inverse problem as given by Equation (4.10): 

ut =  K uh . Note that the number of degrees of freedom on the heart surface and torso 

surface need not be the same. In general, K  is an m x n matrix where m > n. Here m and n 

denote the dimension of the heart potential vector and torso potential vector, respectively. 
Because of the ill-posed nature of the problem, the corresponding discretization embodied 
in the transfer matrix K  admits a large condition number. To assess the ill-conditioning 

of K, we utilize the concept of valid and null spaces of K  based upon its singular value 

spectrum, which was introduced into the inverse ECG problem by [82].
To explore the spectrum of K, we first perform the singular value decomposition (SVD) 

to the transfer matrix K:

K =  U ■ E ■ V T (5.7)

where U =  (u1, ...  ,um) e ^mxn and V  =  (v1, . . . ,  vn) e ^nxn are matrices consisting of 

the left and right singular vectors, respectively, and E e ^nxn is a diagonal matrix with 

positive singular values ai, i =  1 , . . . ,  n. We obtain
n n

u t =  U E V t uh =  ^ 2  uiai(vTuh) =  ^ 2  “ iui,
i=1 i=1

where ai =  ai ■ (vTuH) is a scalar value. uT, the vector of potentials measured on the torso 
surface, is a linear combination of ui with coefficients ai, which is derived as the product 

of the singular value ai and the projection of uH onto the ith right eigenvector vi. As the
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singular value a  decreases rapidly to zero (or, in practical computations, single-precision or 

double-precision machine zero), the right eigenspace of K  can be decomposed into a valid 

subspace spanned by low indexed eigenvectors and a null subspace spanned by high indexed 
eigenvectors. The fraction of the source uH that falls in the null space is smoothed out by 

the zero-valued aj. Only the fraction of uh in the valid space has a nontrivial contribution 

to the observable uT and thereby can be recovered.

Accordingly, a slowly-descending singular value spectrum with a broader range of non

zero singular values indicates a better conditioning of the discretized inverse problem. The 

fraction of uH in the valid subspace estimates the best solution that is a recoverable problem, 
regardless of regularization methods, regularization parameters, error measurements, input 

noise, or other factors that depend on algorithms or numerical solvers.
Examination of the singular values of the forward operator is a valuable means of 

determining the ill-conditioning of the discretized system. Different discretization choices, 

in terms of the number of elements and placement of elements, will impact the formulation 

of the transfer matrix. This impact will be manifested in the singular value spectrum of the 

transfer matrix. Such SVD analysis was our major method when we investigated the impact 
of different discretization strategies on the numerical inverse problem, which is described in 

later sections.

From the mathematical perspective, solving the physical model given by Equation (4.1) 

is accomplished by assuming that the solution u(x) =  v(x) +  w(x) can be decomposed into 

a homogeneous part v and a heterogeneous part w. The function w(x) is chosen to satisfy 
both the Dirichlet boundary and Neumann boundary conditions, and the function v(x) is 

chosen to satisfy the following system:

A mathematical interpretation of this procedure is that one first “lifts” the boundary 

conditions onto the space of functions living over the entire domain Q, and then solves a 
homogeneous problem whose forcing function involves the heterogeneous term. By such 

interpretation, one can immediately see three approximation issues to be encountered 

when solving the ECG forward problem: (1) how accurately one represents the Dirichlet

5.3 Discretization for the Inverse Problem

V ■ (aVv(x)) =  —V ■ (aVw(x)), x  e Q; 

v(x) =  0 , x  e dH ; 

n ■ aVv(x) =  0, x  e T.

(5.8a)

(5.8b)

(5.8c)
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condition on the heart boundary (expressed in how well w(x) captures u0 (x), x e  H); (2) how 

accurately one computes the right-hand-side forcing term involving w(x) and its interaction 
with the discretization of the function v over the volume (i.e., how to choose an optimal 

“lifting” operator); and (3) how accurately one computes the solution of the homogeneous 
problem v over the volume.

The above interpretation is a general approach, and a specific numerical realization of 

the approach is the Galerkin finite element formulation given by Equation (4.2). In this case, 

the “lifting” operation of the Dirichlet boundary condition is realized by setting w as follows: 

w is an expansion of piecewise-linear trial functions in the first layer of elements adjacent 

to the heart surface, and is zero elsewhere in the domain volume. Equation (4.2) offers 

a concrete illustration of the above three issues: the size of the vector uH is determined 
by the resolution of the heart surface; the accuracy of the finite element approximation 

is dictated by both the heart-to-volume projection A VH and the volume conductor (the 

stiffness matrix on the left side of Equation (4.2)).

In Chapter 5.2.1, we have demonstrated that the fidelity on the heart surface determines 

the spatial-frequency bandlimit of the epicardial potentials one seeks to recover. Meanwhile, 
the discretization of the torso volume determines how much of that information can actually 

pass through the body and be recoverable. The torso volume should be discretized in 

the same resolution as the heart surface, otherwise it will cause unnecessary, “artificial” 
ill-conditioning reflected as an expanded null space in the transfer matrix. Finally, to 

better approximate the heart-to-volume projection, one needs to refine the high potential 

gradient region around the heart.

5.3.1 F in ite  E lem ent D iscretiza tion  S trategy

Based on these considerations, we designed numerical simulation experiments to in

vestigate several scenarios. Our goal is to decipher which of these scenarios leads to 
a better-conditioned (or ill-conditioned) transfer matrix K, and ultimately to generate 

guidelines for numerical discretization oriented to the inverse problem. The scenarios are 

described below:

• Increasing the resolution of the interior (heart) boundary in the tangential direction.

• Increasing the resolution of the interior (heart) boundary in the normal direction.

• Increasing the resolution of the torso volume conductor.

• Increasing the resolution of the exterior (torso) boundary.
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Before proceeding to describe the results of our experiments, we first present the inverse- 
problem-oriented discretization guidelines that we concluded from our experiments carried 

out in both two and three dimensions in space. The guidelines are summarized as follows:

• Set the resolution on the heart surface based on the problem of interest, but be 

cautious not to add additional fidelity beyond what is needed.

• While keeping the epicardial surface resolution fixed, increase the resolution in the 

normal direction to the heart surface. Such refinement captures the potential field 

around the heart where the spatial gradient is high, thereby improving the heart-to- 

volume projection A VH.

• With the above two items in place, refine the volume conductor to a sufficient level so 

as to capture both the features of body-surface measurement and the features implied 
by the fidelity on the heart surface. For computational efficiency, exceeding that level 

is unnecessary.

• Increasing the resolution of the torso surface is desirable, but only when the new 

resolutions are associated with measured data.

5.3.2 H yb rid  F in ite  E lem ents for h -T yp e  R efinem ent

The discretization guidelines mainly require refining the region around the heart while 
preserving the discretization of the heart surface. For a tetrahedral element mesh, which 

is popular in ECG simulation due to its simplicity, the above requirement will lead to 

flat tetrahedra with high aspect-ratios, which may induce numerical instability by them

selves [102].

To overcome this issue, we adopted a hybrid mesh scheme that places layers of prismatic 
elements around the heart before filling the rest of the body volume with tetrahedral ele

ments. Unlike tetrahedral elements, a prismatic element effectively decouples the resolution 

in its normal direction and the resolution on its base [70], thus enabling us to refine the 
direction normal to the heart without changing the resolution of the heart surface.

The hybrid mesh is simple to implement. Mesh generation starts from triangulated 

bounding surfaces for each organ and tissue. Prisms are padded around any organ by 

extruding its triangulated surface into the body volume. The layers and the thickness of 

prisms can be adapted when the potential gradient is expected to change dramatically. The 

padded prisms form a new closed, triangulated surface, upon which standard tetrahedral
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mesh generation can be performed to fill the rest of the volume. The prisms and tetrahedra 

conform well at their bounding interface.

5.4 h-Type Refinement in Two Dimensions
5.4.1 S im ulation  Setup

Herein we present a finite element simulation study of the ECG inverse problem in two 
dimensions. Our simulations are categorized by three models: (1) a 2D simplified geometry 

with homogeneous conductivities consisting of a circle within a circle, the so-called “offset- 

annulus” problem; (2) a 2D realistic torso geometry with homogeneous conductivities; and 

(3) a 2D torso geometry with heterogeneous conductivities.
Throughout this study, a linear finite element approximation was applied, and the 

h-refinement was employed to adjust the resolution. To facilitate comparison and general

ization, we ensured that the annulus and the realistic geometry have the same resolution 
both on their exterior boundaries and on their interior boundaries. Both geometries also 

have approximately the same number of elements and nodes.
After formulating the transfer matrix K  given by Equation (4.10), we solved the inverse 

problem by means of the standard Tikhonov regularization, in which the optimal regular

ization parameter is determined via an exhaustive search. Since the choice of regularization 

methods and parameter values can significantly influence the inverse solution accuracy, we 
applied the classic Tikhonov regularization in order to ensure consistency and to minimize 

the impact from different regularization techniques. Such choice allowed us to isolate the 
influence of discretization on the inverse solution.

The inverse calculation was conducted in the presence of various levels of noise on the 

input-the measured potentials on the torso surface. To take into account the randomness 
of input noise, each experiment was repeated 50 times and the arithmetic average of the 

results were presented.

In each test presented below, we present the numerical systems A VH, N, and K  in 

the terms of their singular value spectra. We also show how the optimal regularization 
parameter reflects the conditioning of the numerical inverse problem. Finally, we evaluate 

the inverse solution using two metrics, the relative error (RE) and the so-called “max- 
gradient location error.”

The relative error between the calculated solution uH and the exact solution uH is 

defined by

RE =  l|u H — uH 112. (5.9)
||uh 112
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The max-gradient location error measures the error in locating the maximum gradient 

position in the inverse solution. The rationale for this metric is that it normally captures 

the activation wavefront. The activation time (the time of depolarization) in the ECG is 
usually estimated by the most negative time derivative, maximum spatial gradient, and 

zero surface Laplacian [94]. In one time instant, the field between the activated epicardial 

region and the nonactivated region has the largest potential gradient. This high spatial 

gradient is also an expression of the high extracellular potential gradient associated with 
the depolarization phase. Electrocardiographic researchers use this information to estimate 

the propagation of activation potential wavefronts, which, combined with some wavefront 

potential models, provide physiologically-based a priori estimation of epicardial potentials. 
The estimation can be directly incorporated into the regularization to improve the inverse 
solution [33].

5.4.2 R esu lts from  the A nnulus G eom etry  

5.4 .2 .1  U n iform  R eso lu tion  R efinem ent

We present in Figure 5.2 a uniform refinement typically taken in forward problems. 
Panels A, B, and C show three discretization levels of an annulus. The ratio of the outer 

radius to the inner radius of the annulus is set to be 1:0.4, approximating the ratio in the 

real human torso. Panel D shows the normalized singular value spectra of the resulting 

matrix A vh and N, while Panel E illustrates the singular value spectrum of the transfer 

matrix K. In order to maintain good aspect-ratios of the triangle elements, the significance 
of which in the approximation accuracy has been discussed in [4, 5], the resolution on the 

interior (heart) boundary is inevitably increased. The resolution was increased from 60 

nodes in Mesh A to 80 nodes in Mesh B, and then to 100 nodes in Mesh C. Our results 
show that such refinement worsens the ill-conditioning of N and K.

5 .4 .2 .2  V olu m e C o n d u cto r  R eso lu tion

In this test, we explored the impact of the azimuthal resolution in the volume conductor. 

Figure 5.3 shows three annulus meshes and their resulting normalized singular value spectra 

of A  vh , N, and K. To fix the resolution on the heart boundary, quadrilateral elements were 

placed around the heart so as to decouple the tangential resolution and normal direction 

resolution. Quadrilateral elements also ensure the same discretization of the high-gradient 

field near the heart.

Figure 5.3 (Panels D and E) shows that such volume refinement improves the singular 

value spectrum of both N and K. Such improvement is consistent because K  =  M -1N
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Figure 5.2: Effects of uniform h-refinement on the transfer matrix K  and its components. 
(A): mesh with 60 nodes on heart. (B): mesh with 80 nodes on heart. (C): mesh with 
100 nodes on heart. (D): Singular values of N and A yH, plotted in their original length 
(marked by A, B, C ) and the normalized length (marked by A, B ;, C;). (E): singular values 
of K  plotted against the original index (A, B, C ) and the normalized index (A, B ;, C ;).

where M  is well-conditioned. Note that the matrix Ay#- remained constant in this test 
because neither the mesh interface between the heart boundary and the volume nor the basis 

functions spanning the interface changes. In addition, A yH is much better conditioned than 
both N and K.

An important observation is that the proportion of nontrivial singular values in the 

entire eigenspace of both N and K  is determined by the resolution in the volume of the 

polygon that encloses the interior boundary, and that polygon has the least number of 
nodes. This observation is clearly manifested in Figure 5.3(A): The interior boundary 

consists of 60 nodes, whereas the coarsest polygon (in the volume) that encompasses the 

interior boundary has 42 nodes. Consequently, singular values of N and K  of Mesh A 

suddenly drop to 10-16  at the position 42/60 =  0.7 in the normalized SVD scale. As 
the volume is refined in Mesh B and Mesh C, singular value spectra are smoothed and 

the proportion of trivial singular values (indicating the null space) diminishes. The gap
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Figure 5.3: Refining the volume conductor eliminates the extra ill-conditioning induced 
by the discretization. The three meshes have the same boundary resolutions: 105 nodes on 
the torso and 60 nodes on the heart. (A): mesh with 1045 elements, 665 nodes. (B): 1325 
elements, 805 nodes. (C): 1629 elements, 957 nodes. (D): singular values of N and A . 
(E): singular values of K.

between the singular value spectrum of A and that of C is the additional (supplementary) 

ill-conditioning caused by inadequate discretization but not associated with the ill-posed 
nature of the continuum problem. This fact can be inferred from the Fourier analysis in 

Section 5.2, where Equation (5.2) sets the frequency band-limit of the epicardial potential 

one seeks to recover, and where Equation (5.6) describes the band-limit of the solvable 

potential field allowed by K. When the former exceeds the latter, one could consider the 

discretization to be “insufficient” ; that is, it is not sufficient to capture the aforementioned 

resolution relationship. Note that this observation is also manifested by our simulation on 

the realistic torso model, as will be presented in the next section. We will discuss this issue 
in detail in Section 5.4.5.

Table 5.1 evaluates the inverse solutions and the regularization parameter A in the 
simulations shown in Figure 5.3. The table shows that volume refinements consistently 

reduce the maximum gradient location error regardless of the presence of input noise.
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Table 5.1: Evaluation of inverse solutions of the annulus simulation shown in Figure 5.3.

Noise Level Mesh A Mesh B Mesh C
Noise Free 14.80% 10.99% 9.65%

Mean RE 30dB 15.10% 12.38% 12 .20%
20dB 20.29% 19.75% 19.09%

Noise Free 0.0019 0.0007 0.0003
A 30dB 0.0027 0.0015 0.0014

20dB 0.0144 0.0128 0.0140
Noise Free 1 1 1

MGL Error 30dB 0.9 0.54 0.42
20dB 0.70 0.66 0.56

Note: the presented data represent the arithmetic average of 50 repeated simulations. 
White noise of 30dB and 20dB SNR was added to the torso-surface measurements before 

the inverse calculation. MGL: the maximum gradient location in the inverse solution.

Without input noise, mesh refinements reduce both the optimal value of A from 0.0019 

to 0.0003 and the inverse solution error from 14.8% to 9.65%, indicating that the numerical 
conditioning of the transfer matrix K  is improved from the regularization viewpoint. This is 

consistent with the improvement of the singular value spectrum of A VH and K  as shown in 

Figure 5.3. While such improvement can still be observed in the case of 30-dB input noise, 

it is not evident in the case of 20-dB noise. We conjecture that when the input noise goes 
beyond a certain level, its amplification effect will overwhelm the improvement brought by 

discretization refinement. In our experiment, that noise threshold was located between 30 

dB and 20 dB. Although the quantitative metrics do not indicate apparent improvement 

in the case of 20-dB input noise, a visual inspection of the inverse solution shows that the 

solution yielded by Mesh C is indeed closer to the exact solution than is the solution yielded 
from Mesh A, as shown in Figure 5.4.

5 .4 .2 .3  N orm al D irection  R eso lu tion
This experiment explored the impact of resolution in the direction normal to the heart 

boundary. This resolution captures high gradients in the potential field. Its refinement 

was achieved by increasing the number of quad layers while still keeping the resolution 

in the tangential direction. Meanwhile, the discretization of the rest of the volume was 

kept constant. The test was performed in two situations: with a coarsely-refined volume 

conductor (see Figure 5.5) and with a well-refined volume conductor (see Figure 5.6). 
Results from both tests consistently indicate that increasing the resolution in the normal 

direction improves the boundary-to-interior“lifting” matrix A vh . Given that N and K  are 

obtained by multiplying several matrices onto A VH, their singular value spectra are also
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Figure 5.4: Plots of the inverse solutions from the volume-refinement simulation shown 
in Figure 5.3. Evaluations of the solutions are presented in Table 5.1. Mesh C results in a 
better solution than does Mesh A.

“lifted” slightly. The basic quality of the singular value spectrum is still dominated by the 

tangential resolution in the volume: Note the abrupt drop of the singular value spectrum 
in the coarse-volume case, in contrast with their gradual decline in the refined-volume case. 

This implies that only when the azimuthal resolution is reasonably refined does the normal 

direction resolution matter to the condition of N and K.

5 .4 .2 .4  R esolu tion  on  the T orso B ou n dary

Measurements of the potential field on the torso boundary constitute the input of the 
inverse ECG problem. While in theory one can keep the same resolution on the torso 

boundary as on the heart boundary so as to derive a square transfer matrix, researchers 

in practice usually take more measurements (by placing more detecting electrodes) in the 
belief that improving the numerical approximation of the Cauchy condition will improve 

the inverse solution [60]. The intuition here is that an over-determined (though still rank- 

deficient) system may provide some sort of regularization.
Figure 5.7 illustrates our experiment in which the resolution on the torso boundary 

was adjusted while fixing the heart boundary. To minimize perturbing effects induced 

by insufficient volume discretization, as observed in our last test, we refined the volume 

properly in each case. However, the resolutions on both boundaries were still kept unchanged
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Figure 5.5: Refining the resolution normal to the heart under a coarse volume mesh. (A): 
two layers of quadrilaterals around the heart. (B): four layers of quadrilaterals. (C): eight 
layers of quadrilaterals. (D): singular values of N and A VH. (E): singular values of K.

during the refinement. Quadrilateral elements were employed again to ensure the same 
discretization of the high gradient field around the heart. As extra torso nodes were added 

in the transition from Figure 5.7(A) to (C), it is assumed that the real measured data were 

available on those additional nodes, rather than simple interpolation from the data on the 

existing nodes. Our results indicate that both N and K are improved by the refinement on 

the torso.

