14 research outputs found

    Cell Selection in Wireless Two-Tier Networks: A Context-Aware Matching Game

    Full text link
    The deployment of small cell networks is seen as a major feature of the next generation of wireless networks. In this paper, a novel approach for cell association in small cell networks is proposed. The proposed approach exploits new types of information extracted from the users' devices and environment to improve the way in which users are assigned to their serving base stations. Examples of such context information include the devices' screen size and the users' trajectory. The problem is formulated as a matching game with externalities and a new, distributed algorithm is proposed to solve this game. The proposed algorithm is shown to reach a stable matching whose properties are studied. Simulation results show that the proposed context-aware matching approach yields significant performance gains, in terms of the average utility per user, when compared with a classical max-SINR approach.Comment: 11 pages, 11 figures, Journal article in ICST Wireless Spectrum, 201

    Supporting Quality-Of-Service of Mobile Commerce Transactions

    Get PDF
    With the deployment of 3G and 4G mobile networks, a sizable proportion of e-commerce traffic is expected to move to these networks. These transactions are likely to be diverse. Mobile transactions can include unique requirements such as atomicity (all or none steps), push or pull, security, and privacy. Because users are mobile, unpredictable link characteristics, and other problems associated with wireless networks, some mobile commerce transactions may not be completed causing significant annoyance to the users affected. Therefore, the probability of completing mobile transactions is an important parameter for measuring quality-of-service of a network supporting mobile commerce. The transaction completion probability measures the ability of networks to support completion of transactions. This research focuses on improving the support of mobile commerce transactions by the underlying wireless networks. Mobile commerce traffic is classified as messaging, information connectivity, and transactions in order to provide efficient quality-of-service to various applications. This paper introduces the use of priority, sociability and delegation to improve the transaction completion in wireless networks

    Adaptive Predictive Handoff Scheme with Channel Borrowing in Cellular Network

    Get PDF
    Previously, we presented an extension of predictive channel reservation (PCR) scheme, called HPCR_CB, for handoff motivated by the rapid evolving technology of mobile positioning. In this thesis, the author proposes a new scheme, called adaptive PCR_CB (APCR_CB), which is an extension of HPCR_CB by incorporating the concept of adaptive guard channels. In APCR_CB, the number of guard channel(s) is adjusted automatically based on the average handoff blocking rate measured in the past certain time period. The handoff blocking rate is controlled under the designated threshold and the new call blocking rate is minimized. The performance evaluation of the APCR_CB scheme is done by simulation. The result shows the APCR_CB scheme outperforms the original PCR, GC, and HPCR_CB schemes by controlling a hard constraint on the handoff blocking probability. It is able to achieve the optimal performance by maximizing the resource utilization and by adapting to changing traffic conditions automatically

    Adaptive Predictive Handoff Scheme with Channel Borrowing in Cellular Network

    Get PDF
    Previously, we presented an extension of predictive channel reservation (PCR) scheme, called HPCR_CB, for handoff motivated by the rapid evolving technology of mobile positioning. In this thesis, the author proposes a new scheme, called adaptive PCR_CB (APCR_CB), which is an extension of HPCR_CB by incorporating the concept of adaptive guard channels. In APCR_CB, the number of guard channel(s) is adjusted automatically based on the average handoff blocking rate measured in the past certain time period. The handoff blocking rate is controlled under the designated threshold and the new call blocking rate is minimized. The performance evaluation of the APCR_CB scheme is done by simulation. The result shows the APCR_CB scheme outperforms the original PCR, GC, and HPCR_CB schemes by controlling a hard constraint on the handoff blocking probability. It is able to achieve the optimal performance by maximizing the resource utilization and by adapting to changing traffic conditions automatically

    A Dynamic Load Balancing Strategy for Channel Assignment Using Selective Borrowing in Cellular Mobile Environment

    No full text
    We propose a dynamic load balancing scheme for the channel assignment problem in a cellular mobile environment. As an underlying approach, we start with a fixed assignment scheme where each cell is initially allocated a set of C channels, each to be assigned on demand to a user in the cell. A cell is classified as `hot', if the degree of coldness of a cell (defined as the ratio of the number of available channels to the total number of channels for that cell), is less than or equal to some threshold value, h. Otherwise the cell is `cold'. Our load balancing scheme proposes to migrate unused channels from underloaded cells to an overloaded one. This is achieved through borrowing a fixed number of channels from cold cells to a hot one according to a channel borrowing algorithm. A channel assignment strategy is also proposed based on dividing the users in a cell into three broad types -- `new', `departing',`others'-- and forming different priority classes of channel demands from these thr..

