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Abstract 
Magnetic Resonance Imaging (MRI) is a tremendously useful diagnostic imaging 

modality that provides outstanding soft tissue contrast. However, subject motion is a 

significant unsolved problem; motion during image acquisition can cause blurring and 

distortions in the image, limiting its diagnostic utility. Current techniques for 

addressing head motion include optical tracking which can be impractical in clinical 

settings due to challenges associated with camera cross-calibration and marker fixation. 

Another category of techniques is MRI navigators, which use specially acquired MRI 

data to track the motion of the head.  

This thesis presents two techniques for motion correction in MRI: the first is spherical 

navigator echoes (SNAVs), which are rapidly acquired k-space navigators. The second 

is a deep convolutional neural network trained to predict an artefact-free image from 

motion-corrupted data.  

Prior to this thesis, SNAVs had been demonstrated for motion measurement but not 

motion correction, and they required the acquisition of a 26s baseline scan during which 

the subject could not move. In this work, a novel baseline approach is developed where 

the acquisition is reduced to 2.6s. Spherical navigators were interleaved into a spoiled 

gradient echo sequence (SPGR) on a stand-alone MRI system and a turbo-FLASH 

sequence (tfl) on a hybrid PET/MRI system to enable motion measurement throughout 

image acquisition. The SNAV motion measurements were then used to retrospectively 

correct the image data.  

While MRI navigator methods, particularly SNAVs that can be acquired very rapidly, 

are useful for motion correction, they do require pulse sequence modifications. A deep 

learning technique may be a more general solution. In this thesis, a conditional 

generative adversarial network (cGAN) is trained to perform motion correction on 
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image data with simulated motion artefacts. We simulate motion in previously 

acquired brain images and use the image pairs (corrupted + original) to train the cGAN. 

MR image data was qualitatively and quantitatively improved following correction 

using the SNAV motion estimates.  This was also true for the simultaneously acquired 

MR and PET data on the hybrid system. Motion corrected images were more similar 

than the uncorrected to the no-motion reference images. The deep learning approach 

was also successful for motion correction. The trained cGAN was evaluated on 5 

subjects; and artefact suppression was observed in all images.  

Keywords 
Magnetic resonance imaging, Positron emission tomography, Motion correction, 

Navigator echoes, Deep learning 
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1 Introduction 
Magnetic resonance imaging (MRI) is a tremendously useful clinical tool for diagnostic 

imaging. Its superior soft tissue contrast makes it a valuable imaging method for many 

diagnostic and research applications. However, subject motion is a significant unsolved 

problem; motion during image acquisition can cause blurring and distortions in the 

image. In this thesis, the development of novel techniques for motion correction in 

MRI, specifically spherical navigators and deep learning, are discussed. 

1.1 Motion in magnetic resonance imaging 

Magnetic resonance imaging technology has advanced considerably since its first use 

for clinical imaging in the 1980’s; however, patient motion remains an unsolved 

problem. As MRI hardware and software development allow us to push the boundaries 

on image resolution and image quality, patient motion becomes a limiting factor in 

many applications. If a patient moves during the scan, it may cause blurring and 

artefacts in the image, which significantly degrades the diagnostic quality of the image. 

MRI is highly sensitive to patient motion, due in part, to long acquisition times.  

Motion in MRI can broadly be classified into two categories: involuntary physiological 

motion such as breathing, and voluntary bulk motion such as the movement of the head 

or a limb. The focus of this thesis is motion correction in neuroimaging applications, 

and as such, the focus is on rigid-body motion of the head.  

1.1.1 Subject motion in brain MRI 

MRI exams can take from 10 mins to over an hour to complete, and it is challenging 

for many subjects to remain still throughout the scan. A study by Andre et al. found 

that approximately 20% of exams at their institution required that at least one sequence 

is repeated due to motion.1 They estimated that these repeat scans cost $115,000 per 
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year per scanner and resulted in delayed diagnosis for some patients. Motion is the 

most prevalent MRI artefact that results in non-diagnostic brain scans, especially in 

pediatric populations.2 In current clinical practice, most young children are either 

sedated or anesthetized in order to have a successful imaging session. While head 

motion is observed across the entire population, it is an even bigger challenge for 

specific patient groups, including children, the elderly and people with various mental 

and neurodegenerative disorders.2  

Motion is also a challenge in MRI research applications. MRI is often used to study the 

effects of disease modifying therapies as well as normal neurodevelopment in children. 

In these types of applications, motion can have a systematic effect, because the amount 

of motion in the scanner is often correlated with age and disease severity. It has been 

found specifically that motion reduces grey matter volume estimates3 and causes 

systematic errors in measurements of functional connectivity.4,5 

1.1.2 K space 

The cause of motion artefacts in MRI is rooted in the nature of the raw data and its time 

consuming, sequential acquisition. With the application of spatial magnetic field 

gradients (G), the time varying signals detected from precessing magnetization follow 

predictable trajectories that evolve in two-dimensional (2D) or three-dimensional (3D) 

k space: 

𝑘" =
$
%& ∫ 𝐺"(𝑡+)𝑑𝑡+

.
/      (1.1) 

𝑘0 =
$
%& ∫ 𝐺0(𝑡+)𝑑𝑡+

.
/      (1.2) 

where 	𝑘",	and	𝑘0  are the 2Dk-space coordinates,  𝛾 is the Larmor precession 

frequency, and 𝐺", 𝐺0 are the applied magnetic field gradients along the x and y 

dimensions respectively. The gradients control the position in k space at a given time; 

MRI pulse sequences and acquisition strategies are designed such that k space is 



 
3 

sufficiently and efficiently sampled. A 2D cartesian k-space trajectory is illustrated 

in Figure 1-1. 

 

Figure 1-1 Illustration of 2D Cartesian sampling. Each line of k space is acquired 
sequentially.  

Acquisition of k-space data is inherently slow due to sampling requirements, and the 

fundamental magnetic properties of biological tissue (T1). Motion during the 

acquisition of k space creates inconsistencies in k-space data which lead to artefacts 

in the reconstructed image. This will be discussed in more detail in the next section.  

The discrete inverse fast Fourier transform (IFFT) is applied to k space in order to 

reconstruct the image. The discrete 2D IFFT for an M by N dimensional image is 

given by: 

𝑆(𝑥, 𝑦) = ∑ ∑ 𝑑;<;=𝑒
?@AB<<

C 	DEF
;=G/

HEF
;<G/ 𝑒
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where S(x,y) is the 2D image, 𝑑;<;= are the complex values of the input rectilinear  

k space with dimensions M by N. kx and ky are the k-space coordinates and x and y 

are the co-ordinates in image space. This operation can be performed in any number 

of dimensions. The 2D and 3D Fourier transforms are both common for MRI 

applications. An example 2D k space and its corresponding image are shown in 

Figure 1-2.  

1.1.3 Motion in k space 

The effects of rigid-body motion in k space can be described in terms of two well known 

Fourier properties. The Fourier shift theorem tells us that a physical translation in image 

space (e.g. head translation) yields a linear phase ramp in k space: 

𝑆(𝑥 + 𝑎, 𝑦 + 𝑏) = ∑ ∑ 𝑑;<;=𝑒
?@AB<(<MN)

C 	DEF
;=G/

HEF
;<G/ 𝑒

?@AB=(=MO)
I   (1.4) 

where, a and b are translations in the x and y dimensions respectively. We also know 

that a rotation in image space causes an identical rotation in k space. Therefore, if a 

subject translates and rotates their head in the scanner, the result will be phase ramps, 

and rotations in the raw k-space data; it is these inconsistencies that cause motion 

artefacts (i.e. some k-space lines are rotated and phase shifted relative to others). When 

Figure 1-2 Example k space and corresponding 2D brain image. 
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the IFFT is applied to this translation- and rotation-corrupted k-space data, the result 

is an image with artefacts as illustrated in Figure 1-3.  

 

Figure 1-3 An example k space and corresponding image with motion artefacts. The 
k-space data collection is corrupted by rotation and translation of the head. Applying 
the IFFT to this k-space data results in an image with motion artefacts. 

1.2 MRI motion measurement: current state of the art 

In order to correct for motion in MRI, the motion must be measured throughout the 

image acquisition. Over the past three decades there have been many techniques 

developed for motion measurement in brain MRI. The first developments were a class 

of techniques called MRI navigators, followed later by optical tracking, and finally 

active markers. These methods differ in how motion is measured throughout an image 

acquisition but are similar in the way that motion is corrected. This section focuses on 

motion measurement, while motion correction will be discussed in section 1.3. The 

three main classes of techniques for rigid-body motion measurement, which are all still 

active areas of research, will be briefly described in this section. Each of these methods 

has unique advantages and disadvantages, which make them suitable for specific 

applications. These techniques contribute to a diverse toolbox of motion correction 

solutions for MR brain imaging.  
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1.2.1 MRI navigators 

The term “MRI navigators” (NAVs) refers to the collection of techniques that use only 

MRI data – collected in addition to the data required for the image – for motion 

correction. This data can be either k space or image space data. Generally, a reference 

NAV, or set of reference NAVs, is acquired at the beginning of a scan. Measurement 

NAVs are interleaved in an image acquisition and are compared to the reference to 

calculate the relative position of the object.  

The seminal work on MRI navigators was published in 1989.6 This technique involved 

one-dimensional (1D) NAVs that were interleaved in a spin-echo image sequence. The 

1D navigators are Fourier transformed to create a projection in image space. The cross-

correlation function was used to compare measurement NAVs with the reference NAV, 

in order to calculate the displacement. While this technique was only able to measure 

and correct for translation in one dimension, it set the stage for decades of continued 

development of MRI navigators.  

After the seminal work by Ehman et al., more advanced k-space navigator techniques 

were developed. Orbital NAVs7 as well as octant NAVs,8 successfully measured and 

corrected for two-dimensional motion (i.e. in-plane translation and rotation), while later 

developments including cloverleaf9 and spherical NAVs,10,11 were able to measure full 

3D rigid-body motion. Spherical Navigators will be discussed in more detail in section 

1.4.  

Navigator techniques have also been developed using MRI data in image space. The 

concept is very similar to k-space navigators, but the measurement is performed by 

comparing low-resolution images. A reference image is acquired at the beginning of 

the scan, then low-resolution images are acquired throughout the main image 

acquisition, and finally these images are registered to the reference image to determine 
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the relative motion. Prospective acquisition correction (PACE),12 prospective motion 

correction (PROMO),13 and volume navigators (vNAVs)14,15 are all examples of image-

space NAV methods. Image-space NAVs can also be fat images – collectively known 

as fat-NAVs – as was shown by Gallichan et al.16 and Engstrom et al.17 in 2015. While 

image NAVs have been very useful for measuring head motion, they take longer to 

acquire (on the order of 100s of ms) than k-space navigators (on the order of 10s of 

ms), which can limit implementation options and/or lengthen scan time.  

1.2.2 Optical tracking 

Optical tracking, sometimes called external tracking, involves measuring motion with 

an external camera system. Markers are fixed to the subject’s head and the camera is 

used to measure the motion of the markers throughout the image acquisition. The 

earliest publication that used optical tracking for motion measurement was a study in 

2005 that used the motion estimates to retrospectively co-register functional MRI 

(FMRI) image volumes.18 The first study to use this technology for intra-image motion 

correction was published in 2006; they demonstrated prospective motion correction in 

phantom and brain images acquired at 3T.19 Subsequent development of optical 

tracking focused on reducing cross-calibration errors,20,21 optimizing the markers,22,23 

implementing the technique on a 7T system,24,25 as well as evaluating the technique for 

different applications such as magnetic resonance spectroscopy,26 and arterial spin 

labeling.27  

Optical tracking has been very successful at motion correction for brain imaging in 

research settings, but there are several factors that limit its clinical feasibility. One of 

these limitations is the need for an expert to perform regular cross-calibration of the 

camera system to ensure that the reference frames of the camera and MRI scanner are 

aligned. Another challenge is achieving rigid fixation of the markers to the head. For 

accurate motion correction, individually manufactured mouthpieces are typically 
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used,25 which is not practical for clinical imaging, Additionally, achieving adequate 

line-of-sight between the camera system and the markers is not trivial due to scanner 

geometry and the requirement for MRI compatibility. 

1.2.3 Active markers 

Active markers were introduced for MRI motion correction by Ooi et al. in 200928 and 

have since been used for echo-planar imaging specifically29 as well as for motion 

correction in hybrid positron emission tomography and MRI (PET/MRI).30 This 

technique utilizes MRI visible spheres, which are fixed in tiny receive coils attached to 

a headband worn by the patient. Short sequences of pulses are inserted in the imaging 

sequence in order to track the motion of the markers throughout the image acquisition. 

These MRI based tracking elements are shorter than the MRI navigators discussed in 

Section 1.2.2. Unlike optical tracking, this technique does not require a camera or any 

cross-calibration, however the use of a headband and the requirement for the miniature 

receive coils to be connected to the scanner with wires makes effective rigid coupling 

of the markers even more challenging.  

1.3 Motion correction: retrospective vs. prospective 

Once the subject’s head motion is known, the MR image data can be corrected either 

retrospectively or prospectively. Rigid-body motion causes rotations and phase shifts 

in k space; retrospective correction refers to the correction of these errors once the entire 

image has been acquired. With retrospective motion correction, the k-space lines are 

rotated, and phase shifted based on the measured motion. A limitation of this technique 

is the requirement for interpolation of the k-space data, which can lead to blurring. 

Additionally, large rotations cause large gaps in the k-space sampling and this data 

cannot easily be recovered retrospectively. This concept is illustrated in Figure 1-4 

(adapted from Maclaren et al. 2013).31 Retrospective correction does have the 
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advantage that the original data will always be available, which is not the case for 

prospective correction.  

Prospective motion correction is an approach where scan parameters are adjusted in 

real-time in order to essentially follow the object. After a motion measurement is 

performed, the gradients, as well as the transmit frequency and phase can be adjusted 

to move the image frame of reference to that of the repositioned object. This approach 

avoids sampling errors and therefore does not require any interpolation of image data. 

Using this approach means the original data will not be available which could be highly 

problematic in the event the prospective correction fails. Ultimately, prospective 

correction has the potential for better performance but having the unaltered raw data 

available may make retrospective correction a lower risk option for implementation in 

the clinic.  

