5,519 research outputs found

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    Toward a Formal Semantics for Autonomic Components

    Full text link
    Autonomic management can improve the QoS provided by parallel/ distributed applications. Within the CoreGRID Component Model, the autonomic management is tailored to the automatic - monitoring-driven - alteration of the component assembly and, therefore, is defined as the effect of (distributed) management code. This work yields a semantics based on hypergraph rewriting suitable to model the dynamic evolution and non-functional aspects of Service Oriented Architectures and component-based autonomic applications. In this regard, our main goal is to provide a formal description of adaptation operations that are typically only informally specified. We contend that our approach makes easier to raise the level of abstraction of management code in autonomic and adaptive applications.Comment: 11 pages + cover pag

    Transparent Dynamic reconfiguration for CORBA

    Get PDF
    Distributed systems with high availability requirements have to support some form of dynamic reconfiguration. This means that they must provide the ability to be maintained or upgraded without being taken off-line. Building a distributed system that allows dynamic reconfiguration is very intrusive to the overall design of the system, and generally requires special skills from both the client and server side application developers. There is an opportunity to provide support for dynamic reconfiguration at the object middleware level of distributed systems, and create a dynamic reconfiguration transparency to application developers. We propose a Dynamic Reconfiguration Service for CORBA that allows the reconfiguration of a running system with maximum transparency for both client and server side developers. We describe the architecture, a prototype implementation, and some preliminary test result

    Management of object-oriented action-based distributed programs

    Get PDF
    Phd ThesisThis thesis addresses the problem of managing the runtime behaviour of distributed programs. The thesis of this work is that management is fundamentally an information processing activity and that the object model, as applied to actionbased distributed systems and database systems, is an appropriate representation of the management information. In this approach, the basic concepts of classes, objects, relationships, and atomic transition systems are used to form object models of distributed programs. Distributed programs are collections of objects whose methods are structured using atomic actions, i.e., atomic transactions. Object models are formed of two submodels, each representing a fundamental aspect of a distributed program. The structural submodel represents a static perspective of the distributed program, and the control submodel represents a dynamic perspective of it. Structural models represent the program's objects, classes and their relationships. Control models represent the program's object states, events, guards and actions-a transition system. Resolution of queries on the distributed program's object model enable the management system to control certain activities of distributed programs. At a different level of abstraction, the distributed program can be seen as a reactive system where two subprograms interact: an application program and a management program; they interact only through sensors and actuators. Sensors are methods used to probe an object's state and actuators are methods used to change an object's state. The management program is capable to prod the application program into action by activating sensors and actuators available at the interface of the application program. Actions are determined by management policies that are encoded in the management program. This way of structuring the management system encourages a clear modularization of application and management distributed programs, allowing better separation of concerns. Managemental concerns can be dealt with by the management program, functional concerns can be assigned to the application program. The object-oriented action-based computational model adopted by the management system provides a natural framework for the implementation of faulttolerant distributed programs. Object orientation provides modularity and extensibility through object encapsulation. Atomic actions guarantee the consistency of the objects of the distributed program despite concurrency and failures. Replication of the distributed program provides increased fault-tolerance by guaranteeing the consistent progress of the computation, even though some of the replicated objects can fail. A prototype management system based on the management theory proposed above has been implemented atop Arjuna; an object-oriented programming system which provides a set of tools for constructing fault-tolerant distributed programs. The management system is composed of two subsystems: Stabilis, a management system for structural information, and Vigil, a management system for control information. Example applications have been implemented to illustrate the use of the management system and gather experimental evidence to give support to the thesis.CNPq (Consellho Nacional de Desenvolvimento Cientifico e Tecnol6gico, Brazil): BROADCAST (Basic Research On Advanced Distributed Computing: from Algorithms to SysTems)

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201
    • ā€¦
    corecore