2,052 research outputs found

    HEVC-based 3D holoscopic video coding using self-similarity compensated prediction

    Get PDF
    Holoscopic imaging, also known as integral, light field, and plenoptic imaging, is an appealing technology for glassless 3D video systems, which has recently emerged as a prospective candidate for future image and video applications, such as 3D television. However, to successfully introduce 3D holoscopic video applications into the market, adequate coding tools that can efficiently handle 3D holoscopic video are necessary. In this context, this paper discusses the requirements and challenges for 3D holoscopic video coding, and presents an efficient 3D holoscopic coding scheme based on High Efficiency Video Coding (HEVC). The proposed 3D holoscopic codec makes use of the self-similarity (SS) compensated prediction concept to efficiently explore the inherent correlation of the 3D holoscopic content in Intra- and Inter-coded frames, as well as a novel vector prediction scheme to take advantage of the peculiar characteristics of the SS prediction data. Extensive experiments were conducted, and have shown that the proposed solution is able to outperform HEVC as well as other coding solutions proposed in the literature. Moreover, a consistently better performance is also observed for a set of different quality metrics proposed in the literature for 3D holoscopic content, as well as for the visual quality of views synthesized from decompressed 3D holoscopic content.info:eu-repo/semantics/submittedVersio

    Light field image compression

    Get PDF
    Light field imaging based on a single-tier camera equipped with a micro-lens array has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require identifying adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, this chapter presents some of the most recent light field image coding solutions that have been investigated. After a brief review of the current state of the art in image coding formats for light field photography, an experimental study of the rate-distortion performance for different coding formats and architectures is presented. Then, aiming at enabling faster deployment of light field applications and services in the consumer market, a scalable light field coding solution that provides backward compatibility with legacy display devices (e.g., 2D, 3D stereo, and 3D multiview) is also presented. Furthermore, a light field coding scheme based on a sparse set of microimages and the associated blockwise disparity is also presented. This coding scheme is scalable with three layers such that the rendering can be performed with the sparse micro-image set, the reconstructed light field image, and the decoded light field image.info:eu-repo/semantics/acceptedVersio

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced

    Design of a digital compression technique for shuttle television

    Get PDF
    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power

    Uniquitous: Implementation and Evaluation of a Cloud-based Game System in Unity3d

    Get PDF
    Cloud gaming is a new service based on cloud computation technology which allows games to be run on a server and streamed as video to players on a thin client. Commercial cloud gaming systems, such as Onlive, Gaikai and StreamMyGame remain proprietary, limiting access for game developers and researchers. In order to address these shortcomings, we developed an open source Unity3d cloud-based game system called Uniquitous that gives the game developers and researchers control of system and content. Detailed experiments evaluate performance of three main parameters: game genre, game resolution and game image quality. The evaluation results are used in a data model that can predict in-game frame rates for systems that have not been tested. Validation experiments show the accuracy of our model and allow us to use the model to explore cloud-based games in a variety of system conditions

    Retrospective Motion Correction in Magnetic Resonance Imaging of the Brain

    Get PDF
    Magnetic Resonance Imaging (MRI) is a tremendously useful diagnostic imaging modality that provides outstanding soft tissue contrast. However, subject motion is a significant unsolved problem; motion during image acquisition can cause blurring and distortions in the image, limiting its diagnostic utility. Current techniques for addressing head motion include optical tracking which can be impractical in clinical settings due to challenges associated with camera cross-calibration and marker fixation. Another category of techniques is MRI navigators, which use specially acquired MRI data to track the motion of the head. This thesis presents two techniques for motion correction in MRI: the first is spherical navigator echoes (SNAVs), which are rapidly acquired k-space navigators. The second is a deep convolutional neural network trained to predict an artefact-free image from motion-corrupted data. Prior to this thesis, SNAVs had been demonstrated for motion measurement but not motion correction, and they required the acquisition of a 26s baseline scan during which the subject could not move. In this work, a novel baseline approach is developed where the acquisition is reduced to 2.6s. Spherical navigators were interleaved into a spoiled gradient echo sequence (SPGR) on a stand-alone MRI system and a turbo-FLASH sequence (tfl) on a hybrid PET/MRI system to enable motion measurement throughout image acquisition. The SNAV motion measurements were then used to retrospectively correct the image data. While MRI navigator methods, particularly SNAVs that can be acquired very rapidly, are useful for motion correction, they do require pulse sequence modifications. A deep learning technique may be a more general solution. In this thesis, a conditional generative adversarial network (cGAN) is trained to perform motion correction on image data with simulated motion artefacts. We simulate motion in previously acquired brain images and use the image pairs (corrupted + original) to train the cGAN. MR image data was qualitatively and quantitatively improved following correction using the SNAV motion estimates. This was also true for the simultaneously acquired MR and PET data on the hybrid system. Motion corrected images were more similar than the uncorrected to the no-motion reference images. The deep learning approach was also successful for motion correction. The trained cGAN was evaluated on 5 subjects; and artefact suppression was observed in all images
    • …
    corecore