 

Figure 1-4 Rotations during k-space acquisition lead to gaps in k space (a) which can 
be difficult to recover retrospectively. Prospective correction on the other hand, 
maintains uniform sampling of k space. Figure adapted from Maclaren et al.31 
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1.4 Spherical Navigator Echoes 

A Spherical Navigator Echo (SNAV) is a three-dimensional, k-space navigator that can 

measure rigid-body motion in all 6 degrees of freedom. The technique was first 

introduced for motion measurement in 2002 by Welch et al.11, and there have been 

significant further developments since that time. This section will discuss the SNAV 

technique, and its development prior to the work of this thesis.  

1.4.1 Early development 

Welch et al. described a NAV that samples a spherical trajectory in k space. It is 

acquired in two excitations – one for each hemisphere – that spiral from the equator to 

the poles. Rotations of an object will cause an identical rotation of the data on the 

spherical shell; these rotations can be detected by simply registering the magnitude 

profiles before and after the rotation. Translations will add linear phase ramps to the 

data, which can be measured following rotation determination. A baseline SNAV is 

acquired at the beginning of the scan, to which subsequent SNAVs can be registered. 

An example magnitude profile is shown in Figure 1-5.  

 

Figure 1-5 Welch et al. illustrated the magnitude profile of an SNAV with the sampling 
pattern shown in (a). The SNAVs in (b) and (c) have a relative rotation of 12°. The 
poles remain un-sampled due to slew rate limits of the gradient hardware. Figure from 
Welch et al.,11 reproduced with permission  
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The relationship between a baseline SNAV signal and an SNAV signal acquired in a 

rotated coordinate system (kx’, ky’, kz’) with translation (Δx,Δy,Δz) is given by: 

𝑆+P𝑘+", 𝑘+0, 𝑘+QR = 𝑆P𝑘", 𝑘0, 𝑘QR𝑒S%&(∆";<U∆0;=U∆Q;V)   (1.5) 

The rotation is determined by minimizing the squared difference between the SNAV at 

the unknown position and the baseline SNAV. This is an iterative optimization 

procedure, which can take several seconds to perform. Once the rotation has been 

measured the translations can be measured by calculating the phase difference (∆𝜙) 

between corresponding points. If there are N sample points on the sphere, this yields a 

system of N equations and three unknowns, where all N equations are of the form: 

∆𝜙 = 2𝜋[𝛥𝑥𝑘" + 𝛥𝑦𝑘0 + 	𝛥𝑧𝑘Q]     (1.6) 

This proof of concept work demonstrated that SNAVs can measure rigid motion. A 

limitation of the technique is the lengthy iterative process for rotation determination. In 

order for the SNAVs to be used for prospective, or even timely retrospective correction, 

a much more rapid motion measurement technique is required. Additionally, the poles 

of the sphere were not sampled due to slew rate limits of the scanner.  

Subsequent work focused on optimizing SNAVs for use in motion correction of brain 

images. Petrie et al. developed a variable sampling density (VSD) trajectory, which 

allowed sampling of the entire sphere without exceeding slew rate limits.10 The gradient 

waveforms and spherical trajectory of the VSD SNAV are shown in Figure 1-6. They 

also explored the trade-off associated with the SNAV radius (kρ); a lower kρ will have 

higher signal to noise ratio (SNR) but fewer magnitude features and higher kρ will have 

lower SNR but more magnitude features. This is an important consideration that will 

affect the accuracy of rotation estimates. They tested radii in the range of 0.4 - 1.8 cm-

1 and suggested that the optimal radius is object dependent. 
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Figure 1-6 The X gradient waveform (a) is shown along with the x gradient slew rate 
(c). The Z gradient waveform is shown in (b) and the k-space trajectory for a 0.6 cm-1 

SNAV is shown in (d). Figure from Petrie et al.,10 reproduced with permission. 

Later work by Liu et al. developed a phase unwrapping technique for SNAV translation 

measurements. Prior to this development the maximum translation that could be 

measured was 0.5/kρ. In the case of kρ = 0.4 cm-1, the maximum translation that can be 

measured before a phase wrap occurs is 1.25 cm. Liu et al. demonstrated that with the 

SNAV phase unwrapping method, translations up to 4 cm could be measured.32 In 

another study by Liu et al., SNAVs were further developed for multi-channel receive 

coils.33 They explored different options for combining the complex SNAV signal from 

multiple coils and determined that a simple complex sum resulted in the most accurate 

motion measurements.  
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1.4.2 preRot-SNAV 

In 2011, Liu et al. developed the preRot SNAV method.34 This technique drastically 

reduced the processing time for rotation determination, making it feasible for 

prospective motion correction. The underlying concept is that the magnitude profile of 

an SNAV acquired by physically rotating an object will be the same as an SNAV 

acquired by rotating the SNAV trajectory. The preRot-SNAV method involves 

acquiring a baseline of pre-rotated SNAV templates by rotating the gradients of the 

scanner system, effectively rotating the SNAV trajectory. A measurement SNAV that 

is acquired during an image acquisition can then be compared to the baseline, and a 

rotation can be calculated by determining the best-matched template.  

The rotation range chosen for this work was ± 6° about the left-right (x) axis, ±6° about 

the anterior-posterior (y) axis, and ±20° about the superior-inferior (z) axis. This 

rotation space was sampled with 512 randomly generated angles to form a baseline of 

512 pre-rotated templates, which took 26 s to acquire. The rotation angle of 

measurement SNAVs was calculated by determining the three best matched baseline 

SNAVs using the sum of squared differences cost function. A weighted average of 

these templates was calculated for the final rotation estimate. The translation of a 

measurement SNAV was then measured by calculating the phase shift between the 

measurement SNAV and the best-match template.  

The SNAVs used in this study had a radius of 0.4 cm-1 and a minimum TR of 25 ms. 

The accuracy of the SNAV technique was evaluated both in vitro and in vivo and found 

to have an accuracy and precision of 0.8° ± 0.4° for rotation measurement and 0.4 mm 

± 0.2 mm  for translation measurement. 

The preRot-SNAV technique can measure object rotations in tens of milliseconds on a 

personal computer, compared with the several seconds required by the conventional 
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iterative SNAV registration methods which are also prone to errors related to local-

minimum convergence. These improvements make the preRot-SNAV technique a 

valuable tool for rigid-body motion correction applications in MRI. 

1.5 Motion Correction in Hybrid PET/MRI 

1.5.1 Positron Emission Tomography 

Positron Emission Tomography (PET) is a diagnostic nuclear medicine technique that 

provides functional and metabolic information. In a PET exam a radionuclide – often 
18F is introduced into the body on a biologically active molecule called a radiotracer or 

radiopharmaceutical. A very common radiotracer is fluorodeoxyglucose (FDG). The 

tracer emits positrons in the decay process, which then annihilate with an electron to 

create two 511 keV gamma rays – emitted at almost 180° from each other – that are 

measured by the detector. The positron emitting radionuclide can then be localized 

along a straight line of coincidence. Typically, this data is collected in a format called 

“list-mode” data where each event (detector measures gamma rays) is stored with a 

time stamp. After all of the data has been acquired, the list-mode data can be 

reconstructed into a three-dimensional image. The sequential and inherently time-

consuming nature of this data collection makes it susceptible to motion. If head motion 

occurs during a PET exam, there will be inconsistencies in the acquired data, which 

causes blurring and reduced image resolution.  

1.5.2 Hybrid PET/MRI 

Hybrid PET/MRI systems integrate both PET and MRI, providing complementary 

functional and anatomic information. There are several exciting applications for 

PET/MRI in neuro-imaging, including imaging in epilepsy,35 and neurodegenerative 

disorders.36 Hybrid PET/MRI could be a useful tool for both clinical and research 

neuro-imaging. However, both the MR and PET images are susceptible to motion.  
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1.5.3 Motion correction in Hybrid PET/MRI 

In the previous sections, rigid-body motion measurement and correction techniques 

were discussed in the context of stand-alone MRI systems. The advent of integrated 

PET and MRI systems provides the opportunity to allow MRI navigator techniques to 

be used not only for correction of the MRI data but also the simultaneously acquired 

PET data.  

Previous work has demonstrated the use of MRI motion measurement techniques to 

correct PET data. Studies using MRI navigators37-39 and also studies using active 

markers30,40 showed successful motion correction of PET data. An SNAV method for 

correcting both the simultaneously acquired PET and MRI data is presented in Chapter 

3. 

1.6 Deep learning image-to-image translation 

So far, this chapter has focused on motion tracking, and motion correction based on 

known motion. Chapter 4 will present an alternative approach which makes use of 

recent advances in computer vision and deep learning. In Chapter 4, a method for using 

a deep convolutional neural network (DCNN) to perform retrospective motion 

correction is discussed. In this section I will give a brief overview of neural networks 

and deep learning, I will describe what deep convolutional neural networks are and how 

they can be applied for MR image-to-image translation, which refers to the approach 

of training a deep neural network to predict an image in one domain from an image 

in another domain. Image-to-image translation is the term often used in computer 

vision literature; it is commonly referred to as image synthesis in medical imaging 

literature.  
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1.6.1 Neural networks 

One of the earliest neural networks was a single layer perceptron developed by Frank 

Rosenblott in 1958. It was found to be useful in classifying a set of inputs into one of two 

classes. A single layer perceptron binary classifier is illustrated in Figure 1-7. In the 1960’s, 

work by Marvin Minsky and Seymour Papert suggested neural networks could only learn 

linearly separable functions. Following this report, very little research was done on neural 

networks until the 1980’s. Key concepts in the 1980’s that revived interest and research 

into neural networks, were distributed representation and backpropagation. Deep neural 

networks, which will be discussed in the next section were enabled by the improved 

computing resources and data availability in the 2000’s. 

 

Figure 1-7 A single layer perceptron (SLP) has one hidden layer, an SLP binary classifier 
has a single output node which classifies the set of inputs into one of two classes.  

1.6.2 Deep learning 

Deep learning is an aspect of artificial intelligence and machine learning. Compared to 

traditional neural networks, deep neural networks have more layers, and increased 

model capacity. They can learn more abstract representations of data to perform 

complex tasks. This discussion is limited to supervised deep learning – a method of 

training a model to map some input to a desired output given many examples of 
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input/output pairs. A deep neural network (DNN) is an extension of a traditional 

neural network that has been used in supervised machine learning for decades. A 

diagram of a traditional neural network and deep neural network is shown in Figure 1-

7. Traditional neural networks typically use handcrafted features and only one hidden 

layer (feature vector) to learn the mapping from input to output. DNNs have many 

hidden layers and can learn more abstract features from input data, which increases the 

complexity of the relationships they can model.41 DNN’s are trained using a large 

number of input/output pairs. The learnable parameters are the weights; they are 

iteratively updated in order to minimize a loss function which quantifies the difference 

between the predicted and target outputs. Common loss functions are mean absolute 

error in applications with structured output and binary cross entropy for classification 

applications.42 

 

 

Figure 1-8 The simple neural network on the left has a single hidden layer (feature 
vector). The deep neural network has many feature vectors, which increases the model 
capacity and allows the model to learn more abstract and complex features from the 
input data. Each orange and blue node is the result of a non-linear activation function 
applied to the dot product of the feature vector in the previous layer and a learned 
weight vector.  
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1.6.3 Deep convolutional neural networks 

A deep convolutional neural network (DCNN) is a type of DNN; it is a deep learning 

architecture that is often applied in the field of computer vision. It is composed of 

several layers, each of which learns increasingly more complex patterns and features in 

the data.43 These features are extracted in order to perform the learning task, which may 

be image recognition,44,45 image synthesis,46,47 natural language processing or many 

other potential applications but is ultimately mapping some high dimensional input (e.g. 

an image) to a desired output. Diagrams of convolutional neural networks are shown in 

Figures 1-8 and 1-9. The two essential elements of any DCNN are convolution and 

non-linear activation. The convolution layers are the core building block of any DCNN; 

the convolution filters are made up of the learnable parameters, and the result of the 

convolution operation are the feature maps.43 Non-linear activation allows the network 

to learn more complex non-linear relationships. Pooling and/or up-sampling, which 

reduce and increase the dimensionality of the feature maps are used in most DCNNs. 

Fully connected layers, in which each node is connected to each node of the previous 

layer, are used in some DCNNs – typically classifiers. Most modern DCNNs will also 

include batch normalization which normalizes the output of an activation layer and 

helps the network learn more quickly. Dropout, which is the practice of ignoring some 

percentage of nodes in each iteration of the training is also often included. Dropout 

regularizes the network, prevents overfitting, and improves the networks ability to 

generalize to new examples. The work presented in Chapter 4 makes use of two 

different kinds of DCNNs – a classifier network and an encoder-decoder network. 

1.6.4 DCNN: classifier 

DCNN classifiers are ubiquitous in computer vision applications. A DCNN can be 

trained to classify an image given a large sample of labeled examples. This is often 

done on natural images, for example the images of ImageNet and CIFAR, which consist 
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of large databases of natural images, like cars, animals, buildings etc.48 ImageNet and 

CIFAR databases have served as benchmark data for the development of increasingly 

more sophisticated and more accurate classifiers. In recent years, these DCNN 

classifiers have become popular in medical imaging. VGGnet,45 a very deep classifier 

originally developed for an ImageNet challenge is illustrated in Figure 1-8. Variations 

of this network have been used in classification of breast lesions49 and lung tissue50 as 

well as diagnosis of alzheimers.51 Image classifiers include convolution, pooling, non-

linear activation and fully connected layers.  

 

Figure 1-9 The VGG-net classifier consists of 16 trainable layers. These include 
convolutional layers (Conv), and fully connected (FC) layers. Max-pooling (Pool) 
layers are used for dimensionality reduction. 

1.6.5 DCNN: encoder-decoder 

DCNN encoder-decoder networks have become very popular in medical image 

segmentation and image synthesis. Unlike classifiers, the output of an encoder-decoder 

is high dimensional and structured (e.g. an image). The encoder portion of an encoder-

decoder learns a high dimensional feature vector – an abstract representation of the 

input, and the decoder portion learns to reconstruct the desired output from this 

feature vector. Recently, encoder-decoder networks have been applied for image 

synthesis, which refers to the approach of training a deep neural network to predict 

an image in one domain from an image in another domain. For example, encoder-

decoder networks have been used in predicting CT images from MR52 and generating 

images with different contrasts.53 An illustration of a simple encoder-decoder used for 

this purpose is shown in Figure 1-9 
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Figure 1-10 Encoder decoder network trained with T1/T2-FLAIR image pairs 
synthesizes a T2-FLAIR image from a T1-weighted image.53 Each layer includes 
convolution and a sigmoid activation function. Max- pooling is used in the encoder 
portion of the network, while up-sampling is used in the decoder portion of the network. 
Figure from Sevetlidis et. al.,53 reproduced with permission from Springer Nature. 

