
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2006

FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION

ALGORITHMS FOR CELLULAR NETWORKS ALGORITHMS FOR CELLULAR NETWORKS

Jianchang Yang
University of Kentucky, yang@fredonia.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Yang, Jianchang, "FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR CELLULAR
NETWORKS" (2006). University of Kentucky Doctoral Dissertations. 329.
https://uknowledge.uky.edu/gradschool_diss/329

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Jianchang Yang

The Graduate School
University of Kentucky

2006

FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR
CELLULAR NETWORKS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By
Jianchang Yang

Lexington, Kentucky
Director: Dr. D. Manivannan, Associate Professor of Computer

Science
Lexington, Kentucky

2006
Copyright c© Jianchang Yang 2006

ABSTRACT OF DISSERTATION

FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR
CELLULAR NETWORKS

In cellular networks, channels should be allocated efficiently to support communication between
mobile hosts. In addition, in cellular networks, base stations may fail. Therefore, designing a fault-
tolerant channel allocation algorithm is important. That is, the algorithm should tolerate failures
of base stations. Many existing algorithms are neither fault-tolerant nor efficient in allocating
channels.

We propose channel allocation algorithms which are both fault-tolerant and efficient. In the
proposed algorithms, to borrow a channel, a base station (or a cell) does not need to get channel
usage information from all its interference neighbors. This makes the algorithms fault-tolerant,
i.e., the algorithms can tolerate base station failures, and perform well in the presence of these
failures.

Channel pre-allocation has effect on the performance of a channel allocation algorithm. This
effect has not been studied quantitatively. We propose an adaptive channel allocation algorithm
to study this effect. The algorithm allows a subset of channels to be pre-allocated to cells. Per-
formance evaluation indicates that a channel allocation algorithm benefits from pre-allocating all
channels to cells.

Channel selection strategy also influences the performance of a channel allocation algorithm.
Given a set of channels to borrow, how a cell chooses a channel to borrow is called the channel
selection problem. When choosing a channel to borrow, many algorithms proposed in the literature
do not take into account the interference caused by borrowing the channel to the cells which have
the channel allocated to them. However, such interference should be considered; reducing such
interference helps increase the reuse of the same channel, and hence improving channel utilization.
We propose a channel selection algorithm taking such interference into account.

Most channel allocation algorithms proposed in the literature are for traditional cellular net-
works with static base stations and the neighborhood relationship among the base stations is fixed.
Such algorithms are not applicable for cellular networks with mobile base stations. We propose
a channel allocation algorithm for cellular networks with mobile base stations. The proposed
algorithm is both fault-tolerant and reuses channels efficiently.

KEYWORDS: distributed channel allocation, resource planning, fault-tolerance, cellular net-
works, 3-cell cluster model.

Jianchang Yang

FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR
CELLULAR NETWORKS

By
Jianchang Yang

Director of Dissertation
Dr. D. Manivannan

Director of Graduate Studies
Dr. Grzegorz W. Wasilkowski

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due regard to
the rights of the authors. Bibliographical references may be noted, but quotations or summaries
of parts may be published only with the permission of the author, and with the usual scholarly
acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also requires the consent
of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the signature
of each user.

Name Date

DISSERTATION

Jianchang Yang

The Graduate School
University of Kentucky

2006

FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR
CELLULAR NETWORKS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By
Jianchang Yang

Lexington, Kentucky
Director: Dr. D. Manivannan, Associate Professor of Computer

Science
Lexington, Kentucky

2006
Copyright c© Jianchang Yang 2006

ACKNOWLEDGMENTS

I thank many people. Without their help, this dissertation will not be the way it is.
First, I thank Dr. D. Manivannan, my Ph.D advisor and the chairman of my Ph.D committee. I

am extremely lucky to work under his guidance. He gives me countless help and advice. Discussing
with him is a real pleasure. His opinion is unique and his comments are inspiring. I really
appreciate his support, encouragement, kindness and patience. Without him, I would not be me
today and this dissertation would not be possible.

I express my gratitude to other committee members, Dr. Mukesh Singhal, Dr. Jun Zhang, Dr.
James Robert Heath, and Dr. Hank Dietz, for their valuable comments and suggestions.

Further, I thank Qiangfeng Jiang for his valuable input. It is my pleasure to work together
with him in the same lab. I have learned a lot through discussion with him.

Finally, I thank my wife. She gives me full support.

iii

Table of Contents

Acknowledgments iii

List of Tables vi

List of Figures viii

List of Files 1

1 Introduction 1
1.1 Approaches for Channel Allocation in Cellular Networks 6

1.1.1 Related Works . 10
1.2 Problems Addressed And Solved In This Dissertation 12
1.3 Organization of the Dissertation . 13

2 A Distributed, Fault-Tolerant Channel Allocation Algorithm for Cellular Net-
works Under 3-Cell Cluster Model 15
2.1 Introduction . 15
2.2 System Model . 16
2.3 Related Works . 18
2.4 A Fault-Tolerant Distributed Channel Allocation Algorithm 20

2.4.1 Basic Idea . 20
2.4.2 Data Structures . 25
2.4.3 The Algorithm . 25
2.4.4 An Explanation of the Algorithm . 29
2.4.5 Correctness of the Algorithm . 31

2.5 Performance Evaluation . 33
2.5.1 Definitions . 33
2.5.2 Simulation Parameters . 34
2.5.3 Simulation Results . 35

2.6 Conclusion . 38

3 A Fault-Tolerant Channel Allocation Algorithm for Cellular Networks with
Mobile Base Stations 39
3.1 Introduction . 39

3.1.1 Motivation . 40
3.1.2 Contribution . 41

3.2 System Model . 41
3.3 Related Works . 43
3.4 A Fault-Tolerant Distributed Channel Allocation Algorithm for Intra-Cell Commu-

nication . 45
3.4.1 Basic Idea . 45

iv

3.4.2 Data Structures . 48
3.4.3 A Channel Allocation Algorithm for Intra-cell Communication 49

3.5 Correctness of the Algorithm . 49
3.6 Comparison to Related Works . 51
3.7 Performance Evaluation . 53

3.7.1 Simulation Parameters . 54
3.7.2 Simulation Results . 55

3.8 Conclusion . 57

4 Comparison of Two Channel Allocation Approaches: Channel Pre-allocation
Vs. Non-Pre-allocation 61
4.1 Introduction . 61
4.2 System Model . 62
4.3 Related Works . 63
4.4 Adaptive Channel Allocation Algorithm . 64

4.4.1 Basic Idea . 64
4.4.2 Data Structures . 66
4.4.3 The Algorithm . 67
4.4.4 Correctness of the Algorithm . 67

4.5 Performance Evaluation . 70
4.5.1 Definitions . 70
4.5.2 Simulation Parameters . 70
4.5.3 Simulation Results . 72

4.6 Conclusion . 73

5 A Distributed Fault-Tolerant Channel Allocation Algorithm for Cellular Net-
works Under Resource Planning Model 76
5.1 Introduction . 76
5.2 System Model . 77
5.3 Related Works . 79
5.4 A Distributed Channel Allocation Algorithm . 81

5.4.1 Basic Idea . 81
5.4.2 The Channel Selection Algorithm . 82
5.4.3 Data Structures . 85
5.4.4 The Algorithm . 85
5.4.5 Proof of Correctness of the Algorithm . 87

5.5 Performance of the Algorithm . 88
5.6 Simulation Results . 92

5.6.1 Simulation Parameters . 93
5.6.2 Simulation Results . 93

5.7 Conclusion . 94

6 Future Work 96

Bibliography 101

Vita 102

v

List of Tables

2.1 Data Structures . 25
2.2 Parameters for non-uniform traffic pattern . 35

3.1 Data Structures . 49
3.2 The Intra-Cell Channel Allocation Algorithm . 50
3.3 Parameters for non-uniform traffic pattern . 55

4.1 Data Structures . 66
4.2 Our Adaptive Channel Allocation Algorithm . 68
4.3 Parameters for non-uniform traffic pattern . 71

5.1 Data structures used in our algorithm at each cell Ci 90
5.2 Data structures used in the algorithm proposed in [6] 90
5.3 Parameters for non-uniform traffic pattern . 93

vi

List of Figures

1.1 Different cell shapes . 2
1.2 An example of a cellular network . 3

2.1 A model of a cellular network . 16
2.2 A cellular network . 17
2.3 Channel borrowing process in cell Ci . 18
2.4 Multiple borrowers asking for the same channel 20
2.5 Neighborhood relationship in the cellular network 21
2.6 An example illustrating multiple borrowing . 30
2.7 Performance without cell failure (a) call blocking rate (b) handoff drop rate 36
2.8 Performance without cell failure (a) call failure rate (b) message complexity 36
2.9 Performance with cell failure (a) call blocking rate (b) handoff drop rate 37
2.10 Performance with cell failure (a) call failure rate (b) message complexity 38

3.1 Cellular networks with mobile base stations . 40
3.2 Neighborhood of an MBS . 42
3.3 Illustration of the basic idea . 47
3.4 The cases where co-channel interference arises . 53
3.5 Performance without cell failure under non-uniform traffic pattern 56
3.6 Performance with one cell failure under non-uniform traffic pattern 57
3.7 Performance with two cell failures under non-uniform traffic pattern 57
3.8 Performance with three cell failures under non-uniform traffic pattern 58
3.9 Performance with four cell failures under non-uniform traffic pattern 58
3.10 Performance with five cell failures under non-uniform traffic pattern 58
3.11 Performance with ten cell failures under non-uniform traffic pattern 59
3.12 Performance with fifteen cell failures under non-uniform traffic pattern 59
3.13 Performance with twenty cell failures under non-uniform traffic pattern 59

4.1 Disadvantages of no-channel-pre-allocation . 61
4.2 A cellular network . 63
4.3 Neighborhood relationship in the cellular network 64
4.4 Channel pre-allocation pattern . 65
4.5 Performance without cell failure under non-uniform traffic pattern 72
4.6 Performance with one cell failure under non-uniform traffic pattern 73
4.7 Performance with two cell failures under non-uniform traffic pattern 74
4.8 Performance with three cell failures under non-uniform traffic pattern 74
4.9 Performance with four cell failures under non-uniform traffic pattern 74
4.10 Performance with five cell failures under non-uniform traffic pattern 74

5.1 A partition of a cellular network . 77
5.2 Illustration of the algorithm proposed in [6] . 80
5.3 Performance without cell failure . 94

vii

5.4 Performance with one cell failure . 94
5.5 Performance with two cell failures . 95

viii

List of Files

1. JianchangYang-Dissertation.pdf

1

Chapter 1

Introduction

Recent advances in wireless communication technology and portable computing devices have en-

abled rapid development of mobile computing systems. In mobile computing systems, mobile nodes

are equipped with wireless interfaces, and they remain connected to the network through wireless

links even when they are mobile. There are several network models of mobile computing systems,

including wireless Local Area Networks (wireless LANs), mobile ad-hoc networks (MANET), and

cellular networks. In the following, we will briefly explain wireless LANs and MANETs. Then, we

will focus on cellular networks and channel allocation algorithms for cellular networks.

Local Area Networks(LANs) are used to interconnect computers in a relatively small area using

wires or cables. In wireless LANs, computers communicate by means of high-frequency radio waves.

There are several wireless LAN standards, among which, IEEE 802.11 (including 802.11, 802.11a,

802.11b, and 802.11g) is widely used. The IEEE 802.11 standard defines a structure called a basic

service set (BSS). There are two types of BSSs [35]. The first type is called an independent BSS

(IBSS), which is the most basic type. Stations (or mobile devices) communicate with each other

without support of any fixed infrastructure. This is an ad hoc model. We will discuss this type in

more detail later. In the second type, a special station, access point (AP), exists in each BSS. The

access point acts as a relay to transfer messages from source computers to destination computers.

Several access points may combine to form an extended network, or may be connected to external

wired LANs. This type of wireless network is widely used in practice.

As mentioned earlier, one of the two types that the IEEE 802.11 standard supports is the ad

hoc model. This model in wireless LANs is a special case of MANET. In MANET, a collection

of mobile devices (or nodes) join together to form a network, without any support from fixed

1

infrastructures. The link between nodes is wireless. Due to the limitation of transmission range,

a node may not be within the transmission range of every other node in the network. In order

for the network to be functional, nodes also serve as routers, and they cooperate with each other

in forwarding packets from one node to the other. Therefore, a MANET can be viewed as a

multi-hop, peer-to-peer mobile wireless network, where packets from source nodes get transfered

to destination nodes, via intermediate nodes [1].

In cellular networks, the entire geographical area covered by a cellular network is divided into

smaller regions called cells. Typically, there is a base station (BS) at the center of each cell.

The shape of a cell in a real cellular network is usually irregular. Ideally, it should be a circle,

assuming that the base station at the center of the cell has an omni-directional antenna and the

transmission power of the antenna in all directions is equal. However, an infinite two-dimensional

space cannot be tessellated by circles. Among all geometric shapes, only hexagon, square, and

equilateral triangle can be used to tessellate an infinite two-dimensional space [35]. Among these

three shapes, hexagons are the most commonly used to represent cells, because they approximate

circular regions covered by omni-directional antennas better [35]. These different shapes used to

approximate a circular region are shown in Figure 1.1.

