
Modelling Aspects of Model-Based Dynamic
QoS Management by the Performability

Manager

Leonard J.N. Frankent, Raymond H. Pijperst
Boudewijn R.H.M. Haverkort$

tPTT Research
P.O. Box 15000, 9700 CD Groningen, The Netherlands

E-mail: {1.j.n.franken,r.h.pijpers} @research.ptt.nl
$University of Twente,

Department of Computer Science Tele-Informatics and Open Systems
P.O. Box 217, 7500 AE Enschede, The Netherlands

E-mail: b.r.h.m.haverkort@cs.utwente.nl

A b s t r a c t . The Performability Manager (PM) is a distributed system
component which maintains the application-requested QuMity of Service
(QoS) by dynamically reconfiguring ANSAware-based distributed appli-
cations, using a model-based optimization procedure. The PM receives
information about the ANSAware-based application from a distributed
monitoring process based on JEWEL and DEMON. With this informa-
tion, and using predefined stochastic Petri net (SPN) models of AN-
SAware applications, the PM automatically constructs an overall SPN
performability model which is subsequently used for the determination
of the provided QoS. Based on the analysis results, the PM can decide to
initiate on-line system reconfigurations, if such is needed for maintain-
ing the requested QoS. ANSAware provides facilities for these dynamic
reconfigurations.
In this paper we focus on the modelling aspects of model-based dy-
namic QoS management by the performability manager. We present
an ANSAware-based experimental distributed environment in which the
modelling and evaluation aspects are totally automated. We ~lso show
the feasibility of the proposed PM by presenting some operational results.

1 I n t r o d u c t i o n

For modern distributed systems it is impor tant to be able to realize and mainta in
a requested Quality of Service (QoS). This QoS can degrade for several reasons:
the addition of new applications, the updat ing of applications, the change of
workload (new users) or the occurrence of failures and repairs.

QoS is difficult to define in general. Most importantly, it describes the user-
perceived performance [22, 28, 34, 35]. The QoS can be divided in the subjective
and the objective QoS. The subjective QoS is user oriented, and hard to quantify
and measure. The objective QoS can be measured. We will always refer to the

90

objective QoS. The objective QoS is related to or can be transformed into the
subjective QoS, but this is not a one-to-one relation.

Service Performance Parameters (SPPs) is the generic term for provider
visible performance parameters [8]. These are quantitative parameters which
indicate how well the system (service) is performing. Between the objective QoS
parameters and the SPPs there exists a one-to-one mapping [22, 28]. The SPPs
can be measured at the service, and they ultimately determine the QoS, but they
do not describe the QoS in a way that is meaningful to users (the subjective QoS).

As the QoS describes the user-perceived performance, the separate evaluation
of performance, reliability and availability during system design, implementation
and maintenance is not sufficient. The mutual influence of these aspects is rec-
ognized by the QoS and demands for modelling and evaluation techniques which
can handle the combined aspects [24].

In [9] we introduced the Performability Manager (PM), a distributed system
component which maintains the application-requested QoS by dynamically re-
configuring a distributed system, using a model-based optimization procedure.
The PM does so by creating alternative configurations using (or manipulating) a
graph-oriented model of the current configuration of the distributed system. The
performability models of the alternative configurations are automatically gener-
ated from a graph model of the system obtained via DEMON [21], a library of
predefined SPN model components, and parameterized via a monitoring process
with JEWEL [19, 26]. By carefully selecting an alternative configuration, based
on performability evaluation, an alternative (new) configuration can be decided
upon. The alternative configuration can dynamically be effected using dynamic
reconfiguration [18] as supported by the ANSAware computing platform under-
lying the distributed application.

For the operation of the performability manager, model creation and eval-
uation is both crucial and difficult. An overall performability model must be
created, at run-time, out of model components. Apart from that, the performa-
bility manager must also be able to create alternative configurations for the
current configuration. The performability manager uses performability analysis
because that type of analysis provides us with the means to model and evaluate
distributed systems with respect to their QoS [7, 9, 14, 23, 24].
In the realization of the PM the following questions arises:

1. how to detect QoS degradations of the current configuration;
2. how to create an alternative configuration;
3. how to determine the QoS of the alternative configuration.

These questions can be answered by either modelling (and evaluation) and/or
monitoring. In this paper we will address both modelling (and evaluation) as well
as monitoring aspects of performability or QoS management as done by the PM.
The modelling aspects are important for configuration creation and configuration
evaluation. Monitoring is important for parameterization of the models and to
detect QoS degradations. We discuss these modelling and monitoring aspects by
means of an experimental distributed environment realized using ANSAware.

9]

This paper is further organized as follows. Section 2 presents work related
to dynamic reconfiguration and performability management. In Section 3 we
present the experimental environment and the ANSAware computational model
of our application. Section 4 describes the graph-oriented modelling of distrib-
uted environments and shows how our experimental environment can be de-
scribed using the proposed graph-oriented model. In Section 5 we present the
creation of a performability model using predefined stochastic Petri net mod-
els of the system components and the graph-oriented model of the experimental
environment. The monitoring of the experimental distributed environment is dis-
cussed in Section 6, whereas parameterization and first results on measurements
are presented in Section 7. Finally, in Section 8, we discuss implementation and
operational issues of the presented modelling techniques, discuss our ongoing
research and set out lines for future research.