1.6.6 Conditional generative adversarial networks 

A conditional generative adversarial network (cGAN) is a novel deep learning 

technique for image synthesis.54-56 cGANs make use of an encoder-decoder network 

and a classifier. In a cGAN architecture, the encoder-decoder is referred to as a 

generator, and the classifier is referred to as a discriminator. A cGAN enforces realistic 

looking images in the network output. This is especially useful in enforcing sharpness 

in the predicted images, which have a tendency to be blurry when using a stand-alone 

encoder-decoder54. The generator and discriminator are trained together; the generator 

is trained to minimize some image similarity metric (e.g. mean absolute error), while 

the discriminator is trained to classify an image as either an original target image, or a 

generator output. The discriminator loss is incorporated into the loss function of the 

generator to force the generator to predict images that look more like target images. 

cGANs have been recently applied for many applications in medical imaging, including 

estimating high quality images from low dose images in both PET56 and CT.57 An 

illustration of a popular cGAN implementation, pix2pix,54 is shown in Figure 1-10. A 

cGAN method, adapted from pix2pix, for generating motion-corrected from motion-

corrupted images is described in Chapter 4.  
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Figure 1-11 In this pix2pix illustration, the generator input is a black and white image 
and the target is the corresponding colour image. The generator predicted image (fake) 
along with its corresponding input, forms an image pair that is used to train the 
discriminator. Both fake and real image pairs are used to train the discriminator. The 
discriminator is trained to distinguish between target (real) images and fake images, 
while the generator is trained to predict images that are quantitatively similar to the 
target and will fool the discriminator. Figure adapted from Cho 2017.58 
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1.7 Thesis outline 

This thesis contains 5 chapters. The first chapter introduced the challenges of motion 

in MRI, as well as current techniques to address motion in both standalone MRI and 

hybrid PET/MRI. Chapter 1 also introduced deep learning and its application in image 

synthesis, which is relevant background information for Chapter 4. 

Chapter 2 presents a novel method for retrospective rigid-body motion correction of 

brain images using spherical navigator echoes. A version of this Chapter entitled 

“Retrospective 3D motion correction using spherical navigator echoes” was published 

in Magnetic Resonance Imaging in 2016. The first development presented in this 

Chapter is an accelerated baseline technique which reduces the required baseline scan 

from 26 to 2.6s making SNAVs a much more practical tool for motion correction. The 

second development is the navigated image sequence used for in vivo motion 

correction.  

Chapter 3 discusses the development and evaluation of Spherical Navigator Echoes for 

hybrid PET/MRI. A version of this Chapter entitled “Rigid-body motion correction in 

hybrid PET/MRI using spherical navigator echoes” was submitted for publication in 

Physics in Medicine and Biology, in July 2018.  

Chapter 4 presents the development of a deep learning method for motion correction. 

The conditional adversarial network developed for motion correction MoCo-cGAN is 

trained and evaluated on images with simulated motion. A version of this Chapter 

entitled “Conditional generative adversarial network for three-dimensional rigid-body 

motion correction in MRI” was submitted for publication in Magnetic Resonance in 

Medicine in October 2018.  

Chapter 5 summarizes the findings, contributions and limitations of this project and 

provides suggestions for future work.   
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2 Retrospective 3D motion correction in MRI 
using SNAVs 

2.1 Introduction 

Despite the advent of continually faster acquisition strategies, subject motion remains 

a problem in MRI and numerous techniques have been proposed to correct it. One such 

method is the use of navigator echoes,1 first proposed by Ehman et al. in 1989 to 

measure and correct rigid body motion. Pencil beam navigators, frequently used in 

cardiac imaging2,3 and orbital navigators4-6 are limited to motion measurement in one 

and two dimensions respectively. Three-dimensional (3D) motion can be measured 

using cloverleaf7 or spherical8,9 k-space navigators. The spherical navigator echo 

(SNAV), which samples a spherical shell in k space, can measure motion in 6 degrees 

of freedom9 by using relationships that follow from the Fourier shift and rotation 

theorems.4 First described by Welch et al.9,10 SNAVs promised simultaneous 3D 

motion measurements but were impractical due to long measurement and processing 

times. The polar SNAV approach11 proposed a faster registration technique but 

translation estimates remained too slow for prospective correction. 

These limitations with navigator echoes have led to the development of alternative 

motion correction strategies – primarily image based and optical-tracking based 

methods. Image based tracking methods12-19 and fat navigators20-22 involve the 

acquisition of low-resolution images to track – and correct for – motion throughout 

image acquisition. While highly effective, these methods have been applied only to 

spin-echo based imaging because of the lengthy acquisition and processing of low-

resolution images used to quantify motion. Optical tracking methods, which have been 

used in many studies,23-28 use external camera systems to measure and correct for head 

motion in real time. However, these techniques rely on tracking devices mounted on 

the subject as well as MR-compatible external hardware that require cross-calibration 

between the tracking system and the scanner’s frame of reference. 
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Therefore, while recent work in the field has largely moved away from k-space 

navigators, SNAVs remain a promising alternative, as they are very rapid to acquire 

and have been limited mainly by the processing method. A solution to the slow 

processing speed was proposed by Liu and Drangova,29 who demonstrated that SNAV 

processing can be reduced from several seconds to less than 20 ms, using template 

matching instead of the iterative registration and minimization algorithm used 

previously. This technique – referred to as the preRot-SNAV technique – relies on the 

acquisition of a set of baseline template SNAVs with known rotated trajectories 

covering the entire range of anticipated motion. While accurate motion tracking was 

demonstrated with the preRot-SNAV technique, its clinical applicability was limited 

because the acquisition of the pre-rotated baseline required 26 s of “no motion” during 

baseline acquisition. 

Building on the proposed preRot-SNAV technique, this Chapter presents the first 

application of SNAVs for in vivo motion correction.  Retrospective motion correction 

of 3D gradient echo images was achieved by implementing a modification of the preRot 

technique, which acquires a subset of pre-rotated baseline templates followed by offline 

simulation of axial rotation to each of the acquired SNAV templates. This “hybrid 

baseline” preRot-SNAV technique is advantageous as it reduces the likelihood of 

subject motion during template acquisition; it is first evaluated in phantom studies then 

retrospective motion correction is demonstrated in multiple volunteers with single and 

multi-channel RF coils.  

2.2 Methods 

We first describe the SNAV acquisition with an overview of the proposed hybrid 

preRot-SNAV approach and follow with a description of phantom experiments that 

evaluate the hybrid preRot-SNAV motion measurement accuracy, before 

demonstrating retrospective in vivo motion correction of 3D spoiled gradient echo 
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(SPGR) images. All experiments were performed on a 3.0 T whole-body MRI 

scanner (GE 750, GE Medical Systems, Milwaukee, WI). Phantom experiments were 

performed using a birdcage RF head coil and in vivo experiments were performed using 

both the single-channel and eight-channel RF head coils. The Research Ethics Board at 

our institution approved this human-subject study and informed consent was obtained 

from the volunteers. 

2.2.1 PreRot-SNAV overview 

Briefly, the original preRot-SNAV method29 requires the acquisition of 512 baseline 

SNAV templates, pre-rotated by a uniform distribution of random Euler angles that 

sample a 3D rotation space. The pre-rotated templates are acquired by rotating the 

gradient co-ordinate system to yield angles that cover the range of expected rotations, 

e.g. for head motion a range of ±6° about the right-left (X) and the anterior-posterior 

axis (Y) axes, and ±20° about the superior-inferior (Z) axis was shown to be sufficient.29 

Rotation angles between an unknown physically transformed position and the reference 

(baseline) position are determined by identifying the template with the lowest sum of 

squared differences between the baseline templates and SNAVs acquired at the 

transformed position. Following rotation determination, translations are calculated 

from the phase difference between the best-matched template and the SNAV acquired 

at the transformed position. For large translations, SNAV phase unwrapping is 

performed.30 

2.2.2 Hybrid baseline strategy 

In this study, the acquisition of the baseline SNAV template data set is accelerated by 

utilizing a hybrid approach: baseline templates pre-rotated only about two axes are 

acquired, and SNAV templates corresponding to rotations about the third axis are 

simulated. First, baseline SNAV templates are acquired by rotating the gradients to 
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yield rotations θx and θy. Each acquired SNAV is then rotated by a set of 

predetermined θz to cover the range of anticipated rotations in the axial direction. For 

each rotated SNAV a simulated SNAV profile is generated using interpolation. 

The set of Euler angles covering the predefined rotation range can be sampled using 

numerous strategies; previously a random distribution of sampling was used, here we 

investigate two different strategies – one that acquires 170 SNAVs and the other – 82 

SNAVs. For a predefined rotation range of ±6° in θx and θy, the 170-hybrid strategy 

acquires 169 SNAVs that cover the range in steps of 1°, plus an additional non-rotated 

SNAV acquired at the end to verify that the object has not moved during baseline 

acquisition (resulting in a total of 170 SNAV templates). For the 82-hybrid strategy, 

the step size between Euler angles in θx and θy is 2°, with additional angles generated 

at ±1° to increase sensitivity to low magnitude rotations. In each case, hybrid baseline 

datasets are generated by simulating SNAV templates that mimic θz rotations with 1° 

increment, within a predetermined rotation range (±20° in this study). 

SNAV template simulation is performed using interpolation, following techniques 

described earlier.8,9 Briefly, the 3D simulated SNAV coordinates are converted to polar 

coordinates (latitude and longitude) then the SNAVs, at the locations of the rotated 

coordinates, are linearly interpolated. The simulated and acquired baseline SNAV 

template datasets are combined to form a hybrid SNAV baseline dataset. Following the 

simulation of additional templates, the 170-hybrid and 82-hybrid baselines have 6970 

(41x170) and 3362 (41x82) templates respectively.  

Finally, using the acquired and simulated baseline templates, rotations are determined 

by identifying the best match templates from this hybrid baseline. Specifically, this was 

achieved by first calculating a cost function equal to the sum of squared differences 

between the acquired template and the baseline templates. Subsequently a weighted 
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average29 rotation angle was calculated from the templates with a cost function value 

falling within 10% of the lowest calculated cost. 

2.2.3 SNAV trajectory and acquisition 

SNAVs were acquired in 2 shots (2 hemispheres), with a variable sampling density, as 

described by Petrie et al.8 The SNAV sequence is a modified gradient echo sequence 

with 22 helical turns and 1254 sample points per hemisphere. Processing of all 

navigators, including the simulation of the hybrid baseline (described below), was 

performed off-line on a 2.8-GHz Intel Core i5 processor using MATLAB (Math Works, 

Natick, MA). For all SNAVs acquired in this study a bandwidth of 125 kHz, and a 

SNAV radius kr = 0.4 cm-1 were used. An SNAV radius of 0.4 cm-1  was shown to be 

optimal for head imaging in prior work8,29. the readout time of a single SNAV 

hemisphere was 10 ms. 

2.2.4 In vitro accuracy evaluation  

Prior to in vivo evaluation, the accuracy of the hybrid SNAV baseline strategies were 

tested in phantom experiments using an agar filled plastic skull with dimensions 

corresponding to about 75% of the size of an adult skull.  To evaluate the accuracy of 

rotation estimation using the two proposed hybrid baseline strategies, three sets of 

baseline template SNAVs were acquired at a reference position (prior to moving the 

phantom) – one each with 512, 170, and 82 templates, as described above. The 512-

template baseline dataset29 was used to determine the true phantom rotation. 

Subsequently, the phantom was manually placed at three arbitrary orientations (trials) 

and SNAVs were acquired at each position. 32 SNAVs were acquired in order to 

determine measurement precision.  Phantom rotation at each trial position was 

estimated using the preRot method using the 512, 170-hybrid, and 82-hybrid baseline 
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datasets. Residual translations that occurred when rotating the phantom were also 

measured. 

To further assess the hybrid baseline SNAV’s accuracy in translation measurements, 

we measured phantom translation with and without rotation from a reference position. 

The phantom was placed on a linear motion stage31 (MR_1A_XRV2, Vital Biomedical, 

London, Canada) oriented along the bore’s Z-axis and 82-hybrid baseline SNAVs were 

acquired at a reference position. 32 SNAVs were then acquired at the reference position 

and at each of four translated positions: 2 mm, 5 mm, 10 mm and 15 mm. The phantom 

was subsequently returned to the reference position, rotated arbitrarily then translated 

to the same positions; SNAVS were acquired at each position. 

Finally, to demonstrate the hybrid baseline SNAVs ability to accurately measure 

dynamic compound motion, the phantom was rotated and the linear motion stage was 

set to undergo sinusoidal motion with amplitude of 10 mm and a period of 3 s. While 

the phantom was moving, SNAVs were acquired continuously for 26 s. The rotation 

and translations were extracted from each SNAV and the dynamic motion profile was 

reconstructed.  The rotation and translation measurements were determined using the 

82-hybrid baseline template dataset and compared to the known translations. 

2.2.5 Navigated pulse sequence 

Prior to in vivo evaluation, a navigated image sequence was developed based on a 

modified spoiled gradient echo sequence (SPGR-SNAV). SNAVs were interleaved into 

the product 3D SPGR pulse sequence to follow the acquisition of every four Cartesian 

lines of k-space data. Because the full SNAV acquisition requires 2 shots, a full 

navigator is acquired for every six RF pulses, thereby resulting in an increase of scan 

time by 33%. By keeping the repetition time (TR) and the RF pulses are identical for 

the image acquisition and navigator, the steady state is not disturbed.32 The sequence 
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parameters used were as follows: matrix size = 256x160x124, TE/TR = 3.9/15 ms; 

image bandwidth = 62.5 kHz, SNAV bandwidth =125kHz, flip angle = 8°; slice 

thickness = 1.5mm; field of view = 24x24x18.6 cm, readout direction was right/left.  

Following zero filling of the unacquired k-space lines, the reconstructed matrix size 

was 256x256x196. The duration of the scan was 7.5 mins.  

2.2.6 In vivo motion experiments 

First, to demonstrate that the insertion of SNAVs does not affect image quality, both 

the product SPGR sequence and the SPGR-SNAV sequence were executed while a 

volunteer remained stationary. Next, three volunteers were each scanned twice using 

the SPGR-SNAV sequence: once using the single-channel head coil and once with the 

8-channel head coil. The volunteers performed step-wise motion; they were instructed 

to move approximately every 50 s of the 7.5 min scan.  