(a) an equilateral triangle (b) a square (c) a hexagon

Figure 1.1: Different cell shapes

The base station (BS) at the center of each cell provides communication service to the mobile

hosts (MH) in its cell. Base stations are usually connected by wired links, while the communication

links between a base station and mobile hosts in the same cell are wireless. This architecture is

shown in Figure 1.2. To make it simple, we only show the wireless links between one base station

and its mobile hosts. Moreover, the wired links that connect base stations are not shown.

First, let us explain how communication between two mobile hosts take place. For example,

in Figure 1.2, suppose that mobile host A in cell i wants to communicate with mobile host B

2

in cell j. Mobile host A sends a call request message to the base station in cell i. To support

this call request, first the base station in cell i needs to know the current location of mobile host

B. This is a location management problem. We are not interested in this problem. A survey of

location management algorithms can be found in [21, 37]. We are concerned about how to allocate

channels to support communication between mobile hosts that are already located.

In the above example, to support communication between mobile host A and mobile host B,

wireless channels must be allocated. There are two kinds of wireless channels: communication

channel and control channel . The former is used to support communication between a mobile

host and the base station in the same cell, while the latter is set aside to be used exclusively to

send control messages that are generated by the channel allocation algorithm. In this dissertation,

unless specified otherwise, the term “channel” or “wireless channel” refers to a communication

channel. In the example mentioned above, to support communication between mobile host A and

mobile host B, two channels need to be allocated: one for communication between mobile host A

and its base station, the other for communication between mobile host B and its base station. The

term “channel” is an abstraction of the wireless link which carries information of communication.

In cellular networks, the wireless link is usually radio link. The radio spectrum allocated to cellular

networks is limited and it is usually divided into a set of non-interfering radio channels. Many

techniques are available to divide a given radio spectrum into radio channels, among which, three

are most widely used: frequency division multiple access (FDMA), time division multiple access

(TDMA), and code division multiple access (CDMA).

: Base station

: wireless link

: Mobile host

cell j

cell i

A

B

Figure 1.2: An example of a cellular network

3

FDMA: In FDMA, the radio spectrum is divided into different frequencies, with a guard band

between any two adjacent frequencies to eliminate the crosstalk interference. Each user is

assigned a frequency for use [35].

TDMA: In TDMA, the usage of the radio spectrum is divided into several time intervals, called

time slots. User data is transmitted through the time slots assigned to the user [35].

CDMA: In CDMA, channels are differentiated by using different modulation codes. Users share

the entire system bandwidth for transmission, and each user is assigned a unique user-signal

code [35].

A wireless channel cannot be used in two cells concurrently if the geographical distance between

them is less than a threshold distance, called minimum channel reuse distance (Dmin) [2, 28],

because they will interfere with each other. Such an interference is called co-channel interfer-

ence [32, 33] (it is assumed that wireless channels are orthogonal to one another, so the only

interference we need to consider is co-channel interference). A cell, say Ci, is said to be an in-

terference neighbor of another cell, say Cj, if the geographical distance between them is less than

Dmin. So if a channel r is used in a cell Ci, then none of Ci’s interference neighbors can use r

concurrently. Otherwise, co-channel interference arises. If using a channel causes no interference

in a cell, then we say that this channel is available for the cell.

Wireless channels are a limited system resource, so they should be reused as much as possible.

In cellular networks, base stations are responsible for allocating channels to satisfy requests from

mobile hosts in their cells. When a mobile host in a cell wants to communicate with another

mobile host, it sends a call request to the base station in the cell. Upon receiving such a request,

the base station tries to allocate a channel for this mobile host. If a channel can be allocated,

then the call request is accepted; otherwise, the call request is dropped. The base stations use a

channel allocation algorithm to allocate channels.

A mobile host MHi which is originally in a cell Ci can move from Ci to one of Ci’s neighbors,

while involved in a communication with some other mobile host. When such a situation occurs,

we say that an inter-handoff happens. During an inter-handoff, the channel which is currently

supporting the call should be released to the old cell, and a new channel should be allocated in

4

the new cell. If a new channel is successfully allocated in the new cell for the inter-handoff call,

then we say that the inter-handoff call is successful. If a channel cannot be allocated in the new

cell, the inter-handoff call is dropped. From the perspective of a mobile host, it is more desirable

to drop a new call originating in a cell than to drop an inter-handoff call.

In [16], the authors propose two methods to give priority to inter-handoff calls. These two

methods are described below.

• Channel Reservation: In each cell, there are a certain number (T) of channels that are set

aside exclusively for inter-handoff calls. When an MH involved in a communication moves

from cell Ci to cell Cj (Ci and Cj are neighbors), any channel available in cell Cj can be used

to support this inter-handoff call. If the number of available channels in cell Cj is lower than

T , then no new calls originating in cell Cj will be supported until the number of available

channels is higher than T . Thus, inter-handoff calls have higher priority to be supported

than the new calls originating in a cell.

• Inter-handoff Queue: All the channel requests for inter-handoff calls are queued according

to First Come First Served (FCFS) principle in each cell. If a cell has available channels and

its inter-handoff queue is not empty, then the inter-handoff call at the head of the queue is

supported using an available channel. The length of the inter-handoff queue, and the period

of time during which an inter-handoff call request can be queued, are upper bounded.

These two methods can be used together with our channel allocation algorithms proposed in

this dissertation to deal with inter-handoff calls.

Channel allocation algorithms need to be efficient because channels are a scarce resource in

cellular networks. That is, the algorithms need to allocate channels in such a way that less calls are

dropped. In addition, channel allocation algorithms need to be fault-tolerant because in cellular

networks, base stations may fail, and the links between base stations may break. A fault-tolerant

channel allocation algorithm can still perform reasonably well even in the presence of such failures,

while a non-fault-tolerant algorithm may cause the system performance degrade badly. Therefore,

channel allocation algorithms need to be fault-tolerant in order to improve the availability and

performance of the system.

5

In summary, channels are a limited resource for cellular networks. Therefore they must be

allocated efficiently to minimize the dropped calls. In addition, fault-tolerance should also be

taken into account when designing channel allocation algorithms. A good channel allocation

algorithm for cellular networks should be both efficient and fault-tolerant. In this dissertation, we

use the terms “cell” and “base station in the cell” interchangeably.

Next, we discuss the different approaches for channel allocation proposed in the literature.

1.1 Approaches for Channel Allocation in Cellular Net-

works

Generally, there are two basic approaches for channel allocation:

• Centralized approach: In this approach [9, 15, 24, 27, 44, 45, 10, 12], a request for channel

allocation is sent to a central controller, called Mobile Switching Center (MSC). MSC is

responsible for allocating channels to cells in such a way that no co-channel interference

arises. Since it is a centralized approach, it suffers from the single-point failure problem,

i.e., when the MSC fails, the entire system covered by this MSC suffers. In addition, this

approach is not scalable because the MSC can become a bottle-neck when the traffic load of

the system is very heavy.

• Distributed approach: In this approach [39, 38, 42, 5, 6, 7, 40, 43, 17, 41], there is

no central controller such as MSC. Instead, base stations share the responsibility to allocate

channels. Each base station makes this decision independently, based on its local information,

and the information from neighbors. The base station that wants to borrow a channel,

and the base station that lends the channel work together to ensure that no co-channel

interference arises.

In a distributed channel allocation algorithm, two approaches for exchanging channel usage

information, namely, Search and Update, are usually adopted.

• Update [13, 4, 3]: In this approach, a cell notifies its interference neighbors about its current

channel usage information whenever its channel usage information changes (i.e., whenever

it acquires or releases a channel). So each cell is aware of the set of channels used by its

6

neighbors. When a cell needs a channel, if some channels allocated to it are available, it

just picks one such channel for use. Otherwise, it picks a channel that is not used by any of

its interference neighbors and consults with them on whether it can use this channel. If all

interference neighbors agree, then it can use the channel. The advantage of this approach is

that a cell responds to a call request very quickly since it knows the channel usage information

of its interference neighbors. However, this approach suffers from a high message overhead

due to the exchange of channel usage information whenever the status of channel utilization

changes. A cell notifies its interference neighbors about its change on channel usage even

if its neighbors do not need this information at that time. Therefore, some channel usage

information may be exchanged unnecessarily. Moreover, the message overhead will be much

higher when the system has a very heavy load, when cells acquire and/or release channels

frequently.

• Search [5, 6, 7, 33, 40, 43]: In this approach, cells exchange channel usage information only

when it is necessary. When a cell needs to borrow a channel, it sends a request message

to its interference neighbors, asking for their channel usage information. Upon receiving

such a request message, a neighbor sends back a reply message which contains its channel

usage information. Based on the information the cell receives in the replies, it computes the

set of channels that can be borrowed. It picks one such channel and sends messages to its

interference neighbors to borrow the channel. If all the neighbors to which the channel has

been allocated agree to lend the channel, then the channel borrowing process is complete.

This approach does not exchange channel usage information unnecessarily. However, it may

respond to a call request slower than the Update approach since first it needs to get the

channel usage information of its interference neighbors, and then borrow a channel.

Channel allocation algorithms are usually studied under the following two models:

• Resource Planning Model [13, 5, 6, 7, 40]: The set of all cells is partitioned into k disjoint

subsets, S0, S1, . . . , Sk−1, in such a way that the geographical distance between any two cells

in the same subset is at least Dmin. The set of all channels available in the system is divided

into k disjoint subsets correspondingly, PC0, PC1, . . . , PCk−1. Channels in PCi are pre-

allocated to cells in Si and are called primary channels of cells in Si, and secondary channels

7

of cells in Sj (j 6= i). When allocating a channel to support a call, a cell, say Ci, always selects

a primary channel if one is available. A secondary channel is selected by Ci only when no

primary channel is available. If Ci selects a primary channel, it can use this channel without

consulting with any neighbor. Otherwise, Ci needs to consult with the neighbors to which

the selected secondary channel has been pre-allocated (i.e., the selected secondary channel is

a primary channel of these interference neighbors). If all these interference neighbors agree

to lend this channel to Ci, then Ci can use this borrowed secondary channel to support

the call. After a call using a secondary channel terminates, the secondary channel must be

returned to the neighbors to which it has been pre-allocated.

• Non-Resource Planning Model [32, 33, 43, 22]: In this model, all the channels are kept in a

pool which is known to every cell. Channels are not pre-allocated to any cell. Whenever a

cell, say Ci, needs a channel to support a call, it first checks whether there is any channel

which is allocated to it and is not being used. It picks one if such a channel exists. Otherwise,

it sends a request message to all its neighbors asking for their channel usage information.

Based on the information it receives from its neighbors, it begins to compute the set of

channels that it can borrow. If the set is not empty, first it tries to pick a channel that

is not allocated to any of its neighbors or itself. It no such channel exists, then it tries to

borrow a channel that is allocated to some of its neighbors but not being used by any of

these neighbors. It consults with its neighbors on whether it can borrow this channel to

use. If all the neighbors to which the selected channel has been allocated agree to lend this

channel to Ci, then Ci can use this borrowed channel to support the call. After a call using a

borrowed channel terminates, the borrowed channel is not returned to any of its neighbors.

In distributed channel allocation algorithms, base stations allocate channels independently.

The execution of each base station is characterized by a sequence of events. When base stations

exchange messages, sending a message is one event and receiving a message is one event. It is

very important to be able to ascertain order between events. One widely used technique to do

this is using Lamport’s timestamp [23]. Lamport defined the happened before relation between

events, denoted by →, to capture causal dependencies between events. The relation → is defined

as follows [23, 36]:

8

• a → b, if a and b are events in the same process and a happened before b.

• a → b, if a is the event of sending a message m in a process and b is the event of receiving

the same message m in another process.

• If a → b and b → c, then a → c.

Lamport’s timestamp can be implemented as follows to order events. Each process Pi has a clock

Ci. When an event a occurs at Pi, clock Ci assigns a number Ci(a) to a, called the timestamp of

event a at Pi. Two conditions need to be met by system of clocks [36].

[C1] For any events a and b at process Pi, if a → b, then Ci(a) < Ci(b).

[C2] If a is the event of sending a message m at process Pi and b is the event of receiving the

same message m at process Pj, then Ci(a) < Cj(b).

Two implementation rules for the clocks ensure that conditions C1 and C2 are met [36].

[R1] Ci is incremented between any two consecutive events in process Pi:

Ci := Ci + 1.

[R2] If a is the event of sending a message m by process Pi, then m is assigned a timestamp

tm := Ci(a) (note that the value of Ci(a) is obtained after applying rule R1). When a

process Pj receives the message m, first it increments Cj by 1, i.e., Cj := Cj + 1. Then it

updates Cj as follows: Cj := max(Cj, tm + 1).

Combined with unique process id, Lamport’s timestamp can be used to totally order all the

events. The ordering relation, denoted by ⇒, can be defined as follows [36]:

Let a be an event at process Pi and b be an event at process Pj, a ⇒ b if and only if

• Ci(a) < Cj(b) or

• Ci(a) = Cj(b) and id of Pi < id of Pj.