5.4.3 Results from the Homogeneous Torso Geometry
5.4.3.1 Volume Conductor Resolution

The geometric model for this study consists of a single two-dimensional slice of the 
Utah Torso Model [78]. We assume the volume conductor is homogeneous with isotropic 

conductivities, ignoring the lung, muscle, and other tissue conductivities. Figure 5.8 shows 

our test as well as properties of the resulting matrices. Analogous to the procedure taken 

in the volume test of the annulus model, we employed the same type of quadrilateral ele

ments around the heart in order to decouple the tangential resolution and normal direction
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Figure 5.6: Refining the resolution normal to the heart under a refined volume mesh. (A): 
two layers of quadrilaterals around the heart. (B): four layers of quadrilaterals. (C): eight 
layers of quadrilaterals. (D): singular values of N and A vH. (E): singular values of K.

resolution, as well as to ensure the same discretization of the high-gradient field near the 
heart. The mesh refinement is hierarchical: Mesh B in Figure 5.8 includes all nodes of 

Mesh A, while Mesh C includes all nodes of Mesh B. This hierarchy has clear implications 

in the first-order finite element method: The stiffness matrix A v v  is also hierarchical, 

because all of its degrees of freedom are located on nodes. Given that inverting A VV is the 

most time-consuming step in the inverse calculation, it is of practical interest to weigh the 

marginal gain in approximation accuracy against the extra computational cost.

Figure 5.8 shows that such volume refinement improves A VH, N, and K, judging by 

their singular value spectra. Also note that the proportion of nontrivial singular values 
in the eigenspace of either N or K  is determined by the resolution of the polygon in 

the volume that encircles the interior boundary and that has the least number of nodes, 

an observation consistent with the discovery in the annulus model. Table 5.2 presents 
the regularization parameter A and the evaluation of inverse solutions, further confirming 

that the improvement of singular value spectra leads to better inverse solution. Volume 
refinement consistently reduced the maximum gradient location error regardless of the
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Figure 5.7: Refining the resolution on the torso boundary. The heart boundary is fixed 
to be 60 nodes. (A): 60 nodes on the torso. (B): 100 nodes on the torso. (C): 120 nodes on 
the torso. (D): Singular values of N and A . (E): Singular values of K.

presence of input noise. In the noise-free case, mesh refinement reduces A from 0.0077 

to 0.0005, indicating that an improved K  needs less regularization; consequently, the error 

reduces from 8.81% to 4.19%. Similar improvement is also observed in the case of 30 dB 

noise, but is not evident when the noise level increases to 20 dB. Although the quantitative 

metrics do not indicate evident improvement in the case of 20 dB input noise, a visual 
inspection of the inverse solution shows that the inverse solution calculated from Mesh C in 

Figure 5.8 indeed better captures the features of the exact solution than does the solution 

from Mesh A, as shown in Figure 5.9. In summary, all results are consistent with those 

from the corresponding experiment conducted on the annulus model.

5 .4 .3 .2  R eso lu tion  in the N orm al D irection

This test explored the impact of the resolution in the normal direction by refining a 

region of quadrilateral layers near the heart while fixing the rest of the volume mesh. 

Figure 5.10 illustrates the setup of three meshes and the resulting A , N, and K  in 

terms of singular values. The same conclusions were drawn as those from the annulus test
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Figure 5.8: Refining the volume conductor of a 2D homogeneous torso slice. All three 
meshes share the same boundary resolution: 105 nodes on the torso and 60 nodes on the 
heart. (A): mesh containing 943 elements, 584 nodes. (B): mesh containing 1297 elements, 
761 nodes. (C): mesh containing 1899 elements, 1062 nodes. (D): singular values of N and 
A VH . (E): singular values of K.

in Section 5.4.2.3: Increasing the resolution in the normal direction improved A  vh , the 

boundary-to-volume lifting operator. The abrupt drop in the singular values implied that 
the azimuthal resolution in the volume still dominated the basic quality of the numerical 

system.

This test used an under-refined volume mesh. We also conducted the test with a well- 

refined homogeneous torso model, and obtained the same results as in the annulus test in 

Section 5.4.2.3. To avoid duplication, the latter test is not presented in this dissertation.

5.4.4 R esu lts from  the H eterogen eou s T orso  G eom etry

In this study, we used a heterogeneous two-dimensional torso mesh that conforms to the 

interfaces between different physiological tissues, as depicted in Figure 5.11 and Table 5.3. 

Our simulation used the same heart boundary voltage data as the last study with the 
homogeneous torso model. We repeated the refinement tests in the volume and in the
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Table 5.2: Evaluation of inverse solutions of the homogeneous torso simulation shown in 
Figure 5.8.

Noise Level Mesh A Mesh B Mesh C
Noise Free 8.81% 5.85% 4.19%

Mean RE 30 dB 9.02% 7.90% 7.17%
20 dB 14.33% 15.45% 15.26%

Noise Free 0.0077 0.0016 0.0005
A 30 dB 0.0080 0.0042 0.0035

20 dB 0.0205 0.0207 0.0215

MGL Noise Free 1 1 1

Error 30 dB 1 1 0.98
20 dB 1 0.82 0.7

Note: The data in this table are the average of 50 repeated simulations. White noise of 30 
dB and 20 dB SNR is added to the torso-surface measurements before solving the inverse 

problem. MGL: maximum gradient location in the vector of the inverse solution.

normal direction around the heart. This model differs from the previous homogeneous 

model in that refinements must respect boundary interfaces between organs and tissues. 

This study investigated whether the conclusions drawn from homogeneous meshes also hold 
in heterogeneous meshes in general.

Figure 5.12 shows the results of volume refinement and torso-surface refinement. Panel A 

shows the original mesh generated by tissue segmentation. One can discern the epicardium, 

lungs, skeletal muscle, and torso surface. To simplify the problem, we made two types of 

refinement: refining the lungs, as shown in Panel B, and refining the tissue outside the 
lungs, as shown in Panel C. Panel D displays the combination of both refinements. By 

inspecting N in Panel E and K  in Panel F, one can see that the lung refinement extends 

the singular value spectrum, reducing the proportion of trivial singular values, whereas the 

refinement on the torso surface extends the spectrum slightly but meanwhile “lifts” it as 

well. Compared with Mesh A, Mesh D combines the improvement brought by both Mesh 
B and Mesh C.

Figure 5.13 shows a test of increasing the resolution normal to the heart boundary. The 
results are consistent with the observation in the corresponding homogeneous torso case: 

the boundary-to-interior lifting matrix A vh  is improved while the improvement of N and 

K  is limited.
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Figure 5.9: Inverse solutions of epicardial potentials corresponding to Figure 5.8 and 
Table 5.2. Mesh C yields a better solution than Mesh A.
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Figure 5.10: Refining the resolution normal to the heart under a coarse volume mesh. 
(A): one layer of quadrilaterals around the heart. (B): two layers of quadrilaterals. (C): 
four layers of quadrilaterals. (D): singular values of N and A VH. (E): singular values of K.
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Figure 5.11: The torso mesh with heterogeneous, 
conductivity values are listed in Table 5.3.

anisotropic conductivity. Tissue

Table 5.3: Tissue conductivities. Unit: Siemens/meter.

Region Conductivity (logitudinal direction, transverse direction)
Torso surface .045, .045

Epicardial tissue .045, .045
Lung .096, .096

Skeletal muscle .3, .1
Middle layer fat .024, .024
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Figure 5.12: Effects of refining different regions in the heterogeneous torso mesh while 
fixing the fidelity of the heart boundary. (A): the original mesh. (B): refining the lungs. 
(C): refining skeletal muscles and torso surface. (D): combining of B and C. (E): singular 
values of N and A VH. (F): singular values of K.
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Figure 5.13: Refining the resolution normal to the heart. (A): one layer of quadrilaterals 
around the heart. (B): two layers of quadrilaterals. (C): four layers of quadrilaterals. (D): 
singular values of N and A VH. (E): singular values of K.

5.4.5 D iscussion
Our primary goal is to understand how the finite element discretization of the ECG 

model influences the numerical conditioning of the inverse problem, and consequently the 

quality of the inverse solution.The impact of discretization choices is first reflected in the 
formulation of the forward transfer matrix K. Since the inverse solution is obtained by 

conceptually “inverting” K, the singular values of K  (and its components, such as N 

and A v h ) provide a quantitative measure of the numerical quality of the discrete inverse 
problem.

A well-formulated K  should be characterized by a slowly descending singular value 
spectrum and a small proportion of trivial singular values corresponding to the null space 

of K. (In theory, source information that falls into the null space will be completely filtered 
out by K  in the forward problem and therefore can never be recovered in the inverse problem, 

worsening its ill-posedness.)
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Although singular values describe general properties of the system K to be solved, they 

are not directly associated with the accuracy of the inverse solution, which relies heavily 
on regularization of the still ill-conditioned system. In the classic Tikhonov regulariza
tion, the parameter A controls the amount of regularization, and therefore indicates the 
ill-conditioning of K  reflected in the problem-solving stage. These two measures, along with 

the solution error evaluation, constitute the metrics to assess the impact of discretization 

in this study.

When the volume conductor is insufficiently discretized, Fourier analysis implies that the 

actually recoverable spatial-frequency band-limit allowed by the discrete system is less than 
the frequency band-limit assumed to be recovered on the heart boundary. This implication 

is reflected in the transfer matrix K  by the truncation of its nontrivial singular values and 
by the widening of its null space. This phenomenon is referred to as artificial ill-conditioning 

because it is not due to the ill-posed nature of the continuum problem. Volume refinement 
effectively eliminates this type of ill-conditioning by improving the singular value spectrum 

and reducing the null space. Such improvement on the transfer matrix also shows its 

benefits in the problem-solving stage by reducing the necessary regularization amount, an 

improvement that eventually leads to less error in the inverse solution. This sequence of 
improvements is evident especially when there is no measurement noise in the input torso 

potential vector, because in the noise-free case, the only error in Equation (4.10) is the 
discretization error that lies in K  only. Discretization refinement promotes the accuracy of 

K  and hence directly improves the desired solution uH.

However, such improvement in the inverse solution becomes less evident as input noise 

increases, until the noise reaches a level that may obscure the improvement. This occurs 
because any discretization refinement cannot change the underlying ill-posed nature of the 

physical problem. The well-refined inverse problem, though improved, is still ill-conditioned 

and very sensitive to the perturbation of input noise (as can be seen, the most improved K 

still has a condition number of 1014). This observation suggests that volume refinement is 
necessary before reaching a certain level, beyond which, however, it becomes unnecessary 

for computational efficiency.

All results presented in our study corroborated the following set of “guidelines” for the 
placement of resolution with the finite element-based discretization of the inverse ECG 

problem:

• Increasing the resolution on the heart surface leads to a corresponding increase in the 
ill-conditioned nature of the discretized inverse system. One should realistically assess
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the resolution needed on the interior boundary to satisfy the problems of interest and 

be careful not to solve beyond the minimum resolution needed.

• Some benefit can be gained from increasing the resolution normal to the heart bound
ary. This corresponds to a refinement of the right-hand-side operator within the finite 

element forward problem -  the boundary-to-interior lifting operator. The challenge 

historically with unstructured discretizations has been to effectively increase normal 
resolution while maintaining tangential (or azimuthal, in our test cases) resolution. 

With element types such as triangles or tetrahedra, the effort to strike a balance 
between the two normally leads to poorly-shaped elements with their own conditioning 

issues. We advocate the use of hybrid discretizations -  in particular, the use of 

quadrilateral elements for the heart surface in 2D. The quadrilateral elements can be 

connected to triangular elements in the volume. We suggest the use of prismatic 

elements on the heart’s surface in 3D. The prism elements can be connected to 
tetrahedral or hexahedral elements within the volume. This allows for fixing the 

heart surface resolution while increasing the resolution normal to the heart.

• Once the other two items are in place, one should increase the resolution of the volume 
conductor. Although theoretically one can argue that a monotonic increase in the 
volume conductor resolution leads to continual improvement of the inverse problem, 

there is a fundamental practical limitation in terms of the amount of information 

provided on the torso boundary. The resolution within the volume conductor needs 

to be sufficient to capture both the features of the torso data and the features implied 

by the discretization of the heart boundary, but for computational efficiency it should 
not be much greater.

• Increasing the resolution on the exterior boundary can positively impact the condi

tioning of the inverse system, but only when this increase comes as a consequence of 
increasing the measured data available on the exterior boundary. Merely embedding 

the data in a higher-dimensional (resolved) function space on the boundary does not 
necessarily lead to a better inverse problem solution.

These guidelines mainly advocate refining the volume conductor while judiciously decid

ing the fidelity of the discretization on the heart surface. One might use these guidelines to 

advise under appropriate scenarios the use of the boundary element method (BEM), which 
achieves an exact solution in the volume, a property sought for by volume-refinement in the
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FEM. Given that the BEM only requires discretizing interfaces between regions of different 

conductivities, it is worth studying the impact of resolution on each interface.

5.5 h-Type Refinement in Three Dimensions
5.5.1 S im ulation  Setup

Our finite element simulation was based on a phantom animal experiment consisting 

of a live canine heart suspended in a human-torso-shaped tank filled with a homogeneous 

electolytic medium [79]. This experiment enables simultaneous recording of epicardial and 

torso potentials in vivo. Both the heart and torso boundaries are triangulated surfaces 

tessellated from MRI scans [65]. The heart mesh consists of 337 nodes and 670 triangles, 

whereas the torso surface consists of 771 nodes and 1538 triangles. Epicardial potentials 

were recorded at each node of the heart mesh over a complete cardiac cycle. From the 

surface meshes, we generated the volume meshes in different ways in order to identify the 
impact of discretization on the finite element solution for the inverse ECG problem. The 

mesh generation strategies will be given with each test presented below.
With each mesh, we conducted a forward simulation to obtain the torso-surface po

tentials and the transfer matrix K. After adding noise to the torso-surface potentials, we 

inversely calculated the epicardial potentials, electrograms, and activation isochrones, and 

compared the reconstructed heart data with the recorded data. Unless otherwise stated, 
the inverse calculation was fulfilled by the standard Tikhonov regularization as given in 

Equation (5.10), where the regularization parameter A was determined by an exhaustive 
search. Although the Tikhonov method is a basic technique for solving inverse problems, it 

enables us to consistently isolate the impact of changing the discretization.
Here we describe the classic Tikhonov regularization method, which is given as follows:

uh =  argmin {||K ufl -  uT||2 +  A2(||L uf l||2)} (5.10)

where || ■ ||2 is the Euclidean norm. The first term is the residual error and the second term is 

the regularizer constraining certain properties of the epicardial potentials. There are three 

basic Tikhonov schemes depending on the choice for L. The zero-order Tikhonov (ZOT) 

takes L as an identity matrix, constraining the amplitude of epicardial potentials. The 

first-order Tikhonov (FOT) takes L as a gradient operator, constraining the spatial gradient. 
The second-order Tikhonov (SOT) takes L as a surface Laplacian operator, constraining 

the curvature of epicardial potentials.
The numerical conditioning of the discretized inverse problem was evaluated by exam

ining the singular value spectrum of the transfer matrix K  and its components N and
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A vh . Inverse solutions were measured both quantitatively and visually. Quantitative 

measures include the relative error (denoted by RE , given by Equation (5.9)) and the 

correlation coefficient (C C ) between the inverse solution (denoted as UH) and the ground 
truth (denoted as uH), defined as follows:

n n  (UH -  a)T(uH -  a) „ x , x hnCC  =  t-;------- ^ — n-----------r - , a =  mean(uH), a =  m ean(uH). (5.11)
||uh -  a ||2 ■ ||uh -  a 2̂

Visual assessment of the inverse solutions included visualizing the reconstructed epicardial 
potential map and the activation isochrone map. The activation time at each site was 

determined by the most negative temporal derivative of the electrogram on that site (i.e., 

the minimum du/dt).

5.5.2 U n iform  R efinem ent

This test shows how the desired fidelity of an inverse solution affects the ill-conditioning 
of the inverse problem. We performed a multiscale simulation over a model composed of a 

sphere (approximating the heart) contained in a torso tank. The spherical geometry made 

it easier for us to set different discretization scales for the heart. With the torso mesh fixed, 

we compared sphere models of three resolutions. Figure 5.14 shows that the ill-conditioning 
of the transfer matrix is worsened with the increase of the heart resolution, or equivalently, 

the fidelity of the pursued inverse solution.
Figure 5.14 indicates that arbitrary refinement may be inappropriate for inverse problems— 

a discrete heart model of 612 nodes already has singular values of K  below double-digit 
precision. Considering the extra geometric complexities, the inverse problem with a real 

heart is even more ill-conditioned than the sphere model considered here. Therefore, we 

have good reason to believe that one should cautiously discretize the heart surface based 
on practical needs rather than perform arbitrary refinement.

5.5.3 T orso  V olu m e R efinem ent

In this test, we explored the impact of the discretization of the torso volume. Keeping 

both the torso surface and the heart surface unchanged, we set the torso volume mesh in 

four resolutions. Figure 5.15 shows the singular values of the resulting transfer matrix K 

and its components A v h . Panel A shows that volume refinement significantly improves 
the “heart-to-volume” projector A VH, because such refinement well represents the high- 

gradient region around the heart. The improvement of A vh subsequently improves K.
The way we interpret the singular value spectra of K  in Figure 5.15 (Panel B) exemplifies 

how to evaluate the conditioning of a discrete inverse problem. With a good discretization
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Figure 5.14: Singular values of the transfer matrices resulting from the sphere/torso 
model. The torso mesh remains unchanged while three sphere meshes are tested. Nh 
denotes the number of nodes on the surface of each sphere.

(37,444 elements), the singular values descend slowly, reflecting the intrinsic ill-posedness 
of the underlying continuum problem. In contrast, with a coarse discretization (10,454 

elements), the singular values of K  abruptly drop to near zero from position 175 among 

a total of 337 values, enlarging the proportion of the null space of K. This expansion of 
the null space represents a supplementary ill-conditioning not stemming from the intrinsic 

ill-posed nature, but rather caused by insufficient discretization. As discussed in Section 5.2, 

the resolution on the epicardium sets the frequency bandlimit of potentials one seeks to 
recover, whereas the resolution of the volume conductor determines the bandlimit that is 

actually solvable. When the former exceeds the latter, the formed transfer matrix K  cannot 

hold the relationship of the two frequency bandlimits, resulting in an artificially introduced 

null space. This discrepancy should be and can be avoided, so we regard the smoothing of 
singular values as a sign of improvement in the conditioning of the inverse problem.