2 R e l a t e d w o r k

The performability manager maintains the required QoS by dynamic reeonfigu-
rations. This requires that facilities for dynamic reconfiguration should be avail-
able in the distributed system. Such facilities would include access, concurrency,
federation, location, migration and replication transparency [27]. These facilities
can be realized at several levels in a distributed system: at the operating system
level, at the middle-ware level, think of computing platforms or configuration
languages or at the application level itselfi The current trend in distributed sys-
tems is to provide these facilities at the middle-ware level, i.e. by computing
platforms. These platforms allow for heterogeneous distributed systems, which
are transparent to the application programmer. Examples of such middle-ware
facilities are the configuration languages Gerel, Conic, Argus, Rex, Darwin [18],
and the computing platforms ANSAware [1] and DCE [29].

Computing platforms and configuration languages provide the user with the
functionality for dynamic or/and static (re-)configurations. Examples of the use
of these facilities for qualitative configuration management are for example de-
scribed by Cole and Dean in [18]. Cristian presents in [18] an approach for
a so-called availability manager, which guarantees the availability of the ap-
plications using replicated components. A performability manager extends this
functionality by also addressing performance aspects.

Most of the effort in the area of dynamically reconfiguring distributed sys-
tems has been put in supplying facilities to perform the reconfiguration rather
than on reconfiguration management to guarantee a desired level of QoS. The
performability manager is therefore designed to guide reconfigurations by using
a model-based optimization procedure. The goal of the reconfigurations is to
maintain the QoS as requested by the application users. Performability evalua-
tion will be used in the optimization procedure. A similar, but less general and
less "automatic" approach towards resource control has been proposed by Lee
and Shin [20, 32].

Further related to our work is the area of optimal system design [11, 15] and

92

dynamic load balancing [3, 33]. Closely related is also the area of task allocation
[31]. An example of this has been presented by Bowen [4] in which heuristic and
linear-program solution for optimal process allocation in heterogeneous distrib-
uted systems are compared. Hariri [12] presents an algorithm which takes care of
optimizing reliability and communication delay. The above approaches, however,
are all focussed on single aspects of performance or reliability and not on their
combination as we propose.

Another area related to our work is network management. From this area
Kheradpir et al [16] proposes model based network management to manage the
end-to-end network performance and robustness (dependability). They advocate
a model based solution for future telecommunication systems to manage the
QoS.

3 An ANSAware-based distributed environment

The application in our distributed environment is realised using ANSAware. In
ANSAware the computational modelis the model used for creation of applications
and application components. This computational model is both object-oriented
and client/server oriented. From this computationM model we want to come to
a performability model, which will be discussed in later sections.

In Section 3.1 we present a distributed application which will be used through-
out this paper to clarify the different models. Section 3.2 describes ANSAware
and the ANSAware computational model. Section 3.3 presents the experimental
application using the ANSAware computational model.

3.1 A n A N S A w a r e - b a s e d n u m b e r t r a n s l a t i o n service

In this section we describe the (telephone) number translation service (NTS) as
provided in intelligent networks [2, 10, 36]. In the sequel we will refer to this
application as the IN/ANSA application.

End- Users are submitting requests or tasks for the application with a certain
rate. Since we do not have real users, we mimick the user behaviour by a so-
called Generating Component (GC). The GC generates the cMls for the NTS. The
NTS is provided by the following application components (see also Figure 1):

1. The Selection Component (sc): this component selects a service using the
contents of the requests it receives (number translation service in this exam-
ple).

2. The Number Translation Component (NTC): this component receives requests
for number translations. The NTC sends a request to a database component
for the required number and to a billing component for the creation of a bill.
The number received from the database is returned to the sc.

3. The DataBase Component (DBC): this component receives requests for spe-
cific numbers. It will fetch the number from disk and return the number to
the component which requested the number.

93

4. The Billing Component (BC)I this billing component receives requests for the
preparation of a billing record.

The Management Component (MC) does not belong specifically to the NTS,
but provides the PM with the necessary "buttons to push" for performing a
reconfiguration. The MC rises ANSAware facilities to perform necessary recon-
figurations. The other components (sc, NTC, DBC and BC) are components of
the application and can be controlled by the Me.

MC

.: "",% ~ ~ .

SC NTC

DBC

BC

Fig. 1. The experimental ANSAware application

For the experimental application we use a small distributed system consisting
of three SUN SPARC workstations connected by an Ethernet as depicted in
Figure 2. The workstations run UNIX and, on top of that, ANSAware. Of course,
more heterogeneous environments are possible as well, e.g. ,using both SUNs and
PCs.

application

ansa ansa ansa

unix unix unix
s u n 1 sun 2 sun 3

ethemet

Fig. 2. The distributed system

Within this experimental distributed environment we use two monitors, DE-
MON and JEWEL. DEMON, the Distributed Environment MONitor [21], is
used to visualize the structure of the experimental distributed environment.
J E W EL [19] is used to do perform&nee measurements in the experimental dis-
t r ibuted environment.

3.2 A N S A w a r e

94

ANSAware is a suite of programs which allows users to write applications suit-
able for heterogeneous distributed environments (see also Figure 2, although the
possible heterogeneity is not directly apparent there). It is based on ISO-ODP,
an emerging ISO standard for Open Distributed Processing [27]. ANSAware es-
sentially consists of an infrastructure placed on top of the operating system, and
provides a uniform, technology-independent platform upon which applications
can be executed. The infrastructure permits interworking between applications
running on remote and dissimilar machines. Several management applications,
performing functions identified as important in ODP, are provided for the user's
convenience. ANSAware provides a uniform view of a multi-vendor world, al-
lowing system builders to link together components or existing software with
minimal changes and overhead.

