7,525 research outputs found

    Partial resampling to approximate covering integer programs

    Full text link
    We consider column-sparse covering integer programs, a generalization of set cover, which have a long line of research of (randomized) approximation algorithms. We develop a new rounding scheme based on the Partial Resampling variant of the Lov\'{a}sz Local Lemma developed by Harris & Srinivasan (2019). This achieves an approximation ratio of 1+ln(Δ1+1)amin+O(log(1+log(Δ1+1)amin)1 + \frac{\ln (\Delta_1+1)}{a_{\min}} + O\Big( \log(1 + \sqrt{ \frac{\log (\Delta_1+1)}{a_{\min}}} \Big), where amina_{\min} is the minimum covering constraint and Δ1\Delta_1 is the maximum 1\ell_1-norm of any column of the covering matrix (whose entries are scaled to lie in [0,1][0,1]). When there are additional constraints on the variable sizes, we show an approximation ratio of lnΔ0+O(loglogΔ0)\ln \Delta_0 + O(\log \log \Delta_0) (where Δ0\Delta_0 is the maximum number of non-zero entries in any column of the covering matrix). These results improve asymptotically, in several different ways, over results of Srinivasan (2006) and Kolliopoulos & Young (2005). We show nearly-matching inapproximability and integrality-gap lower bounds. We also show that the rounding process leads to negative correlation among the variables, which allows us to handle multi-criteria programs

    On the ERM Principle with Networked Data

    Full text link
    Networked data, in which every training example involves two objects and may share some common objects with others, is used in many machine learning tasks such as learning to rank and link prediction. A challenge of learning from networked examples is that target values are not known for some pairs of objects. In this case, neither the classical i.i.d.\ assumption nor techniques based on complete U-statistics can be used. Most existing theoretical results of this problem only deal with the classical empirical risk minimization (ERM) principle that always weights every example equally, but this strategy leads to unsatisfactory bounds. We consider general weighted ERM and show new universal risk bounds for this problem. These new bounds naturally define an optimization problem which leads to appropriate weights for networked examples. Though this optimization problem is not convex in general, we devise a new fully polynomial-time approximation scheme (FPTAS) to solve it.Comment: accepted by AAAI. arXiv admin note: substantial text overlap with arXiv:math/0702683 by other author

    Approximation Algorithms for Covering/Packing Integer Programs

    Get PDF
    Given matrices A and B and vectors a, b, c and d, all with non-negative entries, we consider the problem of computing min {c.x: x in Z^n_+, Ax > a, Bx < b, x < d}. We give a bicriteria-approximation algorithm that, given epsilon in (0, 1], finds a solution of cost O(ln(m)/epsilon^2) times optimal, meeting the covering constraints (Ax > a) and multiplicity constraints (x < d), and satisfying Bx < (1 + epsilon)b + beta, where beta is the vector of row sums beta_i = sum_j B_ij. Here m denotes the number of rows of A. This gives an O(ln m)-approximation algorithm for CIP -- minimum-cost covering integer programs with multiplicity constraints, i.e., the special case when there are no packing constraints Bx < b. The previous best approximation ratio has been O(ln(max_j sum_i A_ij)) since 1982. CIP contains the set cover problem as a special case, so O(ln m)-approximation is the best possible unless P=NP.Comment: Preliminary version appeared in IEEE Symposium on Foundations of Computer Science (2001). To appear in Journal of Computer and System Science

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games
    corecore