One may see that refinement from 27,361 elements to 37,444 elements does not notably 

change the singular value spectra of the matrices concerned. This is because the improve

ment brought by discretization is bounded by the ill-posed nature of the continuum problem. 
Hence over-refinement beyond a certain level is not cost effective.

To further compare the quality of the numerical systems shown in Figure 5.15, Fig

ure 5.16 shows their reconstructed epicardial potentials at several representative time in

stants in a cardiac cycle. In early activation phase (3 ms after the QRS onset), the
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Figure 5.15: Fixing the boundary discretization and refining the torso volume conductor. 
Ne denotes the number of elements in each mesh. (A): singular values of A . (B): singular 
values of K.

refined mesh (Mesh 3) better reconstructs the amplitude than the coarse mesh (Mesh 1). 

When epicardial potentials exhibit spatial diversity (21 ms), Mesh 3 outperforms Mesh 1 in 
recovering the saddle region in the center of the heart. Also at this instant, the iso-potential 
contours from Meshes 2 and 3 outline the negative minimum point located at the center left 

of the measured potential map, while the contours from Mesh 1 capture this feature poorly.

Figure 5.17 presents the activation isochrones derived from the epicardial potentials 

presented in Figure 5.16. It shows that volume refinement improves the recovery of the 
activation time, particularly eliminating artifacts in the activation map.

5.5 .4  3D  H yb rid  M esh  Setup

The hybrid mesh was formed by padding layers of prisms around the epicardium (or 

the surface of any tissue). Prism elements then formed a new closed triangular surface (like 

an enlarged heart), from which we used BioMesh3D [1] to generate a tetrahedral mesh for 
the rest body volume. See Figure 5.18 for an illustration. The refinement in the normal 
direction was achieved by making more layers of thinner prisms.
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Time since the Measured Value Mesh 1 Mesh 2 Mesh 3
onset of QRS Ne=10,454 Ne=14,417 Ne=27,361
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Figure 5.16: Epicardial potentials calculated from the meshes discussed in Figure 5.15, 
under 30-dB white noise. Ne denotes the number of elements in each mesh. To effectively 
visualize the difference in potential patterns, the view is changed at each instant. The 
epicardial potentials at 21 ms exhibit the most diverse spatial pattern in the entire cardiac 
cycle, and hence are the hardest to recover.
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Figure 5.17: Activation isochrones derived from reconstructed epicardial potentials in 
Figure 5.16. Top row: the anterior view. Bottom row: the posterior view.

Figure 5.18: (A): a cross section of the torso mesh, where the heart is surrounded by 2 
layers of prism elements. (B): the hybrid mesh at the heart-volume interface.
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5.5.5 R efin ing  the N orm al D irection

In this test, we explored the impact of the resolution in the normal direction by refining 

a region of prism layers around the heart while fixing the rest of the volume mesh. We set 
the “prism zone” to be within 10 mm from the epicardium, and create three hybrid meshes 

having 1, 2 and 4 layers of prisms within the “10-mm prism zone.” The thickness of prisms 

are 10 mm, 5 mm, and 2.5 mm accordingly. All three meshes share a coarse tetrahedral 

mesh in the volume (8106 tetrahedra), which is fixed so as to isolate the effects of refinement 

in the normal direction. To highlight the effect induced by prisms, we compared the hybrid 

meshes with a pure tetrahedral mesh in approximate resolution.

Figure 5.19 presents the singular values of the heart-to-volume projector, A VH, and the 

transfer matrix, K. Compared with the pure tetrahedral mesh, all three hybrid meshes 
improve A vh  significantly and improve K  moderately. Panel B shows that refining the 
normal direction beyond a certain level may not bring much difference in the resulting 

numerical system. Figure 5.20 compares the activation maps derived from the reconstructed 

epicardial potentials. Hybrid meshes result in better recovery of activation isochrones.
The effect of the normal-direction resolution became more evident when the inverse 

problem was solved by the gradient-oriented first-order Tikhonov (FOT). We implemented 

the FOT using the variational-formed gradient operator. Figure 5.21 shows the recovered 

epicardial potentials at a representative instant when the potentials exhibit the most diverse 
spatial pattern. Refining the normal direction improves RE and CC slightly, but recovers

Figure 5.19: Refining the resolution normal to the heart by prismatic elements. (A): 
singular values of A VH. (B): singular values of K.
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Figure 5.20: Activation times derived from epicardial potentials calculated from the 
meshes in Figure 5.19. (A): from measured potentials. (B): from the pure tetrahedral 
mesh. (C): from the hybrid mesh with 1 layer of 10-mm-thick prisms. (D): from the hybrid 
mesh with 2 layers of 5-mm-thick prisms. (E): from the hybrid mesh with 4 layers of 
2.5-mm-thick prisms.

20 -10 0 10 20 30 mV

Figure 5.21: Epicardial potentials computed from hybrid meshes. (A): exact value. (B): 
pure tetrahedral mesh. (C): hybrid mesh with 1 layer of prisms. (D): hybrid mesh with 2 
layers of prisms. (E): hybrid mesh with 4 layers of prisms. rgrad is the ratio of the computed 
value to the real value of ||VuH||, the L2 norm of the epicardial potential gradient field.

a larger proportion of the potential gradient field on the epicardium, as indicated by rgrad 

rising from 76% to 91%. An important goal in inverse calculation is to faithfully reconstruct 
the sharp gradients in the true inverse solution. On the other hand, the Tikhonov method 

tends to over-smooth its inverse solution.
Such improvement is achieved in two ways. First, refinement in the normal direction 

assumes higher gradients to be represented by discretization, thereby improving the transfer 

matrix. Second, the refinement increases the magnitude of the stiffness matrix, which then 

enhances the regularizing effect of the variational gradient operator (based on the stiffness 

matrix). This test exemplifies how discretization choices may achieve regularization effects
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and affect inverse solutions.

5.5.6 V olu m e R efinem ent w ith  the H yb rid  M esh

This section is meant to be a comparative study to the volume-refining test presented 

in Section 5.5.3, which uses pure tetrahedral meshes. With tetrahedral meshes, refining 

the volume inevitably changes the discretization of the heart-to-volume interface. With the 

hybrid mesh, we were able to isolate the impact of volume refinement by fixing the prism 

mesh around the heart while refining the rest of the volume. We set two layers of 5-mm-thick 

prisms so as to reasonably approximate the gradient field around the heart. Fixing both 
the prismatic mesh and the torso-surface triangulation, we tetrahedralized the rest of the 

torso volume with three resolutions, respectively. Figure 5.22 presents the resulting A VH, 

N, and K. It confirms our conjecture that the extension of the singular value spectra of N 

and K  is attributed to the refinement of the interior volume, but not to the refinement of 

the heart-volume interface. Note that the matrix A vh was fixed in this test because the 
discretization of the heart-volume interface was fixed by the prismatic mesh.

5.5 .7  D iscussion
The primary goal of our discretization study was to explore how the finite element 

discretization of the ECG model influences the numerical conditioning of the inverse ECG 
problem, so as to formulate a numerical problem optimal for inverse calculation. While 

many research studies have been devoted to stabilizing the ill-posedness by various regu-

Singular Value Index Singular Value Index

Figure 5.22: Refining the volume while fixing the meshes around the heart by two layers of 
5-mm-thick prisms. Mesh 1, 2, and 3 contain 8106, 13636, and 23361 tetrahedral elements. 
(A): singular values of N and A VH. (B): singular values of K.
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larization techniques, few studies concentrated efforts on improving the numerical quality 

of inverse problems before their inverse solutions are sought. In fact, proper discretization 

strategies can be used in combination with regularization methods so as to achieve additional 
improvement to the inverse solution accuracy.

To assess the impact of discretization, our methodology included testing different finite 
element discretization strategies and then evaluating their resulting transfer matrix (the 

inverse problem) by singular value analysis. We then evaluated the inverse solutions in 

terms of quantitative metrics, epicardial potential patterns, and activation isochrone maps. 

The inverse solutions are calculated by a fixed regularization method (mostly second-order 
Tikhonov) in order to isolate the effect of discretization and to minimize the effect of 

regularization.

Our experiments based on 3D models obtained consistent results with our previous study 

based on 2D models presented in Section 5.4. Our results corroborate the inverse-problem 

discretization guidelines proposed in Section 5.3. Figure 5.14 indicates that the epicardial 

resolution for which we seek should be limited based on practical needs lest the discretized 
inverse problem become overly ill-conditioned. Meanwhile, refining the volume conductor 

improves the conditioning of the transfer matrix (Figure 5.15), the reconstructed epicardial 

potentials (Figure 5.16), and activation isochrones (Figure 5.17).
The use of hybrid meshes enables one to refine the high gradient field around the heart 

without incurring aspect-ratio problems. Such refinement improves the accuracy of the 

heart-to-volume projection (Figure 5.19) and the reconstruction of epicardial potential 
gradients (Figure 5.21), which in turn improves the recovery of the activation isochrone 

map (Figure 5.20). It is worth comparing the refinement in the normal direction to the 

heart to previous studies that use the potential gradient or current density (from a physical 
view) as a constraint in regularizing the inverse ECG problem [37]. The spatial refinement 

implicitly assumes that a higher gradient is being sought, so it achieves a similar regularizing 
effect often referred to as “regularization by discretization” [29, 28].

The CPU time of our ECG simulation consists of (1) the time for building the FE model 
and the minimization problem and (2) the time for solving the minimization. The first time 

is dominant and is linear in the number of elements being used. Hybrid meshes enable us to 

improve accuracy without dramatically increasing the mesh size and hence the CPU time. 
The time for carrying out the Tikhonov regularization given by Equation (5.10) (for each 

value of A) is 1-2 seconds in Matlab with four 2.66-GHz Intel Xeon cores, when the transfer 

matrix K  was of the size 771 x 337 (the number of nodes on the torso surface and the heart



75

surface, respectively).

5.6 Adapted p-Type Finite Element Refinement
So far our study on refinement of the finite element method (FEM) for the inverse 

problem has concentrated on the spatial, or h-type refinement. As we have discussed in 
Chapter 2.2.2, the p-type refinement, using high-order finite elements, usually improves 

approximation accuracy more efficiently than the h-refinement. In this section, we explored 
the use of high-order finite elements to improve the discretization of the inverse ECG 

problem.
We found that high-order elements need adaptation in order to be suitable for the 

inverse problem. As indicated by Figure 2.7, the basic form of high-order finite elements is 
equivalent to uniform refinement, incorporating higher-spatial-frequency components into 

inverse calculation. The property of such uniform refinement has been demonstrated to 

be inappropriate for inverse calculation (see Section 5.2). On the other hand, as we have 
discussed in Section 5.3, the refinement guidelines for our inverse ECG problem suggest 
refining the torso volume while limiting the discretization resolution on the heart surface.

To fulfill this goal, we proposed an adapted p-refinement scheme as illustrated in Fig

ure 5.23. This scheme uses regular high-order finite elements except at interfaces where a 
low-order approximation is needed (e.g., the heart boundary). At any such interface, we 

adopted only the linear edge modes (and discarded the rest edge modes) among the full 
modal expansions within the element adjacent to that interface. Note that our selective 

extraction of edge modes is made possible by the special property of our modal expansions: 

because all the face modes in this modal expansions are zero-valued at element boundaries, 
the face modes are not affected by the removal of some edge modes.

With our adaptive p-refinement scheme in place, we fulfilled our inverse-problem-oriented 

refinement guidelines in the following way: we performed p-refinement in the torso volume 

while fixing a linear finite element discretization on the heart and torso surface. The goal 

of fixing the discretization on the heart surface was to constrain the ill-conditioning of 

the numerical inverse problem. Our decision to represent the torso surface by linear finite 

elements was based on two considerations. First, the measured torso-surface potentials 
are available only at a limited number of mesh nodes, so one does not have verified torso- 

potential information beyond the linear vertex modes. Second, the torso-surface potential 
field is sufficiently smooth for linear elements to attain satisfactory accuracy.

We now demonstrate how our p-refinement scheme improves the numerical accuracy of 

our inverse problem. To simplify our presentation, we assume that quadratic finite elements
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Figure 5.23: Illustration of triangular finite elements using third-order modal expansions 
in the torso volume while keeping first-order (linear) expansions on the torso and heart 
boundaries. The modal basis expansions are illustrated in Figure 2.8. The red nodes 
denote the vertex modes (the element-wise linear component). The blue nodes denote the 
edge modes, and the green nodes denote the face modes.

are being used in the torso volume whereas linear elements are used on the heart and torso 
boundaries. Recall that the finite element solution of our partial differential equation is 

given by Equation 4.2, which we rewrite here:

A vv
a tv

a vt
A tt

uv
ut

- A vh
- A th

uh (5.12)

where the subscripts represent the location group to which each basis function belongs: H 

stands for the heart boundary, T for the torso boundary, and V for the torso volume.
Given the use of modal quadratic elements, we rearranged all the global basis functions 

according to their polynomial order: the first group consists of element-wise linear basis 

functions, the second group consists of element-wise quadratic basis functions, and so on (if 

there are finite elements above the second order). We rearranged the coefficient associated 
with each basis function in the same order. To manifest such grouping, Equation (5.12) can 

be expressed in a more detailed form as follows:

/  A i’i
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A 2,1 A 2’2 a vv a vv
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1,1
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2,1
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u

u
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A 2,1
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1,1

uH (5.13)

\ a th  j

Here the subscripts have the same meaning, and the superscripts represent the order of
2,1each basis function. For example, A y H denotes the stiffness matrix formed by coupling
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the element-wise second-order basis in the volume (V) and the element-wise linear basis on

the heart boundary (H ). The same notation applies to the vectors of unknown coefficients: 

uT denotes the coefficients for the element-wise linear components on the torso boundary, 
whereas uV denotes the coefficients for the element-wise quadratic components in the torso 

volume.
The numerical formulation of the inverse problem, or specifically the transfer matrix K, 

is given by Equation 4.10, and we rewrite it here. Assuming only the linear finite elements 
are used, we place superscript 1,1 on all terms:

When quadratic elements are used, the transfer matrix K  is derived in the same way but 
containing augmented terms:

Comparing Equation (5.14) and (5.17), one can see how the p-refinement improves 
the discretization of the inverse problem. The quadratic finite element system not only 

encompasses the linear finite element system, but also incorporates extra second-order 

information. The second-order information takes effect via the stiffness matrices A v v  , A v t , 

and A  vh  , then being incorporated into the matrices M  and N. Note that both M  and N 

need the calculation of the inverse of A vv , which is also the most computationally intensive 

step in calculating K. In fact, A vv exactly arises from solving the homogeneous elliptic 
problem given by Equation (5.8). This fact explains why the p-refinement leads to a more 

accurate A v v  , which in turn improves the numerical formulation of the inverse problem. 
During our p-refinement, although the matrices K, M, and N do not change their sizes, 

they implicitly incorporate high-order (high spatial frequency) information of the continuum 

field they approximate.

uT =  KuH, K  =  M - 1N; (5.14)

(5.15)

(5.16)

uT =  KuH, K  =  M / - 1N ; (5.17)
1,1 1,2 1 1,1

(5.18)

(5.19)

5.6.1 C om p arison  o f  the h -T yp e  and p -T y p e  R efinem ents
Our p-refinement strategy proposed in this section and our h-refinement strategy pre

sented in the previous section can be unified under the same discretization approach we
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discussed in Section 5.3, which states that the discretization for our inverse ECG problem 

revolves around three objectives: (1) approximating the heart boundary, (2) approximating 

the heart-to-torso interface, and (3) approximating the torso volume. Both our h-type and 
p-type refinements increase the accuracy of the second and third objectives.

The h-refinement increases the approximation accuracy by reducing the spatial grid size, 

whereas the p-refinement does so by using high-order basis polynomials. To attain the goal 
of refining the heart-to-torso interface while preserving the resolution on the heart boundary, 

our h-refinement uses hybrid-shaped finite elements, involving the use of quadrilateral or 
prismatic elements in order to decouple the discretization in the normal direction and at the 

heart surface. In comparison, our p-refinement extracts the vertex modes and removes the 

high-order edge modes that live on the heart boundary. Essentially, the adaptation fulfilled 

by hybrid-shaped elements is “spatial,” whereas the adaptation fulfilled in the high-order 
finite elements is performed in the hierarchical polynomial space defined over each element. 

Because of the nature of hierarchical modal expansion, the adaptation in the polynomial 

space constitutes a seamless solution for selective refinement, enabling the approximate 

solution to maintain a good smoothness and circumventing the aspect-ratio problem that 
obstructs spatial refinement methods. These nice properties make our adaptive p-refinement 

often advantageous to spatial refinement.

5.6.2 Im plem en tation
When implementing the high-order FEM, one needs to keep track of each basis function's 

global number and its local number within each element that contains that basis function. 

Our adapted p-refinement scheme omits some basis functions in certain edges or faces 

depending on our needs. The task of tracking which basis functions are omitted, both 
in global and local numbering systems, becomes very complicated in three-dimensional 

meshes, because there are many topological possibilities for the local numbering scheme in 

an element.
However, because the basis functions we used are modal and can be decomposed into the 

vertex/edge/face modes, keeping track of the numbering of basis functions becomes much 
simpler than it appears to be. The first step is to carry out a regular uniform p-refinement, 

resulting in a matrix equation in the form of Equation (5.12), with all the basis functions 

and coefficients being labeled by their polynomial order and type of modes (vertex, edge, 

or face). The second step is to remove all the rows and columns corresponding to the basis 
functions we want to omit. This step is justified because all the modal basis functions are 

independent of each other, and each basis function impacts only its corresponding row and
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column in the stiffness matrix. After such column-row removal, one obtains Equation (5.13) 
from which the transfer matrix can be derived.

5.6.3 S im ulation  R esu lts

We herein present a simulation study of our adapted p-refinement based on a two

dimensional torso model with isotropic, homogeneous conductivities, as illustrated in Fig

ure 5.24. We tested first-, second-, and third-order triangular finite elements. Given a finite 
element setting, we carried out inverse simulation with the following procedures. First, 

we conducted a forward calculation to obtain the torso-surface potentials and the transfer 

matrix K, by formulating the numerical equations given by Equations (5.13) and (5.17). 