The basic building block of ANSAware is a service. Components that use a
service are called clients. Components that provide a service are called servers.
Services are provided at interfaces: an interface is a unit of service provisioning.
This is also depicted in Figure 3. The ANSA computational model permits an
object to be both client and server. A component or object described purely in
terms of the way it provides and uses services, is referred to as a computational
object. A client can invoke an operation or service at the interface of a server
object in two different ways:

1. by interrogation, in which the invoking client waits for the server to perform
the operation and return the result (similar to a remote procedure call);

2. by announcement, in which the invoking client does not wait for the server
to perform the operation and no result is returned (remote process spawn).

interface

client server

Fig. 3. A client object and a server object with its interface

The location of the computational objects or the type of machine they execute
on can be changed at run-time: the ANSAware infrastructure enables a flexible
configuration of application components and provides a uniform way of accessing
them.

95

3.3 T h e c o m p u t a t i o n a l m o d e l o f I N / A N S A

In our experimental distributed environment the computational objects are the
application components of the distributed system. One or more application com-
ponents or computat ional objects make up a distributed application. This is
depicted in Figure 4. Each computational object has been implemented as a
process. All invocations for the experimental application are announcements,
except for those between the NTC and the BC and those between the NTC and
the DBC; these are interrogations.

DBC

Fig. 4. The experimental application described in a computational form

4 A graph-oriented description of distributed
environments

Because a reconfiguration must be performed with great care, the PM uses a
model of the current distributed environment to prepare a reconfiguration. The
performabili ty manager uses this model to create alternative configurations and
as a basis to derive a performability model.

Section 4.1 presents the graph-oriented approach to describe distributed envi-
ronments. In Section 4.2 the IN/ANSA application is described using the graph-
oriented approach.

4.1 G r a p h - o r i e n t e d s t r u c t u r e m o d e l o f a d i s t r i b u t e d e n v i r o n m e n t

In this section we propose a graph-oriented model suitable for the creation of
alternative configurations and which allows for the transformation of these alter-
native configurations into performability models. For the graph-oriented model
we look at a distributed environment at four levels (see also Figure 5) [9]:

Task level Tasks
Application level Applications

96

System level
Management level

System parts and network
Management

A similar distinction in levels has been proposed by Calzarossa et al. for workload
modelling in network-based environments [5]. Each level will be described as
consisting of components and their relations. These relations can be between
the different levels as well as between the components at one level (mutual
relations).

Task level I
Task component " ~ " " ' ~ ' ~ ' 0

Mapping [

Application level [

Application | I ~ .1. component ["(,,) ~ (..)

Mapping

System level I
System part -.---...~

Network link 1 " ' r

�9 �9
I
I
[
I

?
/

, i

i

i :
: 1

i , , i i : : i

i J

[M
i a

in
! a
Jg
ie
!m
ie in
t

Fig. 5. A graph oriented model of a distributed environment

Task. At task level, tasks are viewed as task components td. A task is a certain
amount of work, initiated by a user. For each application j we define the set of
task components T j = { t l , . . . , t o} , T j E T C w i t h T C = { T 1 , . . . , T '~} the set
of all tasks for all applications. The task components have a relation with the
application level. We assume that there are no mutual relations between task
components.

A p p l i c a t i o n . At application level, applications are viewed as composed of
application components ai E AC, with A C = { a l , . . . , am} the set of all appli-
cation components. The application components have besides their relations to
the task and system level, a mutual relation which represents the communication
between the application components. Therefore, at application level we view an
application as a structure of application components and their mutual relations
(communication). We can describe a single application structure using a graph

97

A j - (VA J, EA j I with VA j C_ A C and EA j C_ VA j • VA J. The complete
set of (created) application structures which is active in the current distributed
system is denoted by ,4. Thus, we have A j e A, and A = {(VA J ,EA J)lJ =
1 , . . . , n}, where n is the number of applications.

S y s t e m . At system level we have a structure of the system level components,
i.e. system parts s~ E SC with SC = { s l , . . . , s~} and the network links, n~ E
NL and NL = { n l , . . . , n t } which provide the mutual relations between the
system parts. We can describe the distributed system structure as a graph S --
(V S , E S I , with VS c_C_SC a n d E S C_ VS • VS a n d F : E S - -*NL.

At the system level we also define paths. A path is a finite sequence of network
links (arcs or edges) between any two system parts (nodes), i.e.,a finite sequence
of links in which the terminal node (system part) of each link coincides with
the initial node of the following link [6]. We define P as the set of all paths
on S, Pkl is the set of paths between the system parts sk,sl and Pkl~ E Pkl,
where Pkl~ = {(sk, Sh)(Sh, 8]) . . . (Sg, Sl)l(Sk, Sh) , . . . , (Sg, Sl) e ES }. Every path
pkz~ E P can be mapped on a set of links of S, by the function F : P --* E S .

The system parts have besides their mutual relation, a relation to the appli-
cation level. The definition of a path will be used when assigning the communi-
cation between the application components to the system level. If no path exists
between two system parts then these system parts are not connected.

