1,288 research outputs found

    A novel monitoring system for fall detection in older people

    Get PDF
    IndexaciĂłn: Scopus.This work was supported in part by CORFO - CENS 16CTTS-66390 through the National Center on Health Information Systems, in part by the National Commission for Scientific and Technological Research (CONICYT) through the Program STIC-AMSUD 17STIC-03: ‘‘MONITORing for ehealth," FONDEF ID16I10449 ‘‘Sistema inteligente para la gestiĂłn y anĂĄlisis de la dotaciĂłn de camas en la red asistencial del sector pĂșblico’’, and in part by MEC80170097 ‘‘Red de colaboraciĂłn cientĂ­fica entre universidades nacionales e internacionales para la estructuraciĂłn del doctorado y magister en informĂĄtica mĂ©dica en la Universidad de ValparaĂ­so’’. The work of V. H. C. De Albuquerque was supported by the Brazilian National Council for Research and Development (CNPq), under Grant 304315/2017-6.Each year, more than 30% of people over 65 years-old suffer some fall. Unfortunately, this can generate physical and psychological damage, especially if they live alone and they are unable to get help. In this field, several studies have been performed aiming to alert potential falls of the older people by using different types of sensors and algorithms. In this paper, we present a novel non-invasive monitoring system for fall detection in older people who live alone. Our proposal is using very-low-resolution thermal sensors for classifying a fall and then alerting to the care staff. Also, we analyze the performance of three recurrent neural networks for fall detections: Long short-term memory (LSTM), gated recurrent unit, and Bi-LSTM. As many learning algorithms, we have performed a training phase using different test subjects. After several tests, we can observe that the Bi-LSTM approach overcome the others techniques reaching a 93% of accuracy in fall detection. We believe that the bidirectional way of the Bi-LSTM algorithm gives excellent results because the use of their data is influenced by prior and new information, which compares to LSTM and GRU. Information obtained using this system did not compromise the user's privacy, which constitutes an additional advantage of this alternative. © 2013 IEEE.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=842305

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 40)

    Get PDF
    Abstracts are provided for 181 patents and patent applications entered into the NASA scientific and technical information system during the period July 1991 through December 1991. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Optical fiber tip micro anemometer [U.S. Patent US11635315B2]

    Get PDF
    A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to a flow rate

    Gloved Human-Machine Interface

    Get PDF
    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human

    Systems and Methods for Coupling Low-Bandwidth Imaging Devices to a Wearable Device Using a Reduced Number of Data-Transmission Lanes

    Get PDF
    Systems and methods are provided for recovering image data received from a low-bandwidth imaging device. One example system includes a low-bandwidth imaging device and one or more integrated circuits communicatively coupled with the low-bandwidth imaging device. The low-bandwidth imaging device is coupled to the one or more integrated circuits via at least one active data-transmission lane, and the one or integrated circuits also include another data-transmission lane. The one or more integrated circuits are configured to use the active data-transmission lane to receive first and second image data via the active data-transmission lane. The first and second image data start with an image identifier. The one or more integrated circuits are further configured to align, based on the image identifier, the first image data with the second image data without having received a clock signal over the other data-transmission lane, and generate, based on aligned image data, recovered image data

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 39)

    Get PDF
    Abstracts are provided for 154 patents and patent applications entered into the NASA scientific and technical information systems during the period Jan. 1991 through Jun. 1991. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG

    The 2021 flexible and printed electronics roadmap

    Get PDF
    This roadmap includes the perspectives and visions of leading researchers in the key areas of flexible and printable electronics. The covered topics are broadly organized by the device technologies (sections 1–9), fabrication techniques (sections 10–12), and design and modeling approaches (sections 13 and 14) essential to the future development of new applications leveraging flexible electronics (FE). The interdisciplinary nature of this field involves everything from fundamental scientific discoveries to engineering challenges; from design and synthesis of new materials via novel device design to modelling and digital manufacturing of integrated systems. As such, this roadmap aims to serve as a resource on the current status and future challenges in the areas covered by the roadmap and to highlight the breadth and wide-ranging opportunities made available by FE technologies
    • 

    corecore