After adding noises to the calculated torso-surface potentials, we inversely calculated the 

epicardial potentials by means of the Tikhonov regularization given by Equation (5.10). As 
our goal was to explore the impact of refinement on the inverse problem and its solution, 

we minimized the variance involved in the inverse calculation by fixing the regularization 

method and using the optimal regularization parameter obtained by an exhaustive search.
Figure 5.25 (Panel A) shows our p-refinement consistently improves the singular values 

of the transfer matrix K, an effect similar to the improvement achieved by spatial refinement 

of the torso volume as presented in Section 5.4. The singular value spectrum started to 
converge when we refined the second-order finite elements into the third-order elements, 

indicating that the discretized problem is converging to the underlying continuum problem. 

In other words, the refinement “has saturated” to its asymptotic performance.

Node Index -200 Position (mm) 0 200

Figure 5.24: The setup of high-order finite element simulation. (A): the two-dimensional 
torso mesh consists of 1071 triangle elements with 60 nodes on the heart boundary and 105 
nodes on the torso boundary. (B): the ground truth of epicardial potentials plotted against 
the heart-boundary nodes. (C): the potential field (forward solution) due to the boundary 
condition shown by Panel B.



80

10 20 30 40

B
18%
16%
14%
12%

10%

6%
4%
2%
0%

Singular Value Index
50 60

Input noise: 30 dB 20 dB Input noise: 30 dB 20 dB

E picardial Node Index

Figure 5.25: Refinement using first-order (P =  1), second-order (P  =  2), and third-order 
(P  =  3) finite elements, while keeping linear approximation on the heart and torso bound
aries. (A): singular values of the resulting transfer matrix K. (B): the relative error (RE) 
and the correlation coefficient (CC) of the inverse solutions calculated under two levels of 
input noise (on torso-surface potentials). (C): the reconstructed epicardial potentials under 
20 dB input noise.
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Figure 5.25 (Panel B) assesses the inverse solution by its relative error (RE, defined 

in Equation (5.9)) and its correlation coefficient (CC, defined by Equation 5.11) with the 

ground truth. The inverse solution was calculated with zero-mean Gaussian noise of 30 dB 
and 20 dB being added to the torso measurements. The result shows that our adapted 
high-order refinements effectively reduce the error and improve the correlation coefficient. 

Figure 5.25 (Panel C) displays an example of the recovered epicardial potentials under 20 

dB noise, again showing that the third-order finite element method yields the best solution.

5.7 Regularization in Variational Forms
Most traditional regularization techniques solve a given inverse problem at an algebraic 

level, assuming the inverse problem is being given in the form of an algebraic system that is a 

numerical approximation of the underlying continuum problem. This approach is confronted 

with a common problem that the regularization may yield inconsistent results when the 

inverse problem is discretized into different scales, because an algebraic system by itself 
does not reveal how it is formed from the continuum problem. In view of this problem, 

we formulated in this section a new family of regularization terms (also called regularizers) 

that ensure consistency for multiscale simulation of inverse problems.
Our regularizers are formed based on the variational principle underlying the finite 

element method (FEM), and fit into the classic Tikhonov regularization framework, serving 
as an alternative to the traditional algebraic-form Tikhonov regularizers but featuring 

several advantages. First, the variational regularizers keep the connection between the 
discretized model and its underlying continuum model, and automatically conform to certain 
variational properties inherently assumed by the discrete model resulting from the FEM. 

Second, the variational regularizers preserve their norms, and thereby maintain consistent 

regularization when the inverse ECG problem is simulated under multiple scales. Third, 
the variational formulation facilitates construction of the discrete gradient operator, which 

is normally difficult to obtain over irregular meshes. Fourth, it allows efficient imposition 

of multiple constraints simultaneously.

5.7.1 Form ulation  o f  R egu larizers

We present the formulation of our regularizers within the Tikhonov framework of Equa

tion 5.10. We borrow the name “variational” from the context of FEM, upon which the for

mulation is based. The main idea is to consider the epicardial potentials not as a vector, but 
as a continuous function represented by finite element expansion: UH(x) =  ^ k ukH0 k(x), k £ 

H . The potential field is evaluated by the continuous L2 norm, which is defined as:
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||Uh ||l2 =  (Uh ,Uh ) 1/2 =  (̂ J uh Uh . (5.20)

Substituting the finite element expansion into (5.20) yields

II(Uh)\?l2 =  uH , ^  uH ) =  uHM uh , =  (0 i , 0 i ); (5.21)
i j

where M  is the mass matrix over the heart. Similarly, one may evaluate the L2 norm of 

the potential gradient field by

IIVUhIIL2 =  ( ^  uHV0 i, ^  uHV^j) =  uHSuh, Si,j =  (V 0 i, V ^ j); (5.22)
i j

where S is the stiffness matrix over the heart. More discussion of M  and S is presented in 

Table 5.4. The Euclidean norm || ■ ||2 with an operator L has the property that ||Luh||2 = 

uHLt Luh . Hence, if L is to describe the magnitude of the field Uh , it should satisfy 
Lt L =  M. Such L can be computed as the Cholesky factor of M  and can be used in 

Equation (5.10) for the zero-order Tikhonov regularization, as opposed to the traditional 
choice of an identity matrix.

If L is to describe the gradient field VUH, it should satisfy LTL =  S, or equivalently be 
the Cholesky factor of S. We name such L the “variational-form” gradient operator because 

it is equivalent to the real gradient operator in the variational sense. The variational gradient 

operator L can be used in Equation (5.10) to fulfill the first-order Tikhonov regularization.

Table 5.4 compares variational-formed operators with traditional operators up to the 

second order (the surface Laplacian). One may extend this formulation to operators regard
ing even higher-order Sobolev norms, provided that the finite elements maintain stronger 

differentiability— for example, the variational Laplacian operator requires finite elements 
to be at least C 1 continuous, and the variational version of higher-order operators may need 

C P continuous elements. In this chapter, we only consider C0 elements and accordingly, 

constraints up to first-order derivatives.

The Cholesky decomposition always exists because the mass matrix, the stiffness matrix, 
and matrices formed by higher-order derivatives are symmetric and at least positive-semi- 

definite. More discussion of the Cholesky decomposition will be presented in Section 5.7.6.

5.7.2 N orm  P reservation
One advantage of the variational-form operators over conventional discrete operators is 

that the former preserves the norms under different resolutions - the continuous L2 norm is
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Table 5.4: The choice of L for Tikhonov Regularization.

Regularization Type Conventional Regularizer Variational Regularizer
Zero-order Tikhonov Identity Matrix
First-order Tikhonov Hard to Define

Second-order Tikhonov Discrete Laplacian Operator

Lt L =  M  
Lt L =  S 

Lt L =  Qt

L is associated with mesh nodes on the heart surface. The matrices M, S, and Q  are 
given by Mi,j =  ( & , $ j ), Si,j =  (V 0 i, V ^ j), and Qi,j =  (V2^ , V 2^-), i , j  £ H . 

f Formulation of Q requires at least C 1 continuous elements.

independent of the discretization resolution, and the weights made by FEM basis functions 

take mesh spacing into account. Consequently, the variational operators achieve consistent 

regularization when the inverse problem is computed under multiple scales. In contrast, 
conventional regularizers are evaluated by the Euclidean norm, which heavily relies on the 

discretization resolution and cannot effectively relate the discrete model with its underlying 

continuous field.
Taking the zero-order Tikhonov for example with the variational regularizer, changing 

mesh spacing affects basis functions and then the mass matrix, so the L2 norm of epicardial 

potentials is preserved. With the conventional identity matrix, however, the regularizer’s 
Euclidean norm is sensitive to the mesh resolution.

Tikhonov regularization with multiple spatial/temporal constraints [3, 15] is often de

sirable. Each constraint imposes its own bias on the inverse solution, so combining several 
constraints may moderate the bias and provide a more comprehensive account of the 

solution. Inverse solutions are sensitive to the values of regularization parameters. By 

distributing regularization to multiple constraints, one may improve the robustness of the 

solution to any individual parameter.

The Tikhonov regularization with multiple constraints is expressed as follows:

merical stability in practice, the minimization is achieved by solving a linear least-squares 
problem of the form:

5.7.3 Im p osition  o f  M u ltip le  V ariational R egu larizers

uh =  argmin ||Kuh — u t ||2 +  E ̂ 2 II LiuH112
2. (5.23)

Its solution is conceptually expressed as uH =  (K TK +  ^ i A2(LTLi)) 1K TuT. For nu-

(5.24)
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where L denotes a concatenation of all Lis. Equation (5.24) can be solved by standard 
routines such as the QR factorization, or most efficiently by the bidiagonalization algo
rithm [27].

With multiple constraints, AL is made by concatenating each AiLi. Note that although 

(5.24) is in the Euclidean norm, if Li is the variational regularizer, ||Luh||2 actually gives 

the value of the continuous L2 norm.
To further promote efficiency, one may construct a compact constraint, denoted as L*, 

which is equivalent to the superposition of all constraints:

L*t L* =  ^A2||l TLi||2, Ai =  0. (5.25)
i= 1

Equation (5.24) then substitutes L* for all Lis. Moreover, since only the term LTLi is 

needed, one may directly use the mass matrix or the stiffness matrix, without factorizing 

each Li. The compact operator greatly saves memory when the problem size is large and 

there are many constraints. The compact operator also improves efficiency when all Ais 

need to be optimized over a large number of admissible values.

5.7.4 G radien t O p era tor  B ased  on  M esh  N od es
A noteworthy feature of our variational formulation is that it enables a simple construc

tion of a closed-form discrete gradient operator defined over mesh nodes, an operator that 
is traditionally difficult to derive over irregular meshes. The closed-form gradient operator, 

denoted by LG, is defined as follows: given a potential field uH located on the nodes of 

a mesh, LG is a matrix such that LGuH gives the magnitude of V u H (a vector at each 

node) located on the same set of nodes. The gradient operator plays an important role 

in PDE-constrained optimization as a basis for Newton’s method. For our inverse ECG 

problem, the gradient operator over a heart surface enables gradient-based regularization 

methods, which have been reported to yield superior recovery of the spatio-temporal char

acteristics of epicardial data, such as the first-order Tikhonov [109, 71] or the total-variation 
regularization [37].

Although a gradient field is not difficult to compute (by Taylor approximation or the 

Gauss-Green theorem), it is difficult to derive an accurate discrete gradient operator in a 
closed, matrix form, especially on irregular, unstructured meshes. The matrix form requires 

representing the gradient at one node by the data at its neighboring nodes, an ill-posed 

problem when mesh nodes are irregularly distributed. (Here irregularity means that if we 
set a node as the center, its adjacent nodes are not distributed in uniform angles with respect 

to the center node.) One study [37] obtained the gradient operator over the heart surface
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via the boundary element method (BEM) for the Laplace’s equation. This derivation can 

be found in Equation (13) in [9]. However, such construction of the gradient operator does 

not translate itself into finite element methods, because the FEM and BEM treat boundary 
conditions differently. The BEM includes both the Neumann boundary condition and the 

Dirichlet boundary condition on the heart surface, thus enabling a gradient operator relating 

the two. In contrast, the FEM only includes the Neumann boundary condition, treating 

the Dirichlet boundary condition as an external “forcing term” (see Section 2.2.1), so the 

gradient operator cannot be directly formed from the FEM.
In contrast, it is straightforward to construct a variational-form gradient operator by 

following Equation (5.22). Note that the variational gradient operator is equivalent to the 
“true” node-based gradient operator (even if it exists as a conceptual term) in the sense of 

being evaluated by the L2-norm but not in the pointwise sense.

5.7.5 N um erica l S im ulation

5.7.5 .1  S im ulation  Setup
The setting of this simulation experiment is the same as the experiment described in 

Section 5.5.1, regarding the geometric model and the heart voltage data being used. The 

heart and torso geometries are depicted in Figure 5.18. The benchmark mesh used in this 
study consisted of 27,361 tetrahedral elements in the torso volume, with the heart surface 

consisting of 337 nodes and 670 triangles, and the torso surface consisting of 771 nodes and 

1538 triangles.

5 .7 .5 .2  V ariational G radien t R egu larizer

This test demonstrated the efficacy of the variational gradient operator given by Ta
ble 5.4 when used in the first-order Tikhonov regularization (FOT). We compared the FOT 

with conventional zero-order Tikhonov (ZOT) and second-order Tikhonov (SOT). The ZOT 

used an identity matrix as the regularizer. The SOT used a discrete Laplacian operator 
obtained by solving a least-square problem arising from second-order Taylor expansion 

at each mesh node, as proposed by [52]. Figure 5.26 compares the epicardial potentials 

reconstructed by the three methods. Overall, the FOT and SOT performed closely, both 
outperforming the ZOT. The FOT sometimes outperforms the SOT in capturing local 

spatial patterns or iso-potential contours: e.g., the contours at 10 ms, the saddle point 

at the heart center at 21 ms, and the iso-potential contours at 27 ms. These observations 

agreed with our anticipation, for the Laplacian regularizer tends to smooth contours whereas 

the gradient-based regularizer preserves contours better.



86

Time since the Measured Data ZOT FOT SOT
QRS onset

Figure 5.26: Epicardial potentials calculated under 30-dB SNR input Gaussian noise. 
ZOT, FOT, and SOT denote the zero-, first-, and second-order Tikhonov regularization. 
To better show spatial patterns, the view is slightly rotated.
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5.7 .5 .3  N o rm  P reservation  in M u ltisca le  S im ulation

As we have discussed, the variational-form operators preserve their norms under multi

scale discretization, because they consider the continuous L2 norm which is irrespective of 
resolution. In contrast, conventional discrete operators, evaluated by the Euclidean norm, 

depend on the resolution of discretization. This test aimed to illustrate the difference 

between both types of operators.
We compared the traditional regularizer and the variational one under the zero-order 

Tikhonov regularization (ZOT). The traditional regularizer was the identity matrix, whereas 
the variational-formed regularizer was derived from the mass matrix given by Table 5.4. 

Each regularizer was tested with two discrete models: the benchmark mesh (denoted by 

Mesh 1) and its uniformly-refined version (denoted by Mesh 2). On the heart surface, Mesh 
2 has four times as many nodes as Mesh 1; in other words, the discrete problem yielded by 
Mesh 2 is four times the size of that from Mesh 1.

When carrying out the Tikhonov regularization, we determined the regularizing param

eter A by the corner of the L-shaped curve (hence called L-curve), a parametric plotting of 

||LuH| versus the residual error ||KuH — uT||. The L-curve shows the tradeoff between 

minimizing the residual error and satisfying the constraint. Figure 5.27 compares the 
L-curves resulting from the multiscale test of each regularizer. Panel A shows the L-curves 

from the identity matrix, and Panel B shows the L-curves from the mass matrix. In Panel
A, refinement pushes the L-curve to the upper right, indicating that refinement increases 

both the residual error and the constraint (here the solution norm). In contrast, in Panel

B, the L-curve is not significantly affected by refinement. Note that Panel A and Panel B 

have different axis scales.

Figure 5.27 marks the value of A associated with the corner of each L-curve, which 
typically estimates a reasonable amount of regularization one should apply. In Panel B, 

both the residual error and the solution norm at the corner are preserved during refinement. 

In Panel A, the residual error and the solution norm at the corner are nearly doubled. Recall 
that the size of the inverse solution vector increases by a factor of four from Mesh 1 to Mesh 

2, but ||uH|, the Euclidean norm of the solution vector, is only doubled. This indicates 

that the traditional discrete regularizer tends to over-smooth the inverse solution when 

discretization is refined, causing inconsistent regularization under multiscale simulations.
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Figure 5.27: L-curves of the norm of the solution versus the residual error when the 
zero-order Tikhonov is performed. The inverse problem is discretized in two scales. Mesh
1 has 27,361 tetrahedral elements with 670 triangular elements on the heart surface. Mesh
2 has 60,617 volume elements with 2,680 triangles on the heart surface. Panel A: the 
regularizer is the identity matrix, with the residual error and the regularizer evaluated by 
the Euclidean norm. Panel B: the variational regularizer derived from the mass matrix given 
by Table 5.4, evaluated by the continuous L2 norm. The A value indicates the regularization 
parameter corresponding to the corner of L-curves.
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Such inconsistency is also manifested in Figure 5.28, where we compare the inverse 

solutions at a time instant when the epicardial potential pattern is the most diverse. When 
Mesh 1 was refined to Mesh 2, the identity-matrix regularizer yielded inconsistent potential 
patterns, with the relative error of the inverse solution increasing from 0.50 to 0.53. In 

contrast, the variational-formed regularizer maintained the pattern of the inverse solution 

over refinement, reducing the error from 0.48 to 0.42.

5.7.6 D iscussion

The central idea of the variational-form-based regularization is to measure the po

tential field by the L2 norm in place of the Euclidean norm. Because the L2 norm is 

inherently assumed by common finite element methods (e.g., Galerkin formulation), the 

variational-formed regularization automatically conforms to certain variational principles

Figure 5.28: Epicardial potentials reconstructed under 30-dB SNR input noise by the 
zero-order Tikhonov using the traditional and the variational regularizers, corresponding to 
the L-curves in Figure 5.27. For each inverse solution, the relative error (RE) and correlation 
coefficient (CC) are given.
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underlying the discrete inverse problem formulated by finite element methods. Defined 
over a continuous domain, the L2 norm is independent of discretization resolution, thereby 

ensuring that the discretized problem is handled in conformity to its underlying continuous 

problem. The Euclidean norm, in contrast, does not reflect the features of the continuous 
problem.

The preservation of norms is important when applied to multiscale simulation of inverse 

problems, because it ensures that regularization is performed consistently among numerical 

problems of different scales. Here the consistency means that the balance between the 

residual error and the regularizing term is maintained. The requirement of consistency is 

based on the understanding that all discrete problems should reflect the nature of their 

common continuous origin. The consistency cannot hold when the Euclidean norm is used. 
When conventional discrete operators are used in Tikhonov regularization, the residual error 

and the regularizer may not increase in the same rate under refinement. If the residual 

error increases faster than the regularizer, more weight will be put on the residual error 

and the inverse problem tends to be under-regularized. Conversely, the inverse problem 
will be over-regularized. In our example of testing the zero-order Tikhonov method under 

multiscale discretization, Figure 5.27 shows that the preservation of the L2 norm leads to 

consistent regularization, which consequently leads to consistent reconstruction of epicardial 

potentials, as shown by Figure 5.28. The traditional Euclidean-norm-based regularization 
does not exhibit the consistency.

The introduction of resolution-consistent regularization may pave the way for adaptive 

finite element methods to be used for solving inverse problems. Despite its many successes in 
reducing complexity and enhancing efficiency for solving PDE-based forward problems, the 

adaptive FEM has not yet been widely applied to inverse problems. By taking advantage 

of their natural consistency within the FEM Galerkin framework, resolution-consistent 
regularization may solve the issues that arise with nonuniform volumetric resolution.