M a n a g e m e n t . The management level is orthogonal to the other levels. It con-
sists of management tasks, applications and systems, i.e.,the MC component and
the monitors. They are structured as described above and are composed of com-
ponents with the already mentioned relations and mutual relations.

M a p p i n g . The mapping is the logical allocation of higher levels to lower levels,
i.e.,the allocation of application components onto system parts and the routing of
the communication over the network links. This is also reflected in Figure 5 where
the mutual relations are represented by thick lines and the relations between
levels (the mapping of the levels) by dotted lines. The allocation of tasks to
application components is a special case of allocation. Are the other allocations
subject to change, by migration etc., the task components are always allocated
to the same application component of an application.

We can describe a mapping function M j for each A j. The allocation and
routing of a mapping can be described in a more formal way. We will now
elaborate more on the description of the allocation and routing.

A l l o c a t i o n . The allocation consists of two types of allocations: the alloca-
tion of task components to application components and the allocation of ap-
plication components to system parts. We start with the former. We describe
the allocation of task components to application components by the matrix
ZJ = TJ • VA j.

z j ~ 1, i f t h e t d E T j i sa l locatedona~E~VA j ,
d,~ = [. 0, otherwise.

98

For the allocation of application components ai E AJ on system component
sk E S the mapping can be described by maJ : VA j --~ V S . We can derive such
a function for all VA j E ,4.

For the allocation of ai E V A J, and VA j E ,4 on system component sk E
V S , we define a parameter x~, k as follows:

j ~ 1, if the a~ E VA j is allocated on sk E VS ,
xl,k = ~ 0, otherwise,

For A j we can create an allocation matrix X j = VA j x VS , where x J [i, k] =
xi, k . j The matr ix X j represents the allocation part of the mapping M j of A j and
still leaves the routing to be solved.

R o u t i n g . We now present a way of describing the routing for an application
A j . From an application point of view the communication between application
components is described by (a~, aj) E EA J. The routing of the communication
of (ai, aj) e EAJ on a path between (sk, sz) E E S can be described by m r j :
EA ~ --* E S . We can derive such a function for all EA j E ,4.

For the routing of (a~,aj) of EA j on the path Pk4 E Pk j , v = 1 , . . . , n and

Pk,l E P we define a parameter ~a~,aj),p~,~' where:"

1, if (ai, aj) E EA j is routed on Pkt~ E P~,l, ~
a i , a j) , p k l . : 0 , otherwise.

Every path Pk4 E P can be projected on a set of physical links of S, i.e.,by the
earlier derived function F : P --~ ES . Thus Pk4 = { e s a , . . . , eshIeSa, . . . , eSh E
E S } and es a = {(sk, sr) isk, sr E VS }. Using this notation allows us to create

a routing matr ix YJ = EA i x E S , where YJ[(ai , a j) ,pk4] = ~a~,aj) ,p~" Y j

represents the routing part of the mapping MJ of application A j .

O v e r a l l m a p p i n g . The mapping is determined by the set of routing vectors
y = { y 1 , . . . , y n) , and the set of allocation vectors X = { X 1 , . . . , X '~) and
Z -- {Z 1, . . . ,Z '~) , thus M j = { Z J , X J , Y J) . We define mapping as follows:

A
A4 = UVAJ M j"

Using the above view we can state that a conflgura$ion of a distributed envi-
ronment consists of the structures and mapping of the distributed system, i.e.,the
constellation of components, their physical interconnection and their mapping on
each other... As a consequence, a reconfiguration is the changing of the structure
or the mapping. For the creation of alternative configurations we intend to use
application placement procedures as proposed in [4, 11, 30, 31, 33]. Formally, the
distributed system configuration, s is a function of the task components, the
application and system structure and the mapping, i.e.,Y2 = F (T C , ,4, S, A/t).

4.2 A g r a p h m o d e l o f I N / A N S A

In this section we describe our experimental environment using the graph no-
tat ion as presented above. First we start with the presentation of the available
components for our distributed application (see also Figure 6):

TC - {T 1}
AC = {GC, SC, NTC, DBC, BC}
SC = {sun2, sun3}
NL = {nl}
p = { p ~ 3 , }

99

Task level u~:r8

.... -t-----~.~'~'~ t--T7 ...

.

p3

Fig. 6. The graph-oriented view of the distributed environment

In this description we left out the aspects of the management level, because
they are not assumed to have influence on the performance and therefore do
not contribute to the performability model to be created, sun1 (see Figure 6),
has been reserved for the management level activities. The user component is
included in the oc as said before, still we present it also as a separate component
at task level for parameterization reason to become clear below.

Below we describe the task, application and system level of the environment
using the notation presented in the previous section:

r 1 = { ~ s ~ R s)
A = {(VA 1,EA 1)}
A 1 = (VA 1,EA 1)
VA 1 _-- {GC, SC, NTC,DBC, BC}
EA 1 = {(GC, SC), (SC, NTC), (NTC, DBC), (NTC, BC)}

s= (vs ,ES)
VS = {sun2, sun3)
ES = { (~ n 2 , ~un3)}

The only aspect that still needs to be described is the mapping A/[of the different
levels. Because there is only one application, A 1, the mapping remains simple,
M = {M1}. For the mapping we use the allocation and routing matrices, M 1 =
{Z 1, X 1, y1}.