In cellular networks, each base station can be viewed as a process. In our dissertation, we use

Lamport’s timestamp to order events. Each message is assigned a timestamp, using Lamport’s

timestamp.

9

1.1.1 Related Works

In [8], the authors address the channel allocation problem using a typical mutual exclusion method.

First, the famous dining philosophers problem is described and followed by an efficient solution to

it. A two-phase algorithm is proposed for channel allocation based on the solution to the dining

philosophers problem. Channels are divided into several disjoint groups. To acquire a channel, a

base station needs to hold a read/write lock on a group first. Whenever a base station finishes its

channel acquisition process, it releases the lock on that group. Moreover, when a communication

session terminates, the channel supporting the session is released.

Channel allocation algorithms proposed in [4, 3] are similar to that proposed in [8]. Channels

are divided into disjoint groups. To get a channel, a base station needs to hold a group first. A

base station never keeps the acquired channels (i.e., after a communication session terminates,

the channel supporting the session is released). The algorithms proposed in [4, 3] use the Update

approach. Whenever a base station acquires or releases a channel, it informs its interference

neighbors about this. The algorithms proposed in [8, 4, 3] are not fault-tolerant. If any queried

base station fails, then the base station which submits the query cannot get a lock on a group and

hence cannot acquire a channel, causing call requests to be dropped.

In [22, 20], the channel allocation problem is viewed as a relaxed mutual exclusion problem,

and the Non-Resource Planning Model is assumed. Each cell i maintains two sets: Ri and Ii.

Ri, the request set for cell i, is the set of cells from which i will request permission for using a

channel. Ii, the inform set for cell i, is the set of cells that cell i will inform of its channel usage

information. When a cell i needs to acquire a channel r, it sends a request message to each cell

in set Ri. It acquires channel r only if it receives a grant message from each cell in Ri. When

cell i releases channel r, it notifies all the cells in set Ii of this. Ri and Ii are constructed and

maintained in such a way that no two cells in each other’s interference range will use the same

channel concurrently, thus guaranteeing no co-channel interference. These algorithms have two

disadvantages. First, they are not fault-tolerant. In order for a cell i to acquire a channel, it needs

to get permission from each cell in Ri. If any cell in Ri fails, then there is no way for cell i to

acquire any channel. Secondly, a cell never keeps a borrowed channel r; it returns channel r after

finishing using r. If a new call request originates in a cell just after the cell releases a channel,

10

then the cell has to repeat the procedure mentioned above again to acquire a channel.

In [13], the Update approach is adopted. The authors assume the Resource Planning Model.

When a cell Ci needs a channel, it selects an available channel r. If r is a primary channel, then

it marks r as a used channel, and informs all of its interference neighbors about this. If r is a

secondary channel, then it sends a request message to each interference neighbor which has r as

a primary channel. If all these neighbors agree to lend channel r to Ci, then Ci can use channel

r. Otherwise, Ci needs to find another secondary channel to borrow. Whenever a cell acquires or

releases a channel, it informs all its interference neighbors about this. Due to this update feature,

the algorithm achieves short channel acquisition delay at the expense of higher message overhead.

The algorithm is fault-tolerant because the number of Ci’s interference neighbors that have r as

a primary channel is lower, compared to the total number of Ci’s interference neighbors. Even

when most of Ci’s interference neighbors fail, Ci may still be able to borrow a channel r, as long

as its neighbors that have r as a primary channel do not fail and r is not being used by any of

these neighbors.

In [47, 46], the authors propose a distributed channel allocation algorithm that is based on

a threshold scheme, called D-CAT. The D-CAT scheme makes use of two thresholds: a heavy

threshold and a target threshold. The heavy threshold is used to decide whether a cell is heavy

(i.e., overloaded), and to trigger the channel allocation algorithm. The target threshold indicates

the target number of free channels that a heavy cell wants to acquire. This algorithm determines

the number of free channels and the cells from which a heavy cell should import channels to satisfy

its channel demand.

In [11], the authors propose a structured channel borrowing scheme for dynamic load balancing

in cellular networks. This algorithm solves the tele-traffic hot spot problem in cellular networks.

A hot spot is defined as a stack of hexagonal rings of cells and is regarded as complete if all the

cells within it are hot. Load balancing is achieved by using a structured channel borrowing scheme

in which a hot cell can borrow channels only from adjacent cells in the next outer ring. Thus,

unused channels are moved into a hot spot from its peripheral rings.

In [10], the authors propose a dynamic load balancing scheme for the channel assignment

problem in cellular mobile environment. A cell is classified either as hot or cold , based on the

11

degree of coldness of the cell. The degree of coldness of a cell is defined as the ratio of the number

of available channels to the total number of channels allocated to the cell. In this algorithm,

unused channels are migrated from underloaded cells to an overloaded cell, i.e., a hot cell borrows

channels from cold cells using a channel borrowing algorithm. Users in a cell are also divided into

three types: new , departing , and others. Channel demands from these three types of users form

different priority classes. Channel assignment is based on the priority class of channel demand.

1.2 Problems Addressed And Solved In This Dissertation

In cellular networks, channels need to be allocated to support communication between mobile

hosts efficiently because there are only a limited number of channels available in the system. In

addition, a channel allocation algorithm should take into account failure since base stations may

fail and/or the link between base stations may break. The algorithm should be able to tolerate such

failures and perform well even in the presence of these failures, that is, the algorithm should be

fault-tolerant. Many of the channel allocation algorithms in the literature are either not efficient

in allocating channels or not fault-tolerant, or both. In this dissertation, we propose channel

allocation algorithms which are both fault-tolerant and more efficient compared to some of the

existing algorithms.

Under the proposed algorithms, a cell does not need to receive channel usage information from

all of its interference neighbors to borrow a channel, which makes the algorithms fault-tolerant.

To borrow a channel, it suffices for a cell to receive channel usage information from a subset of

its neighbors. The fault-tolerance feature also increases concurrency since neighboring cells can

involve in channel borrowing process concurrently without waiting for others to finish their channel

borrowing process. In addition to fault-tolerance, under our algorithms, a cell can lend a channel

to multiple cells concurrently as long as no two of these cells are neighbors, thus improving channel

reuse.

Several factors affect the performance of a channel allocation algorithm. We observe that a

compact channel reuse pattern improves channel utilization and pre-allocating channels to cells

helps form a compact channel reuse pattern. However, the effect of channel pre-allocation on the

performance of a channel allocation algorithm has not been studied quantitatively in the literature.

12

We study this effect quantitatively with respect to an adaptive channel allocation algorithm which

allows a subset of channels to be pre-allocated to cells. Based on our study, we conclude that

channel allocation algorithms benefit from pre-allocating all channels to cells.

In addition to channel pre-allocation, how a cell chooses a channel to borrow also influences

the performance of the channel allocation algorithm. When choosing a channel to borrow, many

of the algorithms proposed in the literature do not take into account the interference caused by

borrowing the channel to the cells which have the channel allocated to them. Such algorithms

may not allocate channels efficiently. We propose a new channel selection algorithm which takes

into account such interference. The selection algorithm chooses a channel to borrow in such a way

that it increases the chance of reusing of the same channel in other cells, and hence improving

channel utilization.

Although many channel allocation algorithms have been developed for traditional cellular net-

works where base stations are static, not much work has been done for cellular networks with

mobile base stations. The few existing channel allocation algorithms for cellular networks with

mobile base stations are neither fault-tolerant nor efficient. Moreover, some of these algorithms

may cause co-channel interference. We propose a fault-tolerant channel allocation algorithm for

cellular networks with mobile base stations which reuses the allocated channels efficiently.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we present a fault-tolerant chan-

nel allocation algorithm for cellular networks. Under this algorithm, to borrow a channel, a cell

does not need to get channel usage information from all its interference neighbors, which makes

the algorithm fault-tolerant. A channel can be lent to multiple cells as long as no two of them are

interference neighbors, which improves channel utilization. In Chapter 3, we extend the algorithm

presented in Chapter 2 to suit for cellular networks with mobile base stations. Due to mobility

of base stations, the neighborhood information of each base station changes dynamically, which

makes channel allocation algorithms assuming a static neighborhood inapplicable in this new sit-

uation. To deal with mobility, the algorithm proposed in Chapter 3 computes the neighborhood

information for each base station dynamically. When base stations exchange channel usage infor-

13

mation, they also exchange their current neighborhood information, which assists base stations to

compute the set of channels to borrow. Both algorithms presented in Chapter 2 and Chapter 3

assume that channels are not pre-allocated to cells. We study the effect of channel pre-allocation

on the performance of channel allocation algorithm and present the results in Chapter 4. In this

chapter, we modify the algorithm proposed in Chapter 2 to allow a subset of available channels to

be pre-allocated to cells, while the rest are kept in an open pool. Results from performance evalua-

tion indicate that pre-allocating all channels to cells achieves the best performance. Pre-allocating

all channels to cells is an example of Resource Planning Model. Based on the results from Chap-

ter 4, we conclude that Resource Planning Model achieves best performance. In Chapter 5, we

present a more general algorithm for channel allocation under Resource Planning Model. The

proposed algorithm includes a new channel selection algorithm which, when selecting a channel

to borrow, takes into account the interference caused by borrowing the channel to the cells which

have the channel allocated to them. The channel selection algorithm chooses a channel to borrow

in such a way that it increases the chance of getting the same channel reused in other cells, which

helps improve channel utilization. Finally, we conclude the dissertation by outlining our future

work in Chapter 6.

Copyright c© Jianchang Yang 2006

14

Chapter 2

A Distributed, Fault-Tolerant Channel
Allocation Algorithm for Cellular
Networks Under 3-Cell Cluster Model

2.1 Introduction

In cellular networks, the entire geographical area covered by a cellular network is divided into

smaller regions called cells [18]. In each cell, there is one mobile service station1 (MSS) [33],

which serves the mobile hosts (MH) in the cell. An MH in a cell communicates with the MSS in

the cell directly through a wireless link, while MSSs are usually connected by a wired network.

Such an architecture [19] is shown in Figure 2.1.

In order for an MH to talk with another MH, channels must be allocated by MSSs to support

this communication. For example, in Figure 2.1, suppose that mobile host MHi in cell E wants

to communicate with another mobile host MHj in cell B. To support this communication, two

wireless channels are needed: one for communication between MHi and the MSS in cell E, the

other for communication between MHj and the MSS in cell B.

When the MSS in a cell runs out of channels, it can borrow a channel from neighboring MSSs.

Most algorithms proposed in the literature that use a Search approach [5, 32, 33] require that

in order to borrow a channel, an MSS has to receive channel usage information from each of its

interference neighbors. This is not fault-tolerant because in cellular networks, MSSs may fail and

the links between MSSs may break. In such cases, an MSS may not be able to borrow a channel

even when some channels are available to borrow, because it needs to get channel usage information

1A mobile service station (MSS) is the same as a base station (BS).

15

MH i

jMH

MHk

���
����

�

���
�

���
�

��	
	

�
�

��

���
�

���
�

���
�

���
�

�������
�

�������
����

�

���
�

��

!!"
"

##$
$

%%&
&

''(
())*

*

FIXED NETWORK

MSS

MSS

MSS

M
SS M

SS
M

SS

MH

MH

MH

MH
MH

MH

MH

MH

MH

MH

MH
MH

MH

MH

MH

MH

MH
MH

Cell A

Cell B

Cell C

Cell D
Cell E

Cell F

Figure 2.1: A model of a cellular network

from all neighboring MSSs, and such information from some neighboring MSSs may never arrive

at it because of link breakage, or some neighboring MSSs may never send their information due

to their own failure. Therefore, such a channel allocation algorithm may drop calls unnecessarily.

In this chapter, we propose an efficient, fault-tolerant, distributed channel allocation algorithm

under the 3-cell cluster model (described on page 17). Under our algorithm, to borrow a channel,

an MSS does not need to receive channel usage information from all neighboring MSSs. It can

successfully borrow channels even when some neighboring MSSs have failed. Our algorithm can

tolerate mobile service station failures, link failures and messages loss due to network congestion.

Moreover, in our approach, a channel can be lent to multiple cells as long as no two of them are

interference neighbors. This improves the channel reuse frequency.

The rest of this chapter is organized as follows. In Section 2.2, system model is described.

Related works are reviewed in Section 2.3. In Section 2.4, the proposed algorithm is presented in

detail, followed by its correctness proof. The performance of the proposed algorithm is evaluated

by simulation and compared with existing work in Section 2.5. Section 2.6 summarizes the features

of the proposed algorithm.

2.2 System Model

Following are the assumptions made in this chapter:

16

0 1 2 3 4 5 6

7 8 9 10 11 1 2 13

14 15 16 17 18 19 20

27262524232221

28 29 30 31 32 33 34

41
403938373635

42 43 44 45 46 47 48

Figure 2.2: A cellular network

• The 3-cell cluster model is assumed. This model requires that at most one communication

session be supported by a channel in a cluster of 3 mutually adjacent cells at any given time.