2.2.7 Analysis and retrospective correction 

The motion parameters were extracted from each of the interleaved SNAVs as 

described above. To correct the images, phase shifts were first applied in order to 

correct for the measured translations; next, the 3D coordinates of the phase-corrected 

data were rotated based on the measured rotation. K-space data were then interpolated 

at the transformed coordinates using spline interpolation. The NuFFT gridding 

algorithm33 and MATLAB’s spline interpolation were compared for this interpolation 

step; minimal differences were observed, therefore spline interpolation, the least 

computationally demanding, was chosen for this study.  The transformed k-space data 

were then Fourier transformed into the final motion corrected images, which were 

compared to both the reference, and original motion-degraded images. For the multi-

channel acquisitions, before extracting motion estimates, the SNAVs were summed 
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across channels to form a combined navigator.34 The k-space data from each channel 

was corrected before Fourier transformation and sum of squares coil recombination. 

2.2.8 Partial SNAV evaluation in vivo 

Additional analyses were performed to assess whether further reduction in SNAV 

acquisition time can be achieved by reducing the number of SNAV readout points, 

while retaining the accuracy of motion measurements. The SNAV trajectory used in 

this study consists of 22 helical turns per hemisphere; all in vivo data acquired above 

were also processed with truncated SNAVs using only a limited number of helical turns 

(between 2 and 22) that sampled the lowest equatorial portion of each hemisphere  (belt 

around the equator), corresponding to SNAV readout lengths between 1.4 and 10 ms 

per hemisphere. For this experiment the 82-template baseline was used. Motion 

corrected images were generated for each number of turns. Retrospectively corrected 

images were compared qualitatively as well as quantitatively using the image entropy 

(E) as the metric:  

𝐸 = −∑ `a
`bcbNd

ln f `a
`bcbNd

gha
iGF 	,    (2.1) 

where p is the pixel index, 𝑛i	is the total number of image pixels, and 𝐼i is the pixel 

intensity.35	𝐼.l.mn is the total image energy given by:  

	𝐼.l.mn = o∑ 𝐼p%
hq
pGF .          (2.2) 

 Image entropy has been used as a quality metric in prior retrospective motion 

correction applications.35,36 It describes the probability distribution of pixel intensities 

in the image. For an image with more blurring, a higher entropy value is expected.  
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2.3 Results 

2.3.1 Static phantom rotation and translation measurements 

Simulated templates were generated for both the 170- and 82- template hybrid 

baselines. The computation time required to simulate all templates was 31 s and 15 s 

for the 170-hybrid and 82-template hybrid baselines, respectively. Measured phantom 

rotations for the three trial orientations of the phantom are shown in Figure 2-1. The 

“gold standard” rotations [θx, θy, θz], as determined by the 512-baseline, were [-4.7º, --

1.3º, -8.8º], [-0.1º, 1.7º, 11.0º], and [0.0º, 1.3º, -10.3º] for trials 1, 2, and 3 respectively. 

Compared to the measurements made using the 512-template baseline dataset, the 

measurements performed using both the 82-hybrid and 170-template hybrid baselines 

for θx, θy and θz were within 0.9º, 0.9º and 0.4º, respectively. In each case, the standard 

deviation of the 32 repeated measurements was 0.2° or less and the bounds of the 95% 

confidence interval is within 0.08° of the mean. When the phantom was repositioned 

for the rotation trials, translations also occurred. These translations, also shown in 

Figure 2-1, range between -8.4 mm and 5.6 mm. Measurements performed using the 

82-hybrid and 170-hybrid baselines for X, Y and Z were within 1.0 mm, 0.4 mm, and 

0.7 mm of the 512-template standard, respectively.  

The accuracy of measuring static translations for a rotated and non-rotated phantom, 

using the linear stage, showed excellent accuracy (r2 > 0.99 for both the non-rotated and 

rotated cases). The standard deviations from the 32 SNAVs at each position ranged 

from 0.03 mm to 0.07 mm and the bounds of the 95% confidence intervals were all 

within 0.03 mm of the mean values. All of the measured mean translations, both with 

and without rotation, were within 0.3 mm of the known stage translations.  
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Figure 2-1 Rotation (a-c) and translation (d-f) measurements of three trial repositions 
of the skull phantom. Results obtained using the full 512-template baseline dataset is 
plotted with those obtained using the 170- and 82-hybrid baseline datasets.  The error 
bars, representing standard deviation of 32 SNAV measurements, are smaller than the 
symbols in most cases (maximum 0.2°, 0.6 mm). 

2.3.2 Dynamic compound motion measurements 

The results of the dynamic motion experiments are shown in Figure. 2-2a (rotation) and 

2-2b (translation). As expected, the rotation values were constant over the duration of 

the experiment, with small fluctuations observed at the extremes of the sinusoidal 

translation. The average rotation measured throughout the 26 s of motion was θx = -

1.3° ± 0.16° (95% CI: -1.37, -1.34), θy = 3.7°± 0.2° (95% CI: 3.71, 3.75) and θz = -11.0 

± 0.04° (95% CI-10.99, -10.98). These rotation estimates also agreed (maximum 

difference 0.2°) with those measured when the phantom was stationary at the reference 
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position (θx = -1.5, θy = 3.5, θz = -11.0). Translation measurements in the Z-direction 

agree with the known (prescribed) translations (Figure 2-2c). Small translations (< 

0.4 mm) were measured in the X and Y directions, suggesting a slight misalignment of 

the linear stage with the scanner’s Z-axis. 

 

Figure 2-2 Rotation (a) and translation (b) results for the compound motion 
experiments using 82-hybrid baselines, demonstrate the ability to follow compound 
motion over time (12 of the 26 acquired seconds are shown). Rotation estimates at the 
stationary reference position were θx = -1.5°, θy = 3.5°, θz = -11.0°. The standard 
deviation of the rotation measurements is lower than 0.2° and the variation is attributed 
to the large translation component. The motion stage was programmed to move the 
rotated phantom sinusoidally with a period of 3 s and amplitude of 10 mm. 
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2.3.3 Effect of SNAVs on SPGR images 

To evaluate whether the SNAVs affect the image intensity or contrast we compared the 

images acquired using the SPGR sequence with the images acquired with the SPGR-

SNAV sequence. Figure 2-3 shows both of these images for a single volunteer, 

demonstrating that incorporation of the SNAVs did not affect the appearance of the 

image. While the volunteer was not moving intentionally, rotations up to 0.8° (Figure 

2-3d) and translations less than 0.4 mm were recorded, with a single larger translation 

in Z (Figure 2-3e). Retrospective motion correction was applied to the SPGR-SNAV 

image (Figure 2-3c) to demonstrate that the process of retrospective correction – for 

this negligible amount of motion – did not introduce additional artefacts. Similar results 

were achieved in all volunteers.  

2.3.4 Retrospective motion correction 

In a comparison of the 170-hybrid and 82-hybrid baseline methods in vivo, the 

quantitative motion profiles generated using both methods were are almost identical 

and the motion-corrected images appeared very similar. The 82-hybrid baseline can be 

acquired faster and therefore this method was used for retrospective motion correction 

in this study. Representative results of retrospective motion correction using a single 

channel birdcage coil are shown in Figure 2-4, which compares a reference (no motion) 

image (Figure 2-4a) to a motion-corrupted image (Figure 2-4b) and retrospectively 

motion-corrected image obtained using the 82-hybrid (Figure 2-4c) baseline strategy. 

For this experiment the volunteer was asked to rotate their head in both the θx and θz 

directions (nodding and axial rotation). The measured motion agrees well with the 

intended motion; we see step-like rotations about X and Z with accompanying Z and X 

translations at the time-points of directed motion. The uncorrected image acquired 

during motion has distortions, as expected. Excellent correction of these artefacts is 
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observed in the corrected image (Figure 2-4c). The measured rotations and 

translations are shown Figure 2-4d and 2-4e respectively. 

 

Figure 2-3 Axial and sagittal slice from the 3D image acquired with the product SPGR 
sequence (a) and the SPGR-SNAV sequence (b). The SPGR-SNAV image was 
retrospectively corrected (c) using measured SNAV rotation (d) and translation (e). The 
oscillations in z translation correspond to the respiratory rate of the subject. All three 
images have the same image entropy. 
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Figure 2-4 Axial and sagittal slices acquired with a single-channel head coil: (a) no 
motion reference image; (b) uncorrected image acquired with intended rotation; (c) 
motion corrected image. The measured rotations and translations, obtained using the 
82-hybrid baseline, are shown in (d) and (e). 

Representative results of motion correction, with a different volunteer, using an 8-

channel head coil are shown in Figure  2-5. Once again retrospective motion correction 

was achieved, with the corrected images shown in panel (c) demonstrating fewer 

motion-related artefacts when compared to the uncorrected images in (b). Substantial 

correction of in vivo head motion up to 4° and 4 mm was observed in six acquired data 

sets with 3 volunteers and 2 RF coils. 
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Figure 2-5 Axial and sagittal slices from the 3D reference image acquired with an 8-
channel head coil (a) uncorrected image acquired with intended rotation (b) and motion 
corrected image (c). The measured rotations and translations are shown in (d) and (e). 

2.3.5 Partial SNAV evaluation 

In vivo motion correction was also successfully performed using only an equatorial strip 

of the SNAV data. Images retrospectively corrected using between 22 (full) and 2 

SNAV helical turns are shown in Figure 2-6, along with the reference and uncorrected 

images. Qualitative evaluation of the images demonstrates excellent correction with 

partial SNAVs; with a degradation of image quality observed only when fewer than 3 

turns (i.e. equatorial strip that reaches up to 0.15 of the SNAV radius) were used. 

Quantitative assessment, presented as normalized entropy of the 3D images, is 
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presented in Figure 2-7 for all 6 experiments – three volunteers, two coils – along 

with the normalized entropy of the uncorrected images. The Figure clearly indicates 

that for all motions, image quality is improved with increasing number of turns and that 

the quality does not significantly improve when the number of turns is increased past 

approximately 8 (corresponding to 0.55 of the SNAV radius).  

 

Figure 2-6 Effect of reducing the number of turns of the SNAV. Shown are axial and 
sagittal slices from a 3D reference image (a), uncorrected motion image (b), and 
motion-corrected images with 22 (full), 18, 14, 10, 6 and 2 SNAV helical turns in (c-
h), respectively. 
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Figure 2-7 Image entropy of each corrected image normalized by the entropy of the 
associated reference image plotted vs. number of helical turns used for SNAV motion 
measurements. The horizontal lines indicate the normalized image entropy of the 
uncorrected images.  

2.4 Discussion 

This work represents the first application of SNAVs for retrospective motion correction 

in vivo. Retrospective correction was enabled by the combination of two developments 

– the earlier introduction of the preRot-SNAV template matching technique29 and the 

current introduction of an accelerated method for acquiring the baseline templates. An 

assessment of the required number of SNAV helical turns was also performed. Baseline 

acceleration is achieved by acquiring a limited subset of pre-rotated baseline templates 

followed by the simulation of templates corresponding to rotation in the Z direction to 

generate the hybrid baseline. Simulating the third rotation angle reduces the baseline 

sampling from a 3D- to a 2D- sampling task, which significantly reduces the number 

of templates acquired without reducing the sampling density of the rotation space. 

Accurate rotation and translation results were achieved in phantom experiments with 

as few as 82 acquired templates, corresponding to an acquisition time for the entire 

baseline template dataset of 2.5 s. Retrospective correction of head motion in vivo was 



 
45 

also successful, surpressing motion artefacts in images acquired during head rotations 

of several degrees and corresponding translations of up to 4 mm. 

For a practical implementation of the preRot-SNAV technique we have to limit the 

rotation range of the acquired baselines so that the templates can be acquired in a 

reasonable length of time. In this work we used a range of anticipated motion that is 

sufficient for head imaging (±6° about the X and Y axes). Rotations about the Z axis 

were simulated, thereby providing latitude for simulating over any range; in the current 

work a range of ±20° was used for consistency with prior work.29 We simulate rotations 

only about the Z axis because the interpolation of SNAV profiles following rotations 

along the threads of the spiral SNAV trajectory are far more accurate than interpolations 

of rotations across the threads, likely due to the 𝑇%∗ decay that occurs throughout the 

SNAV readout. As the phantom (Figure 2-1) results show, the 170-hybrid and 82-

hybrid strategies performed comparably. The distribution of angular positions sampled 

in the baseline can be modified easily and could be optimized for specific applications 

or a further increase in acquisition speed.  

Earlier work29 showed that reduction of the SNAV acquisition time is achieved by 

acquiring only the equatorial portion of each SNAV. The current study demonstrates 

that even when using the hybrid template baseline approach, reducing the number of 

helical turns had little effect on motion measurements. The results suggest there is little 

benefit to acquiring the entire SNAV and in fact as few as 8 turns are required for 

consistently successful retrospective correction (Figure 2-7). The benefit of reducing 

the acquired number of SNAV turns is the reduction in SNAV acquisition time, with a 

full 22 turn navigator requiring 10 ms per hemisphere to acquire, compared to 5.3 ms 

for an 8-turn acquisition. 

The in vivo motion correction results (Figures 2-5) are promising.  In all cases, the 

profiles derived from the SNAV motion measurements agree with the intended motion. 
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Occasional jitter, of up to 0.4 mm and 0.5 degrees, is seen in the motion profiles. This 

jitter is likely related to small errors in identification of the minimum of the template-

matching cost function and can likely be reduced with further optimization of the 

matching method. However, jitter of this magnitude did not appear to affect the ability 

of the hybrid preRot-SNAV to perform retrospective motion correction. Smoothing the 

motion profiles prior to correction may lead to additional improvement and can be 

implemented prospectively using Kalman filtering, which has been demonstrated with 

prior navigator techniques.17  

This proof-of concept work has a few limitations. First, we only demonstrated the 

insertion of SNAVs into a 3D SPGR sequence. Future work will incorporate SNAV 

motion correction into other image sequences (e.g. IR-SPGR & EPI). Implementation 

of SNAVs into 2D sequences is possible but may be more challenging due to a 

mismatch in image and SNAV excitation volumes; a fat selective SNAV excitation 

may be required for this task. Second, the current choice of navigator frequency (every 

4 image lines) was somewhat arbitrary and further investigation is necessary to 

determine an optimal frequency given the trade-off between motion detection latency 

and scan-time; this optimization will likely be application dependent. Third, only 

retrospective correction has been demonstrated so far.  

