486 research outputs found

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Recent Topics in Electromagnetic Compatibility

    Get PDF
    Recent Topics in Electromagnetic Compatability discusses several topics in electromagnetic compatibility (EMC) and electromagnetic interference (EMI), including measurements, shielding, emission, interference, biomedical devices, and numerical modeling. Over five sections, chapters address the electromagnetic spectrum of corona discharge, life cycle assessment of flexible electromagnetic shields, EMC requirements for implantable medical devices, analysis and design of absorbers for EMC applications, artificial surfaces, and media for EMC and EMI shielding, and much more

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    Development of tunable terahertz quantum cascade wire lasers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 179-188).For a long time, terahertz (THz) radiation has been of great interest to scientific community because of its spectroscopic and imaging applications based on its unique properties, such as the capabilities to penetrate many materials which are opaque in other frequency range (e.g. packaging, plastics, paints and semiconductors), and spectroscopic signatures of many important materials. In this thesis, a continuously tunable THz wire QC laser, which comprises a QC laser with deep sub-wavelength transverse dimensions, and a movable side object, termed as "plunger", is demonstrated. This deep sub-wavelength cross-section results in a large fraction of mode propagating outside of the laser core (GaAs/A1₀.₁₅Ga₀.₈₅As material system). The frequency tuning is achieved by changing the transverse wave vector, using a plunger made by metal (metal plunger) or silicon (dielectric plunger). When nudged close to the wire laser core, the metal plunger can push modes to the opposite side of the waveguide. Confined by a metal-metal waveguide, the mode is squeezed and the transverse wave vector is increased, resulting in a blue-shifted frequency. In contrast, a silicon plunger can suck the mode out due to its similar refractive index to GaAs/Al₀.₁₅Ga₀.₈₅As material system of laser core. Thus a decreased transverse wave vector results in a redshifted frequency. Although a tuning record of 138GHz (3.6%) was achieved, a discontinuous tuning resulted from a jittering movement of the plungers due to its friction with the guiding system. To solve this problem, an improved plunger based on micro-mechanical system (MEMS) was implemented. This MEMS plunger uses a two-stage folded-beam flexure to isolate the misaligned external actuation. The plunger is attached with the flexure which suspends above a silicon substrate to eliminate friction. Eventually, this MEMS flexure was actuated by a mechanical system which comprised a lever to de-amplify the displacement of a linear mechanical feedthrough. This MEMS plunger enabled a restorable and frictionless movement which led to a continuous tuning range of 330GHz (8.6%) centered at ~3.85 THz. The challenges posted by the weak mode discrimination led to the development of comb-shape connectors which electrically connect the top metal of wire lasers and the side bonding pad. This design can significantly increase the mode discrimination by selectively guiding undesired mode into the lossy bonding pad. This robust design of single mode operation enables the initial lasing at a frequency far below the gain peak, which can potentially increase the tuning range significantly.by Qi Qin.Ph.D

    Annual Review of Progress in Applied Computational Electromagnetics

    Get PDF
    Approved for public release; distribution is unlimited

    Open Circuit Resonant (SansEC) Sensor Technology for Lightning Mitigation and Damage Detection and Diagnosis for Composite Aircraft Applications

    Get PDF
    Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment

    Human Body Scattering Effects at Millimeter Waves Frequencies for Future 5G Systems and Beyond