If a channel is being used in a cell, then none of this cell’s neighbors can use this channel

concurrently. However, the same channel can be used concurrently by cells which are at

least two hops away. For example, in Figure 2.2, neighbors of cell 24 are cells 17, 18, 23, 25,

30 and 31. If cell 24 is using a channel r, then none of its six neighbors can use the same

channel r concurrently. However, the same channel r can be used concurrently by cell 24

and cell 36, which are two hops away from each other.

• We assume that the cells shown in Figure 2.2 wrap around, thus each cell has 6 neighbors,

including the ones at the edge. For example, cell 6 has six neighbors, namely, 5, 12, 13, 0,

42, and 48.

• Both the MSSs and the communication links (the wired or wireless links) could fail. If an

MSS in a cell fails, then all the calls supported by it fail at the same time. An MH could

fail as well. The failure of an MH only affects its ongoing communication.

All the channels available in the system are kept in an open pool and no channels are pre-

allocated to any cell. Therefore, we use Non-Resource Planning Model (described on page 8), in

this chapter.

In this chapter, we use the terms “cell” and “the MSS in the cell” interchangeably. When a cell

Ci needs to allocate a channel to support a call, Ci first tries to select an unused channel allocated

to it to support the call. If Ci has no unused channels allocated to it when a new call request

17

iC

C1
C2

C3
C4

C5

C6

Figure 2.3: Channel borrowing process in cell Ci

originates in the cell, then Ci has to borrow a channel from its neighbors to support the new

originating call. To borrow a channel, Ci needs to send request messages to each of its neighbors

asking for their channel usage information. In this case, we say that Ci is in Search Mode and it is

called a borrower . When a cell grants a borrower’s request for a channel, we call this cell a lender .

If Ci gets permission to use a channel from all neighbors to which the channel has been allocated,

then it can allocate this channel to itself and use this channel to support the call. Ci keeps this

channel even after the call using this channel terminates. For example, in Figure 2.3, suppose that

cell Ci needs to borrow a channel. It sends request messages to all its neighbors: cells C1, C2,

C3, C4, C5 and C6. Suppose that Ci selects a channel r to borrow, where r has been allocated to

C2 and C5 but not to any other neighbor. If both C2 and C5 agree to lend r to Ci, then Ci can

use r. Ci keeps the borrowed channel r after the call supported by channel r terminates in Ci.

By allowing a cell to keep a borrowed channel, a cell where a lot of calls have originated (i.e., a

heavily loaded cell) may have more channels allocated to it. Thus, channels can move from lightly

loaded cells to heavily loaded cells, achieving good channel usage.

2.3 Related Works

In [33], the authors propose a distributed dynamic channel allocation algorithm under the 3-cell

cluster model. In their approach, channels are not pre-allocated to cells. When a cell needs a

channel to support a call, it picks an available channel which is allocated to it to support the call.

If no channels allocated to it are free, then it sends a request message to all its neighbors, asking

for their channel usage information. Based on the channel usage information received from all its

18

neighbors, it computes the set of channels that can be borrowed and picks one such channel to

borrow. If all the neighbors to which the selected channel has been allocated grant its request,

then it allocates the channel to itself and uses this channel to support the call. After a cell grants

a neighbor’s request for some channel r, it marks this channel for transfer. A marked channel will

neither be used by itself nor be lent to grant any other neighbor’s request.

Following are some deficiencies of the algorithm proposed in [33].

• Not fault-tolerant: To borrow a channel, a cell has to get channel usage information from

all its neighbors. This is not fault-tolerant2 because in cellular networks, a cell may not be

able to get this information from all its neighbors due to network congestion and MSS/link

failure.

• Not efficient in channel reuse: When a cell grants a borrower’s request for some channel, it

cannot grant a second borrower’s request for the same channel even if these two borrowers

are not interference neighbors. For example, in Figure 2.4, assume that both cell 7 and cell

3 want to borrow channel r from cell 1. Suppose that cell 1 grants cell 7’s request first.

Channel r will be marked for transfer, and cell 1 will not grant cell 3’s request for the same

channel r, since r has already been marked for transfer. However, using r by cell 7 and

cell 3 concurrently does not cause co-channel interference because they are not interference

neighbors of each other. Thus, the algorithm proposed in [33] does not make efficient reuse

of channels.

To our knowledge, Prakash et al.’s algorithm [33] is the only channel allocation algorithm that

uses the 3-cell cluster model. So we compare our algorithm with their algorithm. Our proposed

channel allocation algorithm has the following advantages over the algorithm proposed in [33].

• Fault-tolerant: Our algorithm is fault-tolerant since a cell does not need to receive channel

usage information from all its neighbors to borrow a channel. It can borrow a channel from

its neighbors as long as it has received channel usage information from all members of some

2In Section IX of [33], the authors address the fault-tolerance issue. However, fault-tolerance is achieved based
on some assumptions. For example, in [33], if MSSj has not received REPLY message from a neighbor MSSi

after a timeout period, it assumes that: (i) MSSi has failed, (ii) MSSj has received a REPLY from MSSi such
that Allocatei := Busyi := Transferi := ∅. By making such an assumption, co-channel interference may arise
when both MSSi and MSSj select the same channel to use. Thus, the fault-tolerance issue is not really solved
in [33].

19

1

3

2 4

5

6

7

11

9

8

10

12

13

: reply message
: request message

Figure 2.4: Multiple borrowers asking for the same channel

group (a subset of its neighbors), and a channel that has been allocated to all members of

the group which is not being used by any of them exists.

• Efficient in channel reuse: In our algorithm, a channel can be lent to multiple cells (at most

three) as long as no two of them are neighbors, which makes our algorithm achieve better

channel reuse.

2.4 A Fault-Tolerant Distributed Channel Allocation Al-

gorithm

In this section, we present our algorithm in detail. First, we explain the basic idea behind our

algorithm, then we describe the algorithm formally.

2.4.1 Basic Idea

As mentioned earlier, our algorithm uses the 3-cell cluster model. Each cell Ci has a unique id and

has six neighbors; each neighbor is given a unique neighbor id, ordered from 1 to 6, i.e., nb 1, nb 2,

. . . , nb 6 . The set of neighbors of Ci is denoted by NBi, i.e., NBi := {nb 1, nb 2, nb 3, nb 4, nb 5, nb 6}.

This is shown in Figure 2.5.

The set of neighbors of Ci are divided into five groups: (note that these groups are not pairwise

disjoint):

1. Group 1: {nb 1 , nb 4};

20

2. Group 2: {nb 2 , nb 5};

3. Group 3: {nb 3 , nb 6};

4. Group 4: {nb 1 , nb 3 , nb 5};

5. Group 5: {nb 2 , nb 4 , nb 6}.

Channels are not pre-allocated to any cell. They are uniquely ordered: the channel with the lowest

frequency has the minimum order, while the channel with the highest frequency has the maximum

order [33].

When a cell Ci needs a channel to support a call, first it checks if there is any channel allocated

to it that is not being used. If such a channel exists, it picks the one with the highest order to

support the call. Otherwise (i.e., all channels allocated to Ci are being used), it sends a request

message to all its neighbors asking for their channel usage information, sets a timer, and waits

for reply messages. A reply message from a neighbor includes channel usage information of that

neighbor. In this case, we say Ci is in Search Mode and it is a borrower. Each message exchanged

between cells is assigned a timestamp using Lamport’s timestamp [23] (described on page 8). For

example, each request message has a timestamp. The lower the timestamp, the higher the priority.

Messages can be ordered by their timestamp; ties can be broken by using cell id.

After the timer expires or cell Ci receives replies from all neighbors, Ci begins to compute the

set of channels that it can borrow. If it receives replies from all neighbors, then it first computes

the set of channels that are not allocated to any of its neighbors or itself. If such a channel exists,

it allocates and uses the channel immediately. Otherwise, it computes the set of channels which

Ci

_1nb

_2nb

_3nb

_4nb

_5nb

_6nb

Figure 2.5: Neighborhood relationship in the cellular network

21

are not being used by any neighbor or itself. If this set is empty, then it drops the call. Otherwise,

it selects a channel from the set and consults with the neighbors to which the channel has been

allocated to borrow the channel.

If it has not received replies from all its neighbors when the timer expires, it may still be

able to borrow a channel from neighbors as long as it receives reply messages from all members

of any one group (i.e., Group 1 through Group 5) and there is a channel which is allocated to

all members of that group, but is not being used by any of them. The way to compute the set

of channels that it can borrow depends on the number of replies that it gets. Next, we present

the details regarding how a cell computes the available channels based on the number of replies

received before the timer expires. Depending on the number of replies received, a cell computes

the available channels as follows.

• One reply: It can do nothing but drop the call because it has too little information to borrow

a channel.

• Two replies: Let x and y be the two neighbors from which it gets replies. Two sub-cases

arise.

– sub-case 1: x and y are in the same Group m for some m ∈ {1, 2, 3}. It computes the

set of channels that have been allocated to x and y, but not being used by either of

them.

– sub-case 2: x and y are not in the same Group m for any m ∈ {1, 2, 3}. In this case,

there is not enough information to borrow a channel and hence the call has to be

dropped.

• Three replies: Let x, y and z be the three neighbors from which it receives replies. Three

sub-cases arise.

– sub-case 1: x, y and z are in the same Group m for some m ∈ {4, 5}. It computes the

set of channels allocated to all of them that are not being used by any of them.

– sub-case 2: Two of the three neighbors, x, y and z, are in the same Group m for some

m ∈ {1, 2, 3}. This case is handled in the same way as in sub-case 1 of the case: Two

22

replies.

– sub-case 3: x, y and z are not in the same Group m for any m ∈ {4, 5} and also no two

of the three form a Group m for any m ∈ {1, 2, 3}. In this sub-case, it drops the call.

• Four replies: Let w, x, y, and z be the four neighbors from which it receives replies. Two

sub-cases arise.

– sub-case 1: Two of the four neighbors are in the same Group m for some m ∈ {1, 2, 3}.

This case is handled in the same way as in sub-case 1 of the case: Two replies.

– sub-case 2: Three of the four neighbors are in the same Group m for some m ∈ {4, 5}.

This case is handled in the same way as in sub-case 1 of the case: Three replies.

• Five replies: This is similar to the case: Four replies. It checks if any two of the five

neighbors from which a reply message has been received are in the same Group m for some

m ∈ {1, 2, 3}. In addition, it checks whether any three of the five neighbors are in the same

Group m for some m ∈ {4, 5}. If either two or three of the five neighbors form a group with

two or three members respectively, then it can compute the set of channels it can borrow.

If the set of channels that it can borrow is empty, it drops the call. Otherwise, it selects a

channel from the set to borrow. Next, we illustrate with an example how a cell that has received

channel usage information (replies) from only a subset of its neighbors selects a channel to borrow.

In Figure 2.5, suppose that cell Ci needs to borrow a channel and it gets replies only from nb 1 and

nb 4 (note that nb 1 and nb 4 form Group 1). If there exists a channel r which has been allocated

to both nb 1 and nb 4 that is not being used by either of them, then Ci can borrow channel r.

Since r has been allocated to nb 1, it could not have been allocated to nb 2 or nb 6, because they

are neighbors of nb 1. Similarly, r could not have been allocated to nb 3 or nb 5 because they are

neighbors of nb 4. Thus, Ci can allocate r to itself and use r safely if both nb 1 and nb 4 agree to

lend channel r.

Suppose that Ci gets replies only from nb 1, nb 3 and nb 5, which form Group 4. If there is a

channel r which has been allocated to nb 1, nb 3 and nb 5, but is not being used by any of them,

then Ci can borrow channel r. Since channel r has been allocated to nb 1, it could not have been

allocated to nb 2 or nb 6. Similarly, nb 4 could not have channel r allocated to itself since r has

23

been allocated to nb 3 and nb 5. Thus, if nb 1, nb 3 and nb 5 all agree to lend r to Ci, then Ci

can allocate r to itself and use r without causing co-channel interference. The case in which cell

Ci receives four or five replies is similar.

Thus, even if a cell Ci does not receive replies from all its neighbors, it is possible for cell Ci

to borrow a channel. It can borrow a channel from neighbors as long as it receives reply messages

from all members of any group and there is at least one channel allocated to all members of the

group that is not being used by any member of that group.

A cell is allowed to grant requests from several borrowers for the same channel concurrently,

as long as no two of the borrowers are neighbors. This increases channel reuse. A cell does not

grant the same channel to two borrowers concurrently if the two borrowers are neighbors. If there

are two neighboring cells which are in Search Mode concurrently (i.e., two neighboring borrowers)

and each of them borrows a channel, then they are not allowed to borrow the same channel (this

is proved in Section 2.4.5).

To summarize, when a cell Cj receives another cell Ci’s request message, it sends a reply

message to Ci including its channel usage information, if it is not in Search Mode or its request

message has lower priority than that of Ci’s (Lamport timestamps are assigned to messages, the

higher the timestamp, the lower the priority). After Ci receives a reply message from all neighbors

or when the timer expires, it begins to compute the set of available channels and picks one (if

there is any) to borrow. If it gets replies from all neighbors and the selected channel has not been

allocated to any of its neighbors or itself, then it can use this channel immediately and add this

channel to the set of channels allocated to it. Otherwise, it has to consult with the neighbors to

which the channel has been allocated before it uses this channel since a neighbor may allocate

this channel to support a call just after sending a reply message. If all such neighbors grant Ci’s

request, then Ci can allocate the selected channel to itself and use it. If Ci cannot borrow this

channel, it picks another available channel if possible and repeats the procedure mentioned above

to borrow a channel. If a channel cannot be borrowed, it drops the call. After a call using a

borrowed channel terminates, the borrowed channel is not returned to the lender.

