1,303 research outputs found

    Adaptive Predictive Handoff Scheme with Channel Borrowing in Cellular Network

    Get PDF
    Previously, we presented an extension of predictive channel reservation (PCR) scheme, called HPCR_CB, for handoff motivated by the rapid evolving technology of mobile positioning. In this thesis, the author proposes a new scheme, called adaptive PCR_CB (APCR_CB), which is an extension of HPCR_CB by incorporating the concept of adaptive guard channels. In APCR_CB, the number of guard channel(s) is adjusted automatically based on the average handoff blocking rate measured in the past certain time period. The handoff blocking rate is controlled under the designated threshold and the new call blocking rate is minimized. The performance evaluation of the APCR_CB scheme is done by simulation. The result shows the APCR_CB scheme outperforms the original PCR, GC, and HPCR_CB schemes by controlling a hard constraint on the handoff blocking probability. It is able to achieve the optimal performance by maximizing the resource utilization and by adapting to changing traffic conditions automatically

    Adaptive Predictive Handoff Scheme with Channel Borrowing in Cellular Network

    Get PDF
    Previously, we presented an extension of predictive channel reservation (PCR) scheme, called HPCR_CB, for handoff motivated by the rapid evolving technology of mobile positioning. In this thesis, the author proposes a new scheme, called adaptive PCR_CB (APCR_CB), which is an extension of HPCR_CB by incorporating the concept of adaptive guard channels. In APCR_CB, the number of guard channel(s) is adjusted automatically based on the average handoff blocking rate measured in the past certain time period. The handoff blocking rate is controlled under the designated threshold and the new call blocking rate is minimized. The performance evaluation of the APCR_CB scheme is done by simulation. The result shows the APCR_CB scheme outperforms the original PCR, GC, and HPCR_CB schemes by controlling a hard constraint on the handoff blocking probability. It is able to achieve the optimal performance by maximizing the resource utilization and by adapting to changing traffic conditions automatically

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A distributed channel allocation scheme for cellular network using intelligent software agents

    Get PDF
    PhDAbstract not availabl

    FAULT TOLERANT SYSTEM FOR CELLULAR NETWORK

    Get PDF
    In cellular communication networks, the geographical area is divided into smaller regions, called cells. In each cell, there is one Mobile Service Station (MSS) as well as a number of Mobile Hosts (MH). The communication between MSSs is, in general, through wired links, while the links between an MH and MSS is wireless. A Mobile Host can communicate with other Mobile Hosts in the system only through the Mobile Service Station in its cell. This kind of architecture is shown in Fig. 1. There are two kinds of channels available to an MH: communication channel and control channel. The former is used to support communication between an MH and the MSS in its cell, while the latter is set aside to be used exclusively to send control messages that are generated by the channel allocation algorithm

    Cell Selection in Wireless Two-Tier Networks: A Context-Aware Matching Game

    Full text link
    The deployment of small cell networks is seen as a major feature of the next generation of wireless networks. In this paper, a novel approach for cell association in small cell networks is proposed. The proposed approach exploits new types of information extracted from the users' devices and environment to improve the way in which users are assigned to their serving base stations. Examples of such context information include the devices' screen size and the users' trajectory. The problem is formulated as a matching game with externalities and a new, distributed algorithm is proposed to solve this game. The proposed algorithm is shown to reach a stable matching whose properties are studied. Simulation results show that the proposed context-aware matching approach yields significant performance gains, in terms of the average utility per user, when compared with a classical max-SINR approach.Comment: 11 pages, 11 figures, Journal article in ICST Wireless Spectrum, 201

    Association Control Based Load Balancing in Wireless Cellular Networks Using Preamble Sequences

    No full text
    The efficient allocation and use of radio resources is crucial for achieving the maximum possible throughput and capacity in wireless networks. The conventional strongest signal-based user association in cellular networks generally considers only the strength of the signal while selecting a BS, and ignores the level of congestion or load at it. As a consequence, some BSs tend to suffer from heavy load, while their adjacent BSs may carry only light load. This load imbalance severely hampers the network from fully utilizing the network capacity and providing fair services to users. In this thesis, we investigate the applicability of the preamble code sequence, which is mainly used for cell identification, as an implicit information indicator for load balancing in cellular networks. By exploiting the high auto-correlation and low cross-correlation property among preamble sequences, we propose distributed load balancing schemes that implicitly obtain information about the load status of BSs, for intelligent association control. This enables the new users to be attached to BSs with relatively low load in the long term, alleviating the problem of non-uniform user distribution and load imbalance across the network. Extensive simulations are performed with various user densities considering throughput fair and resource fair, as the resource allocation policies in each cell. It is observed that significant improvement in minimum throughput and fair user distribution is achieved by employing our proposed schemes, and preamble sequences can be effectively used as a leverage for better cell-site selection from the viewpoint of fairness provisioning. The load of the entire system is also observed to be balanced, which consequently enhances the capacity of the network, as evidenced by the simulation results

    Load balancing using cell range expansion in LTE advanced heterogeneous networks

    Get PDF
    The use of heterogeneous networks is on the increase, fueled by consumer demand for more data. The main objective of heterogeneous networks is to increase capacity. They offer solutions for efficient use of spectrum, load balancing and improvement of cell edge coverage amongst others. However, these solutions have inherent challenges such as inter-cell interference and poor mobility management. In heterogeneous networks there is transmit power disparity between macro cell and pico cell tiers, which causes load imbalance between the tiers. Due to the conventional user-cell association strategy, whereby users associate to a base station with the strongest received signal strength, few users associate to small cells compared to macro cells. To counter the effects of transmit power disparity, cell range expansion is used instead of the conventional strategy. The focus of our work is on load balancing using cell range expansion (CRE) and network utility optimization techniques to ensure fair sharing of load in a macro and pico cell LTE Advanced heterogeneous network. The aim is to investigate how to use an adaptive cell range expansion bias to optimize Pico cell coverage for load balancing. Reviewed literature points out several approaches to solve the load balancing problem in heterogeneous networks, which include, cell range expansion and utility function optimization. Then, we use cell range expansion, and logarithmic utility functions to design a load balancing algorithm. In the algorithm, user and base station associations are optimized by adapting CRE bias to pico base station load status. A price update mechanism based on a suboptimal solution of a network utility optimization problem is used to adapt the CRE bias. The price is derived from the load status of each pico base station. The performance of the algorithm was evaluated by means of an LTE MATLAB toolbox. Simulations were conducted according to 3GPP and ITU guidelines for modelling heterogeneous networks and propagation environment respectively. Compared to a static CRE configuration, the algorithm achieved more fairness in load distribution. Further, it achieved a better trade-off between cell edge and cell centre user throughputs. [Please note: this thesis file has been deferred until December 2016
    • …
    corecore