It is straightforward to implement the variational-formed regularization in the L2 norm 
by slightly modifying the implementation of traditional Tikhonov methods. The Euclidean 

norm of the epicardial potentials uH is given by ||uH||2 =  (uHuH)1/2, whereas the L2 norm 

of the continuous distribution UH is given by ||UH||L2 =  (uHMuH) where the mass matrix 
M  is given in Table 5.4. Evaluating the L2 norm is achieved by adding a weighing matrix 

that is based on finite element basis functions. The norm of the residual error defined on 

the torso surface, or the norm of any gradient field, can be obtained in a similar way by 

modifying the weighing matrix accordingly. The weighing matrix can be precomputed using
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the mesh information alone.

The stiffness matrix and matrices formed by higher-order derivatives are positive-semi- 

definite because the derivative of any constant field is always zero. The Cholesky decom
position for these matrices is not unique, but we do not believe this fact will effect the 
outcome of Tikhonov regularization because the Tikhonov method considers the L2 norm 

of the regularizers. We selected a Cholesky factorization in a systematic way. Assume we 

decompose the stiffness matrix S. We take the sequence Sk =  S +  k I, where I  is the 

identity matrix. Sk ^  S when k ^  rc>. Each (S fc } is positive-definite and has a unique 
Cholesky factor Lk. We take L =  limk̂ ^  Lk as the Cholesky factor of S. The convergence 

of {L k} holds because the operators are bounded and their underlying vector space is finite 
dimensional.



CHAPTER 6

BIDOMAIN-BASED INVERSE ECG 
PROBLEM

This study aimed to reconstruct the transmembrane potential (TMP) throughout the 
myocardium based on the bidomain model, and to apply the reconstruction to localizing 

myocardial ischemia. Our main contribution lied in solving the inverse problem by a 

PDE-constrained optimization framework, with which we derived solutions for the L2-norm 

Tikhonov regularization and the L1-norm total variation minimization. The subsequent 

numerical optimization was fulfilled by a primal-dual interior-point method tailored to our 

problem’s specific structure. Simulation was conducted using a realistic, fiber-included 
anatomical model with experimental ischemia data.

6.1 Introduction
As we have mentioned in Section 2.1.3, myocardial ischemia can be characterized by the 

bidomain heart model via myocardial transmembrane potentials. Traditional clinical ECG 

diagnosis, relying on expert interpretation of body-surface recordings, has limited ability to 
localize ischemic regions and moreover, even the epicardial potentials are insufficient for such 

localization [74]. Therefore, the ability to inversely reconstruct a whole-heart TMP map 
from body-surface recordings would greatly promote robust determination of the location 
and extent of ischemia in patients.

As has been reviewed in Section 3.1.4, the inverse problem of reconstructing myocardial 

TMPs has seen limited progress because the task is even more difficult than other types 
of inverse ECG problems. While the goal of reproducing the TMP at an arbitrary time 

instant remains unresolved, it appears more tractable to solve the simplified problem of re

constructing ischemia-induced TMP amplitude variations, and thereby achieves a satisfying 

localization of the disease. This assumption, discussed in Section 2.1.3, forms the rationale 
of this study.



93

Our major contribution lies in the formulation of a new inverse-calculation methodology 

called PDE-constrained optimization. Inverse ECG problems are conventionally solved 
within the following scheme: based on the underlying physical model, one first forms an 
explicit “transfer” model that maps the unknown source parameters to the measurements; 

with that transfer model (typically in a matrix form), one then obtains the solution by mini

mizing the misfit between the predicted and measured data. The minimization process may 

incorporate some regularization constraints if there is a need to mitigate ill-conditioning. 

This approach, because it is founded on the “transfer” model, allows constraints only on 

the source parameters, and thus becomes inadequate for complex source models such as 
the bidomain model. In contrast, our approach treats the inverse problem as a constrained 

optimization problem that incorporates the whole governing PDEs as a constraint. This 

approach, known as PDE-constrained optimization, offers ample flexibility not only for 

adjusting the underlying physical model but also for applying various physically-based 

constraints simultaneously.
PDE-constrained optimization has been a frontier in scientific computing research over 

the last decade, and abundant theoretical accomplishments [48] have laid the foundation 

for its practical application. Its initial introduction to ECG problems [85] was limited 

to quadratic objective functions with equality constraints. In this study, we extend that 

inaugural work by allowing general objective functions and constraints in both equality and 
inequality forms.

Numerical solutions of PDE-constrained optimization typically involve forming the opti

mality conditions and then solving them by variants of Newton’s method. In several aspects, 
this task is much more challenging than solving an ordinary optimization problem or a PDE 

alone. First, most existing PDE solvers cannot be directly used when a PDE becomes a 

constraint in optimization. Second, the large size of the discretized PDE constraints poses 
a challenge for contemporary optimization algorithms. This challenge is compounded by 

the iterative nature of most optimization procedures, meaning that each iteration requires 
a full solution of all PDEs.

To tackle these difficulties, one needs not only to efficiently integrate generic optimization 

algorithms, advanced PDE solvers such as adaptive finite element methods, and large-scale 

scalable linear solvers such as the Newton-Krylov method [11], but also to create a frame 

that exploits the mathematical structure specific to the domain of science being considered, 

in our case, electrophysiology. Such integration has yet to be fulfilled. Rather, the practice 

of typical engineering studies is to discretize the inverse problem over a predefined mesh
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and then apply standard numerical optimization methods. However, such a practice is not 
necessarily mathematically rigorous and hence may result in inconsistency when different 

meshes are used.
In this chapter, we investigate the formulation, discretization, and numerical solution of 

our PDE-constrained optimization framework in terms of the finite element method (FEM). 
We consider two minimization schemes: the Tikhonov regularization and the total variation 

minimization. Our contribution features the following new ingredients:

• Formulation of the optimality conditions in the continuous function spaces before dis
cretization, making our optimization algorithms independent of discretization choices. 

Such independence brings three benefits: (1) consistent results over multiscale simula

tions, (2) individualized discretization of each variable, and (3) adaptive finite element 
refinement as the optimization iteration proceeds.

• Detailed comparison between the above approach and the discretize-then-optimize

• Robust finite element formulation of the optimality conditions, for both the Tikhonov 

and the total variation regularization.

• Inclusion of inequality constraints, handled by a tailored primal-dual interior-point 
method presented in a block-matrix form.

This chapter will address all these issues except the adaptive refinement over iterations, 

which we defer to future work.

6.2 Inverse Solution by PDE-Constrained Optimization
The mathematical model of the bidomain-based inverse problem has been presented in 

Section 4.2. All the variable notations in that section are inherited in this chapter. We 

formulate this inverse problem as a PDE-constrained optimization problem expressed in an 

abstract form as follows:

In the optimization community, v and u are often known as the control variable and state 

variable, respectively. The first term of the functional J is the misfit between predicted and 

observed data, measured by a certain Lp norm at the body surface T . The operator Q :

approach.

minimize J (u,v) =  ||Qu -  d||Lp(T) +  ^||W(v -  vo)|Up(H), 

subject to e(u, v) =  0, c1(u) e Ku, c2(v) e Kv.

(6.1a)

(6.1b)
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H1(Q) ^  Lp(T ) is the volume-to-surface projector. The second term of J is a regularization 
term for stabilizing the minimization. The operator W : H1(H ) ^  Lp(H ) defines certain 

regularity conditions to be imposed on v. Common choices for W(v) are v, Vv, or Av. The 
parameter > 0 controls the amount of regularization. e(u, v) =  0 is an abstract notation 

for the physical model. In our problem, it refers to the PDE given by Equation (4.19) with 

proper boundary conditions. The last two constraints represent abstract inequality bounds 

for u and v, with Ku and Kv denoting proper cones.
In the following three sections, we will elaborate on how to populate the abstract concept 

presented above in practical simulations in the context of finite element methods. Our 

goal is to translate the mathematical formulation into a numerical system for efficient 

numerical optimization. In particular, we will address the following four topics in the 

subsequent subsections: (1) Tikhonov regularization, (2) finite element formulation of the 
PDE constraint, (3) total variation regularization and its finite element formulation, and 

(4) inequality constraints and a primal-dual method for numerical optimization.

6.3 Tikhonov Regularization
As one of the most popular approaches to regularizing ill-conditioned inverse problems, 

the Tikhonov regularization uses the L2 norm for the objective functional given by Equation 

(6.1a), which becomes:

1 B
J (u,v) =  2 llQu — dllL2(T) +  2  |W (v — vo)llL2(H). (6.2)

Because of its quadratic nature, the Tikhonov regularization can be readily integrated with 
the variational formulation of the optimality conditions to be described in the next section. 

When the regularizer is of the Sobolev-norm type such as W(v) =  v, Vv, or Av, we can 

compute it via a finite element formulation as given in [119]:

llv llL2(H) =  vTM v  (M )i,j =  (^  )H; llV v ll|2(H) =  vTS^  (S)i,j =  (V^  V ^ j)H (6.3)

where M  and S are the mass and stiffness matrices, respectively, based on the finite element 

discretization of v. Their Cholesky factor conceptually serves as the equivalent of W, but 
the Cholesky factorization is not necessary when carrying out the optimization.

Our finite element formulation for W as provided in Equation (6.3) is superior to the 
common expedient practice of discretizing W directly over a given mesh. Our formulation is 

independent of mesh size and therefore not only ensures consistency under multiscale inverse 
simulation but also allows adaptive refinement during optimization iterations. Moreover, 

mesh-grid-based discrete derivative operators are not strictly compatible with the Galerkin
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finite element discretization because the field has less regularity at nodes than within 

elements. This pitfall is overcome in our finite element formulation.

6.4 Treatment of the PDE Constraint
There are two approaches to numerically tackling the problem given in Equation (2.22): 

discretize-then-optimize or optimize-then-discretize. The former approach first discretizes 

all the quantities (both the objective and the constraints) into vectors or matrices, and 
treats the discretized problem as a pure algebraic optimization problem. Alternatively, the 

latter approach first derives the optimality conditions in continuous function spaces before 
discretizing those conditions into numerical systems. Although the former approach is more 

popular among the engineering community, the optimize-then-discretize approach typically 
more faithfully preserves the structure inherent in the underlying infinite-dimensional op

timization problem. This approach is less subject to mesh size, enables individualized 

discretization strategies for each quantity, and facilitates adaptive refinement techniques. 

We therefore adopted the optimize-then-discretize approach whenever possible. The rest of 

this section presents the continuous optimality conditions and their discretization by the 

FEM. We will also compare the two approaches and discuss the conditions under which 

they are equivalent.
For illustration purposes, we minimize the Tikhonov functional given by Equation (6.2), 

and assume that the minimization problem is subject only to the PDE constraint given 

by Equation (4.19). The Lagrangian functional for this constrained optimization problem, 

denoted by L : H1(Q) x H 1(H ) x H-1 (Q) ^  R, is defined as

L (u ,v ,p ) =  2 (Qu -  d, Qu -  6) t +  § (W(v -  vo), W (v -  vq) )h +  ( p , - V  ■ aV u -  f  )q

(6.4)

where p £ H-1 (Q) is the Lagrange multiplier function. The optimality condition states 
that the optimal solution is situated at the stationary point of the Lagrangian functional. 

By taking the Gateaux derivatives of L at the optimal solution (u, v,p) in the perturbation 

direction (u, v,p), we obtain a set of equations as follows:

Lv(u, v ,p )(v) =  P (W*W(v -  vo),v)h -  (aiVp, W ) h =  0, Vv £ H1(H ); (6.5a) 

Lu(u, v,p)(u) =  (Qu -  d, Qu ) t  +  (aVp, V u )q =  0, Vu £ H1(Q); (6.5b)

Lp(u,v,p)(p) =  (aVu, Vp)n -  (f,p)n =  0, Vp £ H0(Q). (6.5c)

Equation (6.5) is the variational form of the KKT condition, and Equations (6.5a) - (6.5c) 

are called the variational form of the control equation, the adjoint equation, and the state
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equation, respectively. This set of differential equations is linear with respect to u, v, and 

p because the objective is quadratic and the constraint takes the linear equality form. In 

general, they are nonlinear PDEs. We now discuss how to discretize them by the FEM.
The key to applying the Galerkin finite element discretization to Equation (6.5) is to 

take the perturbation in each finite element basis function. We discretize u and v according 

to Definition 4.2, and assume that p is discretized by the same trial space as for u: 

p ~  Ph =  Y1 i=“i Pi,&. Let p =  (pi,p2, . ..  ,Pnu)T. The perturbation p and u are chosen from 
the finite-dimensional space {0 i}, and V is chosen from } as given in Definition 4.2. 
Equation (6.5) then yields a 3 x 3 block-matrix system for numerical computation, given as 

follows:

where (■, ■) denotes the inner product defined in Equation (4.9). This forms a symmetric 
indefinite system where each block is given below:

The remaining task is to numerically solve the large linear system given by Equation (6.6), 

which is known to be positive indefinite. Existing methods include the BiStabCG [85], the 

adjoint method [48], and computing the Schur complement [14, 113]. In this dissertation, we 
adopted the Schur complement approach. On the other hand, the adjoint method is widely 

used, especially for large-scale linear systems. The adjoint method affects discretization 

considerations to be discussed in Section 6.4.1, so we describe it here: the method first 

acquires the derivative of the objective J  with respect to v (by solving the state and adjoint 

equations sequentially), then applies one step of gradient descent of J, and repeats the 

above two steps until J is minimized.

6.4.1 O p tim ize -th en -D iscretize  versus D iscre tize -th en -O p tim ize
In Section 6.4, we derive the variational optimality condition before applying the finite 

element discretization. Here we compare this approach with its alternative discretize-then- 

optimize approach. As will be shown, the connection and distinction between the two 

approaches are effectively manifested by one fact: the two approaches result in identical 
numerical optimality conditions only when the state variable u and the adjoint variable p 

are discretized by the same trial space. Based on this understanding, we discuss several 

theoretical and practical concerns of the two approaches.

c

^M h vo 
d 
0

(6.6)
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The discretize-then-optimize approach directly applies the finite element discretization 

to the objective functional and the constraint PDE, resulting in an algebraic optimization 

problem of the form

1 3
minimize J(u,v) = - (Q u  — d)TM T(Qu — d) +  — (v — v0)TM H(v — v0), (6.8)u,v 2 2
subject to Equation (4.22), (6.9)

where Q is the matrix version of the volume-to-surface projector Q, and M y and M h are 

identical to those given by Equation (6.7). The KKT conditions of this problem are exactly 

Equation (6.6). The discrete adjoint vector p multiplies to the stiffness matrix A, indicating 

that its continuous version, p , is discretized by the trial space of the state variable u .
The two approaches differ when the state and adjoint variables are represented by 

different trial spaces. When the same trial space is chosen for both variables, the KKT 

system (6.6) is a symmetric matrix, and its reduced equation with respect to the control 
variable v , obtained by eliminating the state and adjoint variables, is the full derivative of 

the objective functional J with respect to v . With state and adjoint variables discretized 

by different trial spaces, Equation (6.6) becomes nonsymmetric, and its reduced equation 

generally does not strictly represent the derivative of J with respect to v . This subtle differ

ence in the representation of derivatives is worth noting, because in practice, Equation (6.6) 
is not solved as a whole (e.g., by BiCGStab [85]) but most often by the adjoint method, 

which depends on evaluating the derivative of J to v (see Section 6.4).

There is no conclusion as to whether the state and adjoint variables should use iden

tical trial spaces, and the choice depends on each problem’s structure and computational 

resources. The optimize-then-discretize approach typically requires more developmental 

efforts than the other. Most finite element solvers are designed for solving PDEs directly but 

not for optimization purposes. On the other hand, there exist many numerical optimization 

solvers designed for problems given in algebraic forms. One may fulfill the discretize-then- 
optimize approach by applying finite element discretization and numerical optimization 

sequentially. However, to fulfill the optimize-then-discretize approach, one must merge 

the PDE and optimization solvers. In some complex scenarios, the continuous optimality 
conditions are not even achievable, for instance, when nonlinear inequality constraints or 

the Lp-norm are concerned. In our problem, the potential field u is smooth (from the 

biophysics of the problem), and p admits two more weak derivatives than u, so we believe 

it unnecessary to discretize p by different trial functions.
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6.5 Total Variation Regularization
While the Tikhonov regularization yields smoothed solutions, the total variation (TV) 

regularization, based on the L1-norm, tends to reconstruct sharp interfaces or spatial 
discontinuity in desired solutions, a feature that is appealing to our inverse problem since 

the transmembrane potential field is presumably piecewise constant during the ST-interval.

To provide a simplified illustration of how to fulfill the TV regularization, we present 
a TV minimization problem that contains only the PDE constraint (no extra constraints), 

which is described as follows:

min J (u,v) =  1 IIQu — dll? (T) +  fiTV(v), subject to Equation (4.19). (6.10)u,v 2 L2(T )

TV(v) =  J  ( A l V v (x )ll2 + e) dx =  J  ( ^ v2 +  vy +  vl  + e) dx; (6.11)

where TV(v) denotes the total variation functional, and e < <  1 is a small positive constant 

introduced to overcome the singularity where Vv =  0. In this study, we set e =  10-6 . The 
Gateaux derivative of the TV term in the direction v, along with its strong form expression, 

is given by:

DvTV(«•; e )U „*  =  Jh 7 p v j r + 7  dx; DvTV(v)|“ g =  —V ' ( ̂||vV '||2 + J <6-12)

The major difficulty of the total variation minimization is to cope with the highly anisotropic 
and nonlinear term =. This topic has been extensively studied by the image

viiVvii2+e
processing community over the past decade. Many algorithms have been proposed for 
the e-smoothed problem, such as the parabolic-equation-based time marching scheme, the 

primal-dual variant of Newton’s method, the fixed-point iteration, or the second-order cone 

programming. A comprehensive review of these methods can be found in [128]. Some recent 
methods directly tackle the original, unsmoothed minimization problem by exploiting its 

dual formulation [127, 128].