Z I = (1 0 0 0 0) , X 1 - /i ~ 0
1
1
1

, y l _ _ i)

I00

This mapping in combination with the application, task and system level
components results in a configuration as presented in Figure 6; we can see that
the application components NTC, BC and DBC are allocated on one system part
and therefore do not use any communication paths as shown by y1.

We can change the mapping and thereby create an alternative configura-
tion. For the experiments in Section 7 we used the following two alternative
mappings, M 2 and M 3. In the first alternative configuration (represented by
M 2 = {Z2, X 2 , Y 2 }) we moved all the application components to the same
system part, sun2. For this configuration the application does not use the com-
munication paths. In the second alternative configuration (represented by M 3 --
{Z 3, X 3, y3}), replicated components are used, i.e.,NWC', DBC' and BC'. For this
alternative configuration we also have to change (expand) the set of applica-
tion components and the application graph. These replicated components are
treated as independent components. The corresponding allocation matrices then
have the following form:

z =(lOOOO),X = /li)1 1 , y 2 = .
1
1

z3:(10000),x3:

(1 0 \

0 /0i/ ~ I 01 y3
O1 ' = "

101
101

\ 1 0]

In Figure 6, the relations between the management level and the application
components have not been shown, but each of the application components actu-
ally has a relation with all the management components.

5 A p e r f o r m a b i l i t y m o d e l o f I N / A N S A

For the evaluation of an alternative configuration we need a performability
model. Therefore, an alternative configuration tQazt is transformed into a per-
formability model #azt. We do this by replacing each component of T 1, A I and
S by a predefined stochastic Petri net (SPN) model. We use the mapping, the
application and system graphs to create the overall performability model. The
resulting performability models are both flexible and relatively easy to solve by
current day software tools [13]. In this paper we will deal with the performance
aspects of the model only.

101

In Section 5.1 we present the generic SPN modelling of user, application and
system components. The performability model of the experimental distributed
environment is presented in Section 5.2.

5.1 T h e S P N m o d e l s u s e d to rea l ize t h e p e r f o r m a b i l i t y m o d e l

In this section we present a generic way to transform each component of the
distributed environment into an SPN sub-model. We start with the application
level, then the system level and finally present how the users are modelled using
SPN.

For each operation or service provided by an application component a SPN
model component is predefined. In such an SPN model a service is represented
by a t imed transition. The invocation of a service at the interface by a client
is represented by putting a token in the corresponding "service-input place".
Resources must be allocated (e.g.,an cPv) and the operation can be performed
(the timed transition). In Figure 7 we see (at the right hand side of the arrow)
the SPN representation of one operation of a computational object (shown at
the left ahnd side of the arrow) or application component. The output of the
timed transition, i.e. the operation, is an announcement or an interrogation to
another operation (see Figure 8). With an interrogation invocation as output
the component will await an answer and continue operation.

invocat ion of operation result of opcratlon
server with ~ /

o n e service ~ operation /

interface
S~l"ver .:'

: allccat~ / re~ouyce - resource / /
service-input place timed la"ansitlon

Fig. 7. The SPN representation of an ANSAware service provision

The duration of an operation is represented by a timed transition. These transi-
tions represent the work demanded from the resource, for example the cPv busy
time (1/#i.,k, the average service time of operation v of application component
i on system component k) if the CPU is the scarce resourse. We can estimate
these parameters by running and monitoring the component in isolation (one
component on a single workstation).
The communication between components can be represented in a similar way as
the operations. Per (remote) operation, or communication between two appli-
cation components allocated to different system parts, a network link must be
allocated. The duration of a communication operation is also represented by a
t imed transition. In this case a timed transition represents the communication
time (1/#i.,j , ,~, the average communication time of application component j to

102

i m e r r o g a t i o a

"'4 ~ ((~w~)

a l l . a t e f ree

Fig. 8. The SPN representation of an announcement or interrogation operation

application component i for operation v using network link i) per invocation of
an operation per network link (see [9]).

The generation of requests by the USERS is modelled as a Poisson arrival
process, represented by a single timed transition.

5.2 T h e p e r f o r m a b i l i t y m o d e l o f t h e I N / A N S A e n v i r o n m e n t

In this section we discuss the SPN performability model of the IN/ANSA ap-
plication. Tools for SPN analysis normally only allow finite state space models.
This does not correspond to the experimental environment. However, we can
approximate an open model by closed model with a very large customer popu-
lation. The average request rate A for an application A j is modelled by the task
component vsEas E T j . In Figure 9 the SPN representation of the distributed
environment, using configuration M 1, is given using the predefined SPN models.

GC

(users)

SC

DBC

- - - - (

s u n 3

(SC,NTC)
I ' ' I

BC

Fig. 9. The SPN model of configuration M 1

For the evaluation of the model we need the labels for the components as
presented in [9]. These labels are the transition rates (service rates) of the t imed
transitions in the SPN model.

103

6 Monitoring of ANSAware applications

Two different monitoring tools, the DEMON and the JEWEL tool, monitor the
experimental environment introduced in Section 3. The DEMON tool [21] moni-
tors and visualizes the functional behaviour and configuration of the ANSAware
components (as defined in the set AC) on the system nodes (as defined in the set
SC). These can be used to provide the performability model with configuration
information. The JEWEL monitoring tool [19] extracts performability indices
from the ANSAware environment and visualizes them for each component on
a graphical display. The performability indices are used to detect a decrease of
QoS and to parameterize the performability model.