Prospective motion correction keeps the image coordinate system fixed relative to the 

object and thus unlike retrospective motion correction avoids gaps in k space that occur 

due to object rotation. These gaps in k space following rotations are an inherent 

limitation in retrospective rotation correction. A small rotation range was used for this 

study in order to minimize these gaps. Prospective correction also preserves the noise 

statistics, which in retrospective correction A benefit of retrospective correction, 

however, is that it ensures that the original image is always available. Both methods 

have advantages and disadvantages; it is likely that the more suitable method will be 

application dependent. SNAVs are practical for both retrospective and prospective 
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motion correction if practical issues regarding computation times for motion 

estimates are resolved. 

In order to implement prospective motion correction, further optimization of the SNAV 

processing code is required to provide additional speedup of the motion measurements. 

This will be achieved through implementation in C++ (instead of MATLAB) and, if 

necessary, acceleration using graphical processing units. With an SNAV readout time 

of ~5.3 ms per hemisphere (8 turn SNAV), our goal processing time of 10 ms, and 

additional time for feedback of motion parameters, the gradient orientation can be 

updated within 35 ms of the start of SNAV acquisition. This is faster than the current 

image-based approaches,15-17 which require, at minimum, 100s of ms for navigator 

acquisition and processing. It is important to note that, unlike image-based approaches, 

which have relatively long acquisition times, the presented SNAV approach can be 

implemented, both prospectively and retrospectively, with rapid gradient echo 

sequences. 

2.5 Conclusions 

The presented hybrid baseline SNAV template approach enables the acquisition of a 

pre-rotated baseline template set in only 2.5 s, followed by template simulation. The 

170-hybrid and 82-hybrid sampling strategies performed comparably as did a truncated 

SNAV with as few as 8 helical turns. This method results in accurate measurements of 

phantom rotations and translations. In vivo motion was measured, and retrospective 

motion correction was successfully performed. 
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3 Rigid-body motion correction in hybrid PET/MRI 
using spherical navigator echoes 

3.1 Introduction 

Integrated positron emission tomography and magnetic resonance imaging (PET/MRI) 

is a promising hybrid imaging modality that can provide simultaneous functional and 

anatomic information. For neuroimaging, PET/MRI is especially promising for 

imaging in oncology,1 focal epilepsy2 and neurodegenerative disorders.3 However, both 

PET and MRI are highly susceptible to patient motion due to long acquisition times.  

In PET exams, blurring and artefacts from motion can hinder the detection and 

delineation of lesions and the accurate quantification of radiotracer uptake. If a PET 

image is deemed non-diagnostic, it may be reacquired, however this results in an image 

with lower count statistics if reacquired right away, or increased radiation exposure if 

reacquired at a later date following additional administration of tracer. Motion during 

MRI acquisition also causes substantial blurring and artefacts that can severely degrade 

the diagnostic quality of the images. A study by Andre et al., found that in their 

institution, nearly 20% of MRI exams required at least one sequence be repeated due 

to motion; they estimated that these repeated scans are associated with a cost of 

$115,000 per scanner per year, as well as delayed diagnosis for some patients.4 

While head restraints are effective at reducing head movement during PET and MRI 

exams, they do not completely eliminate it. A simple motion correction technique for 

PET, consists of dividing the acquisition into multiple acquisition frames (MAF).5 

These image frames are then spatially registered and summed to create a single volume. 

When this technique is applied, without knowledge of the motion, a trade off exists 

between high-temporal-resolution motion correction, which yields low count statistics 

resulting in high noise propagation6 and potential bias in the final image,7,8 and low-

temporal-resolution motion correction with potentially high intra-frame motion. 
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Knowledge of motion parameters during a scan greatly improves the MAF method 

by informing the binning of the data.  

External tracking of head motion – typically using an external camera and markers 

attached to the head – has been successful for motion measurement in both PET9 and  

MRI.10-12 A limitation of this technology is the tradeoff between effective rigid coupling 

of the marker to the head, and patient comfort. Additionally, achieving sufficient line-

of-sight between the camera system and the markers is non-trivial due to scanner 

geometry, and is further confounded by the requirement for MRI compatibility. Over 

the past two decades, significant advances have been made in MRI based techniques 

for motion correction in MR brain imaging. Active markers13,14 and MRI navigators in 

both image space15-17 and k space18,19 have all proved to be successful tools for rigid-

body motion correction. Simultaneous acquisition of PET and MR images with a hybrid 

PET/MRI scanner allows for these MRI motion correction techniques to be applied to 

both the MRI and PET acquisitions.  

Development of MRI based motion correction tools in PET/MRI has largely focused 

on cardiac imaging where the quasi-periodic and predictable motion of the heart and 

chest wall allows the use of gating and motion models.20-22 While successful at 

respiratory motion correction, these techniques are not suitable for the spontaneous and 

unpredictable motion that can occur during head imaging. Previous studies which have 

successfully developed MRI based motion correction techniques for brain PET using 

navigators,23 image registration24,25 and active markers26,27 used the MRI solely for 

motion correction and did not acquire diagnostic MRI images simultaneously with the 

PET.  

In this work spherical navigator echoes (SNAVs) – 3D k-space navigators capable of 

tracking motion in six degrees of freedom28-30 – are interleaved within a three 

dimensional turbo FLASH (tfl) pulse sequence to enable simultaneous motion 
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corrected PET and MRI. The SNAV technique can measure brain rotations and 

translations with sub-millimeter and sub-degree accuracy and has previously been 

applied successfully for retrospective correction of MR brain images.19 In this work we 

demonstrate successful retrospective motion correction of simultaneously acquired 

PET and MR images of an anthropomorphic brain phantom.31 

3.2 Methods 

We first describe the SNAV motion correction approach and follow with a description 

of the navigated pulse sequence, before demonstrating retrospective motion correction 

of simultaneously acquired PET and MR images. All experiments were performed on 

a Siemens Biograph mMR – a 3T hybrid PET/MRI scanner – with a 12-channel receive 

head coil. The Research Ethics Board at our institution approved the human-subject 

study and informed consent was obtained from the volunteer. 

3.2.1 SNAV motion correction 

Spherical navigators which were described in detail in chapter 2, are 3D navigators that 

sample a spherical shell in k space. They are acquired with two RF excitations – one 

for each hemisphere – that spiral from the equator to opposite poles. For each 

hemisphere, 800 points were acquired with a sampling time of 10 µs. The flip angle 

was 8°, the TR was 20 ms and the radius of the SNAV was 0.4 cm-1. An example SNAV 

magnitude profile is shown in Figure 3-1a.  

For rapid motion correction, the SNAV method begins by acquiring a baseline scan of 

170 pre-rotated SNAV templates to be used as a look-up table. Baseline templates, pre-

rotated about the left-right and anterior-posterior axes are acquired, and templates 

corresponding to rotations about the superior-inferior axis are simulated. Rotation 

angles between an unknown physically transformed position and the baseline position 

are determined by identifying the pre-rotated SNAV templates with the lowest sum of 
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squared differences relative to the SNAVs acquired at the transformed position. 

Translations are then calculated from the phase difference between the best-matched 

template and the SNAV acquired at the transformed position. A detailed description of 

this method can be found in chapter 2 and Johnson et al. 2016.19 

3.2.2 Navigated pulse sequence implementation 

For retrospective motion correction, SNAVs were incorporated into the Siemens turbo 

FLASH (tfl) sequence – a fast gradient echo sequence with inversion recovery (IR) 

magnetization preparation; we will refer to this as the tfl-SNAV pulse sequence. The 

170 pre-rotated baseline SNAVs are acquired in 6.8 s at the beginning of the tfl-SNAV 

scan. Subsequently, interleaved SNAVs are acquired during the dead time immediately 

prior to each IR preparation pulse and are preceded by eight steady state pulses to 

ensure consistency with the pre-rotated SNAVs. The SNAVs are inserted in the phase 

encode loop of the sequence; they are acquired once per TR and prior to the acquisition 

of a single line of k space for each of 80 slices. A simplified timing diagram of the 

sequence is shown in Figure 3-1b.  

In order to verify that the insertion of the navigators does not have a detrimental effect 

on image quality when compared to the original tfl sequence, we acquired and 

compared two brain images from a healthy volunteer instructed to remain still: the first 

was acquired with the product tfl sequence and the second with the tfl-SNAV sequence. 

The image acquisition parameters for both scans were as follows: TE/TR = 2.4 ms/2.2 

s, inversion time = 800 ms, image bandwidth = 240 Hz/pixel, flip angle = 8°. The 

images were acquired with an asymmetric echo, matrix size = 152x192x80 

(192x192x80 reconstructed), resolution = 1 mm in plane, slice thickness = 2 mm. The 

scan plane was axial and the readout direction was anterior-posterior. The motion 

measured during the tfl-SNAV scan was then used to correct the tfl-SNAV image in 
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order to demonstrate that the retrospective correction procedure does not introduce 

artefacts. 

 

Figure 3-1 An example SNAV magnitude profile – displayed in arbitrary units – is 
illustrated in (a). The SNAV has a total of 1600 data points sampled on a spherical shell 
with radius 0.4 cm-1. A simplified timing diagram illustrates the turbo-FLASH (tfl) and 
tfl-SNAV pulse sequences (b). A single TR for each sequence is shown. Both sequences 
have a 180° inversion pulse followed by a readout train with 80 echoes. The SNAV is 
inserted in the phase encode loop, prior to the inversion pulse and during the dead time 
of the original tfl sequence, which is then followed by the tfl sequence readout train. 

3.2.3 Motion experiments 

The phantom used in this experiment was an anthropomorphic brain phantom 

developed by Iida et al.31 The phantom was developed as a tool to evaluate image 

reconstruction techniques for PET and SPECT imaging. The 3D printed phantom, 

which has dimensions 23.7 cm x 15.2 cm x 19.3 cm, was designed with two 
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compartments: bone and grey matter. The bone compartment was filled with 323 mL 

of a bone equivalent solution (K2HPO4) that has been demonstrated to mimic bone in 

PET images.31 The grey matter compartment was filled with 564 mL of an FDG doped 

solution; the activity of the solution was approximately 40 MBq. A plastic rod and plate 

were affixed to the neck of the head phantom using mounting tape; this allowed for 

manual repositioning of the phantom during the scan. The tfl-SNAV acquisition was 

repeated four times; the first acquisition was a stationary 7-minute reference image, this 

was followed by three 7-minute scans where the phantom was manually repositioned 

several times throughout each scan. The acquisition parameters for all phantom MRI 

scans were identical to the parameters used for the in vivo scan described in the previous 

section, with the exception of the IR prep time which was reduced to 300 ms, as it was 

empirically determined to give superior image quality for the phantom. Each MRI 

acquisition was accompanied by a simultaneous FDG PET list-mode acquisition. 

3.2.4 Motion measurement and correction  

SNAVs were processed in MATLAB (Math Works, Natick, MA); the rotations and 

translations were determined by comparing SNAVs acquired during the PET/MRI scan 

to those acquired in the baseline scan. A weighted average rotation angle was calculated 

from the templates with a cost function value falling within 10% of the lowest 

calculated cost. Translations are calculated from the phase difference between the best-

matched template and the measurement SNAVs. The SNAV motion estimates were 

then used to correct the MRI data by rotating and phase shifting the data back to the 

baseline reference frame. A detailed description of this method can be found in Johnson 

et al. 2016.  

The measured motion profile was then used to sort the list-mode data into multiple 

acquisition frames defined by the individual motion states. The reconstruct, transform, 

add (RTA) reconstruction5 was then performed in which each bin was reconstructed 
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with a matrix size of 344x344x127 and pixel dimension 2.09 mm x 2.09 mm x 2.03 

mm. The iterative three-dimensional reconstruction algorithm: Ordinary poisson-

ordered subset expectation maximization (OP-OSEM) (3 iterations, 24 subsets, 5 mm 

FWHM Gaussian filter) was used with MRI Dixon-based attenuation correction. The 

attenuation correction data was aligned to each motion state prior to reconstruction and 

attenuation correction. The reconstruction of each bin was performed using e7-tools – 

the Siemens reconstruction toolbox. Finally, the PET images corresponding to each bin 

were transformed based on the measured motion and summed to form the motion-

corrected PET image. A flowchart of the entire procedure, from the acquisition of 

image and SNAV data, to motion correction of PET and MR images is illustrated in 

Figure 3-2. 

Prior to qualitative and quantitative analysis, the motion-corrupted and corrected 

images were registered to the reference images. For qualitative analysis, difference 

images were calculated for both the PET and MR images for each trial, where the 

motion corrupted and corrected images were subtracted from the corresponding 

stationary reference image. All images were scaled from 0 to 1 prior to the calculation 

of the difference images.  

3.2.5 Quantitative evaluation of image quality 

In order to evaluate the effect of motion and subsequent correction on the quantitative 

values of the image, line profiles were measured through the motion-corrupted, 

corrected and reference images. To quantify the improvement in PET and MR image 

quality for the entire volume, the motion-corrupted and corrected volumes were 

compared to the reference image using two image quality measures commonly used in 

image analysis: peak signal-to-noise ratio (PSNR) and structural similarity index 

(SSIM).32 PSNR, which approaches infinity as the numerical difference between the 



 
58 

images approaches zero, is very sensitive to numerical differences between images 

and is considered to be an objective measure of image quality.33 PSNR was calculated 

as:  

𝑃𝑆𝑁𝑅 = 10 ∙ logF/ f
H|}~
H��

g,     (3.1) 

where MAXI  is the maximum possible value of the image and MSE is the mean squared 

error between the two images. SSIM approaches one as the difference between the 

images approaches zero, and is considered to be correlated with perceptual image 

quality of the human visual system.33 SSIM was calculated with the following 

equation.34 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = P%�<�=U��RP%�<�=U�?R
(�<?U�=?U��)(�<?U�=?U�?)