Next, before we present the algorithm, we introduce the data structures used in the algorithm.

As mentioned earlier, we use the terms “cell Ci” and “the mobile service station MSSi in cell Ci”

24

interchangeably.

2.4.2 Data Structures

The data structures maintained by each cell Ci and their content are given in Table 2.1.

Table 2.1: Data Structures

Spectrum: the set of all channels in the system.
NBi: the set of neighbors of cell Ci.
Allocatei: the set of channels currently allocated to Ci.
Busyi: the set of channels currently being used by Ci.
Transferi: the set of channels marked for transfer by Ci.
Grantedi: a set of sets maintained by Ci.
Lenti: a set of sets maintained by Ci.

Initially, Allocatei, Busyi, Transferi, Grantedi(r) and Lenti(r) are all empty. At any given

time, (Transferi ∩ Busyi) is an empty set and Transferi ⊆ Allocatei. Grantedi is a set of

sets maintained by cell Ci. ∀ r ∈ Allocatei, Grantedi(r) denotes the set of cells to which Ci has

sent an agree(r) message. An agree(r) message from Ci to Cj means that Ci grants Cj’s request to

borrow channel r. Ci lends channel r to Cj only when it is notified by Cj to release the channel.

Lenti is a set of sets maintained by Ci. ∀ r ∈ Allocatei, Lenti(r) denotes the set of cells to which

Ci has lent r. Each message is assigned a timestamp, using Lamport’s timestamp [23] (described

on page 8). At each cell Ci, obsolete messages from a cell Cj can be detected by comparing their

timestamps with the largest timestamp from Cj seen so far by Ci.

In the following, we present the proposed channel allocation algorithm formally.

2.4.3 The Algorithm

A: When a cell Ci needs a channel to support a call,

let Freei := Allocatei − Busyi − Transferi.

– If Freei = ∅, it sends a request message to each of its six neighbors and sets a timer.

– If Freei 6= ∅, it picks a channel r ∈ Freei with the highest order to support the call.

Busyi := Busyi ∪ {r}. When the call terminates, Busyi := Busyi − {r}.

B: When a cell Cj receives a request message from cell Ci,

25

– If it does not have an outstanding request message, or its request message has a lower

priority than Ci’s request , then it sends to Ci a reply message, including Allocatej and

Busyj in the reply message.

– If its own request message has a higher priority than Ci’s request , it defers sending reply

to Ci.

C: After a cell Ci receives reply messages from all its neighbors or when its timer expires, it

sets Freei to empty. Its subsequent actions depend on the number of reply messages (i.e.,

the number of neighbors responded) that it has received.

– 1: If the number of reply messages is equal to six:

∗ α: If Freei := Spectrum − ∪Allocatek 6= ∅,

where k ∈ {nb 1, nb 2, nb 3, nb 4, nb 5, nb 6, i}, then a channel

r ∈ Freei with the highest order is selected to support the call.

Allocatei := Allocatei ∪ {r}; Busyi := Busyi ∪ {r};

Grantedi(r) := ∅; and Lenti(r) := ∅.

∗ β: Otherwise, Freei := Spectrum − ∪Busyk,

where k ∈ {nb 1, nb 2, nb 3, nb 4, nb 5, nb 6, i}. If Freei = ∅, then it drops the

call. Otherwise, it picks a channel r ∈ Freei with the lowest order for transfer. It

sends a transfer(r) message to all those neighbors to which r has been allocated,

and sets a new timer.

– 2: If the number of reply messages is less than six:

∗ α: If the number of reply messages is less than two, Freei := ∅.

∗ β: If the number of reply messages is equal to two, let x and y (x 6= y) be the two

neighbors from which a reply has been received.

· If ∃m ∈ {1, 2, 3} such that {x, y} = Group m, then

Freei := ∩k∈Group m(Allocatek − Busyk).

∗ γ: If the number of reply messages is equal to three, let x, y and z be the three

neighbors from which a reply message has been received.

26

· If ∃m ∈ {1, 2, 3} such that {x, y, z} ⊃ Group m, then

Freei := ∩k∈Group m(Allocatek − Busyk).

· Otherwise, if ∃ m ∈ {4, 5} such that {x, y, z} = Group m, then

Freei := ∩k∈Group m(Allocatek − Busyk).

∗ δ: If the number of reply messages is equal to four, let x and y (x 6= y) be the two

neighbors from which a reply message has NOT been received.

· If ∃ m ∈ {1, 2, 3} such that (NBi − {x, y}) ⊃ Group m, then

Freei m := ∩k∈Group m(Allocatek − Busyk).

· If ∃ n ∈ {4, 5} such that (NBi − {x, y}) ⊃ Group n, then

Freei n := ∩k∈Group n(Allocatek − Busyk).

· Freei := Freei m ∪ Freei n.

∗ θ: If the number of reply messages is equal to five, let x be the neighbor from which

a reply message has NOT been received by Ci.

· If ∃ m ∈ {1, 2, 3} such that (NBi − {x}) ⊃ Group m, then

Freei m := ∩k∈Group m(Allocatek − Busyk).

· If ∃ n ∈ {4, 5} such that (NBi − {x}) ⊃ Group n, then

Freei n := ∩k∈Group n(Allocatek − Busyk).

· Freei := Freei m ∪ Freei n.

If Freei 6= ∅, then it picks a channel r ∈ Freei with the lowest order for transfer and

sends a transfer(r) message to all those neighbors to which r has been allocated and

sets a new timer. Otherwise, it drops the call.

D: When a cell Cj receives a transfer(r) message from cell Ci,

– If r ∈ Busyj, it sends a refuse(r) message to Ci.

– If r ∈ Allocatej − Busyj:

∗ If ∀ Cm ∈ Grantedj(r), Ci and Cm are not neighbors, then it sends an agree(r)

message to Ci and adds Ci to Grantedj(r). If r is not in Transferj, then it adds

r to Transferj.

27

∗ If ∃Cm ∈ Grantedj(r) which is a neighbor of Ci , it sends a refuse(r) message to

Ci.

– If r /∈ Allocatej and ∀ Cm ∈ Grantedj(r) ∪Lentj(r), Ci is not a neighbor of Cm, then

it sends an agree(r) to Ci and adds Ci to Grantedj(r). Otherwise, it sends a refuse(r)

to Ci.

E: If Ci receives a response corresponding to each of its transfer(r) message before the new

timer set in step C expires, it cancels the new timer and does the following:

– If all of them are agree(r) messages, then it uses r to support the call.

Allocatei := Allocatei∪{r}; Busyi := Busyi∪{r}. Grantedi(r) := ∅; and Lenti(r) :=

∅. It sends a release(r) message to the neighbors from which an agree(r) message was

received.

– If not all of them are agree(r) messages, it sends a keep(r) message to neighbors from

which it receives an agree(r). Freei := Freei − {r}, and it tries to borrow another

channel if Freei 6= ∅.

F: When the new timer set in step C expires before Ci gets a response corresponding to each of

its transfer(r) message, it drops the call and sends a keep(r) message to each neighbor from

which it has received an agree(r) message.

G: When a cell Cj receives a release(r) message from cell Ci,

– Grantedj(r) := Grantedj(r) − {Ci}; Lentj(r) := Lentj(r) ∪ {Ci}.

– If r ∈ Allocatej , then

Allocatej := Allocatej − {r}; Transferj := Transferj − {r}.

H: When a cell Cj receives a keep(r) message from cell Ci,

– Grantedj(r) := Grantedj(r) − {Ci};

– If r ∈ Allocatej and Grantedj(r) = ∅, then

Transferj := Transferj − {r}.

28

I: After a cell Ci acquires a channel to support a call or it drops a call, it sends a reply message

to all those request messages for which a reply has been deferred.

2.4.4 An Explanation of the Algorithm

In this section, we briefly explain the working of the algorithm.

When a cell Ci needs a channel to support a call, it first checks whether there is a channel

allocated to it that is not being used. If there exists such a channel r, it uses r to support the call,

and adds r to the set Busyi. Otherwise (i.e., Ci runs out of channels), it sends a request message

to each of its six neighbors and sets a timer. It begins to compute the set of available channels

that it can borrow either after it receives a reply message from all neighbors or after the timer

expires.

If it receives reply messages from all its neighbors, it first computes the set of channels that

are not allocated to any of its six neighbors and itself. If this set is not empty, it picks a channel

r from this set to support the call and adds r to both the sets Allocatei and Busyi. If this set

is empty, it computes the set of channels that are allocated to its neighbors but are not being

used by any of its neighbors and itself. If such a channel r is found, then it sends a transfer(r)

message to those neighbors to which r has been allocated. If it gets permission to use r from all

these neighbors, then it uses r, adds r to both Allocatei and Busyi, and notifies these neighbors

to release r by sending them a release(r) message. Otherwise, it sends a keep(r) message to each

neighbor from which an agree(r) message has been received, and then picks another channel in

the set of available channels computed to borrow, if possible, and repeats this procedure.

If the number of reply messages that it has received is less than six when the timer expires,

its action depends on the number of reply messages it gets. If it can compute the set of channels

that it can borrow and the set is not empty, then it selects a channel r from this set and sends a

transfer(r) message to all those neighbors to which r has been allocated. Otherwise, it drops the

call.

When a cell Ci successfully borrows a channel r, it sets Grantedi(r) and Lenti(r) to empty.

The set Grantedi(r) keeps track of the set of cells to which Ci has sent an agree(r) message,

while Lenti(r) maintains the record of the set of cells from which a release(r) message has been

29

received by Ci. These data structures help in lending a channel r concurrently to multiple cells.

We illustrate this with an example using Figure 2.6.

3

1

5

2

7

4

6

: agree(r) message

: release(r) message

: transfer(r) message

Figure 2.6: An example illustrating multiple borrowing

Suppose r ∈ Allocate1, Granted1(r) := ∅, and Lent1(r) := ∅, and cells 2 and 4 send a

transfer(r) message to cell 1 concurrently. Cell 1 will grant both of their requests according to Step

D of the algorithm. Cells 2 and 4 are added to Granted1(r) and channel r is added to Transfer1.

If cell 1 receives a release(r) message from cell 2 first, then it removes cell 2 from Granted1(r)

and adds cell 2 to Lent1(r). In addition, it removes r from Allocate1 and Transfer1 as in Step

G of the algorithm. Now the set Granted1(r) contains cell 4, while the set Lent1(r) contains cell

2. When cell 1 receives a release(r) message from cell 4, it does the similar thing. When cell 2

borrows r, it sets the two sets: Granted2(r) and Lent2(r) to be empty. Suppose cell 1 receives

a transfer(r) message from cell 6 just before receiving the release(r) message from cell 4. Then,

cell 1 grants cell 6’s request since it is not using r and cell 6 is not a neighbor of either cell 2

or cell 4. This helps increase channel reuse because the same channel is lent to three neighbors

concurrently.

In our algorithm, when a cell needs a channel and some channels are available, it always selects

the channel with the highest order to use. When a cell selects a channel to borrow, it always selects

the channel with the lowest order. This channel selection strategy will help reduce the number

of refuse(r) messages (where r is the selected channel to borrow). For example, in Figure 2.6,

suppose that cell 1 has 2 channels available: ch2 and ch5, and cell 2 needs to borrow a channel.

If the set of channels that cell 2 can borrow consists of ch2 and ch5, then cell 2 will select ch2 to

30

borrow according to the channel selection strategy of our algorithm. When cell 1 needs a channel,

it will select ch5 first since ch5 has the highest order among the available channels. Thus, when

cell 1 receives cell 2’s transfer message for channel ch2, it will grant cell 2’s request to borrow ch2.

Hence, this strategy helps reducing the probability of using a channel r that its neighbors try to

borrow.

2.4.5 Correctness of the Algorithm

In this subsection, we prove that the proposed algorithm is correct. First, we prove that two

neighboring cells are not allowed to borrow the same channel concurrently under our algorithm.

Then, we prove that two neighboring cells are never allowed to use the same channel concurrently.

Finally, we prove that our algorithm is deadlock-free3.

Lemma 2.4.1 Two neighboring cells, Ci and Cj, are not allowed to borrow the same channel

concurrently under our algorithm.

Proof: Let r1 be the channel borrowed by Ci , r2 be the channel borrowed by Cj. Without loss

of generality, we assume that Ci’s request has lower priority than Cj’s request. We prove that

r1 6= r2. Since Cj’s request has higher priority, Cj will defer sending a reply to Ci until it finishes

its channel borrowing process. After Cj borrows r2, it adds r2 to both Allocatej and Busyj. Then,

it sends a reply message to Ci. The following two cases arise for Ci.