    A Dynamic Load Balancing Strategy for Channel Assignment Using Selective Borrowing in Cellular Mobile Environment

    No full text
    We propose a dynamic load balancing scheme for the channel assignment problem in a cellular mobile environment. As an underlying approach, we start with a fixed channel assignment scheme where each cell is initially allocated a set of C channels, each to be assigned on demand to a user in the cell. A cell is classified as `hot', if the degree of coldness of a cell (defined as the ratio of the number of available channels to the total number of channels for that cell), is less than or equal to some threshold value, h. Otherwise the cell is `cold'. Our load balancing scheme proposes to migrate unused channels from underloaded cells to an overloaded one. This is achieved through borrowing a fixed number of channels from cold cells to a hot one according to a channel borrowing algorithm. he performance of the channel borrowing algorithm is analyzed using number of messages exchanged and running time, as the parameters. A channel assignment strategy is also proposed based on dividing the u..

    Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

    Get PDF
    Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé

    FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR CELLULAR NETWORKS

    Get PDF
    In cellular networks, channels should be allocated efficiently to support communication betweenmobile hosts. In addition, in cellular networks, base stations may fail. Therefore, designing a faulttolerantchannel allocation algorithm is important. That is, the algorithm should tolerate failuresof base stations. Many existing algorithms are neither fault-tolerant nor efficient in allocatingchannels.We propose channel allocation algorithms which are both fault-tolerant and efficient. In theproposed algorithms, to borrow a channel, a base station (or a cell) does not need to get channelusage information from all its interference neighbors. This makes the algorithms fault-tolerant,i.e., the algorithms can tolerate base station failures, and perform well in the presence of thesefailures.Channel pre-allocation has effect on the performance of a channel allocation algorithm. Thiseffect has not been studied quantitatively. We propose an adaptive channel allocation algorithmto study this effect. The algorithm allows a subset of channels to be pre-allocated to cells. Performanceevaluation indicates that a channel allocation algorithm benefits from pre-allocating allchannels to cells.Channel selection strategy also inuences the performance of a channel allocation algorithm.Given a set of channels to borrow, how a cell chooses a channel to borrow is called the channelselection problem. When choosing a channel to borrow, many algorithms proposed in the literaturedo not take into account the interference caused by borrowing the channel to the cells which havethe channel allocated to them. However, such interference should be considered; reducing suchinterference helps increase the reuse of the same channel, and hence improving channel utilization.We propose a channel selection algorithm taking such interference into account.Most channel allocation algorithms proposed in the literature are for traditional cellular networkswith static base stations and the neighborhood relationship among the base stations is fixed.Such algorithms are not applicable for cellular networks with mobile base stations. We proposea channel allocation algorithm for cellular networks with mobile base stations. The proposedalgorithm is both fault-tolerant and reuses channels efficiently.KEYWORDS: distributed channel allocation, resource planning, fault-tolerance, cellular networks,3-cell cluster model

    Service Continuity in 3GPP Mobile Networks

    Get PDF
    The mobile wireless communication network or cellular network landscape is changing gradually from homogeneous to heterogeneous. Future generation networks are envisioned to be a combination of diverse but complimentary access technologies, like GPRS, WCDMA/HSPA, LTE and WLAN. These technologies came up due to the need to increase capacity in cellular networks and recently driven by the proliferation of smart devices which require a lot of bandwidth. The traditional mechanisms to increase capacity in cellular networks have been to upgrade the networks by, e.g. adding small cells solutions or introducing new radio access technologies to regions requiring lots of capacity, but this has not eradicated the problem entirely. The integration of heterogeneous networks poses some challenges such as allocating resources efficiently and enabling seamless handovers between heterogeneous technologies. One issue which has become apparent recently with the proliferation of different link layer technologies is how service providers can offer a consistent service across heterogeneous networks. Service continuity between different radio access technologies systems is identified as one key research item.  The knowledge of the service offering in current and future networks, and supporting interworking technologies is paramount to understand how service continuity will be realized across different radio access technologies. We investigate the handover procedure and performance in current deployed 3GPP heterogeneous mobile networks (2G, 3G and 4G networks). We perform measurements in the field and the lab and measure the handover latency for User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) applications. The results show that intersystem handover latencies in and across 2G and 3G radio access technologies are too long and have an impact on real time packet switched (PS) real-time services. We also investigate the current proposed interworking and handover schemes in 2G, 3G and 4G networks and present their limitations. We further highlight some open issues that still need to be addressed in order to improve handover performance and provide service continuity across heterogeneous mobile wireless networks such as selection of optimal radio access technology and adaptation of multimedia transmission over heterogeneous technologies. We present the enhancements required to enable service continuity and provide a better quality of user experience. 
    corecore