In order to provide the monitoring tools with the information needed, the AN-
SAware application components has to be instrumented with additional code for
both monitoring systems. Instrumentation for the DEMON toot is performed au-
tomatically by a pre-compiler designed and implemented at PTT Research [17].
Instrumentation for the JEWEL monitoring tool is performed in a generic man-
ner using the ANSAware operations as a reference point to detect relevant events.
The implementation of the invocation of an operation is embraced by the two
events: request and confirm. These events are detected by JEWEL and used to
derive the turnaround time of an operation. The implementation of the opera-
tion is also embraced by two events: indication and response, these are detected
by JEWEL and used to derive the service time of an operation, see Figure 11.
A detailed prescription of generic instrumentation for ANSAware is provided
in [25].

7 Experiences with monitoring, modelling and evaluation

A performability model of a distributed application can automatically be con-
structed guided by three input sources (see also Figure 10):

1. A library ofpredefined SPNmodels. For each ANSAware and system compo-
nent a model has to be available in a library .

2. Configuration determination. The configuration has to be obtained from the
system to construct the model from the predefined model components in the
library. The DEMON monitor provides this configuration information.

3. Performability indices determination. We use the performability monitoring
measurements provided by JEWEL to determine the transition rates of the
timed transitions in the SPN.

The method of tuning the performability model, provided in [9], obtains the
transition rates for the SPN from the requirements of the components and the
capacities of the system nodes. A major drawback of this method is the re-
quired a priori determination of the requirements and capacities. Because the
source code of the ANSAware components is processed by several pre-compilers
and linked with library functions, exact requirements of the components with
respect to processing workload, communication workload, memory access, etc.

104

ANSAwr�9 Appli~on I

D e ~ ' m m ~ i ~ Indlce8

",,.tJ
Model

peffl~lability M~le.1 evallmllc~l

Fig. 10. The performability model is constructed from three input sources

are hard to assess. Capacities of the system nodes may be exactly specified by
the manufacturers, but mechanisms like memory caching or disk access cause
dynamically changing capacities of the system nodes. Therefore, we have used
a more practical approach to parameterize the performability model, guided by
the measurements provided by the JEWEL monitoring tool. The transition rates
can be obtained by measuring the service times of the individual components.
In Figure 11 a timing diagram is depicted containing the monitored time-stamps
of the events: request, confirm, indication and response.

The service times can be derived from these measurements under minimal
load. No queueing will occur under minimal load, so the residence time of a
component will be equal to the service time of that component decreased by
the residence times of the interrogation operations invoked during the service
provisioning and the encountered communication delays:

1 Tj=

iEK iEK

where ~ is the transition rate of the sub-model of component j, Rj is the average
turnaround time of component j and K is the set of operations invoked (as an
interrogation) by component j. Ri is the average turnaround time of operation i
and Ci the average communication delay to component i. As an example consider

105

GC SC

SCrequest �9 SCindif~.fion

NTCrcqu:t �9

t o.

NTCconfirm.

$Cconfirm ~.

DBCrequest

DBCconfirm.
BCrequest"

BCconfirm -

SCrcsponse

DBC/BC

- NTCindic~on

NTC

NTCrcsponse

DBOMi~fi~

DBCrcsponse

BCindieatlon

BCrc~o~e

Fig. 11. The timing diagram for one configuration

the service time of the NTC in Figure 11. The service time of component NTC

can be derived from the residence time of NTC (NWCresponse - Nwcindication)
decreased by the residence times of DBC and BC and the communication delays
(differences between request and indication and the differences between response
and confirm). In this way service times and communication delays can be derived
from the measurements depicted in the diagram. A drawback of this method is
that for each combination of components and system nodes a measurement under
minimal load has to be done to obtain the residence time without queueing.
A major advantage of this method, however, is the higher level of abstraction
maintained, i.e. the capacities of the system nodes and the requirements of the
components are implicitly incorporated.

We now discuss some comparative results from the modelling and monitor-
ing. The IN/ANSA application has been monitored using different (alternative)
configurations. The performability model has been parameterized with statistics
(averages) over the measurements, obtained by monitoring the different config-
urations under minimal load. This leads to one set of parameters applicable for
all configurations. The SPNP implementation of the performability model has
been verified with the performability indices actually measured by the JEWEL
monitor under various workloads.

In Table 1 the monitored results for the three different configurations are
presented in comparison with the values calculated by SPNP. We see that the
model results, under minimal load, come very close to the actually measured
values. Notice that these results are obtained using a very simple performance
model, only taking into account application components and cPu possession.

Finally, we compare the measured results with the model evaluation results
under higher load. Note that the models parametrization is the same as for the

106

I c~ I
Turnaround

M a

M 2

M 3

Time in ms.
Monitored lSP NP [Difference

time of oc 112 113 -{-0.9%
Turnaround time of so 91 88 -3.4%
Turnaround time of NTC sun3 76 73 -4.1%

Turnaround time of GC 157 157 0%
Turnaround time of sc 132 132 0%
Turnaround time of NTC sun2 103 103 0%

Turnaround time of GC 138 135 -2.2%
Turnaround time of sc 115 l l0 -4.5%
Turnaround time of NTC sun2 106 103 -2.9~,
Turnaround time of NTC' sun3 73 73 0%

Table 1. Evaluation SPNP model with monitoring results under minimal load for
configurations M 1, M 2 and M 3.

minimal load case. The configurations investigated are M 1, M 2 and M 3. Due to
scheduling strategies of ANSAware the approximations for the turnaroundt ime
of the "internal" components, i.e., NTC, SC, BC and DBC are not comparable
to the SPNP results. More impor tant for the performance, however, is the QoS
provided to the user, i.e.,the turnaroundt ime of the complete application, which
is equal to the turnaround t ime of Gc. We therefore address this measure.