However, the achievements made by the imaging community do not naturally translate 

themselves to PDE-constrained optimization problems. The imaging community mostly 
considers the Euler-Lagrange equation, which is essentially the strong form of the optimality 
condition for the total variation minimization. The imaging community tackles the strong- 

form equations by finite difference methods since imaging problems are based on regular 

grids. In contrast, PDE-constrained optimization problems are often defined on irregular 

meshes for which the finite element method is more appropriate, thereby requiring both the 

optimality conditions and the PDEs to be formulated in the variational form.
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In PDE-constrained optimization, it is necessary to consider the variational formulation

circumvent the variational formulation by devising discrete operators over mesh nodes and 

forming the optimization in an algebraic setting, we do not advocate such a practice because

For example, a field approximated by linear finite elements is not differentiable at mesh 

nodes, so a mesh-node-based discrete gradient operator is not suitable. Such expedient 

discrete operators usually lose desirable numerical structures that could have been obtained 

with regular grids, such as symmetry or positive-definiteness of the discretized operators.
However, a major difficulty is that the total variation minimization is not naturally 

supported by the Galerkin-formed finite element methods. Our goal here is to propose a 

framework that “almost naturally” adapts the finite element formulation for use in the total 
variation minimization. We do not intend to propose new algorithms for the total variation 

minimization, but instead our goal is to transfer the aforementioned algorithms proposed by 

the imaging community into the finite element formulation. We present the finite element 

formulation for two algorithms: the fixed-point iteration and the Newton’s method. Such 
formulation can be made for other algorithms in a similar way. We will elaborate on the 

computational feasibility of our formulation.
The basic idea of both the fixed point iteration and the Newton’s method is to solve 

a sequence of linearized minimization problems, each of which can be solved in the same 

way as we solve the Tikhonov minimization in Equation (6.6). (All the matrix blocks in 

Equation (6.6) will remain unchanged except M h , which will be replaced by a linearized 

version of DvT V , where the two methods differ.)

6.5.1 F ixed  P oin t Iteration
The fixed point iteration fixes the denominator of Equation (6.12) to its value at the 

step k, and computes the (k +  1) step, vfc+1, by the following formula:

Here the denominator becomes a known scalar field over the domain H . Applying the finite

one obtains a linear system identical to Equation (6.6) except that M H is replaced by the 
following formula:

of the optimality conditions and PDEs. Even if it is sometimes possible and expedient to

those discrete operators may not be rigorously compatible with finite element formulation.

(6.13)

element discretization on vfc+1 and letting the perturbation v range over the test space,

(6.14)
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One solves that linear system to obtain vk+1, and then updates Equation (6.14) and

continues iteration until convergence is reached.

Essentially a quasi-Newton scheme, the fixed point iteration is linearly convergent and 

has been reported to be rather robust with respect to the parameter e and P [117]. Its 

convergence domain becomes smaller with a decreased e, but the drop-off is gradual.

A major feasibility concern about the finite element formulation of the fixed-point 

method is its computational cost. Each iteration of the fixed-point method needs to compute 

Equation (6.14), which amounts to forming a stiffness matrix for the finite element heart 

mesh. Because Vvk+1 is a varied field in each element, both the integrand and integral in 

Equation (6.14) need to be recomputed in each iteration and quadratures must be used. In 

order to reduce repeated calculation of Equation (6.14), one needs to store the coefficients 
of local basis functions in all elements, and this consumes a large amount of memory. 

Therefore, we argue that in general, the finite element formulation for the total variation 

minimization is too computationally expensive to be practical.

There is one exception: the finite element formulation becomes practical when linear 

tetrahedral elements are used. In this case, V v k is a constant in each clement, and the 
integration of the numerator of Equation (6.14) can be precomputed for each element. One 

can instantly update Equation (6.14) at each element and the task in each iteration is 

reduced to assemble the global stiffness matrix.

The Newton’s method is the most straightforward linearization for DvTV but is not 
recommended because its domain of convergence is small. We present it here mainly for 

elucidating how it is fulfilled by finite element discretization so as to pave ways for more 

advanced variants of Newton’s method.

The Newton’s method approximates DvTV by the Hessian of the total variation func

tional, denoted as Hv T V :

Here the definition of a functional’s Hessian involves two perturbation directions v 1 and v2. 

The integrand of Equation (6.15) is a scalar function: at each point, Vv is a 3 x 1 vector 
and the bracketed term is a 3 x 3 symmetric matrix.

The finite element discretization for the Newton’s method is fulfilled by letting v1 and v2 

be taken from the test space for v. (v2 can be regarded as the trial function for the Newton

6.5.2 N e w to n ’s M e th o d



102

increment 5v and v1 can be regarded as the test function.) The Newton step is computed 
by solving the following linear system:

Equation (6.16) is nearly identical to Equation (6.6) except for two differences: (1) at the 

Hessian term, M (v) replaces M h and (2) Equation (6.16) solves for the Newton increment 
since the total variation term is not quadratic.

Each Newton iteration proceeds through the following steps: (1) solve Equation (6.16) 

for the Newton step, (2) update v and u by the Newton step, and (3) update the Hessian 

term M (v) and q. The above sequence of steps is iterated until convergence is reached. 

Note that Equation (6.16) computes the feasible Newton step; further information regarding 

the feasible/infeasible Newton steps can be found in [14].
Similar to the fixed point iteration, the Newton’s method is also too computationally 

expensive for the finite element formulation to be practical except in the case of linear 

tetrahedral elements. In that case, the diffusivity term in Equation (6.15) is a constant 
matrix within each element, and hence, Equation (6.17) can be quickly updated in each 

Newton iteration. The update in the Newton’s method takes slightly more computation 
than that in the fixed-point iteration.

The Newton method is not preferred for the total variation minimization because its 

convergence domain is small, especially when e is small. The method may take many 

iterations before attaining quadratic convergence. The size of the convergence domain is 

proportional to the inverse of the Lipschitz constant of the Hessian of the total variation 
functional. The Lipschitz constant is approximately e-3/2 as indicated by Equation (6.15). 

In comparison, the Lipschitz constant for the fixed-point iteration is only e-1/2, so it is more 

likely to converge than the Newton’s method. However, the convergence property of the 

Newton’s method can be notably improved by changing its formulation into a primal-dual 

setting [20], and therefore, the method still remains a practical choice. Our finite element 

formulation hereby described can be easily adapted to that primal-dual setting.

6.6 Inequality Constraints and a Primal-Dual 
Interior Point Method

So far we have described how to handle equality-formed constraints, such as the PDE 

constraint. It is often desirable to impose lower or upper bounds on physical quantities
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concerned in a physical model. Such inequality constraints reflect prior physical knowledge 

about the electric potential fields or the current fields. These bounds may concern particular 

parts of the domain, such as vepicardium — 0, or contain spatial dependence, such as

vepicardium — v endocardium.

Inequality constraints are usually handled by interior-point methods, which roughly fall 

into two categories: the barrier method and the primal-dual method. The primal-dual 

method is often more efficient and stable than the barrier method. In this study, we used 

as our optimization solver the software SDPT3, which employs an infeasible primal-dual 

method for solving conic programming problems [112]. In view of the large size of our PDE- 
constrained optimization problem, a generic solver like SDPT3 may become inefficient. We 

present here a primal-dual formulation tailored to our optimization problem, and explicitly 

expose the resulting block-matrix structures. Our purpose is to let the generic solvers fully 

exploit these specific numerical structures so as to improve the computation efficiency.

Since inequality constraints are often pointwise bounds, we incorporate them in a discrete 
form after we perform the finite element formulation (see Section 6.4 and 6.5). Our 

optimization problem can be stated as follows:

min J(u, v), subject to A u +  R v =  0, (6.18a)

and subject to ci(v) e Ki, i =  1 ,. . . ,  mv; Cj(u) e K j, j  =  1 , . . . ,  mu. (6.18b)

Here Equation (6.18a) denotes the optimization problem with only the PDE constraint. It 

can be either Equation (6.8) or Equation (6.10). The inequality constraint on u and v are 

represented by ci(v) and Cj (u), expressed by proper cones. Each Ki C Rki denotes a cone 

of kj, dimensions, and so does K j .
We now present how to solve the above optimization problem by a primal-dual interior- 

point method. A typical primal-dual method optimizes both the primal and dual formu
lation of the given problem. It approaches the optimal solution via a sequence of interior 

points (points that are strictly within the subspace dictated by the inequality constraints). 
The interior points are generated by relaxing the complementary slackness in the KKT 

conditions. At each iteration, the method seeks the Newton step for solving the KKT 

equations, determines the proper step length, and moves to the next interior point until the 

gap between the primal objective and dual becomes sufficiently small.

We followed the primal-dual method outlined in Chapter 11 of [14], which considers 

only scalar-valued inequalities, and we extend it to the general inequalities associated with 

various cones.
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First, define the Lagrangian for Equation (6.18) as follows:

mu mv
L(u, v, p, q, q) =  J(u, v) +  pT(A x +  Rv) +  E  qjTCj(u) +  E  qTCi(v),

where each qi £ RkiX1 is the Lagrange multiplier vector for each inequality constraint; 

p £ Rnx1 is the adjoint vector for the discretized PDE constraint.

The primal-dual method considers a relaxed version of the KKT optimality conditions 

given below:

aludr

r(u, v, p, q, q) = r central =

\ r'primal / V

\T,v T -n. jj -r z^j '~i'j
Vv J +  R Tp +  £ mv (DCi)Tqi

T z i C /-f _ n „• _ 1

0;
0;
,mu (6.19)

qTCi(v) +  di/t =  0, i =  1 ,...,m v  
Au +  R v =  0.

where Dci(v) is the Jacobian matrix of ci(v), and 0i is the degree of the generalized 

logarithm associated with the cone Ki (see [14] for more information about the generalized 

logarithm). DCj(u) and dj are defined in the same way. t > 0 is a scalar parameter. 

rcentral =  0 is named the complementary slackness condition. In the primal-dual method, 

this condition is relaxed by the addition of the 0i/t  term.
The primal-dual search direction is the Newton step for the nonlinear Equation (6.19). 

Let the current point be denoted by (u, v, p, q, q). The Newton system is expressed in a 
block-matrix structure:

HUJ +  HUC 0 D c(u )T 0 A T 5u rdual
0 HVJ +  Hvc 0 D c(v )T R T 5v

diag(q)DC(u) 0 diag(c) 0 0 6q =  - rcentral
0 diag(q)Dc(v) 0 diag(c) 0 6q
A R 0 0 0 .  ^p . rprimal

where Huc =  E E  q j (HuCi )j
i=1 j=1

Hv c =  Hv J +  E E  qj (VV Ci)
i=1 j=1

(6.20a)

(6.20b)

Here a little explanation of the notation is needed. c denotes the aggregate of {c i(v )} and 
accordingly, Equation (6.20b) represents its Hessian with respect to v. Since each ci(v) is 

vector-valued, its Hessian Hvci(v) is a tensor of order three. The Hessian matrix of the 

jth component of ci is denoted by Hvc j. qj denotes the jth component of the vector qi. 

Similarly, c denotes the aggregate of {Cj(u)}, and (VUci)j and qj are defined in the same

mu



105

way. The rest matrix blocks involved in Equation (6.20) are given below in the Matlab 

format:

(6.21)
qi q i

q = , q =
qm u qmv

Dc1 Dc1
Dc(u) = G r £  ̂ iXNu, D c(v) =

DCmu _ DCmv

£ R ^  X Nv

diag( q) =

~T
~T

'T

G RmuXEfcj, diag(q) =

Tqi
Tq2

- T

G Rmv X^ ki

diag(c(u)) =

r t̂ 6i -Tc2 G RmuXE ki, diag(c(v)) =

c

c
1

Rmv X ki
1u

Tm
u 1v

Tm
vc

After obtaining the Newton step, we did not investigate other optimization algorithms. We 

relied on SDPT3 to determine the step size and convergence criteria. SDPT3 employs an 

infeasible primal-dual predictor-corrector path-following method [113].

Here we further discuss the choice of inequality constraints that appear in Equation (6.18) 

in the form of ci(v) G Ki C Rki. Common choices for the cone Ki are the nonnegative 

orthant and the second-order cone. The nonnegative orthant indicates a componentwise 

inequality, whereas the second-order cone is often used to represent quantities defined by the 
Euclidean-norm such as the gradient. Each cone is associated with a generalized logarithm 
function that has a degree. The logarithm function for the cone of nonnegative orthant has 

a degree of ki, whereas the logarithm for the second-order cone has a degree of 2. We refer 

to [14] for detailed discussion on cones and generalized inequality.

One may enforce different physical considerations by combining different cones with 

different constraint functions ci(v) (or ci(u)). A common choice for ci is the affine function 

in the form of ci(v) =  G v +  g. In our bioelectric context, the affine constraint may bound 
the transmembrane/extracellular potential fields at a particular domain of interest by taking 

the form G v +  g < 0. One may also bound the current density field (the gradient of the

u v
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potentials) by combining the affine constraint with the second-order cone in the following 

way:

(D x v )i, (D y v)i, (Dz v )i, si) G Ki (a second-order cone), at each point i, (6.22)

where D x,y,z are discrete partial-derivative operators, and s gives the current density field.

6.7 Simulation Setup
We conducted finite element simulation of the bidomain-based inverse problem via the 

optimization framework described in the last section. We conducted three simulation 

experiments: (1) an isotropic heart conduction model with synthetic ischemia data, (2) an 

anisotropic heart model with empirical ischemia data, and (3) an isotropic heart model with 

empirical ischemia data. The first experiment is for validation purposes. The second one 
simulates the most physically realistic situation. The third one explores whether our inverse 

calculation is feasible for a typical clinical situation in which patient-specific myocardial 

conductivity and fiber structure information are not available.
Our finite element computation of the PDE model given by Equation (4.19) was based on 

an in situ experiment carried out at the Cardiovascular Research and Training Institute at 
the University of Utah. The experiment consisted of a live canine heart perfused with blood 

from a second animal and suspended in a human-torso-shaped tank filled with an electolytic 

medium that simulates human-body electrical conductivity [79], as shown in Figure 6.1. The 
heart and torso geometries were discretized by tetrahedral meshes, derived from anatomical 

MRI scans by the segmentation software, Seg3D [22], and an automated mesh generation 

software system, BioMesh3D [1]. Table 6.1 describes the mesh configuration. Each element 

of the heart mesh contained a 3 x 1 vector giving the local fiber orientation, derived from 
diffusion-tensor MRI imaging of the heart carried out postmortem over 16-24 hours. The 

conductivities of the heart tissue are listed in Table 6.2.
Our forward and inverse simulations were performed by the following procedure. Given 

a configuration of transmembrane potentials (which we will describe later with each exper

iment), we conducted the forward simulation to obtain the body-surface potentials. The 
forward simulation uses a finer torso mesh than does the inverse simulation, in order to 

avoid one of the so-called “inverse crimes” of biasing the solution by using the same mesh 

for forward and inverse simulations. After adding noise to the body-surface potentials, we 

inversely calculated the heart potentials and compared them with ground truth values. Two 
regularization methods were used for the inverse calculations: the Tikhonov regularization 

with the gradient constraint (henceforth abbreviated as the Tikhonov) and the total varia-
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Figure 6.1: Simulation setup. (A): the animal experiment. (B): the heart/torso geometry. 
(C): fiber structure of a lcm-thick slice of the heart. (D): a cross-section of the heart mesh.

Table 6.1: Mesh configuration.

Mesh Heart node Heart element Torso node Torso element Total node Total element
number number number number number number

Mesh 1 3,301 16,546 11,649 76,550 14,950 93,096
Mesh 2 6,545 36,694 17,299 11,1183 23,844 147,877
Mesh 3 17,805 103,520 25,914 170,355 43,719 273,875

Note: All meshes maintain an identical discretization of the torso surface, which
consists of 771 nodes and 1538 triangles.

tion regularization as given by Equation (6.18). The regularizer weight parameter, P, was 

determined by the discrepancy principle: starting from 10-4 , it iteratively decreases by a 

factor of 5 until the misfit between the reconstructed body-surface potentials and their true 

values dropped below the noise ratio, which was known a priori. P was normally determined 
within 5 iterations.

We evaluated inverse solutions both visually and quantitatively. The quantitative mea

sure is the correlation-coefficient (CC) between the reconstructed potentials (denoted as a 
vector UH) and the ground truth (denoted as uH), defined as follows:

n n  (UH -  a)T(uH -  a)CC =  ^ ------- m— n-----------n- , a =  mean(uH), a =  mean(uH). (6.23)
||uh -  a\\2 ■ ||uh -  â 2

All the computation in this study was carried out on a share-memory workstation of 12 

CPUs (AMD Opteron 8360 SE, 2.5GHz) and 96 GB memory.
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Table 6.2: Conductivities of healthy heart tissues. Unit: Siemens/meter.

Type Extracellular Extracellular Intracellular Intracellular Body
Logitudinal Transverse Longitudinal Transverse

Isotropic Data 0.5 0.5 0.5 0.5 1.0
Anisotropic Data 0.16 0.05 0.16 0.008 0.22

Note: Only the relative ratios among these conductivities matter in numerical simulation. 
The anisotropic data are according to [107].

6.8 Results
6.8.1 S yn th etic  Ischem ia D ata

To produce realistic synthetic data for acute ischemia myocardium, we set the trans

membrane potential (TMP) during the ST interval to 0 mV in the healthy tissue and -30 mV 
in the ischemic tissue, as suggested by [74]. This setting is equivalent to setting the TMP to 

any other absolute values that maintain a 30-mV difference in amplitude between healthy 

and ischemia regions. The magnitude of the voltage difference was not critical because 

ischemic regions would later be identified by thresholding the potential field. We specified 
realistically shaped ischemic regions in heart meshes, and regarded the mesh nodes belonging 

to the ischemic regions as “ischemic” and set the rest of the nodes as “healthy.” The TMPs 

were then set as stated above, with a linear transition at the boundary between the two 

regions. We here describe a case of anterior transmural ischemia depicted in Figure 6.2. 
Both the heart and the torso volume have isotropic conductivities according to Table 6.2.

Once we inversely reconstructed the TMP field, we estimated the ischemic regions by 

a thresholding scheme: if the average of v in an element (over its four vertices) was below 

the threshold, the element was regarded as “ischemic.” The threshold value is given by the 
formula below:

vthreshold — v °.4(v vmin), (6.24)

where v is the mean of v, and vmin is the minimum of v. Such a threshold reflects the 

hypothesis that the ischemic TMP should be notably below the average value over the 
whole heart domain, because the ischemic regions account for a minor portion of the whole 

myocardium.

We evaluated the inverse solutions with three metrics: (1) the correlation coefficient 

between the true and computed TMPs, (2) the centroid distance between the true and 

estimated ischemic regions, and (3) the Haussdorff distance between the true and estimated 

ischemic regions. Defined in Equation (6.25), the Haussdorff distance measures how close
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Figure 6.2: Inverse solutions based on Mesh 1 with synthetic ischemia data. Results are 
compared between the Tikhonov and the total variation methods. Ischemic regions are 
indicated by the blue color. All the calculated TMPs are in the same color scale. This 
figure is to be compared with Table 6.3.

the boundaries of two shapes are: within this distance, any point in one shape is guaranteed 
to reach a point in the other shape.