,    (3.2) 

where μx and μy are the mean intensities of images x (distorted) and y (reference) and 

σx and σy  are the standard deviations of images x and y. C1 and C2 are constants given 

by: 

𝐶F = (𝐾F𝐿)%,      (3.3) 

where L is the dynamic range of the images and K1 and K2 are small non-zero values 

that stabilize the division of the denominator. These values were set to C1=0.01 and 

C2=0.03.34 For the three motion trials, both the motion-corrupted and corrected images 

were registered to the reference image before PSNR and SSIM were calculated. 
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Figure 3-2 Flow chart of the SNAV motion correction technique from the acquisition 
of tfl-snav to the motion correction of the PET and MR image data 
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3.3 Results 

3.3.1 tfl-SNAV pulse sequence 

Four axial slices of the in vivo images acquired using the product tfl and tfl-SNAV 

sequences are shown in Figure 3-3a and 3-3b respectively. The same four slices of the 

motion corrected tfl-SNAV image are shown in Figure 3-3c. The motion profile, 

measured by the SNAVs, and used to correct the tfl-SNAV image data is shown in 

Figure 3-3d. The slow drift in Z translation is a common occurrence in in vivo brain 

imaging and is attributed to involuntary relaxation of neck muscles. As expected, there 

are no apparent differences in the image quality caused by the addition of the SNAVs 

or motion correction. 

3.3.2 Motion measurement and correction 

The three measured motion profiles along with the motion frames defined for the PET 

reconstruction are shown in Figure 3-4. The maximum rotations were 5°, 11°, and 5° 

and the maximum translations were 11 mm, 8 mm and 14 mm for the first, second and 

third motion trials respectively. The PET list-mode data, for motion trials 1, 2 and 3, 

were binned into 4, 5 and 5 motion frames respectively. The duration of these frames 

ranged from 45 seconds to 3.5 minutes. The motion frames were defined based on the 

measured motion profiles (Figure 3-4). If motion greater than 1 degree or 2 mm was 

measured then a new frame was started. We chose to apply motion such that the motion 

frames would have highly variable lengths in order to reflect the sporadic and 

unpredictable nature of in vivo head motion.  
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Figure 3-3 Axial slices of the product tfl (a), tfl-SNAV (b) and motion corrected tfl (c). 
The motion profile measured during the tfl-SNAV sequence (d) was used for the motion 
correction. 
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Figure 3-4 Rotations and translations measured by the SNAVs in trials 1 (a), 2 (b) and 
3 (c). The vertical dotted lines indicate the temporal bins used for RTA reconstruction. 
The vertical blue line indicates the center line of k space. 

Motion correction was achieved for both the PET and MR images. Motion correction 

of the PET images successfully reduced motion blurring and motion correction of the 

MR images resulted in significant artefact suppression and reduced blurring. Motion 

correction results for both the PET and MR images from all three motion trials are 

shown in Figure 3-5; single representative slices of the motion-corrupted, corrected, 

and reference images are shown, along with the calculated difference images. In trial 1 

(Figure 3-5a), which had the least motion, the three PET images are qualitatively quite 

similar. However, the motion artefacts, and motion correction in the MR images for 

this example are substantial. In trial 2 (Figure 3-5b), both the PET and MRI motion 
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correction resulted in significant image quality improvement. In trial 3 (Figure 3-5c), 

which had the most motion, motion correction of the PET and MR images resulted in 

improved image quality; however, some blurring remained in the motion-corrected MR 

image.  

3.3.3 Quantitative evaluation of motion correction 

Line profiles measured through the horizontal line indicated in Figure 3-5 by the white 

lines are plotted in Figure 3-6. For all 6 images sets larger quantitative errors in the 

motion-corrupted images than in the corrected images are observed.  Additionally, the 

agreement between the corrected and motion-corrupted images and the reference image 

is quantified using PSNR and SSIM (Figure 3-7). For each motion trial, PSNR and 

SSIM are higher for the corrected images than the motion-corrupted images, indicating 

that the corrected images are in better agreement with the reference image.  



 
64 

 

Figure 3-5 SNAV motion correction results. A single slice of the motion-corrupted, 
corrected and reference PET and MR images are shown for each trial. The difference 
images are shown in the fourth and fifth columns. The colour bars show the range of 
pixel intensities in the difference images (original images were scaled from 0 to 1). 
Motion correction was achieved in trial 1 (a), trial 2 (b) and trial 3 (c). The white lines 
in the reference image indicate the location of the measured line profiles displayed in 
Figure 3-6. 
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Figure 3-6 Line profiles calculated along a horizontal line (left-right) for trials 1 (a 
&b), 2 (c&d) and 3 (e&f). The location of each line is shown in Figure 3-5 as white 
dotted lines; the line profile was measured in the same plane as the displayed images. 
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Figure 3-7 Peak signal to noise ratio (top) and structural similarity index (bottom) 
calculated for PET and MR images from trials 1, 2 and 3. 

3.4 Discussion  

This work represents the first application of MRI navigators for three-dimensional 

motion correction of simultaneously acquired PET and MR brain images. Rotations up 

to 11° and translations up to 14 mm, relative to baseline, were measured by the SNAVs 

and retrospective motion correction based on these measurements successfully 

removed motion artefacts from both the MR and PET images of an anthropomorphic 

brain phantom. The motion corrected PET images were in better agreement with the 

reference, as measured by PSNR and SSIM. Similarly, artefact suppression and 

reduction in motion blurring were observed in all MR images as well.  
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The results suggest that the SNAVs are able to accurately measure head motion, and 

their insertion into the product image sequence does not have a negative impact on the 

image quality. This makes SNAVs a promising tool for a range of pulse sequences and 

applications. While they have only been incorporated into the tfl sequence in this work 

(and SPGR in prior work), the modular implementation as a sequence building block 

will allow SNAVs to be added to other sequences with only minor modifications to the 

host sequence source code. Additionally, as the SNAVs can be acquired very rapidly 

(15 ms minimum TR) incorporating them seamlessly into pulse sequences may be less 

challenging than incorporating image-space navigators, which take hundreds of 

milliseconds to acquire. The motion corrected PET reconstruction would take very little 

additional time compared to the standard reconstruction, provided that the frames are 

reconstructed in parallel. In this work, SNAVs have been used to correct for sudden 

motion, because it is more challenging, and is more detrimental to MR image quality 

than slow continuous motion. Slow continuous motion does often occur in vivo (Figure 

2), and can be corrected using the same technique. Motion bins could be defined to 

limit the intra-bin continuous motion to be below some chosen threshold.  

Previous studies that have used MRI based approaches for motion correction in hybrid 

PET/MRI of the brain were also successful in correcting the PET data.23-25,27 These 

applications however used the MRI solely for the purposes of motion correction and 

did not acquire any diagnostic MR images. By interleaving the SNAVs into a diagnostic 

image sequence we were able to acquire motion data along with both MR and PET 

images, thereby fully exploiting the potential of the hybrid imaging modality. 

In the third motion trial, some blurring remained in the motion corrected MR image, 

however this was an example of extreme motion, as there was a very large translation 

(14 mm), which occurred during the acquisition of the center k-space lines. 

Additionally, in this study, the MRI motion correction was applied retrospectively 

rather than prospectively. Prospective motion correction, which has been demonstrated 
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in many other studies,13,15,35 eliminates the need to interpolate MRI data that falls off 

the Cartesian grid due to rotations. As such, retrospective correction may be less 

effective at correcting large rotations. It does however have the benefit of retaining the 

original uncorrected data, which is not possible with prospective motion correction. We 

are currently working towards a prospective implementation, which will allow us to 

compare the efficacy of the two approaches.  

A limitation of the SNAV implementation used for this work is the low temporal 

resolution of the motion estimates, which is equivalent to the image TR (2.2s). Motion 

that occurs within a TR cannot be corrected and may be a source of residual artefacts 

in the MR images. Additionally, the MRI data collected for the attenuation correction 

was not motion corrected; if a patient moves during this 19s sequence, it may cause 

errors in attenuation correction of the PET data. Motion correction was demonstrated 

with a phantom, and although the phantom is modeled from a human brain, it cannot 

model all of the complexities of in vivo imaging. It does however allow us to evaluate 

motion correction in a controlled environment and avoid giving unnecessary radiation 

dose to human subjects.  

PET/MRI is an exciting tool for exploring neurological diseases. Hybrid PET/MRI 

imaging is exploited for numerous neurological diseases, including epilepsy, 

neuropsychiatry and chronic pain. These exams are often lengthy, and patient motion 

is a common problem. With effective motion correction strategies, the utility of this 

exciting modality can be greatly improved thereby furthering our understanding of 

brain function, perfusion and metabolism. 

3.5 Conclusion 

The presented SNAV motion correction for hybrid PET/MRI approach enables the 

retrospective correction of simultaneously acquired PET and MR images. This method 

consistently results in reduced motion artefacts and motion blurring. 
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4 Conditional generative adversarial network for 
three-dimensional rigid-body motion correction in MRI 

4.1 Introduction 

Patient motion is a major source of artefacts in magnetic resonance imaging 

(MRI); blurring and artefacts caused by patient motion often lead to non-

diagnostic image quality. A recent study found that approximately 20% of MRI 

exams require a repeat scan due to motion.1 These repeat scans are costly, they 

increase wait times, and may lead to delayed diagnosis for some patients. As 

advances in MRI hardware and software allow us to push the limits of image 

resolution and image quality, patient head motion has become a limiting factor in 

MR neuro-imaging applications. 

Over the past two decades, many techniques have been developed to address head 

motion in MRI. In general, these techniques measure head motion throughout the 

image acquisition, and then correct the image data to compensate for this motion, 

which can be performed either retrospectively or prospectively. The motion can 

be measured using optical tracking techniques that use a camera system to track 

markers fixed to the head.2-4 Another category of motion measurement techniques 

is MRI navigators, which acquire a set of MRI data, either in image space5-7 or k 

space,8-10 that is processed to measure head motion. While these tools are able to 

effectively correct for head motion for certain applications, they are often limited 

to specific pulse sequences and scanner hardware, and as such, they are not always 

available for routine clinical and research use. A more general tool for motion 

correction that does not require pulse-sequence or hardware modifications would 

be very valuable. 

Recently, significant advancements have been made in the use of deep learning for 

medical imaging applications. In particular, supervised learning with deep 

convolutional neural networks (DCNNs) is being utilized to solve many problems in 
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MRI. Given training pairs of MR images, DCNNs have been trained to perform 

many challenging and clinically useful tasks including image reconstruction of under 

sampled data,11-13 segmentation of structures,14-17 and synthesis of images with 

higher resolution18,19 or images from a different modality.20 Many training pairs – 

examples of the input and target images – are required to train the network, which 

effectively learns the mapping relationship between the input and target domains. 

Supervised learning with DCNNs may also be well suited for the problem of 

motion correction, as it is common for images with motion artefacts to be 

reacquired – providing a source of training pairs where the input image is the 

motion corrupted-image and the target image is the high quality re-scans. 

Deep learning for artefact removal in MRI has previously been demonstrated for 

the removal of ghosting artefacts in magnetic resonance spectroscopy.21 It has also 

been demonstrated for removal of Gibbs ringing22 as well as the removal of 

streaking artefacts in under sampled radial MRI acquisitions.11 All of these 

successful methods are examples of image-to-image translation, which refers to 

the approach of training a deep neural network to predict an image in one domain 

from an image in another domain. Image-to-image translation problems typically 

use an encoder-decoder style network architecture. The encoder portion of an 

encoder-decoder learns a high dimensional feature vector – an abstract 

representation of the input, and the decoder portion learns to reconstruct the 

desired output from this feature vector. While highly successful in many MRI 

applications, DCNNs have a tendency to produce slightly blurry images. A 

technique that addresses this issue is a conditional generative adversarial network 

(cGAN).23,24 A cGAN combines a generator network (a DCNN) with a 

discriminator network (a classifier). The discriminator is trained with the 

generator to determine whether an image is a DCNN network output or a target 

image. The discriminator error contributes to the loss function of the generator, 

forcing the generator to produce images, which are indistinguishable from those 
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of the target domain. This network structure enforces sharpness and realistic 

looking images in the output of the DCNN.24 

In this work, we introduce a formulation for three-dimensional (3D) motion 

correction of brain images. Motion is simulated in previously acquired brain 

images; the image pairs (corrupted + original) are used to train a cGAN. The 

network has an encoder-decoder architecture for the DCNN and is paired with a 

discriminator. The network, MoCo-cGAN, is trained to predict artefact free brain 

images from motion-corrupted data. 

4.2 Methods 

4.2.1 Data preparation 

Image data for this study were obtained from an open source MRI data 

repository.25 The data set consists of T2* weighted multi-echo FLASH scans, from 

53 participants acquired on a 7T scanner; both magnitude and phase are available. 

The dimensions of the FLASH volumes are 384x312x128, the TR is 41ms and the 

echo times are 11.22 ms, 20.39 ms. and 29.57 ms. Additional details about the 

scan protocol can be found in Forstmann et al. 2014.25 

For our study, we used a slab of 64 slices, from the second echo. Slices were down 

sampled by a factor of two, resulting in images with 1 mm in-plane resolution 

(192x156). The magnitude and phase were combined to form complex images, then the 

3D Fast Fourier Transform was applied to yield simulated k-space data. Motion was 

simulated in the k-space data, as detailed in the following section. The motion-corrupted 

k space was transformed back into the image domain yielding a motion-corrupted image 

volume. A total of 5 different motion profiles were applied to each volume, and each 

volume was broken up into 8 patches of 192x156x8 for training. These preprocessing 

steps are illustrated in Figure 4-1. 
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The 53 image volumes were divided into training, validation and test data sets: 43 

volumes (1720 patches) were used for training while the remaining 10 volumes were 

used for validation (5 volumes, 200 patches) and testing (5 volumes, 200 patches). All 

of the applied motion profiles were unique, thus each test case represents both a subject 

and a motion profile not previously seen in training. 

 

Figure 4-1 Illustration of pre-processing steps for a single subject. The magnitude and 
phase images are combined to form a complex image, which is then down-sampled to 
192x156x128. The 3D Fourier transform is applied to create k space. Five different 
motion profiles are applied to this k space to generate 5 motion-corrupted k-space 
volumes. The motion-corrupted k-space volumes are then transformed back to the 
image domain to yield motion corrupted images. Each motion-corrupted image is 
broken up into 8 patches (192x156x8) for training. 