The results of the SPNP model and the measurements are graphically de-
picted in Figure 12. For each configuration eight monitoring sessions were con-
ducted for different workloads (~). The results of the SPNP model are reasonably
good (less than 10% error) when the load is low to moderate. When the load
increases, however, the monitoring results differ substantially from the results
calculated by SPNP. The workload range of our interest is the moderate range
were the turnaround t ime does not exceed the requested QoS. If the QoS is
violated (or the turnaroundt ime has increased significantly) the performabil i ty
manager is triggered and runs the Performabili ty Model for alternative configu-
rations.

Furhter research is necesary to est imate the level of confidence we can put in
our models.

8 D i s c u s s i o n a n d f u t u r e w o r k

In this paper we focused on the modelling aspects of model-based dynamic QoS
management by a PM. We presented an ANSAware-based experimental dis-
t r ibuted environment in which the modelling and evaluation aspects are total ly
automated. We proposed a generic modelling strategy in which the structure
of the client/server and the computat ional model of the ANSAware computing
pla t form are used. This structure allows for a generic t ransformation of the com-

107

1600

1400

1200

1000

T
Time 800

600

4O0

200

0
0

1000

1400

1200

1000

1
Time 800
(ms.)

600

400

200

0

1600

1400

1200

1000
!

Time 800
{ms.}

600

40O

200

0
0

I I i i i

i i i

1 2 3
Thzoughput (A)

i i i

M 2 monitored

I 2 $
T1Lroughpul (A)

i i i

i i

4 5

q i

4 5

r i i i

2 3 4 5
Throughpul (A)

Fig. 12. Evaluation SPNP model with monitoring results for configurations M 1, M 2
and M 3.

108

putational models into performability models using predefined SPN models. The
PM receives information about the ANSAware-based application from a distrib-
uted monitoring process based on JEWEL and DEMON. With this information,
and the SPN model library of ANSAware applications, the PM automatically
constructs an overall SPN performability model which is subsequently used for
the determination of the provided Quality of Service (QoS).

The modelling as presented is based on our general view on distributed sys-
tems. This view only bears four levels of which we modelled three, which might
not be sufficient. For example the scheduling activities, i.e. the use of threads
and tasks, in ANSAware are not modelled at the moment which introduces in-
accuracies. Because ANSAware is implemented on top of the system level (and
even partly resides in the management level), the introduction of a middle-ware
level might be necessary.

We showed the feasibility of the proposed PM by presenting some operational
results. More work, however, will be necessary to make the PM fully operational.
The process of automatically creating alternative configurations, selecting the
best and make it operational is not completely automated yet. Currently we
are working on proper mapping algorithms for the Creation of the alternative
configurations.

The required on-line and therefore necessarily fast evaluation of the created
SPN models also requires further study. Currently we are experimenting with
MVA algorithms (thereby ignoring the "simultaneous resource possession" as-
pects) and the use of closed-form solutions for the SPNs [25].

The monitoring process is realised using two monitoring tools. In a future en-
vironment the use of one monitoring tool is preferred because of the interference
of the monitoring process with the monitored applications. The current experi-
ence with generic monitoring shows satisfying results which makes it applicable
for further use.

In this paper we mainly adressed pure performance issues of the performabil-
ity manager. The use of replicated components and the evaluation of the models
w.r.t. "real" performability measures, i.e.,including dependability aspects, will
be subject of further study. We also intend to use the performability manager
as a conceptual framework for the study of resource control issues in multimedia
conferencing systems.

R e f e r e n c e s

1. APM Ltd., Cambridge, U.K. A N S A : An Engineer's Introduction to the Architec-
ture, November 1989.

2. R.L. Bennett and G.E. Policello II. Switching Systems in the 21st Century. IEEE
Communications Magazine: Feature Topic: Toward The Global lnteUigent Network,
31(3):24-30, March 1993.

3. Y. Berders and P. Dickman, editors. Workshop on Dynamic Object Placement and
Load Balancing in Parallel and Distributed Systems. The Sixth European Confer-
ence on Object-Oriented Programming, ECOOP'92, 1992.

109

4. N.S. Bowen, C.N. Nikolaou, and A. Ghafoor. On the Assignment Problem of
Arbitrary Process Systems to Hetrogeneous Distributed Computer Systems. IEEE
Transactions on Computers, 41(3):257-273, March 1992.

5. M. Calzarossa and G. Serazi. Workload Charaterization: A Survey. Proceedings
of the IEEE, 81(8):1136-1150, August 1993.

6. B. CarrC Graphs and Networks. Clarendon Press, Oxford, 1979.
7. N.M.van Dijk, B.R. Haverkort, and I.G. Niemegeers. Guest editorial: Performabil-

ity Modelling of Computer and Communication Systems. Performance Evaluation,
14(3-4):61-78, February 1992.