    Full text link
    [ES] Se espera que las futuras comunicaciones móviles experimenten una revolución técnica que vaya más allá de las velocidades de datos de Gbps y reduzca las latencias de las velocidades de datos a niveles muy cercanos al milisegundo. Se han investigado nuevas tecnologías habilitadoras para lograr estas exigentes especificaciones. Y la utilización de las bandas de ondas milimétricas, donde hay mucho espectro disponible, es una de ellas. Debido a las numerosas dificultades técnicas asociadas a la utilización de esta banda de frecuencias, se necesitan complicados modelos de canal para anticipar las características del canal de radio y evaluar con precisión el rendimiento de los sistemas celulares en milimétricas. En concreto, los modelos de propagación más precisos son los basados en técnicas de trazado de rayos deterministas. Pero estas técnicas tienen el estigma de ser computacionalmente exigentes, y esto dificulta su uso para caracterizar el canal de radio en escenarios interiores complejos y dinámicos. La complejidad de la caracterización de estos escenarios depende en gran medida de la interacción del cuerpo humano con el entorno radioeléctrico, que en las ondas milimétricas suele ser destructiva y muy impredecible. Por otro lado, en los últimos años, la industria de los videojuegos ha desarrollado potentes herramientas para entornos hiperrealistas, donde la mayor parte de los avances en esta emulación de la realidad tienen que ver con el manejo de la luz. Así, los motores gráficos de estas plataformas se han vuelto cada vez más eficientes para manejar grandes volúmenes de información, por lo que son ideales para emular el comportamiento de la propagación de las ondas de radio, así como para reconstruir un escenario interior complejo. Por ello, en esta Tesis se ha aprovechado la capacidad computacional de este tipo de herramientas para evaluar el canal radioeléctrico milimétricas de la forma más eficiente posible. Esta Tesis ofrece unas pautas para optimizar la propagación de la señal en milimétricas en un entorno interior dinámico y complejo, para lo cual se proponen tres objetivos principales. El primer objetivo es evaluar los efectos de dispersión del cuerpo humano cuando interactúa con el canal de propagación. Una vez evaluado, se propuso un modelo matemático y geométrico simplificado para calcular este efecto de forma fiable y rápida. Otro objetivo fue el diseño de un reflector pasivo modular en milimétricas, que optimiza la cobertura en entornos de interior, evitando la interferencia del ser humano en la propagación. Y, por último, se diseñó un sistema de apuntamiento del haz predictivo en tiempo real, para que opere con el sistema de radiación en milimétricas, cuyo objetivo es evitar las pérdidas de propagación causadas por el cuerpo humano en entornos interiores dinámicos y complejos.[CA] S'espera que les futures comunicacions mòbils experimenten una revolució tècnica que vaja més enllà de les velocitats de dades de Gbps i reduïsca les latències de les velocitats de dades a nivells molt pròxims al milisegundo. S'han investigat noves tecnologies habilitadoras per a aconseguir estes exigents especificacions. I la utilització de les bandes d'ones millimètriques, on hi ha molt espectre disponible, és una d'elles. A causa de les nombroses dificultats tècniques associades a la utilització d'esta banda de freqüències, es necessiten complicats models de canal per a anticipar les característiques del canal de ràdio i avaluar amb precisió el rendiment dels sistemes cellulars en millimètriques. En concret, els models de propagació més precisos són els basats en tècniques de traçat de rajos deterministes. Però estes tècniques tenen l'estigma de ser computacionalment exigents, i açò dificulta el seu ús per a caracteritzar el canal de ràdio en escenaris interiors complexos i dinàmics. La complexitat de la caracterització d'estos escenaris depén en gran manera de la interacció del cos humà amb l'entorn radioelèctric, que en les ones millimètriques sol ser destructiva i molt impredicible. D'altra banda, en els últims anys, la indústria dels videojocs ha desenrotllat potents ferramentes per a entorns hiperrealistes, on la major part dels avanços en esta emulació de la realitat tenen a veure amb el maneig de la llum. Així, els motors gràfics d'estes plataformes s'han tornat cada vegada més eficients per a manejar grans volums d'informació, per la qual cosa són ideals per a emular el comportament de la propagació de les ones de ràdio, així com per a reconstruir un escenari interior complex. Per això, en esta Tesi s'ha aprofitat la capacitat computacional d'este tipus de ferramentes per a avaluar el canal radioelèctric millimètriques de la manera més eficient possible. Esta Tesi oferix unes pautes per a optimitzar la propagació del senyal en millimètriques en un entorn interior dinàmic i complex, per a la qual cosa es proposen tres objectius principals. El primer objectiu és avaluar els efectes de dispersió del cos humà quan interactua amb el canal de propagació. Una vegada avaluat, es va proposar un model matemàtic i geomètric simplificat per a calcular este efecte de forma fiable i ràpida. Un altre objectiu va ser el disseny d'un reflector passiu modular en millimètriques, que optimitza la cobertura en entorns d'interior, evitant la interferència del ser humà en la propagació, per a així evitar pèrdues de propagació addicionals. I, finalment, es va dissenyar un sistema d'apuntament del feix predictiu en temps real, perquè opere amb el sistema de radiació en millimètriques, l'objectiu del qual és evitar les pèrdues de propagació causades pel cos humà en entorns interiors dinàmics i complexos.[EN] Future mobile communications are expected to experience a technical revolution that goes beyond Gbps data rates and reduces data rate latencies to levels very close to a millisecond. New enabling technologies have been researched to achieve these demanding specifications. The utilization of mmWave bands, where a lot of spectrum is available, is one of them. Due to the numerous technical difficulties associated with using this frequency band, complicated channel models are necessary to anticipate the radio channel characteristics and to accurately evaluate the performance of cellular systems in mmWave. In particular, the most accurate propagation models are those based on deterministic ray tracing techniques. But these techniques have the stigma of being computationally intensive, and this makes it difficult to use them to characterize the radio channel in complex and dynamic indoor scenarios. The complexity of characterizing these scenarios depends largely on the interaction of the human body with the radio environment, which at mmWaves is often destructive and highly unpredictable. On the other hand, in recent years, the video game industry has developed powerful tools for hyper-realistic environments, where most of the progress in this reality emulation has to do with the handling of light. Therefore, the graphic engines of these platforms have become more and more efficient to handle large volumes of information, becoming ideal to emulate the radio wave propagation behavior, as well as to reconstruct a complex interior scenario. Therefore, in this Thesis one has taken advantage of the computational capacity of this type of tools to evaluate the mmWave radio channel in the most efficient way possible. This Thesis offers some guidelines to optimize the signal propagation in mmWaves in a dynamic and complex indoor environment, for which three main objectives are proposed. The first objective has been to evaluate the scattering effects of the human body when it interacts with the propagation channel. Once evaluated, a simplified mathematical and geometrical model has been proposed to calculate this effect in a reliable and fast way. Another objective has been the design of a modular passive reflector in mmWaves, which optimizes the coverage in indoor environments, avoiding human interference in the propagation, in order to avoid its harmful scattering effects. And finally, a real-time predictive beam steering system has been designed for the mmWaves radiation system, in order to avoid propagation losses caused by the human body in dynamic and complex indoor environments.Romero Peña, JS. (2022). Human Body Scattering Effects at Millimeter Waves Frequencies for Future 5G Systems and Beyond [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19132