• case 1: Ci borrows r1 as a result of getting reply messages from all of its neighbors for its

request. If r1 ∈ (Freei := Spectrum−∪Allocatek) (step C-1-α of the algorithm), then r1 6=

r2, because r2 ∈ Allocatej and Cj is a neighbor of Ci. If r1 ∈ (Freei := Spectrum−∪Busyk)

(step C-1-β of the algorithm), then r1 6= r2, because r2 ∈ Busyj and Cj is a neighbor of Ci.

• case 2: Ci borrows r1 as a result of getting reply messages from only a subset of its

neighbors for its request. In this case, Ci must have borrowed r1 from some Group m

(m ∈ {1, 2, 3, 4, 5}). r1 ∈ (Freei := ∩k∈Group m(Allocatek − Busyk)). We have r1 /∈ Busyk

where k ∈ Group m. The following two sub-cases arise.

3A deadlock occurs when a set of processes in the system is blocked waiting on requirements that can never be
satisfied [36].

31

– sub-case 1: Cj ∈ Group m. Because Cj sends a reply message to Ci only after it finishes

its channel borrowing process, r2 ∈ Busyj. Therefore, r1 6= r2 because r1 /∈ Busyj.

– sub-case 2: Cj /∈ Group m. Because Ci and Cj are neighbors, they have two common

neighbors. Let these two common neighbors be Cm and Cn. We have r1 ∈ (Allocatem ∪

Allocaten). Assuming that r1 = r2 = r. There are three sub-cases:

∗ (A): r ∈ (Allocatem ∩ Allocaten). In this case, Cm and Cn grant both Ci’s and

Cj’s request for channel r. However, this is impossible. According to our algorithm

(step D of the algorithm), a cell does not grant requests from two cells for the same

channel if they are neighbors. Therefore, r1 6= r2.

∗ (B): r ∈ (Allocatem − Allocaten). It follows that Cm grants both Ci’s and Cj’s

request for channel r. This is impossible due to the same reason mention above.

∗ (C): r ∈ (Allocaten − Allocatem). This is similar to sub-case 2 (B) above.

Thus, two neighboring cells are not allowed to borrow the same channel under our algorithm.

2

Lemma 2.4.2 Two neighboring cells are not allowed to use the same channel concurrently under

our algorithm.

Proof: Initially, no channel is allocated to any cell. Since neighboring cells do not borrow the same

channel concurrently, it follows that neighboring cells do not use the same channel concurrently.

2

Lemma 2.4.3 The proposed channel allocation algorithm is deadlock-free.

Proof: In the proposed algorithm, a timeout mechanism is used. When a cell sends a request

message or a transfer(r) message where r is the selected channel to borrow, it sets a timer. A

cell begins to proceed either after it receives response corresponding to each of its messages or

after the timer expires. So, hold and wait situation does not arise. Therefore, the algorithm is

deadlock-free. 2

32

2.5 Performance Evaluation

2.5.1 Definitions

In this section, we evaluate the performance of our algorithm and also compare it with a modified

version of the algorithm proposed in [33]. In [33], in order to borrow a channel, a cell needs to

receive channel usage information from each neighbor. This can cause delay when the traffic load

is heavy. However, a call request from an MH should be responded to within a reasonable period

of time. Thus, we modified the algorithm in [33] to make it respond to a call request in a timely

manner. The modifications made to the algorithm in [33] are as follows. When a cell Ci needs

to borrow a channel from its neighbors, it sends a request message to each neighbor and sets a

timer. If the timer times out before it receives channel usage information included in the reply

message from all neighbors, then it drops the call. Otherwise (i.e., it receives replies from all its

neighbors before the timer expires), it computes the set of channels that can be borrowed. If it

finds a channel r that can be borrowed from its neighbors, then it sends a transfer(r) message to

those neighbors to which r has been allocated, and sets a new timer. If the new timer expires

before it can get a response from all those neighbors to which it has sent transfer(r) message, then

it drops the call. Otherwise, it checks if all the responses are agree(r) messages. If they are, then

it can borrow the channel r. Otherwise, it drops the call. The modifications mentioned above

allow a cell to respond to an MH’s request in a timely manner, and also helps in making a fair

comparison with our algorithm.

Four metrics are used to compare the performance of the two algorithms: call blocking rate,

handoff drop rate, call failure rate and message complexity. Call blocking rate is defined as the

ratio of the number of new calls which cannot be supported (i.e., blocked new calls) to the total

number of new calls. Handoff drop rate is defined as the ratio of the number of inter-handoff calls

dropped to the total number of inter-handoff calls. Call failure rate is defined as the ratio of total

number of calls dropped (including blocked new calls and dropped inter-handoff calls) to the total

number of calls processed. Message complexity is defined as the ratio of the number of messages

exchanged between MSSs and the number of calls processed. This simulation studies the trend

that the four metrics change with the increase of call arrival rate, which is defined as the number

of call arrivals per hour per cell.

33

2.5.2 Simulation Parameters

To evaluate the performance of the algorithm, we used CSIM18 4 Simulation Engine, which is a

process-oriented, discrete-event simulator. The simulated cellular network consists of 6 ∗ 6 cells.

Each cell has 6 neighbors (by wrapping around the cells). There are 300 channels total. Initially, no

channels are pre-allocated to any cell. We assume that the average one-way communication delay

between two cells is 4 milliseconds. This average delay includes transmission delay, propagation

delay and the message processing time. The values of the timers used in the algorithm are

constants: 8 milliseconds, which is twice as large as the average one-way communication delay.

In the simulation, once an MH is generated, it sends a call request to the MSS in the cell. Upon

receiving such a request, the MSS tries to allocate a channel to support the call by using the

underlying channel allocation algorithm. If no channel can be allocated, then the call is dropped

and it is counted as a call failure. If a channel can be allocated to support the call, then the MH

will use this channel for its communication. We assume that the average service time per call is

3 minutes. During communication, the MH may move to an adjacent cell (i.e., an inter-handoff

occurs). If this happens, it releases the channel which is currently supporting the call to the cell

from which it is leaving, and it sends a call request to the cell to which it is moving. The new cell

which it is moving into is responsible to allocate a new channel to support the inter-handoff call.

If no channel can be allocated for this inter-handoff call, then the call is dropped and counted as

an inter-handoff failure. At the end of the simulation, the number of inter-handoff failures, the

number of call failures, the number of calls processed, and the number of messages exchanged for

channel borrowing are collected.

The simulation is conducted under a non-uniform traffic pattern, which is more realistic. Under

such a pattern, a cell can be in one of the two states: normal state and hot state. When a cell is

in normal state, call arrival rate is low, and inter-handoff rate is high. When a cell is in hot state,

call arrival rate is high and inter-handoff rate is low. The parameters we used for simulating the

non-uniform traffic pattern are given in Table 2.2 [6].

4CSIM18 Simulation Engine is a product of Mesquite Software, Inc.

34

Table 2.2: Parameters for non-uniform traffic pattern

Mean call arrival rate in a normal cell λ
Mean call arrival rate in a hot cell 3λ
Mean inter-handoff rate in a normal cell 1/80s
Mean inter-handoff rate in a hot cell 1/180s
Mean rate changing from normal to hot state 1/1800s
Mean rate changing from hot to normal state 1/180s
Mean service time per call 180s

2.5.3 Simulation Results

In the simulation, each MH generates one or more calls, including new calls and inter-handoff

calls. To remove the start-up transients, simulation data was collected only after the first 10, 000

calls were processed. The simulation ended after 100, 000 calls were processed. Data was retrieved

at the end of the simulation and used to compute the various metrics. In the following figures, the

x-axis represents call arrival rate. The y-axis represents call blocking rate, handoff drop rate, call

failure rate, and average number of messages per call respectively. The simulation was conducted

under two scenarios: without cell failures and with cell failures. We show the simulation results

of these two scenarios below.

• Without Cell Failures: We compare the performance of our algorithm with the perfor-

mance of the modified version of the algorithm proposed in [33] under the non-uniform traffic

pattern and without cell failures. The comparison is made with respect to four metrics: call

blocking rate, handoff drop rate, call failure rate, and message complexity. The simulation

results are shown in Figure 2.7 and Figure 2.8. From these figures, we can see that all

the metrics increase with the increase of call arrival rate. This is expected because when

call arrival rate increases, there should be more call failures and the number of messages

exchanged between MSSs for channel borrowing should be higher. As can be seen from the

simulation results, with respect to all the four metrics, our algorithm performs better than

the modified version of the algorithm in [33].

• With Cell Failures: Since the algorithm proposed in [33] is not fault tolerant, we did not

simulate their algorithm with cell failures. Here, we only evaluated the performance of our

35

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1000 1100 1200 1300 1400 1500 1600 1700 1800

ca
ll

bl
oc

ki
ng

 r
at

e

call arrival rate

our_algorithm_no_failure
modified_ravi_alg_no_failure

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1000 1100 1200 1300 1400 1500 1600 1700 1800

ha
nd

of
f d

ro
p

ra
te

call arrival rate

our_algorithm_no_failure
modified_ravi_alg_no_failure

(a) (b)

Figure 2.7: Performance without cell failure (a) call blocking rate (b) handoff drop rate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1000 1100 1200 1300 1400 1500 1600 1700 1800

ca
ll

fa
ilu

re
 r

at
e

call arrival rate

our_algorithm_no_failure
modified_ravi_alg_no_failure

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1000 1100 1200 1300 1400 1500 1600 1700 1800

av
er

ag
e

nu
m

be
r

of
 m

sg
s

pe
r

ca
ll

call arrival rate

our_algorithm_no_failure
modified_ravi_alg_no_failure

(a) (b)

Figure 2.8: Performance without cell failure (a) call failure rate (b) message complexity

36

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1000 1200 1400 1600 1800

ca
ll

bl
oc

ki
ng

 r
at

e

call arrival rate

no_failure
one_failure

two_failures
three_failures
four_failures
five_failures

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800

ha
nd

of
f d

ro
p

ra
te

call arrival rate

no_failure
one_failure

two_failures
three_failures
four_failures
five_failures

(a) (b)

Figure 2.9: Performance with cell failure (a) call blocking rate (b) handoff drop rate

algorithm with cell failures and showed the experimental results. In our simulation, we set

the number of cell failures from 0 to 5. The simulation was run under exactly the same

scenario, except that each time the number of cell failures is different. We evaluated the

performance of our algorithm with respect to the number of cell failures and call arrival

rate. The simulation results are shown in Figure 2.9 and Figure 2.10. As can be seen

from these figures, all the four metrics increase with the increase of call arrival rate and the

number of cell failures. When there is no cell failure and when call arrival rate is 1800, call

blocking rate, handoff drop rate, call failure rate, and the average number of messages per

call are 11.4%, 6.8%, 8.6% and 2.015 respectively. With the same call arrival rate, when the

number of cell failures increases to five, the four metrics are 24.8%, 17.6%, 20.9%, and 2.66

respectively, which shows an approximately 11% to 13% increase in call failure (blocking and

handoff-drop) rate over the case without cell failures. In terms of message complexity, we

only observe an increase of 0.645. The maximum number of cell failures in our simulation

is five, which is 13.89% of all the cells in the system (we have 36 cells total). It follows that

in terms of call failure rate, when 13.89% of cells in the system fail, our algorithm can still

support about 79.1% of the calls when the system has a very heavy load (when call arrival

rate is 1800). Thus, our algorithm is fault tolerant and performs well even when there are

up to 13.89% cells in the system fail and when the traffic load is heavy.

We observed that our algorithm has one limitation. At a cell Ci, if the number of reply messages

is less than two, or if the neighbors from which Ci has received a reply message do not form any

37

 0

 0.05

 0.1

 0.15

 0.2

 1000 1200 1400 1600 1800

ca
ll

fa
ilu

re
 r

at
e

call arrival rate

no_failure
one_failure

two_failures
three_failures
four_failures
five_failures

 1

 1.5

 2

 2.5

 1000 1200 1400 1600 1800

av
er

ag
e

nu
m

be
r

of
 m

sg
s

pe
r

ca
ll

call arrival rate

no_failure
one_failure

two_failures
three_failures

four_failures
five_failures

(a) (b)

Figure 2.10: Performance with cell failure (a) call failure rate (b) message complexity

group, then our algorithm will drop the call. Thus, in this case, our algorithm performs the same

as the algorithm proposed in [33].

2.6 Conclusion

In this chapter, we proposed a fault-tolerant channel allocation algorithm which achieves high

channel utilization. In our algorithm, in order to borrow a channel, a cell does not need to receive

channel usage information from all its neighbors, which makes the algorithm fault-tolerant. A cell

may borrow a channel successfully even based on some partial channel usage information it receives

from some of its neighbors. Moreover, a cell can lend a channel to multiple borrowers (at most

3) concurrently as long as no two of them are neighbors. So, our approach achieves high channel

utilization. Our performance evaluation supports the fact that our algorithm is fault-tolerant and

has low call drop rate.

Copyright c© Jianchang Yang 2006

38

Chapter 3

A Fault-Tolerant Channel Allocation
Algorithm for Cellular Networks with
Mobile Base Stations

3.1 Introduction

In traditional cellular networks, the entire geographical area covered by a cellular network is

divided into smaller regions, called cells. Each cell contains a fixed Base Station (BS) serving

Mobile Hosts (MH) [33] in that cell. The link between an MH and a BS is wireless, while the link

between BSs is wired in general.