8. ETSI. Network Aspects (NA); General aspects of quality of service and network
performance in digital networks, including ISDN. Technical Report ETR 003,
ETSI, 1990.

9. L.J.N. Franken and B.R.H.M. tIaverkort. The Performability Manager. IEEE
Network: The Magazine of Computer Communications Special Issue on Distributed
Systems for Telecommunications, 8(1), Januari 1994.

10. 3.J. Garrahan, P.A. Russo, K. Kitami, and R. Kung. Intelligent Network
Overview. IEEE Communications Magazine: Feature Topic: Toward The Global
Intelligent Network, 31(3):30-38, March 1993.

11. A. Gersht and R. Weihmayer. Joint Optimization of Data Network Design and
Facility Selection. IEEE Journal on Selected Areas in Communications, 8(9):1667-
1681, December 1990.

12. S. ttariri and C.S. Raghavendra. Distributed Functions Allocation for Reliabil-
ity and Delay Optimization. Proceedings of the Fall Joint Computer Conference
(IEEE), pages 344-352, 1986.

13. B.R. Haverkort and K.S. Trivedi. Specification and Generation of Markov Reward
Models. Discrete-Event Dynamic Systems: Theory and Applications, 3:219-247,
1993.

14. B.R.H.M. Haverkort. Performability Modelling Tools, Evaluation Techniques, and
Applications. PhD thesis, University of Twente, 1990.

15. K. Kant. Introduction to Computer System Performance Evaluation. McGraw-
Hill, Inc., 1992.

16. S. Kheradpir, W. Stinson, J. Vucetic, and A. Gersht. Real-Time Management of
Telephone Operating Company Networks: Issues and Approaches. IEEE Journal
on Seclected Areas in Communications, 11(9):1385-1403, December 1993.

17. H. Korte. Visualising ANSAware Programs with EXP93. Technical report, PTT
Research, the Netherlands, unpublished, June 1993.

18. J. Kramer, editor. Proceedings of the International Workshop on Configurable Dis-
tributed Systems. Computing Control Division of the Institution of Electrical En-
gineers, IFIP, Imperial College of Science, Technology and Medicine, IEE, March
1992.

19. F. Lange, R. Kroeger, and M. Gergeleit. JEWEL: Design and Implementation of a
Distributed Measurement System. IEEE Transactions on Parallel and Distributed
Systems, 3(6):657-671, November 1992.

20. Y.H. Lee and K.G. Shin. Optimal Reconfiguration Strategy for a Degradable
Multimodule Computing System. Journal of the ACM, 34(2):326-348, April 1987.

21. MARI Computer Systems Ltd. DEMON V3.0 User's guide and Reference manual,
1993.

22. L. Mejlbro. QOSMIC-Deliverable D1.3C: QoS and Performance Relationships.
Deliverable QOSMIC R1082, RACE, 1992.

110

23. J.F. Meyer. Performability Evaluation of Telecommunication Networks. In Net-
work Teletraffic Science for Cost-Effective Systems and ITC-12 Services, editors,
M. Bonatti, pages 1163-1172. IAC, Elsevier Science Pubfishers B.V. (North Hol-
land), 1989.

24. J.F. Meyer. Performability: a Retrospective and some Pointers to the Future.
Performance evaluation, 14(3-4):139-156, Februari 1992.

25. R.H. Pijpers. Performability Monitoring and Modelling of ANSAware Environ-
ments. M.Sc. thesis, University of Twente, the Netherlands, December 1993.

26. R. Pooley and J. Hillston, editors. Proceedings of the Sixth International Confer-
ence on Modelling Techniques and Tools for Computer Performance Evaluation.
University of Edinburgh, Athony Rowe Ltd, Chippenhame, Wiltshire, September
1992.

27. Project JTC1.21.43. Reference Model for Open Distributed Processing. Draft
Recommendation X.901: Basic Reference Model of Open Distributed Processing
Part 1: Overview and Guide to use reference SC21 N7053, , 1993-1-28.

28. QOSMIC. General Aspects of Quality of Service and System Performance in IBC.
Deliverable RACE D510, RACE, 1991.

29. W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O'Reilly & As-
sociates, Inc, 1992.

30. S. M. Shatz, J. Wang, and M. Goto. Task Allocation for Maximizing Reliability
of Distributed Computer Systems. IEEE Transactions on Computer, 41(9):1156-
1168, December 1992.

31. S.M. Shatz and J. Wang, editors. Tutorial: Distributed Software Engineering. IEEE
Computer Society, Press, 1989.

32. K.G. Shin, C.M. Krishna, and Y. Lee. Optimal Dynamic Control of Resources in
a Distributed System. IEEE Transactions on Software Engineering, 15(10):1188-
1197, October 1989.

33. N.G. Shivaratri, P. Kreuger, and M. Singhal. Load Distributing for Locally Dis-
tributed Systems. IEEE Computer, 25(12):33-44, December 1992.

34. International Telecommunication Union. General Characteristics of International
Telephone Connections and Circuits. Red Book Fsc. II.1, CCITT, 1985.

35. International Telecommunication Union. Telegraph and Mobile Service and Qual-
ity of Service. Blue Book Fsc. II.4, CCITT, 1989.

36. Studygroup XI. Q.1200, Draft recommendations. Technical report, CCITT, 1991.