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Design and Optimization of a 3-D Plasmonic Huygens Metasurface for Highly-Efficient Flat Optics

    Get PDF
    For miniaturization of future USAF unmanned aerial and space systems to become feasible, accompanying sensor components of these systems must also be reduced in size, weight and power (SWaP). Metasurfaces can act as planar equivalents to bulk optics, and thus possess a high potential to meet these low-SWaP requirements. However, functional efficiencies of plasmonic metasurface architectures have been too low for practical application in the infrared (IR) regime. Huygens-like forward-scattering inclusions may provide a solution to this deficiency, but there is no academic consensus on an optimal plasmonic architecture for obtaining efficient phase control at high frequencies. This dissertation asks the question: what are the ideal topologies for generating Huygens-like metasurface building blocks across a full 2π phase space? Instead of employing any a priori assumption of fundamental scattering topologies, a genetic algorithm (GA) routine was developed to optimize a “blank slate” grid of binary voxels inside a 3D cavity, evolving the voxel bits until a near-globally optimal transmittance (T) was attained at a targeted phase. All resulting designs produced a normalized T≥80 across the entire 2π range, which is the highest metasurface efficiency reported to-date for a plasmonic solution in the IR regime

    An Ultrawideband Dual-Linear Polarization Feed for Solar Microwave Observation

    Get PDF
    The study of Solar Microwave Bursts (SMB\u27s) emanating from the sun is important from several perspectives. SMB\u27s are well correlated to Coronal Mass Ejections (CME\u27s) and therefore can provide insight into the physics of the sun. SMB\u27s and CME\u27s can interfere with microwave communication systems such as cell phones, satellites, and radar, and can adversely affect the accuracy of the Global Positioning System. Furthermore, CME\u27s can be hazardous to individuals and equipment in earth orbit as well as causing power grid blackouts. The rapid detection of SMB\u27s and their subsequent effect on space weather is a key element of responsibility of the United States Air Force (USAF). Identification of the source eliminates the possibility of intentional jamming or a systems failure. When such a determination is made, warnings can be issued so that measures can be taken such as using different communication frequencies or modes, or to place satellites in a safe mode. Currently the USAF operates the Radio Solar Telescope Network (RSTN) consisting of three parabolic dish antennas each at four locations to continuously observe the sun in the microwave spectrum. The 2.4m RSTN dishes have feeds that are single polarization at four discrete frequencies between 1.4 and 8.8GHz. Expanding the capability of these existing dishes with a single ultrawideband feed to cover 1-10GHz would improve observations, while adding a dual polarization capability could facilitate improved monitoring should there be future developments in spectrum usage. A feed with folded diamond-shaped elements in a damped cavity has been designed and constructed, funded under contract FA9453-09-C-0309 from the USAF Solar Disturbance Prediction Program, with a simulated bandwidth of 0.9 - 12 GHz. Subsequent characterization from 2 - 8 GHz showed good correlation between simulation and measurement, and that the feed meets virtually all performance specifications that were tested
    corecore