H a u ssD ist(X ,Y ) =  max {m ax min d (x,y), max m ind(x,y) } (6.25)x€X y€Y y£Y x€X

We performed inverse simulations with three meshes. Figure 6.2 shows the reconstruc

tion based on Mesh 1. Figure 6.3 shows the reconstruction over finer meshes. Table 6.3 
presents the quantitative evaluation of all the results. These two figures and the table 

intend to answer three questions. First, how do the Tikhonov and total variation methods 
perform and compare with each other? Second, does each method perform consistently 

over multiple discretization resolutions? Lastly, does each method perform consistently 

over different input noise levels?
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Figure 6.3: Inverse solutions based on Mesh 2 and Mesh 3, with synthetic ischemia data. 
Tikhonov and total variation solutions are presented. Ischemic regions are denoted by the 
blue region. All the calculated TMPs are in the same color scale. This figure is to be 
compared with Figure 6.2 and Table 6.3. The mesh profiles are given in Table 6.1.
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Table 6.3: Inverse simulation with an isotropic heart model and synthetic ischemia data, 
over three meshes and noise levels.

Mesh Noise Correlation coefficient Centroid distance (mm) Haussdorff distance (mm)
Tikhonov Total variation Tikhonov Total variation Tikhonov Total variation

0.1 % 0.78 0.69 1.2 2.0 7.1 6.6
Mesh 1 1% 0.74 0.65 1.4 1.8 7.8 6.6

3% 0.68 0.37 1.0 1.9 10.3 8.0
0.1% 0.73 0.65 1.7 2.5 5.1 7.8

Mesh 2 1% 0.69 0.66 1.7 2.4 7.6 7.8
3 % 0.66 0.41 1.8 4.3 7.9 10.2
0.10% 0.70 0.72 0.8 2.2 5.2 5.4

Mesh 3 1% 0.68 0.60 0.9 2.7 6.8 6.2
3 % 0.65 0.45 0.9 3.9 7.5 13.4

Note: This table is related to Figure 6.2 and Figure 6.3.

Overall, we obtained good reconstructions of both the TMP and the ischemic region, 

and the results were consistent over multiple noise levels and mesh sizes. The amplitude 

of reconstructed results was roughly two-thirds of that of the ground truth, but our recon
struction achieved a high correlation, ranging from 0.7 to 0.8. The high correlation in turn 
resulted in a good estimation of the ischemic region: the centroid distance ranged from 1 

to 3 mm, and the Haussdorff distance ranged from 5 to 10 mm.

In Figure 6.2 and Figure 6.3, the Tikhonov solutions have a smooth transition at the 
ischemia border zone, whereas the total variation solutions preserve a sharp transition. 

Generally, the Tikhonov solutions tend to overestimate the ischemic region, whereas the 

total variation solutions tend to underestimate the ischemic region. In Figure 6.3, the TMP 
fields from the total variation method still exhibit an ellipsoid shape at the ischemic region 

(the blue region), similar to the Tikhonov solution (except being sharper than the latter). 

This fact illustrates the characteristic of the fixed-point iteration: it solves a sequence of 
Tikhonov minimization problems.

Figure 6.3 shows that both the Tikhonov and total variation methods performed con

sistently over multiscale resolutions. Such consistency is attributed to that fact that we 

formulated the optimality conditions in the continuous space before applying discretization.
Table 6.3 shows that both methods performed robustly up to 1% input noise. The 

Tikhonov method still performed well at 3% noise, but the total variation method started 

to make significant artifacts.

6.8 .2  R ea l Ischem ia D ata  w ith  an A n iso tro p ic  H eart M o d e l
This test was the most realistic simulation in our study. In the animal experiment, 

ischemia was introduced into a perfused, live, beating canine heart by adjusting the blood
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flow to the left anterior coronary artery, which we controlled by means of a thin glass 

cannula, external blood lines, and a rotating pump. The extracellular potentials were 

recorded at 1 KHz sampling rate at 247 nodes on the epicardial surface, and at 400 nodes 
within the ventricular myocardium (by inserting 40 fiberglass needles, each of which carrying 

10 electrodes along its length). Data postprocessing included gain adjustment, baseline 

adjustment, registration to the same heart geometry, and extrapolating the potentials 
throughout the heart volume using volumetric Laplacian interpolation. Our simulation used 

the potentials at the time instant placed after the QRS complex by 40 % of the duration of 

the ST interval, which was measured from the end of the QRS complex to the peak of the 

T wave. At this time, the TMPs throughout the heart are believed to stay stably in the 

plateau phase, and to be nearly constant in a healthy heart. We used both an anisotropic 

heart model whose conductivities are given in Table 6.2 and an isotropic torso model.

It is not possible to measure TMP throughout the heart, so the verifiable ground truth 
is not the TMP but the extracellular potential, which we measured by means of epicardial 

and intramyocardial electrodes. We first calculated the heart TMP from the measured 

extracellular potential, and treated that as the true TMP. This task is a well-posed inverse 
problem and is fulfilled by forming another optimization problem as follows:

v =  argmin\\u — u0\\l2(h), subject to Equation (4.19). (6.26)
u,v

where u0 denotes the measured extracellular potential and Equation (4.19) is the bioelectric 

model. In practice, the misfit ||u — u0\| is typically below 10-9 .
Since we did not know the exact ischemic region, we examined the reconstructed trans

membrane and extracellular potential fields. Our examination revolved around the roles of 

three simulation parameters: (1) the Tikhonov method versus the total variation method, 

(2) inverse solutions under multiple scales, and (3) the impact of input noise. Table 6.4 

contains full results of the Tikhonov method, and Table 6.5 for the total variation method. 
Figure 6.4 compares the inverse solutions by both methods. Figure 6.5 shows the inverse 

solutions over multiple discretization scales.

Overall, the results of the inverse solutions were very encouraging: the reconstructed 

transmembrane potential had a correlation of 0.9 with the truth, and the correlation was 0.8 

in the extracellular potential. Both the Tikhonov method and the total variation method 

yielded consistent inverse solutions under different discretization scales and different levels 

of input noise. The Tikhonov method behaved robustly up to 3% input noise, whereas the 
total variation method became a little unstable at 3% noise.
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Table 6.4: The Tikhonov inverse solutions with the anisotropic heart model and clinical 
ischemia data. Inverse simulation was performed over three meshes and input noise levels.

Input Mesh CC of TMP CC of EXP Number of New- CPU time per Total CPU
noise ton iteration iteration (sec) time (sec)

Mesh 1 0.93 0.83 17 325 5,517
0.1% Mesh 2 0.93 0.80 17 270 4,603

Mesh 3 0.91 0.79 20 701 14,020
Mesh 1 0.90 0.80 16 330 5,283

1% Mesh 2 0.91 0.78 17 265 4,506
Mesh 3 0.89 0.78 18 758 13,640
Mesh 1 0.90 0.79 16 329 5,256

3% Mesh 2 0.90 0.77 19 451 8,573
Mesh 3 0.88 0.77 20 633 12,660

CC: the correlation coefficient between the true and computed values. TMP: the heart 
transmembrane potential. EXP: the heart extracellular potential.

Table 6.5: The total variation inverse solutions with the anisotropic heart model and 
clinical ischemia data. Inverse simulation was performed over three meshes and input noise 
levels.

Input
noise

Mesh CC of TMP CC of EXP Number of fixed- 
point iteration

Total CPU 
time (sec)

Mesh 1 0.88 0.68 14 5,812
0.1% Mesh 2 0.89 0.76 14 63,504

Mesh 3 0.85 0.67 12 97,283
Mesh 1 0.86 0.69 10 4,024

1% Mesh 2 0.89 0.77 8 68,911
Mesh 3 0.69 0.59 15 113,610
Mesh 1 0.83 0.68 12 13070

3% Mesh 2 0.85 0.72 11 74,371
Mesh 3 0.56 0.48 21 215,860

CC: correlation coefficient. TMP: transmembrane potential. EXP: extracellular potential.

As anticipated, the Tikhonov method yielded a smoothed solution whereas the total 
variation method yielded a sharper reconstruction (see Figure 6.4). The real transmem

brane potential exhibited a smooth transition at the ischemia border rather than behaving 

like a stepwise function. This feature partly explains why the Tikhonov method slightly 

outperformed the total variation method in terms of the correlation (see Table 6.6 and 

Table 6.7). On the other hand, the total variation method seemed to better delineate the 

ischemic region than did the Tikhonov.

Table 6.4 and Table 6.5 indicate that computation time can be a significant concern for 
the total variation method but not for the Tikhonov method. To see this, each fixed point 

iteration of the total variation method is equivalent to solving a Tikhonov minimization 

problem once. Throughout our tests, the number of iterations was independent of the 

problem size, in both methods. However, the time each iteration took was dictated by the
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Figure 6.4: Inverse solutions based on Mesh 1, with clinical ischemia data. Each figure 
shows reconstructed heart potentials at the same cross section. The figures in each column 
are in the same color scale. This figure is to be compared with Table 6.4 and Table 6.5.

problem size. Most implementations of the interior-point method involve an LTDL  Cholesky 

factorization of a symmetric positive definite matrix, whose size is dictated by the number 
of control variables. We conclude that Mesh 3 (~6500 nodes on heart) is an appropriate 
resolution for conducting the total variation method on moderate computational platforms.

6.8 .3  R ea l Ischem ia D ata  w ith  an Iso trop ic  H eart M o d e l

This test explores whether it is possible to estimate real heart potentials with reasonable 

accuracy without using anisotropic conductivities because such information is not available 

in any remotely realistic clinical scenarios except by means of rule-based estimation [115]. 

We conducted forward simulation using the same anisotropic heart model and voltage data 

as described in Section 6.8.2, and then conducted inverse simulation using the isotropic 

heart model as described in Section 6.8.1.
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Figure 6.5: Tikhonov and total variation inverse solutions based on Mesh 2 and Mesh 3, 
using clinical ischemia data. The reconstructed heart potentials in each column are in the 
same color scale. This figure is to be compared with Table 6.4 and Table 6.5.
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Table 6.6: Inverse solutions from the isotropic inverse model, with the input body-surface 
data coming from the anisotropic forward model. The Tikhonov method is being used here.

Input Mesh CC of CC of Number of New- CPU time per Total CPU
noise TMP EXP ton iteration iteration (sec) time (sec)

Mesh 1 0.89 0.82 20 538 10,764
0.1% Mesh 2 0.9 0.77 17 257 4,371

Mesh 3 0.89 0.78 15 1,450 21,743
Mesh 1 0.88 0.79 21 576 12,094

1% Mesh 2 0.89 0.76 16 254 4,070
Mesh 3 0.88 0.75 16 1066 17,063
Mesh 1 0.87 0.78 20 530 10,608

3% Mesh 2 0.87 0.69 15 216 3,236
Mesh 3 0.86 0.72 18 1,079 19,417

CC: correlation coefficient. TMP: transmembrane potential. EXP: extracellular potential. 
This table is to be compared with Figure 6.7.

Table 6.7: Inverse solutions from the isotropic inverse model preceded by an anisotropic 
forward simulation. The total variation method is performed over three meshes and input 
noise levels.

Input
noise

Mesh CC of TMP CC of EXP Number of fixed 
point iteration

Total cpu time
(sec)

Mesh 1 0.88 0.42 13 34,987
0.1% Mesh 2 0.76 -0.5 5 4,215

Mesh 3 0.88 0.27 6 58,325
Mesh 1 0.85 0.28 16 26,907

1% Mesh 2 0.70 -0.54 4 3052
Mesh 3 0.86 0.29 10 86,446
Mesh 1 0.84 0.33 7 2,970

3% Mesh 2 0.65 -0.58 8 7,739
Mesh 3 0.84 0.18 9 78,805

CC: correlation coefficient. TMP: heart transmembrane potential. EXP: extracellular 
potential. This table is to be compared with Figure 6.7.

Results are presented in a similar structure as in the last section. Table 6.6 summarizes 

the inverse simulation data for the Tikhonov method, and Table 6.7 for the total varia

tion method. Figure 6.6 visualizes the reconstructed heart potentials by both methods. 

Figure 6.7 shows the reconstruction over multiple discretization scales.
Overall, both methods estimated the transmembrane potential reasonably. The re

constructed TMPs were a little worse than those resulting from the anisotropic inverse 
model, both visually and judging from the correlation coefficient (compare Table 6.6 with 

Table 6.4, and compare Table 6.7 with Table 6.5). The Tikhonov method also estimated the 
extracellular potential reasonably, but the total variation method yielded a poor estimation. 

Note that the true transmembrane and extracellular potentials are related by the anisotropic
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Figure 6.6: Inverse solutions of an isotropic inverse model following an anisotropic forward 
simulation. Here Mesh 1 is being used. The reconstructed heart potentials in each column 
are in the same color scale. This figure is to be compared with Table 6.6 and Table 6.7.

model, so one should not expect to estimate both of them accurately at the same time. Our 

inverse calculation treated the TMP as the “source,” so the recovered extracellular potential 
can be regarded as the outcome of the recovered TMP according to the isotropic model.

Over different mesh sizes and noise levels, the Tikhonov method behaved more consis
tently than the total variation method. The computational time was largely consistent, 

except in Mesh 2, where both methods took much less time than anticipated and did 
not reduce the iteration number. Our inspection showed that after identifying the search 

direction at each iteration, our optimization solver computed the step size faster than usual. 

This fast solution might be attributed to this specific discretization.
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Figure 6.7: Inverse solutions of the isotropic heart model following an anisotropic forward 
simulation, based on Mesh 2 and Mesh 3. Tikhonov and total variation methods are 
compared under three input noise levels. The reconstructed heart potentials in each column 
are in the same color scale. This figure is to be compared with Table 6.6 and Table 6.7.
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We concluded that it is possible to estimate the TMP with reasonable accuracy without 
anisotropic information, and the Tikhonov is the preferred method for this reconstruction. 

Anisotropy mainly influences the distribution of the extracellular potential but does not 
significantly impact source estimation from the body surface. One explanation is that the 

attenuation and superposition effects of the torso volume overwhelms the impact of heart 

anisotropy, so the latter is not a critical factor in inverse source estimation.

6.9 Discussion
6.9.1 B iop h ysica l C on siderations

6.9 .1 .1  T ik h on ov  versus T ota l V ariation
Our experiments show that both regularization methods were able to achieve reasonable 

inverse solutions, with minor differences in accuracy. The Tikhonov method performed 

robustly over different discretization resolutions and input noise levels, whereas the total 

variation (TV) method became unstable under the 3% noise level with high-resolution 
heart models (Figure 6.3). In the absence of heart conductivity information, the Tikhonov 

method outperformed the TV method. The Tikhonov method was also 10-20 times faster 

than the fixed-point TV method. Although the TMP in an ischemic heart (during the ST 

interval) is often modeled by some smoothed variants of a step function, we found that 
the TMP distribution was quite smooth in real conditions, judging from our extracellular 

potential (experimentally measured) and TMP (inversely calculated) shown in Figure 6.5. 
This finding makes the Tikhonov method more appealing than one would initially anticipate. 

In summary, for the reasons detailed below, we would advocate the Tikhonov method as 

both capable of achieving a clinically useful level of accuracy and computationally reasonable 
for estimating the TMP when localizing ischemia.

6 .9 .1 .2  B ord er  Z on e C on sid eration
The ischemic border zone, which comprises progressive changes in electrophysiological 

properties between the healthy and ischemic regions, characterized by a spatial transition 
of TMP, is of great clinical interest in ischemia studies. The spatial gradient of TMP in 

the border zone results in “injury currents,” which are believed to be the primary electric 

source causing the ST segment shift [74]. Therefore, the shape and width of border zones 
should be considered when choosing the resolution for the heart geometry. A border zone 

is often estimated to be between 5-10 mm in thickness [108], and the grid size of our mesh 
ranged between 5 mm (Mesh 1) and 2 mm (Mesh 3) so as to represent the border zone 

reasonably.
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Our simulations indicated that the transition could be reasonably reconstructed whether 

it was sharp or smooth. In our synthetic study, the border zone was set to be one-element 
wide (thus thinner than normal), and accordingly the synthetic TMP had a sharper tran

sition than normal. From the view of inverse problems, if a “ground truth” TMP contains 

sharper transitions, it is more difficult to reconstruct. However, we found that the TV 

method was able to reconstruct the sharp voltage transition in border zones (see Figure 6.3). 

In our real data study, the border zone transition was smoother than in our synthetic setting, 

and the Tikhonov method again yielded good recovery, as shown by Figure 6.5. (See [108] for 

more discussion of the experimental ischemic voltage data we used.) These tests indicated 
that recovering the voltage transition in border zones should not create extra technical 

difficulty to the overall goal of recovering the TMP.

6.9 .1 .3  Im p act o f  T issue A n iso trop y
A few simulation studies based on real ischemia data have shown that fiber rotation and 

tissue anisotropy are fundamental in determining epicardial extracellular potential distri

butions and ST displacement patterns (in the sense of forward simulation) [98]. However, 
in clinical practice, the heart fiber information of an individual patient is generally not 

available, though scientists have recently started to acquire or estimate this information 

on a patient-specific basis [114]. Therefore, it is worth inquiring whether it is possible to 
reasonably reconstruct the myocardial TMP without the information of heart anisotropy, 

while the input body-surface potentials actually result from an anisotropic heart. We 

explored this possibility in Section 6.8.3. In our inverse calculation, the TMP was the 

control variable whereas the extracellular potential was subject to the TMP via an isotropic 

bidomain heart model. We found that without including the heart anisotropy, one still 

may reconstruct the TMP with reasonable accuracy, but one would poorly estimate the 
extracellular potential, as shown by Figure 6.6 and Figure 6.7.

This finding not only confirms previous understanding that the heart anisotropy is 

indispensable for the forward calculation, but also indicates that including the anisotropy 

is less critical to the inverse calculation. For the second indication, we conjecture that 

given the TMP source, the body-surface potentials are dominated by the attenuation and 

superposition effect of the torso volume, so that the effect of myocardial anisotropy is 

overwhelmed. Therefore, if the torso’s effect can be properly managed in the inverse 

calculation (which is the main purpose of regularization), it is possible to estimate the TMP 
with moderate accuracy. Regarding the first indication, because the extracellular potentials 

were obtained by a forward calculation based on the reconstructed TMP, the absence of
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heart anisotropy prevents accurate estimation of the extracellular potentials. An earlier 

study asserted that heart anisotropy, especially the anisotropy of the ischemic regions, 

was critical in predicting extracellular epicardial potentials [51]. Our finding confirms 
that assertion from the reverse side (i.e., lack of anisotropy leads to poor estimation of 

extracellular potentials).