Cellular networks with Mobile Base Stations (MBS) differ from traditional cellular networks

in the following aspects:

• Base stations move in cellular networks with MBSs. Each MBS is responsible for allocating

channels for MHs in its cell. The geographical area covered by an MBS changes dynamically

as the MBS moves. The neighborhood relationship of an MBS is not fixed; it changes dynam-

ically due to the mobility of MBSs. Therefore, channel allocation algorithms proposed for

traditional cellular networks assuming a static neighborhood relationship are not applicable

in this situation.

• The links between MBSs are also wireless. So, channels will need to be allocated for sup-

porting communication between MBSs. The wireless links between MBSs are referred to as

inter-cell communication links, while the wireless links between an MH and the MBS in its

cell are called intra-cell communication links.

39

• Co-channel interference may arise when two MBSs, which are not interference neighbors

initially, move into each other’s neighborhood and they happen to use the same channel

concurrently. In this case, the two MBSs need to cooperate with each other and solve the

co-channel interference.

An example of cellular networks with MBSs is shown in Figure 3.1.

MBS3

MBS 4

MH i MH j

MH
MH

MH

n

MBS
MH MHl 5

MBS6

MH

MH

MH
MH

MHMHm

MBS2

MHk

MH
MBS1

5

MBS7

: inter−cell communication link

: intra−cell communication link

Figure 3.1: Cellular networks with mobile base stations

Throughout this chapter, we use the terms “cell” and “the MBS in the cell” interchangeably.

3.1.1 Motivation

Although considerable work has been done in channel allocation for traditional cellular networks

with static base stations, not much attention has been paid to solve the channel allocation problem

for cellular networks with mobile base stations. Cellular networks with mobile base stations are

suitable for battlefield environment. In such an environment, base stations can be mounted on

tanks, whereas MHs (such as PDAs) may be carried by soldiers. Another application of this type

of network is for disaster recovery, where base stations are mounted on vehicles and rescuers are

equipped with mobile hosts.

Due to the mobility of base stations, channel allocation approaches proposed for traditional

cellular networks will not work for cellular networks with MBSs. New algorithms need to be

developed to solve the channel allocation problem in such networks.

40

3.1.2 Contribution

In this chapter, we extend the channel allocation algorithm proposed in Chapter 2 to suit for

cellular networks with mobile base stations. The proposed algorithm has the following desirable

features:

• Fault-Tolerance: Base stations are susceptible to failure; this is more likely in an area

such as a battle field, where the environment is hostile. When this happens, the performance

of the system will degrade if the channel allocation algorithm does not take failure into

consideration. Our algorithm is fault-tolerant in the sense that in order to borrow a channel,

a base station does not need to know the channel usage information of all neighboring base

stations. This feature enables our algorithm to work reasonably well in the presence of

failures of base stations.

• Efficient Channel Utilization: Under the proposed algorithm, a cell can lend a channel

to more than one cell concurrently as long as no two of these cells are neighbors, thus

increasing the channel utilization.

The rest of the chapter is organized as follows. System model is given in Section 3.2. Related

works are reviewed in Section 3.3. In Section 3.4 we present our algorithm. Correctness of the

algorithm is proved in Section 3.5. Our algorithm is compared with related work in Section 3.6,

followed by simulation results in Section 3.7. Section 3.8 concludes the chapter.

3.2 System Model

In cellular networks with MBSs, channels need to be allocated to support both intra-cell commu-

nication (i.e., communication between an MH and an MBS) and inter-cell communication (i.e.,

communication between two MBSs). MBSs share the responsibility to allocate channels and en-

sure that no co-channel interference arises. To simplify the channel allocation algorithm, the set

of channels in the system is divided into two disjoint subsets, one to support intra-cell communi-

cation, the other to support inter-cell communication [29].

An MBS serves a cell with radius d, i.e., can support an intra-cell communication between

an MH and itself if the distance between them is less than d. If a channel is being used to

41

support an intra-cell communication by an MBS, say MBSi, then the same channel cannot be

used concurrently within a radius of k1 × d (k1 > 1), with center at MBSi. This range is called

interference range of MBSi. This is shown in Figure 3.2.

MBS o MBS n

d d

D

k * D2 MBS m

d

d

MBS jMBS i

k1 * d

d
k1 * d

MBS k

d

k * D2

D

Figure 3.2: Neighborhood of an MBS

An MBS, whose cell intersects with the interference range of MBSi, is called an intra-neighbor

of MBSi, and the set of all intra-neighbors of MBSi is denoted by NBintrai
. If a channel r is

being used by MBSi for an intra-cell communication, then none of its intra-neighbors can use r

concurrently. But r can be used at the same time by an MBS which is not an intra-neighbor of

MBSi. For example, in Figure 3.2, MBSm is an intra-neighbor of MBSi, while MBSj and MBSk

are not intra-neighbors of MBSi. If a channel r is being used by MBSi, then MBSm cannot use

the same channel r concurrently, but r can be used concurrently by MBSj or MBSk.

When two MBSs need to communicate with each other, they also need a channel to support

their communication since the link between them is wireless too. An inter-cell communication

can be established between two MBSs only if the distance between them is no greater than a

threshold distance, denoted by D. If two MBSs, MBSi and MBSj, communicate with each other

using a channel r, then r cannot be used concurrently by any other MBS, say MBSx, if the

distance between MBSx and any of the two MBSs (MBSi and MBSj) is less than a threshold

value: k2 × D (k2 > 1) 1. An MBS is called an inter-neighbor of MBSi if the distance between

them is less than k2 × D, and the set of all inter-neighbors of MBSi is denoted by NBinteri
. For

example, in Figure 3.2, the distance between MBSi and MBSj is D. If a channel r is being used

1D > d because the power level that an MBS uses to communicate with another MBS is usually greater than
that used to reach an MH in its cell; therefore, the transmission range that an MBS can reach in an inter-cell
communication is larger. In addition, k2 × D > k1 × d.

42

to support the inter-cell communication between MBSi and MBSj, then r cannot be used by any

inter-neighbor of either MBSi or MBSj . In this case, MBSk and MBSm are inter-neighbors of

both MBSi and MBSj , and hence they cannot use r. But r can be used by MBSn and MBSo

since neither of them is an inter-neighbor of MBSi or MBSj.

We assume that an MBS can exchange message with any neighbor (either an intra-neighbor

or an inter-neighbor) by transmitting signals at a power level high enough to reach the neighbor.

We also assume that an MBS transmits its own beacon signal periodically and an MBS has the

knowledge of the identity of its neighbors by listening to their beacons [29]. Thus if a new MBS,

say MBSj , moves into the neighborhood of MBSi, MBSi can know this new neighbor’s identity

by listening to its beacons, and MBSi will add this new neighbor MBSj to the set of its neighbors.

If an MBS, say MBSi, has not received a neighbor MBSj’s beacon signal for some fixed period of

time, then MBSi assumes that either MBSj moves out of its interference neighborhood or MBSj

has crashed, and removes MBSj from the set of its neighbors.

In general, we assume that an MH that stays in a cell is likely to move with the MBS in the

same cell for some period of time. After that period of time, it may move to other cells. If an MH

involved in a communication moves from one cell to another, then the channel being used for the

communication should be released to the cell from which it moves and a new channel should be

allocated by the cell to which it moves. This is referred to as inter-handoff or handoff . Note that

channels for inter-cell communication may also be needed due to the movement of an MH. For

example, in Figure 3.1, suppose MHi moves from the cell of MBS3 to the cell of MBS2 during its

communication with MHj in the cell of MBS3. In this case, not only a channel for an intra-cell

communication needs to be allocated by MBS2, but also channels for inter-cell communication

need to be allocated for the link between MBS3 and MBS2 or through other MBSs.

3.3 Related Works

In [34], the authors propose a distributed channel allocation algorithm for cellular networks with

mobile base stations. Channels are allocated to support communication between mobile base

stations (referred to as backbone links) and also communication between mobile base stations and

mobile hosts (referred to as short-hop links). When allocating channels to support communication,

43

no distinction is made between channels used for backbone links and short-hop links. A mobile

base station’s neighborhood is divided into three regions: no-use region, partial-use region, and

full-use region. If a channel r is used by a mobile base station, say MBSi, then r cannot be used

concurrently by any other mobile base station, say MBSj, which is in the no-use region of MBSi.

However, r can be used concurrently by a mobile base station, say MBSk, to support a short-hop

link, if MBSk is in the partial-use region of MBSi. If a mobile base station, say MBSl, is in the

full-use region of MBSi, then it can use r concurrently to support a short-hop link. Moreover, it

can use r to support a backbone link concurrently between itself and another mobile base station,

say MBSm, if MBSm is also in the full-use region of MBSi. When allocating channels, a mobile

base station may need to take into account neighbors in some or all of the regions. This algorithm

is not fault-tolerant in the sense that a mobile base station needs to get channel usage information

from each neighbor to borrow a channel.

In [29, 30], the authors propose a distributed dynamic channel allocation algorithm for cellular

networks with mobile base stations. In this algorithm, the set of all channels in the system is

divided into two disjoint subsets: one for short-hop links (i.e., to support communication between

an MBS and an MH in its cell); the other for backbone links (i.e., to support communication

between MBSs). The algorithm consists of two parts.

• short-hop channel allocation: When an MBS, say MBSi, needs a channel, it first checks

whether there exists an available channel allocated to it. If there exists such a channel, it can

use this channel. Otherwise, it sends a request message to all neighboring MBSs within the

short-hop channel reuse distance asking for their channel usage information. Upon receiving

replies including such information from neighbors, it computes the set of channels which

can be borrowed. It selects a channel r from this set (if there is any) and consults with its

neighbors to which r has been allocated on whether it can borrow this channel to use. It

can use the selected channel if all the neighbors it consults grant its request.

• backbone channel allocation: Whenever an MBS, say MBSi, wants to communicate

with another MBS, say MBSj , all the base stations within backbone channel reuse distance

of either MBSi or MBSj are polled to gather their channel usage information. A channel

is chosen to support the communication if the channel is not being used by MBSi, MBSj

44

and the base stations that are polled. When the communication between MBSi and MBSj

terminates, the channel supporting this communication is released to the system.

In their [29, 30] short-hop channel allocation algorithm, when an MBS does not receive a reply from

a neighbor within a timeout period, it assumes that the neighbor either has crashed or moved out

of its co-channel interference range. This assumption may not necessarily be true because messages

can be lost. Such an assumption may lead to co-channel interference. Moreover, in their short-hop

channel allocation algorithm, an MBS lends a channel to at most one MBS. This restricts channel

reuse because an MBS should be able to lend the same channel to more than one neighbor as long

as using the same channel causes no co-channel interference among those neighbors.

Next, we present our channel allocation algorithm for intra-cell communication which allows a

cell to lend a channel to multiple cells concurrently. Moreover, it can tolerate failures.

3.4 A Fault-Tolerant Distributed Channel Allocation Al-

gorithm for Intra-Cell Communication

In this section, first we present the basic idea behind our algorithm, and then we present a detailed

description of the algorithm for intra-cell communication. To support inter-cell communications,

any channel allocation algorithm for inter-cell communications, such as the backbone channel al-

location algorithm proposed in [29, 30], can be used. We assume that there are total N channels

available in the system for intra-cell communication. Channels are totally ordered according to

their frequency band, that is, the channel with the lowest frequency band is the first channel and

the channel with the highest frequency band is the N th channel [32]. Each message is timestamped

with Lamport timestamp [23], the greater the timestamp, the lower the priority. Obsolete mes-

sages can be detected by comparing timestamps and discarded. In the following, we use cell the

terms “cell Ci” and “the base station MBSi in cell Ci” interchangeably. In the context of channel

allocation for intra-cell communication, the term neighbor refers to an intra-neighbor.

3.4.1 Basic Idea

When a cell Ci needs a channel for an intra-cell communication, it picks an unused channel r from

the set of channels allocated to it for use. If no such channel exists, it sends a request message to all

45

neighbors in NBintrai
, asking for their channel usage information and neighborhood information.

In this case, Ci is called a borrower and is said to be in Search Mode. When a cell Cj receives

a request message from Ci, it sends a reply message to Ci if it has no outstanding request or its

request has a greater timestamp than that of Ci’s request. Otherwise, it defers sending a reply

message to Ci. If Cj decides to defer Ci’s request, it will send a reply message corresponding to

Ci’s request after it finishes its channel borrowing process. The reply message contains its channel

usage information and its neighborhood information.

If Ci receives channel usage information from each neighbor, it computes the set of channels

that have not been allocated to any of its neighbors or itself. If this set is not empty, then it picks

a channel to use. Otherwise, it computes the set of channels which are allocated to some neighbors

but not being used by any of them. If this set is not empty, then it picks a channel from this set

and consults with those neighbors on whether it can use this channel. If this set is empty, then it

drops the call.

Unlike in [29, 30], to borrow a channel, Ci does not need to get channel usage information

from each of its neighbors. In case Ci gets channel usage information from only a subset of its

neighbors, it checks for the following condition:

For each neighbor Cj from which channel usage information has NOT been received

by Ci, Ci has already received channel usage information from a neighbor of Cj.