4.2.2 Motion simulation 

Inter-shot motion was simulated for a Cartesian trajectory; motion profiles were 

generated randomly in MATLAB (MathWorks, Natick, MA) with constraints to 

keep the motion in the realm of realistic head motion. Motion profiles were 

parameterized by the number of motion events (2 or 3), and for each motion event, 

the time of onset and the magnitude of each motion parameter. The parameters 

that define the motion profiles, along with their corresponding ranges and 

distributions are summarized in Table 1. Axial rotation (𝜃Q) and head nodding 
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(𝜃") are common types of rotations observed during MR brain imaging. As 

translations typically occur with head rotation, and typically have a magnitude (in 

mm) that is approximately the same to the magnitude of the rotation (in degrees), 

the translation parameters were randomly selected from distributions with mean 

values determined by the random rotation. To ensure that all of the images were 

corrupted by motion, a score – introduced by Tisdall et al.26 – was calculated and 

a threshold was established. Briefly, the motion score was calculated as follows. 

First, the maximum displacement (Δ𝑅) of any point on a 64-mm radius sphere was 

calculated: 

Δ𝑅 = 64�(1 − cos(𝜃))% + sin	(𝜃)%,   (4.1) 

where 

|𝜃| = �𝑎𝑟𝑐𝑜𝑠 �F
%
�−1 + cos(𝜃") cosP𝜃0R + cos(𝜃") cos(𝜃Q) + cosP𝜃0R cosP𝜃Q) +

sin(𝜃") sin	(𝜃0	Rsin	(𝜃Q)���        (4.2) 

and 𝜃", 𝜃0, and 𝜃Q are the applied rotations about the X, Y and Z axes respectively. 

Combining Δ𝑅 with the applied translations gives the motion score for a single 

motion event: 

𝑆𝑐𝑜𝑟𝑒 = Δ𝑅 + (Δ𝑥% + Δ𝑦% + Δ𝑧%).    (4.3) 

For a given motion event, this score is the maximum displacement of any point on the 

sphere (in mm). A total motion score for each randomly generated motion profile 

was calculated by combining the scores from each of n motion events: 

𝑆𝑐𝑜𝑟𝑒.l.mn = o∑ 𝑆𝑐𝑜𝑟𝑒Sh
S

%.     (4.4) 
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Only randomly generated motion profiles with 𝑆𝑐𝑜𝑟𝑒.l.mn greater than 5 mm 

were used. To simulate the effect of generated motion profiles on the k-space data, 

k-space lines were phase shifted based on the generated translations, then rotated 

and interpolated based on the generated rotation values. This procedure for motion 

simulation is similar to retrospective motion correction, where a measured motion 

profile is used to correct k-space data, however, in this case motion is applied to 

motion-free k-space data in order to perturb it. Finally, each motion-corrupted 

image was registered to its corresponding reference image in MATLAB 

(MathWorks, Natick, MA) using intensity-based image registration with mattes 

mutual information as the similarity metric. Registration was necessary to ensure 

that the loss function of the network generator (described below) is not dominated 

by image misalignment. 

Table 1. Description of the parameters used to generate the random motion profiles. 

 

4.2.3 Network architecture 

The three-dimensional cGAN network architecture, illustrated in Figure 4-2, is adapted 

from the 2D pixp2ix architecture24 and includes a generator (Figure 4-2a), which is a fully-

convolutional three dimensional encoder-decoder based on the U-Net architecture,27 and a 

discriminator (Figure 4-2b). The MoCo-cGAN network was developed and trained using 
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the Keras library28 with a TensorFlow29 backend. The input to the generator network is 

a batch of 192x160x8 image patches; the patches were zero-padded from the original 

192x156x8 in order to be compatible with the max-pooling operations of the encoder-

decoder. The encoder consists of 8 convolutional layers, each of which has between 64 and 

512 3x3x3 filters; batch normalization and the rectified linear unit (ReLU) activation 

function are applied for each convolutional layer. Dropout is applied in the final 

convolutional layer of the encoder. The encoder also has three max-pooling layers, each of 

which reduces the size of the feature vectors by a factor of 2 in each dimension.  

The decoder comprises a set of eight convolutional layers mirroring the encoder, again 

followed by batch normalization. The activation function used for the discriminator is 

Leaky ReLU (α = 0.2).30 There are 3 convolution + up sampling layers that increase the 

size of the feature vectors by a factor of 2 in each dimension. The network has three skip 

connections, referring to the concatenation of feature vectors from the encoder directly to 

the mirroring block in the decoder.27 This architecture is useful when there is significant 

correlation between the input and output of the network, as it allows some of the very 

similar low-level information to bypass further processing. Further to this concept, is the 

concatenation of the input to the output within each individual block of the network: the 

input information and the learned feature vectors are passed to the next layer in the network. 

The output of the generator is also a batch of 192x160x8 image patches. The discriminator 

(Fig 4-2b) is a convolutional neural network classifier with an input of image pairs. Some 

of these pairs will be an input + target image pair while others will be an input + generated 

image pair. This network has six convolutional layers with 4x4x4 filters; dimensionality 

reduction is achieved with strided convolution (stride = 2) rather than a pooling operation. 

A fully connected layer with a softmax activation function31 follows the convolutional 

layers.  
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Figure 4-2 The input to the generator network (a), which is based on U-Net, is a batch 
of 192x160x8 brain image patches. Each set of three grey boxes represents a hidden 
layer with a large number of 3D feature vectors (the actual number for each layer is 
indicated below the boxes). In the generator diagram, the red arrows represent 3D 
convolution with 3x3x3 filters, a rectified linear unit activation function and batch 
normalization; the back arrow is the same with added dropout; the blue arrows represent 
the 3D maxpooling operation, while the purple arrows represent the convolution + 
upsampling operations. The arrows with dotted lines represent concatenation 
operations. The dimensions of the feature vectors in each network level are listed on 
the left. The input to the discriminator (b) is a batch of image pairs. In (b), the blue 
arrow represents 3D convolution with 4x4x4 filters, and a Leaky ReLU activation 
function; the red arrows are the same with the addition of batch normalization. The 
feature vectors are flattened (black arrow) to a 1D vector, which is then fully connected 
to the output layer – a decision as to whether the input image pairs contain a target or 
generated image. 
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4.2.4 Network training 

Training a cGAN requires the generator and discriminator to be trained simultaneously. 

The first task of the generator (G) is to minimize the quantitative error between the input 

and target images, so for the first term in the generator loss function we use mean absolute 

error (MAE, also referred to as L1 loss). The discriminator (D) loss function is the cross 

entropy loss: 

𝐿(𝐺, 𝐷) = −𝛼 logP𝐷(𝑥, 𝑦	)R + (𝛼 − 1)log	(1 − 𝐷P𝑥, 𝐺(𝑥)R),           (4.5) 

where x is the input image, y is the target image, α is a binary label and G(x) is the generator 

output. If the input image is a true target image then α =1; if it is a generator output then α 

= 0. The generator is tasked with maximizing 𝐿(𝐺, 𝐷) while the discriminator tries to 

minimize it. This means that the generator aims to maximize the −log	(1 − 𝐷(𝑥, 𝐺(𝑥))) 

term in addition to minimizing the L1 loss. Ultimately, D is trained to minimize 𝐿(𝐺, 𝐷) 

and G is trained to minimize 𝐿1 − log	(𝐷(𝑥, 𝐺(𝑥)).  

For both the generator and discriminator, the batch size used for training was 8, and the 

optimizer was the Adam optimizer32 with a learning rate of 5x10-5. For the generator layer 

in which dropout was used, the dropout fraction was 0.5. The training images were flipped 

left to right to double the number of training examples. The network was trained for 40 

epochs using 2 NVIDIA Tesla P100 GPUs on a supercomputer cluster. Training took 

approximately 18 hrs. 

4.2.5 Evaluation of network performance 

The network was evaluated on the 5 subjects (200 patches) reserved for the test set. For 

qualitative analysis, difference images were calculated where the motion corrupted and 

corrected images were subtracted from the corresponding stationary reference image. 

All images were scaled from 0 to 1 prior to the calculation of the difference images and 
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image quality metrics. To quantify the improvement in MR image quality, motion-

corrupted and DCNN-corrected volumes (192x156x64) were compared to the reference 

image using MAE (generator loss function), peak signal-to-noise ratio (PSNR), and 

structural similarity index (SSIM).33 PSNR approaches infinity and SSIM approaches 

one as the numerical difference between the images approaches zero. PSNR is 

considered to be an objective measure of image quality while PSNR is considered to 

be correlated with perceptual image quality of the human visual system.34 More details 

about these metrics can be found in section 3.2.  

4.3 Results 

4.3.1 Motion correction: image results 

The trained MoCO-cGAN successfully achieved qualitative image improvement for all 

of the motion-corrupted test-set volumes (rotations up to 3.5° and translations up to 4.1 

mm). Representative correction results for three subjects, along with the corresponding 

motion profiles, are shown in Figure 4-3. Representative axial slices of the motion-

corrupted, corrected, and reference images are shown, along with the calculated 

difference images. Using the trained MoCO-cGAN resulted in significant artefact 

suppression and reduced blurring, which is further demonstrated in the sagittal and 

coronal images (of the same subjects) shown in Figure 4-4. For the second subject, 

there was an apparent motion artefact in the axial reference image, which is not present 

in the corrected image.  

4.3.2 Quantitative evaluation 

Quantitatively, all motion corrected images improved compared to the motion-

corrupted images. For all 25-image volumes in the test set (5 subjects with 5 motion 

profiles each), MoCO-cGAN motion correction resulted in a decreased MAE and an 

increased SSIM and PSNR, as shown in Figure 4-5. The average MAE for the 
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uncorrected images was 0.0215– or 20.1% of the image mean; this was reduced to 

0.0147 or 13.7% of the image mean value in the corrected images. 

 

Figure 4-3 Representative MoCo-cGAN motion correction results. From left to right, 
a single axial slice of the motion-corrupted, motion-corrected and reference images are 
shown for subjects 1(a), 2(b) and 3(c). The difference images are shown in the fourth 
(reference – motion) and fifth (reference – corrected) columns. The colour bars show 
the range of pixel intensities in the difference images (original images were scaled from 
0 to 1). The corresponding motion profiles are plotted in (d) through (f). The arrow in 
the reference image for subject 2, points to a ringing motion artefact that is not present 
in the corrected image, suggesting that the MoCo-cGAN network corrected a real 
motion artefact in addition to the simulated motion artefacts. 
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Figure 4-4 Sagittal and coronal views of the volumes shown in Figure 4-3. From left 
to right, a single sagittal (top) and coronal slice (bottom) of the motion-corrupted, 
motion-corrected and reference images are shown for subjects 1(a), 2(b) and 3(c). 
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Figure 4-5 Mean absolute error (a), peak signal to noise ratio (b), and structural 
similarity index (c) calculated for all 25 image volumes. For clarity, the 25 volumes 
were sorted from lowest to highest mean absolute error of the motion-corrupted image. 
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4.4 Discussion 

This work represents a novel solution to three-dimensional motion correction in brain 

MRI; the trained conditional generative adversarial network – MoCo-cGAN – 

successfully performed motion correction on brain images with simulated motion. For 

all 5 subjects in the test group, and applied motion profiles, the motion corrected images 

are qualitatively improved; artefact suppression and reduced blurring is observed in the 

corrected images. The calculated difference images also highlight the artefact 

suppression and demonstrate that the corrected images are more similar to the reference 

images. All predicted images quantitatively demonstrated improved quality, with an 

over 30% decrease in MAE, and corresponding increases in PSNR, and SSIM, 

demonstrating that the MoCO-cGAN network can consistently correct for motion. 

Current motion correction techniques, including navigators and optical tracking, 

require that the motion is measured in order to correct the MRI data. While these 

techniques have been successful for motion correction, they are generally appropriate 

only for specific applications. A deep learning technique for motion correction could 

be more generally applicable as it is an exclusively post-processing method and does 

not require any measurement of the motion throughout the scan. Deep learning 

techniques, and in particular cGANs, have been demonstrated for MRI reconstruction 

and improving MR image resolution in prior work.35,36 The motivation for using a cGAN 

for motion correction comes from the success and generalizability of pix2pix, which has 

been applied to many diverse tasks. To our knowledge, this is the first time a cGAN has 

been used for motion correction. 

Motion correction was demonstrated on images with simulated motion, and although 

the motion profiles were randomly generated and constrained to resemble typical head 

motion, simulated motion cannot model all of the complexities of in vivo head motion 

and its effect on the image data. In particular, the field distortions that typically occur 
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in real head motion are not incorporated into the motion simulation. Using simulated 

motion however allowed us to evaluate motion correction in a controlled environment 

with a large dataset and true reference images. Importantly, a real motion artefact in the 

reference image of the second subject was corrected along with the simulated motion 

artefacts; this demonstrates that the network can correct for real in vivo motion. Insights 

gained from the development and training of this network are expected to be directly 

transferable to different image acquisitions and datasets with real motion. The trained 

MoCo-cGAN could potentially serve as a pre-trained network for future training with 

real motion and for images with different contrast, resolution and SNR. It has been 

previously demonstrated that this type of transfer learning is very effective and reduces 

the amount of training data needed.37 It is common for images with motion artefacts 

to be reacquired in a clinical setting; these image pairs could be used to fine-tune a 

network pre-trained with simulated motion. 

In this work, motion correction of MR images was treated as a supervised image-to-

image translation problem. Unsupervised image-to image translation could be another 

potential solution to this problem and would eliminate the need for image pairs. The 

cycle-GAN implementation is an example of image-to-image translation with unpaired 

images. The network simply requires a set of images belonging to the input and target 

domains. Another solution might be a supervised convolutional neural network that 

operates directly on k space,38 to translate corrupted k space to a motion-corrected k 

space. MRI motion correction can also be approached as an image reconstruction 

problem. Several techniques have been developed to reconstruct images from under-

sampled data and similar techniques could potentially be applied to data that is 

incorrectly sampled due to head motion. For example, AutoMap13 can be applied to 

motion corrected reconstruction directly from raw k-space data.39 However, our initial 

experience with this network for motion correction suggests that it is more prone to 

over fitting than MoCo-cGAN, and memory requirements are a concern. MoCo-cGAN 
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effectively reduces artefacts and blurring due to simulated motion. It is a technique 

that requires no pulse sequence modifications or interactions with scanner hardware, 

and as such could be a promising general solution to rigid-body motion correction in 

brain MRI.  

4.5 Conclusion 

The MoCO-cGAN deep learning approach enables retrospective correction of MR 

images with simulated motion, consistently resulting in reduced motion artefacts and 

motion blurring. 
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5 Conclusions and Future Directions 

5.1 Contributions 

5.1.1 SNAVs 

Prior to the development of the hybrid baseline approach described in this work, the 

baseline scan required 26s to acquire. If the subject moved during this 26s the accuracy 

of motion measurements would be significantly affected. In Chapter 2, I described the 

hybrid baseline method, which reduces the acquisition time by simulating many of the 

pre-rotated templates offline. The acquisition time for the baseline scan was reduced to 

2.6 s, making it far more practical for motion correction in clinical applications.  