6 .9 .1 .4  H igh -R eso lu tion  M o d e l for Inverse S im ulation
One highlighted feature of our work is achieving accurate inverse solutions with a much 

finer heart model than in previous studies. Most previous studies of inverse ECG reported 

heart models of less than 1,000 nodes, whereas our model of 17,000 nodes would still 

be clinically reasonable if computation resources were incrementally increased. A major 

reason for choosing coarse models is to avoid worsening the ill-conditioning of the resulting 

numerical system. This concern is addressed by our optimize-then-discretize approach, 
which enables consistent optimization performance over multiple resolutions. We advocate 

this approach for inverse ECG studies because it may reveal heart conditions in more detail 
than has been possible to date.

6 .9.2 C om p u ta tion a l C on sideration s

6.9 .2 .1  Indiv idualized  D iscretization

In this study, we used the same mesh to discretize the control variable v , the state 
variable u , and the adjoint variable p , but this is not necessary. Individual and adaptive 
discretization of each variable deserves further investigation. In inverse problems, one 

often wishes to discretize the control variable v coarsely so as to exert certain projective 

regularization effect, meanwhile taking a finer discretization of the state variable u [118]. 
The discretization concern for the adjoint variable has been discussed in Section 6.4.1. In our 

problem, p does not need to stress stronger regularity than u , so the same discretization for 

both is fine unless computation resource becomes a serious bottleneck. It is straightforward 
to incorporate individual discretization into our framework— See Equation (4.22) for the 

PDE constraint and Equation (6.5) for the optimality conditions.

6 .9 .2 .2  A d a p tiv e  FE  R efinem ent in Inversion
PDE-constrained optimization is computationally intensive: the optimization procedure 

is normally iterative, and each iteration needs to solve the entire PDE system, which 

after discretization may amount to millions of variables. Computational efficiency can be 

improved in two ways: achieving convergence with less iteration, or reducing the numerical
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cost in each iteration. Adaptive finite element methods take effect in the latter way 
by discretizing PDEs differently in each optimization iteration. While adaptive finite 

element refinements have been well established both in theory and in practice in solving 

PDEs, they have not yet been widely adopted in PDE-constrained optimization, partly be

cause most practical optimization solutions adopt the discretize-then-optimize approach, in 
which discretization cannot be changed between iterations (otherwise the finite-dimensional 

convergence criteria become meaningless). To achieve the adaptive refinement in PDE- 

constrained optimization, one must take the optimize-then-discretize approach and then 

perform refinement based on certain error estimates for finite element methods. In this 

study, we have finished the foundation work of merging optimization and finite element 

discretization (see Section 6.4), and we defer adaptive refinement to future work, a valuable 
topic that deserves extensive investigation.

6 .9 .2 .3  A d v a n ced  A lgorith m s for T ota l V ariation

We implemented the TV minimization by the fixed-point iteration, a choice that is 
relatively robust but certainly not optimal in performance. Our intention is not to thor

oughly explore algorithms for the TV minimization, but to formulate the minimization in 

the finite element context. Such formulation lays the basis upon which various advanced 
algorithms can be applied. Advanced algorithms tackle the TV minimization in both the 

primal and dual spaces instead of the primal space alone. The primal-dual formulation 

not only converges faster, but also removes the expediency of smoothing singularity points 

(see e in Equation (6.10)) and hence allows one to directly pursue unsmoothed solutions. 
These algorithms are fully compatible with our finite element formulation and fulfilling 
those algorithms is a meaningful extension of our current work.

6 .9 .2 .4  Form ulation  in G eneral S ob o lev  Spaces
We formed the variational optimality conditions of the PDE-constrained optimization in 

the L2 space, with the inner product taking equal weights between the trial and test spaces 

(see Equation (4.9)). The optimality conditions can also be formed in the general Sobolev 

spaces as described in the classical literatures of FEMs. A proper choice of the variational 

formulation should take into account two issues: (1) the inherent structure of the given 

optimization functional and PDE constraints and (2) the regularity of the finite element 

solution. Reexamining the finite element theories for PDEs in the context of constrained 

optimization deserves further investigation.
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6.10 Conclusion
In this chapter, we attempted to localize myocardial ischemia by inversely computing 

the myocardial transmembrane potential from body-surface potential maps. To tackle this 
ill-posed problem, we proposed a general PDE-constrained optimization framework whose 

main features are summarized as follows:

• Formulating optimality conditions in the continuous space so as to isolate optimization 
and discretization;

• Tikhonov and total variation minimization seamlessly integrated with finite element 

solutions;

• A tailored primal-dual method for efficiently handling inequality constraints.

By allowing one to impose various physically-based constraints, this framework obtained 

promising reconstruction results even under realistic situations, indicating that our inverse 
solution is feasible and suitably accurate for localizing the common case of myocardial 

ischemia. Finally, we believe the PDE-constrained optimization framework may benefit a 

broad range of bioelectromagnetic problems in heart and brain research.



CHAPTER 7

SUMMARY

The overarching theme of this dissertation is the formulation, optimization, and solution 

of the inverse ECG problem using the finite element method. The theme comprises two 

main thrusts: optimal finite element discretization of the inverse problem, and a new inverse 

solution method called PDE-constrained optimization. Each thrust contains two major 

goals, leading to four thesis goals stated as follows:

1. Propose refinement strategies for optimal finite element discretization of the inverse 
ECG problem.

2. Fulfill Goal 1 by developing h/p-type finite element refinements.

3. Formulate a PDE-constrained optimization framework and its finite element solution.

4. Apply the optimization method to solve the bidomain-based inverse ECG problem for 

localization of myocardial ischemia.

In Chapter 5, we addressed the first research thrust, with the main conclusion that 
discretization is important to the solution of the inverse problem by impacting both the 

approximation accuracy and conditioning of the resulting algebraic problem. A sensible dis

cretization may achieve extra improvement of inverse solutions on top of existing inverse cal
culation techniques. We first demonstrated that the traditional, forward-problem-oriented 
refinement approach, focusing on improving the approximation accuracy alone, increases the 

degree of ill-conditioning of the inverse problem, thus motivating our quest for refinement 

strategies oriented to the inverse problem. Based on a Fourier analysis that quantifies how 

discretization relates to ill-conditioning, we proposed a set of refinement guidelines including 

the following issues: the heart surface, the torso volume, and the heart-to-volume interface. 

The pursued fidelities of the heart surface largely dictate the degree of ill-conditioning and 
therefore, one should set the resolution of the heart surface based on one's clinical needs, but 

not pursue excessive fidelities to avoid unnecessary numerical sensitivity. The fidelities of the
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torso volume dictate how much information determined by the heart-surface fidelities can 

be inversely recovered, so the torso volume needs sufficient refinement to avoid “artificial” 
ill-conditioning. Refinement of the heart-to-volume interface also gains benefits, as such 
refinement both captures the high voltage-gradient field near the heart and improves the 

boundary-lifting operation of the FEM.

Regarding Goal 2 of fulfilling our refinement guidelines, we developed two finite element 

refinement methods, one by spatially refining the mesh (h-type) and the other by using 

high-order finite elements (p-type). One major concern in refinement is that refining the 

elements near the heart without decreasing mesh size on the heart surface will cause aspect- 

ratio problems for tetrahedral elements. With the h-refinement, we resolved this concern 
by the use of hybrid finite elements, in which we used quadrilateral (in 2D) or prismatic 
elements (in 3D) to decouple the refinements in the normal direction and in the tangential 

direction. With the p-refinement, we resolved the above concern by extracting and using 

only the linear components of the FE approximation at the heart surface. Such adapted 

p-refinement, fulfilled in the polynomial space, provides a seamless solution for selective 
refinement in the spatial domain, and circumvents the aspect-ration problem that obstructs 

h-refinement methods. The implementation of our adapted p-refinement was facilitated by 
our use of hierarchical, modal finite-element basis expansions. Our simulation experiments 

showed that both refinement methods mitigate the ill-conditioning and improved the inverse 
solution. Finally, in order to make the inverse calculation consistent when the inverse 

problem is discretized under multiple scales, we proposed a new family of variational-form 
regularizers that serve as an alternative to the classic algebraic Tikhonov regularizers.

The second research thrust, presented in Chapter 6, involves a new inverse solution 

methodology that has so far seen limited use in ECG problems: PDE-constrained optimiza
tion. Our main contribution lied in the formulation and solution of a general optimization 

framework that accepts convex objective functionals and allows physically-based constraints 

in both equality and inequality forms. One highlighted feature of this framework was the 
derivation of optimality conditions in the continuous space, thereby separating optimization 
from discretization choice. We also derived closed-form finite element solutions for the 

L2-norm Tikhonov regularization and the Li-norm total variation regularization. A typical 

challenge of PDE-constrained optimization is the large scale of its resulting numerical 

systems. To tackle this challenge, we fulfilled the numerical optimization by developing 

a primal-dual interior-point method tailored to the specific algebraic structure of the given 
optimization problem and PDE constraints.
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Regarding Goal 4, we applied our optimization methodology to localization of cardiac 

ischemic disease, by inversely reconstructing the transmembrane potential throughout the 

myocardium based on the bidomain heart model. Because of its difficulty, this bidomain- 
based inverse ECG problem has previously seen minimal progress beyond studies based 

on simplified, two-dimensional settings. With our new inverse solution methodology, we 

achieved promising results based on a realistic simulation using a three-dimensional, fiber- 

included heart model with experimental ischemia data. One highlight of the results was 

a nice recovery with a heart model of over 100,000 elements (Figure 6.5), a much finer 

discretization than any heart models previous reported. Our good reconstructions were 

attributed to three factors: (1) the inclusion of the whole PDE model as a constraint, 

(2) the flexibility to impose various physically-based constraints, and (3) the separation 
of optimization from discretization. While the goal of reproducing the transmembrane 

potential in general clinical cases remains exceedingly challenging, our study indicated the 
feasibility to make reasonable reconstruction in the case of myocardial ischemia and to 

localize ischemic regions.

7.1 Future Work
Both the inverse problems associated with PDEs in general, and the inverse problems 

arising in electrocardiography in particular, remain at the frontiers in scientific computing 

research. We now suggest several high-level directions in these two areas that warrant future 
research.

7.1.1 U n certa in ty  Q uantification  and Inversion

In this dissertation, we have concentrated on a deterministic approach to the inverse 
problem. However, uncertainty is inherent and ubiquitous in real-world inverse problems: 

measurements are noisy; accurate model parameters may be unavailable; or fundamentally, 

we may have insufficient knowledge of the physical system under investigation. Understand
ing and quantification of uncertainty in inverse problems are receiving increasing attention 

in recent years. Future research on this topic may be pursued on the modeling side or the 
computational side.

On the modeling side, inverse problems need statistical formulation that incorporates 

uncertainties and prior information in stochastic forms. Topics of interest include modeling 

uncertainty, studying the propagation of uncertainty within the given physical problem, 
evaluating parameter sensitivity, and developing inverse solutions in stochastic settings. An 

appealing prospect of the approach of a statistical inverse problem is that the problem may
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be much better-posed than the deterministic approach. In a statistical inverse problem, the 

inverse solution takes the form of a probability distribution over the space of admissible 

solutions. Because the inversion task now becomes pursuing a wider space of admissible 
solutions rather than pursing a particular solution (which is the deterministic approach), 

the inverse problem becomes much better-posed.
A good start point for solving statistical inverse problems may be a Bayesian framework 

that models uncertainties with some probability distribution functions and handles stochas

tic structures with sampling methods such as Monte-Carlo or polynomial-chaos [124]. In 

our specific inverse problem domain, electrocardiography, the sources of uncertainty include 

tissue conductivity, anatomical variance among subjects, approximation error in geometry, 
the movement of the heart, and measurement precision. The impact of these uncertainties 

on the forward ECG problem has been explored [32], but their impact on the inverse ECG 
problem remains unexplored.

On the computation side, because the recovery of probability distribution is conducted in 
the high-dimensional parameter space, it may be computationally intractable to completely 

recover probability distributions for large-scale PDE systems. There is a crucial need for 
the development of scalable algorithms that achieve any of the following goals: (1) resolving 

the curse of dimensionality by judicious dimension reduction or surrogate approximation;

(2) improving the solutions by assimilating a growing amount of available data; in our ECG 

case, the goal would be to improve cardiac source recovery by multiple measurements of 

body-surface potentials; and (3) exploiting the massively parallel computing infrastructures 

in the era of peta-scale computing.

7.1.2 P D E -C on stra in ed  O ptim iza tion  w ith  A d a p tiv e  P D E  Solvers
In this dissertation, we investigated two topics: the finite element adaptation for the 

classical inverse-problem formulation involving the transfer matrix (Chapter 5), and a new 

inverse solution method by PDE-constrained optimization (Chapter 6). One worthwhile 

future direction is to merge these two topics, i.e., to integrate adaptive finite element PDE 
solvers into PDE-constrained optimization.

PDE-constrained optimization is inherently computationally intensive: Nonlinear op

timization procedure is normally iterative, and each iteration involves one solution of the 

whole PDE system. An area under active research is to develop efficient integration of 
nonlinear optimization algorithms and adaptive PDE solvers. Such an integration contains 
two meanings. First, the PDEs are solved under different discretizations in each iteration. 

Second, different physical quantities in the PDEs may use different quantities. Because such
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integration is intrusive into both ends, adaptive finite elements and error estimates have 
not seen wide application in PDE-constrained optimization, despite their common use in 

numerical solutions of PDEs.
The foundation for adaptive PDE solvers in optimization is the optimize-then-discretize 

approach, which we have developed in Section 6.4. An important question that remains to 

be solved is the FE error estimates oriented toward the optimization procedure. The criteria 
for existing FE error estimates are mostly based on approximation error or smoothness of 

the true PDE solution. Error estimate criteria targeting the optimization process will receive 

notable scientific interest. Finally, adaptive PDE solvers for PDE-constrained optimization 
are not limited to the finite element method, but also apply to finite difference and finite 

volume methods, e.g., see the work by [43, 44].

7.1.3 P D E -C on stra in ed  O ptim iza tion  for O th er B ioe le ctr ic  
Inverse P rob lem s

PDE-constrained optimization is a general framework applicable to a broad range of 

inverse problems. In this dissertation, we applied this optimization framework to a nontra- 

ditional type of inverse ECG problem: to recover myocardial TMPs during the ST interval 
in the case of myocardial ischemia. The promising results we obtained for this previously 

intractable inverse problem demonstrate the efficacy of PDE-constrained optimization. 

From an electrophysiological perspective, transmural ischemia in a single region, the clinical 

situation we considered, is one of the simplest representations of cardiac diseases. A direct 
extension of our current work will be to localize more sophisticated ischemic scenarios such 

as multiple ischemic regions, subendocardial ischemia, and intramural ischemia. It is also 

worthwhile to connect inverse solutions with mechanistic ischemia studies such as [50].
A more ambitious goal will be to recover the myocardial TMP over the entire cardiac 

cycle. Such a recovery will be of great clinical interest for localization and monitoring of a 
variety of cardiac abnormalities. For example, one may infer from the recovered temporal 

TMP the activation sequence of the heart, which can be used to diagnose arrhythmia or 

pre-excitation pathways. However, the general-case TMPs exhibit much more complicated 

distributions, in terms of both the diversity in space and the variance in time, than the 

piecewise-constant TMPs in our ischemia case. Accordingly, the inverse problem may be 

more difficult and one needs to design advanced spatial-temporal constraints that exploit 
the bioelectric prior information of the considered phenomena.

Another exciting extension of PDE-constrained optimization is to those classic inverse 

ECG approaches we reviewed in Chapter 3, such as the epicardial potential approach,
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or the activation time approach. Replacing the traditional transfer-matrix formulation, 

the PDE-constrained optimization offers more flexibility for constraining intermediate or 

state variables, and is therefore more likely to yield better inverse solutions. For example, 
when solving the activation time inverse problem, one may impose constraints on the heart 

potentials or on the speed of the activation wavefront, while such constraints are unlikely 
to impose within the transfer-matrix-based inverse calculation. Finally, PDE-constrained 

optimization may bring new insights for a broad range of bioelectromagnetic problems 

arising from heart and brain research.



APPENDIX

FINITE ELEMENT MODAL EXPANSIONS
IN TRIANGULAR AND TETRAHEDRAL

ELEMENTS

Following the discussion in Section 2.2.2, we here present the finite element modal basis 

expansions for triangular and tetrahedral elements, which serve as counterpart to the tensor- 
product expansions in quadrilateral and cubic elements already discussed in that section. 

Expansions in triangular elements have been diagrammatically illustrated in Figure 2.8.

The modal expansions to be presented here originate from [70]. The construction of these 

expansion functions requires three sets of so-called “primary functions” denoted respectively 

as ^ “ (n), ^b(n), and ^ c(n), where n G [-1,1]. These functions are defined as follows:

P =  0;
1 < p < P ;

p =  p  ;

/ p =  0, 0 < q < Q;
1 < p < P, q =  0;

1 < p < P, 1 < q < Q; 
p =  P, 0 < q < Q;

(A.2)

p =  0, 0 < q < Q, 0 < k < K ;
0 < p < P, q =  0, 0 < k < K ;

1 < p < P, 1 < q < Q, k =  0;
p̂qfc (n) =  <

0 < p < P, q =  Q, 0 < k < K ; 
p =  P, 0 < q < Q, 0 < k < K;

(A.3)
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where Jp’3 (n) denotes the Jacobi polynomial. With these primary functions in place, the
modal expansion functions in triangular elements, denoted by $pq( {1, { 2), are constructed 
in the following way:

Figure 2.8 illustrates such triangular modal expansions $pq up to the fourth order (p < 

4, q < 4).
The three-dimensional modal expansions are defined in a similar way using the primary 

functions defined above:

• Hexahedral elements:

• Prismatic elements: &pqr (C1,C2,C3) =  ^ ( ^ W ^ P r  (C3)

• Pyramidic elements: ^ ( C i ,C 2,Cs)= %(m)'&Z(m)'Vpqr(ns)

• Tetrahedral elements: 0Mr(Ci, C2, C3) =  ^(nOV'Pq(n2)^pqr(n3)

where n1, rf1,n2 and n3 are three-dimensional collapsed coordinates defined as follows:

$pq(Cb C2) =  ^a(m )^pq(n2), - 1  < Cb 6  < 1, 6  +  6  < 0; (A.4)

(A.5)
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