This work presents the first time SNAVs have been demonstrated for intra-image 

motion correction. Earlier work had focused on optimizing the SNAVs for motion 

measurement, but not correction. The implementation of SNAVs in an SPGR image 

sequence allowed for motion correction of a clinically relevant sequence for structural 

neuroimaging.  

Chapter 3 presents the first use of navigators for the correction of simultaneously 

acquired PET and MRI data. Previous work in the field had used MRI motion tracking 

to correct the PET data, but the MRI was used exclusively for the purpose of motion 

tracking and no diagnostic MR images were acquired. Embedding SNAVs into a turbo 

FLASH sequence enables the retrospective correction of both modalities and allows us 

to fully exploit the hybrid imaging modality.  

5.1.2 MoCo-cGan 

MRI motion correction has been an active area of research for almost 30 years. The 

vast majority of the methods developed in this time involved measuring the motion – 

with MRI navigators, optical tracking, or active markers – followed by correction of 
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the k-space data either retrospectively or prospectively. The work presented in 

Chapter 4 uses deep learning for motion correction and does not require explicit motion 

measurement. It is a potentially more general tool for motion correction than current 

methods. MoCo-cGAN is the first time a cGAN was used for motion correction of MR 

images. I expect this work will serve as a building block for further development of 

deep learning methods for motion correction in MRI. The insights gained from the 

development and training of this network will be transferable to different types of 

images as well as images with real motion.  

5.2 Conclusions 

The presented hybrid baseline SNAV template approach enables the acquisition of a 

pre-rotated baseline template set in only 2.6 s, followed by template simulation. A 

truncated SNAV with as few as 8 helical turns performed comparably to full SNAV 

acquisitions. This method results in accurate measurements of phantom rotations and 

translations. In vivo motion was measured and retrospective motion correction was 

successfully performed.  

The presented SNAV motion correction for hybrid PET/MRI approach enables the 

retrospective correction of simultaneously acquired PET and MR images. This method 

consistently results in reduced motion artefacts and motion blurring. 

The MoCO-cGAN deep learning approach enables retrospective correction of MR 

images with simulated motion, consistently resulting in reduced motion artefacts and 

motion blurring. 
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5.3 Limitations 

5.3.1 SNAVs 

In my thesis I presented retrospective SNAV motion correction for both standalone 

MRI and hybrid PET/MRI. Prospective motion correction keeps the image coordinate 

system fixed relative to the object and unlike retrospective motion correction avoids 

gaps in k space that occur due to object rotation. These gaps in k space following 

rotations are an inherent limitation in retrospective rotation correction. A direct 

comparison between retrospective and prospective motion correction has never been 

performed. This would be a valuable future study and is described in section 5.4.2.  

The SNAV implementation described in Chapter 2 for MRI motion correction 

incorporates the SNAVs into an SPGR sequence. A limitation of this specific 

implantation is the lengthened scan time. The SNAV implementation for the PET/MRI, 

described in Chapter 3, does not increase the scan time, but the temporal resolution of 

motion estimates is low (2.2 s). SNAVs require a 3D excitation, this would make 

SNAVs challenging for 2D acquisitions due to the mismatch in excitation volumes.  

In general, a limitation of MRI navigators is the significant time and expertise needed 

to include them in each specific pulse sequence. We described the incorporation of 

SNAVs into two sequences, but much more work would need to be done in order to 

have SNAVs available for a wide range of applications, and across all vendors.  

A 19s Dixon MRI scan – required for attenuation correction of PET data – is acquired 

prior to the simultaneous PET/MRI acquisition. This scan is not motion corrected. If 

motion occurs during this time, errors could be introduced in the attenuation correction 

maps required for the PET images. Additionally, the motion correction for hybrid 

PET/MRI was demonstrated only in phantoms which cannot model all of the 

complexities of in vivo imaging.  
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5.3.2 MoCo-cGAN 

In Chapter 4, motion correction was demonstrated on images with simulated motion, 

which cannot model all of the complexities of in vivo head motion and its effect on the 

image data. In particular, the field distortions that typically occur in real head motion 

are not incorporated into the motion simulation. Additionally, we have demonstrated 

motion correction only on a single type of image. Images with different contrast, 

resolution and k-space trajectories will have motion artefacts that appear different. The 

network will likely need to be fine-tuned using a small number of training pairs for 

different types of images. For some applications, these training pairs may be difficult 

to obtain.  

It has been shown that generative adversarial models can hallucinate features in medical 

image synthesis.1 These networks are trained to match the target distribution in the 

training set which can be problematic when certain features are over or under-

represented in the training set. For example, a network can inadvertently be trained to 

remove pathology from an image if there is no pathology in the training set.1 A better 

understanding of this limitation and how to avoid adding or removing features is 

necessary before this technology can be considered reliable for diagnostic imaging.  

5.4 SNAVs: Suggestions for future work 

In this thesis I have demonstrated that SNAVs are effective for retrospective motion 

correction in MRI. There are many possible future directions for this promising technique 

including implementing SNAVs for prospective motion correction, in different pulse 

sequences, and potentially for respiratory motion correction in cardiac MRI. It would also 

be valuable to evaluate SNAVs in a patient population.   
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5.4.1 SNAVs for a variety of pulse sequences and 

applications 

In this thesis, the SNAVs were incorporated into SPGR on the GE scanner and TFL on 

the Siemens scanner; both sequences are T1 weighted. SNAVs have an even greater 

potential impact in sequences with long repetition times and substantial dead time. 

Specifically, T2 weighted fluid attenuated inversion recovery (T2-FLAIR) would 

significantly benefit form SNAV motion correction. T2-FLAIR is a promising 

application because there is sufficient dead time to accommodate the navigators and it 

is a standard protocol in routine clinical brain imaging.2 A FLAIR acquisition can take 

up to 15 mins, making motion a common problem. Another promising application is 

diffusion tensor imaging, which could benefit from the incorporation of SNAVs 

between diffusion volumes.  

Sampling the free induction decay (FID) prior to the application of the SNAV gradient 

waveforms (FID-SNAV) enables the measurement and correction of zeroth order field 

shifts that occur due to motion and field drifts in the main magnetic field. Our initial 

experience with FID-SNAVs suggest that there are improvements to image quality 

when zeroth order field shift correction is applied in addition to motion correction. FID-

SNAVs could be particularly useful in long, gradient intensive scans where the field 

drift may be substantial. 

While this thesis focused on SNAVs for brain imaging applications, they may also be 

useful in muscular-skeletal (MSK) imaging. Specifically, patient motion of the foot 

during foot and ankle imaging is likely to meet the rigid-body requirement. MRI of the 

foot and ankle is commonly used to assess the peripheral nerves,3 soft tissue injuries4 

and arthritis.5 As both the SPGR and turbo flash sequences described in this thesis are 

popular sequences for MSK imaging,6 SPGR-SNAV and tfl-SNAV promise to be 

useful tools for motion correction in foot and ankle imaging.  
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5.4.2 Implement SNAVs for prospective motion correction 

As discussed earlier in this thesis, rotational motion results in regions of k space devoid 

of data and this under sampling is difficult to recover from retrospectively. A 

prospective correction technique will not require the interpolation of missing data and 

is therefore thought to be a superior method of motion correction. Additionally, 

prospective correction will eliminate the need for post-processing which will be 

beneficial for clinical workflow. To implement prospective motion correction, SNAV 

data needs to be sent from the scanner to the host computer immediately after 

acquisition. Rotations and translations can then be measured, and the rotation 

measurements can be fed back to the scanner in order to update the gradient rotation 

matrix. Translation correction can be applied just prior to image reconstruction. This 

pipeline is already implemented on the Siemens platform for PACE. To use SNAVs 

instead of the EPI volume navigators, the reconstruction software that calculates motion 

parameters by registering the EPI volumes would have to be replaced by our software 

for processing SNAVs. The rest of the PACE pipeline would likely only require minor 

modifications. 

It would be valuable to compare a prospective motion correction approach with 

retrospective motion correction. Subjects could be instructed to remain still for a 

reference image and then perform similar movements in two acquisitions – one of 

which would be prospectively motion corrected and the other retrospectively. The 

motion parameters for the two acquisitions could be compared to verify that the motion 

profiles are comparable. This set of experiments would allow for a direct comparison 

between prospective and retrospective motion correction.  
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5.4.3 Evaluate SNAVs in a patient population 

In this thesis I demonstrated SNAV motion correction in healthy subjects and in 

phantoms. Future work should evaluate SNAV motion correction in a patient 

population. PET/MRI is a promising modality for imaging in epilepsy and brain cancer 

patients. These exams are lengthy and would  significantly benefit from SNAV motion 

correction. To evaluate the effectiveness of the motion correction, the original and 

motion corrected images could be evaluated and scored by a radiologist.  

5.4.4 Cardiac fat SNAVs  

Fat selective SNAVs for respiratory motion correction in cardiac imaging would be an 

interesting and impactful avenue for future work. Successful beat-to-beat motion 

correction using SNAVs would eliminate the need for respiratory gating thereby 

improving scan efficiency. If cardiac gating is applied and the SNAV is acquired in 

diastole where the rigid-body assumption can be met, it could allow for motion tracking 

of the heart during respiration. In preliminary work to develop the cardiac SNAVs, it 

was found that field changes caused by respiration affected the frequency selection of 

the navigator and introduced phase shifts in the navigators that affected the motion 

estimates. Additionally, achieving consistent magnetization preparation between 

baseline navigators and navigators acquired during image acquisition was also 

challenging. If these issues can be addressed, spherical navigators could enable beat-

to-beat beat motion correction, allowing for more efficient free breathing acquisitions.  

5.5 MoCo-cGAN: suggestions for future work 

5.5.1 Fine-tune MoCo-cGAN for images with real motion.  

My pioneering work on the use of deep learning for motion correction opens up exciting 

new opportunities for research. Future work for deep learning motion correction should 
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focus on evaluating the MoCo-cGAN network on images with real motion and 

images with varying contrast, SNR, and resolution. I propose a study involving 

common brain imaging protocols, perhaps MP-RAGE, T2-FLAIR and TSE. For these 

protocols, clinical images that are reacquired due to head motion could be saved along 

with their respective rescans. A few image pairs with a high quality rescan would then 

be used to fine-tune the MoCo-cGAN network for each protocol. This set of 

experiments would allow for evaluation of the transfer learning potential of the 

network.  

5.5.2 Deep learning-based motion corrected MRI reconstruction 

In Chapter 4 an image-to-image translation approach to motion correction was 

described. MRI motion correction could also be approached as an image reconstruction 

problem. For example, AutoMap7 can be applied to reconstruct a motion-corrected 

image directly from motion-corrupted k-space data.8 However, our initial experience 

with this network for motion correction suggests that it is more prone to over fitting 

than MoCo-cGAN, and memory requirements are a concern.8 The fully connected layer 

at the beginning of the network has a very large number of learnable parameters that 

contributes to the high memory requirements and over-fitting. If the network can be 

redesigned such that the first layer is more sparsely connected but still retains sufficient 

model capacity, AutoMap could be a promising approach for motion correction.  

5.5.3 Deep learning motion correction with unpaired image to 

image translation. 

Unsupervised image-to image translation could be another potential solution to motion 

correction and would eliminate the need for image pairs. The cycle-GAN 

implementation is an example of image-to-image translation with unpaired images.9 

The network simply requires a set of images belonging to the input and target domains. 
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Similar to MoCo-cGAN, cycle-GAN uses a generator (G) to transform an input 

image to an output image and a discriminator (D) to classify the generated image as 

real or fake, with the classification error contributing to the loss function. Unlike 

MoCo-cGAN the second loss term cannot be MAE between the output and target 

because the images are not paired. Instead, a cycle consistency loss term is used. The 

concept of cycle consistency loss, and the proposed cycle-GAN motion correction 

framework is illustrated in Figure 5-1. Cycle-GAN has two generators – one that 

transforms the input image to the output image, and one that performs the opposite 

transformation. In Figure 5-1 this is illustrated by a motion-corrupted image being 

transformed to a motion-corrected image by generator G and then being transformed 

back to a motion-corrupted image by generator F. The mean absolute error is calculated 

between the output of F and the input of G. This cycle-loss MAE term is used in the 

overall loss function for generator G: 

−log	(𝐷P𝑥, 𝐺(𝑥)R) + 	𝛼𝐶,     (5.1) 

where x is the input to G, C is the cycle consistency loss and 𝛼 is a tuneable hyperparameter 

that sets the relative weight between the two loss terms.  

Applying cycle-GAN to motion correction would have to be slightly different than the 

original cycle-GAN network. The forward transformation (motion-corrupted à motion 

corrected) has only one solution, while the opposite transformation is an ill-posed 

problem, as there is an infinite number of possible motion-corrupted images for any 

image without motion artefacts. For motion correction then, the cycle-consistency 

requirement would have to be relaxed (i.e. 𝛼 would need to be lower than in most 

applications) which may lead to insufficient constraints on the optimization problem. 

However, data consistency can be enforced separately in image space and k space, 

which would add an additional constraint. The output of the reverse generator would 

be transformed to k space and a cycle consistency loss between this k space and the k 
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space of the input image could be calculated. Ultimately, the loss function would 

look like: 

−log	(𝐷P𝑥, 𝐺(𝑥)R) + 	𝛼𝐶S + 𝛽𝐶;    (5.2) 

where the −log	(𝐷(𝑥, 𝐺(𝑥))) term is the discriminator loss term as described in Chapter 

4, and 𝐶S and 𝐶; are the cycle consistency loss in image space and k space respectively. 

a and b are again tunable hyper-parameters that set the relative weights between the 

loss terms. It may be useful to restrict the k-space consistency loss to voxels closer to 

the center of k space where distortions from rotations would be less severe.  

 

Figure 5-1 Illustration of cycle-GAN. A motion-corrupted image is transformed by 
generator G to an artefact free image. The output of G becomes the input to a 
discriminator which classifies the image as a real image or a generator image. An 
artefact free image is transformed by generator F to a motion-corrupted image and 
becomes the input to a second discriminator. Training generator G involves maximizing 
the discriminator error and minimizing the cycle-consistency loss. 
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