If the above condition is satisfied, Ci divides the set of cells from which it received channel usage

information into subsets (subsets may not necessarily be disjoint) in such a way that

• No two cells in the same subset are neighbors.

• For any neighbor Cj which is NOT in a subset, at least one of Cj’s neighbors is in the subset.

• For any neighbor Cj from which channel usage information has NOT been received by Ci, a

neighbor of Cj is in the subset.

For each subset constructed as described above, Ci computes the set of channels which are allocated

to all the members of the subset but not being used by any of them. It takes a channel r from the

computed set for a given subset of cells, and sends a transfer(r) message to all neighbors to which

46

r had been allocated (i.e., all members of the subset). This transfer(r) message contains the set of

Ci’s neighbors, NBintrai
. When a cell Cj receives such transfer(r) message, its response depends

on the current status of channel r. The response can be either an agree(r) or a refuse(r) message.

After Ci receives a response from each member of this subset, it borrows channel r successfully

if all the responses are agree(r) messages. Ci notifies the neighbors to which channel r has been

allocated about the result of its attempt to borrow r. Upon receiving such notice, a neighbor

updates the status of r appropriately. The basic idea can be illustrated using Figure 3.3. In

i

d
 k * d1

m

j

k
o

n

C C

C C

C

C

Figure 3.3: Illustration of the basic idea

Figure 3.3, NBintrai
= {Cj, Ck, Cm, Cn, Co}. Cell Co is a common neighbor of Cn and Ck, and cell

Cm and Cj are neighbors. Cj is not a neighbor of Ck, Cn or Co; neither is Cm. Ck and Cn are not

neighbors. Suppose Ci sends a request message for their channel usage information to each of its

neighbors, but only receives reply messages from Cm, Ck and Cn. For Co whose reply has not been

received by Ci, Ci has already received a reply from Ck which is a neighbor of Co. Similarly, for Cj,

Ci has already received a reply from a neighbor of Cj, namely Cm. Thus, the condition mentioned

earlier is satisfied. Hence, Ci divides the set of cells from which replies have been received into

subsets according to the rules mentioned above. In this example, one such subset is {Cm, Ck, Cn}.

If there is a channel r that has been allocated to all these three cells but is not being used by any

of them, then Ci may borrow r. If all these three cells grant Ci’s request for borrowing channel r,

then Ci can use r safely, and no co-channel interference arises. All these three cells do not use r

concurrently since they grant Ci’s request for borrowing r, and channel r is not allocated to any

other neighbor of Ci. If a neighbor of Ci also tries to borrow r, then our algorithm guarantees

that it cannot acquire r concurrently (we prove this in Section 3.5). Moreover, a cell is allowed to

lend the same channel to multiple cells as long as no two of them are neighbors. For example, in

Figure 3.3, suppose both Co and Cm want to borrow a channel r from Ci. Then, Ci can grant both

47

of their requests because they are not neighbors and using r by them will not cause co-channel

interference.

In our algorithm, we assume that when an MBS moves, it updates the set of channels allocated

to it based on the set of channels allocated to its new neighbors so that no co-channel interference

arises. This can be done in the following way: when an MBS, say MBSi, detects a new neighbor

MBSj, it sends the set of channels allocated to it and the number of its available channels to

MBSj, asking for the same information from MBSj. Upon receiving such a message, if MBSj

has not sent this information to MBSi yet, it sends this information to MBSi. Upon receiving each

other’s information about the set of allocated channels, both MBSi and MBSj update their sets

of allocated channels appropriately. If they happen to have the same channel r allocated to both

of them, then the one with fewer available channels keeps the channel, while the other removes the

channel from its set of allocated channels. Ties can be broken by comparing the identities of MBSs.

This is true for both intra-cell communications and inter-cell communications. For example, for

intra-cell communications, if two MBSs, which initially are not neighbors that use the same channel

r, move into each other’s neighborhood, co-channel interference arises (note that we assume that

an MH normally moves with the MBS in the same cell). To avoid further interference, at least

one of them has to switch to a different channel. We assume that this will be done by the MBS

with more available channels. Similar things can be done for inter-cell communications. If two

pairs of MBSs, which initially use the same channel without interference, move in such a way that

interference arises, then at least one of them has to switch to a different channel. From now on,

we concentrate on the channel allocation for intra-cell communications only.

3.4.2 Data Structures

Each cell Ci maintains the data structures shown in Table 3.1.

Initially, Allointrai
, Busyintrai

, Tranintrai
, Grantintrai

(r) and Lentintrai
(r) are all empty. ∀ r ∈

Allointrai
, Grantintrai

(r) is the set of cells to which Ci has sent an agree(r) message, and from

which Ci has not received a release(r) message or a keep(r) message. Ci lends channel r to a

neighbor Cj only when it is notified by Cj to release r (i.e., Ci receives a release(r) message from

Cj). Lentintrai
(r) is the set of cells from which Ci has received a release(r) message. That is,

48

Table 3.1: Data Structures

NBintrai
: the set of intra-neighbors of Ci.

Intra: the set of channels for intra-cell communication in the system.
Allointrai

: the set of channels allocated to Ci for intra-cell communication.
Busyintrai

: the set of channels being used by Ci for intra-cell communication.
Tranintrai

: the set of channels marked for transfer by Ci for intra-cell
communication.

Grantintrai
: a set of sets maintained by Ci.

Lentintrai
: a set of sets maintained by Ci.

Lentintrai
(r) denotes the set of cells to which Ci has lent channel r. Under all circumstances,

Busyintrai
⊆ Allointrai

, Tranintrai
⊆ Allointrai

, and Busyintrai
∩ Tranintrai

is an empty set.

3.4.3 A Channel Allocation Algorithm for Intra-cell Communication

Formal description of our channel allocation algorithm is presented in Table 3.2.

3.5 Correctness of the Algorithm

Lemma 3.5.1 Two neighboring cells, Ci and Cj, are not allowed to borrow the same channel

concurrently under the proposed algorithm.

Proof: Let r1 be the channel borrowed by Ci, r2 be the channel borrowed by Cj. Without loss

of generality, we assume that Ci’s request has lower priority than Cj’s request. We prove that

r1 6= r2. Since Cj’s request has higher priority, Cj will defer sending a reply to Ci until it finishes

its channel borrowing process. After Cj borrows r2, it adds r2 to both Allointraj
and Busyintraj

.

Then, it sends a reply message to Ci. The following two cases arise for Ci.

• case 1: Ci borrows r1 as a result of getting reply messages from all of its neighbors for its

request. If r1 ∈ Fintrai
:= Intra − ∪Allointrak

(step C-(1)-α of the algorithm), then r1 6= r2,

because r2 ∈ Allointraj
, and Cj is a neighbor of Ci. If r1 ∈ Fintrai

:= Intra − ∪Busyintrak

(step C-(1)-β of the algorithm), then r1 6= r2, because r2 ∈ Busyintraj
, and Cj is a neighbor

of Ci.

• case 2: Ci borrows r1 as a result of getting reply messages from only a subset of its neigh-

bors for its request. In this case, Ci must have borrowed r1 from some subset SI such that

49

Table 3.2: The Intra-Cell Channel Allocation Algorithm

A: When a cell Ci needs a channel to support a call,

If (Fintrai
:= Allointrai

−Busyintrai
−Tranintrai

) 6= ∅, it picks a channel r ∈ Fintrai
with the highest order to

support the call. Busyintrai
:= Busyintrai

∪ {r}. When the call terminates, Busyintrai
:= Busyintrai

−{r}.
If Fintrai

= ∅, it sets a timer and sends a request message to each cell in NBintrai
.

B: When a cell Cj receives a request message from cell Ci,

If its own request has a lower timestamp than Ci’s request , then it defers sending a reply message to Ci.
Otherwise, it sends to Ci a reply(Allointraj

, Busyintraj
,NBintraj

) message.
C: When Ci gets reply messages from all neighbors or the timer expires, it sets a new timer and does the following:

(1): If it has received reply messages from all of its neighbors,

α: If (Fintrai
:= Intra − ∪Allointrak

) 6= ∅ (k ∈ NBintrai
∪ {i}), it picks r ∈ Fintrai

with the
highest order to support the call. Allointrai

:= Allointrai
∪ {r}, Busyintrai

:= Busyintrai
∪ {r}.

Grantintrai
(r) := ∅, Lentintrai

(r) := ∅.
β: Else if (Fintrai

:= Intra−∪Busyintrak
) 6= ∅ (k ∈ NBintrai

∪ {i}), it picks a channel r ∈ Fintrai

with the lowest order for transfer and sends a transfer(r) message to each neighbor to which r has
been allocated. NBintrai

is included in the transfer(r) message.
γ: Else if Fintrai

= ∅, then it drops the call.

(2): Else, let Receivedintrai
:= {Cj : Ci has received a reply message from Cj .}.

α: If ∀Ck ∈ (NBintrai
−Receivedintrai

), ∃Cm such that Cm ∈ NBintrak
∩ Receivedintrai

, then Ci

divides Receivedintrai
into subsets according to the following rules:

(i) No two cells in the same subset are neighbors.
(ii) ∀Cn ∈ NBintrai

that is not in a subset, ∃Co ∈ NBintran ∩ Receivedintrai
in the

subset.
(iii) ∀Cp ∈ NBintrai

− Receivedintrai
, each subset includes some cell, Cq , such that

Cq ∈ NBintrap ∩ Receivedintrai
.

Let the subsets be: S1, . . . , SK .
∀ SI (I ∈ {1, . . . , K}), Fintrai

(I) := ∩Cn∈SI
(Allointran − Busyintran). If ∀I ∈ {1, . . . , K},

Fintrai
(I) = ∅, then Ci drops the call; otherwise, let Fintrai

:= ∪I∈{1,...,K}Fintrai
(I). Ci picks

a channel r with the lowest order from set Fintrai
(I) such that Fintrai

(I) 6= ∅ and |Fintrai
(I)| is

maximal. It sends to each cell in SI a transfer(r) message with NBintrai
attached.

β: Else it drops the call.

D: When cell Cj receives a transfer(r) message from cell Ci,

If r /∈ Busyintraj
∧ (∀Cm ∈ (Grantintraj

∪Lentintraj
), Cm /∈ NBintrai

), it sends an agree(r) message to Ci and
Grantintraj

(r) := Grantintraj
∪ {Ci}. If r ∈ Allointraj

and r /∈ Tranintraj
, then

Tranintraj
:= Tranintraj

∪ {r}.
Otherwise, it sends a refuse(r) message to Ci.

E: When Ci receives a response to each of its transfer(r) message and the timer set in step C does not expire, it

cancels the timer and does the following:

1: If all of them are agree(r) messages, then it uses r to support the call. Allointrai
:= Allointrai

∪ {r}
and Busyintrai

:= Busyintrai
∪ {r}. Grantintrai

(r) := ∅ and Lentintrai
(r) := ∅. It sends a release(r)

message to each cell from which an agree(r) message has been received.
2: If not all of them are agree(r) messages, it sends a keep(r) message to each cell from which an
agree(r) message has been received. Channel r is removed from the set Fintrai

. Ci tries to borrow
another channel in Fintrai

if possible. If Ci cannot borrow a channel successfully before the timer set
in step C expires, then it drops the call.

F: When cell Cj receives a release(r) message from cell Ci,

It sets Grantintraj
(r) := Grantintraj

(r) − {Ci} and Lentintraj
(r) := Lentintraj

(r) ∪ {Ci}. If r ∈ Allointraj
,

then it sets Allointraj
:= Allointraj

− {r} and Tranintraj
:= Tranintraj

− {r}.
G: When cell Cj receives a keep(r) message from cell Ci,

It sets Grantintraj
(r) := Grantintraj

(r) − {Ci}. If r ∈ Allointraj
and Grantintraj

(r) = ∅, then it sets
Tranintraj

:= Tranintraj
− {r}.

H: After cell Ci acquires a channel to support a call or it drops a call,

It sends a reply(Allointrai
, Busyintrai

,NBintrai
) message to all those request messages to which a reply has been

deferred.

50

Fintrai(I) 6= ∅, where Fintrai(I) := ∩Cn∈SI
(Allointran

− Busyintran
) (step C-(2)-α of the algo-

rithm). We have r1 ∈ Fintrai
(I). Therefore, r1 /∈ Busyintran

for any Cn ∈ SI . Following two

sub-cases arise.

– sub-case 1: Cj ∈ SI . Because Cj sends a reply message to Ci only after it finishes its

channel borrowing process, r2 ∈ Busyintraj
. Therefore, r1 6= r2 because r1 /∈ Busyintraj

.

– sub-case 2: Cj /∈ SI . Then, ∃Ck such that Ck ∈ SI ∧ Ck ∈ NBintraj
. Therefore,

r1 ∈ Allointrak
. We have r1 6= r2 because r2 /∈ Allointrak

(since r2 ∈ Allointraj
and Ck is

a neighbor of Cj).

Thus, two neighboring cells are not allowed to borrow the same channel concurrently under

the proposed algorithm. 2

Lemma 3.5.2 Under the proposed algorithm, two neighboring cells do not use the same channel

concurrently for an intra-cell communication at any time.

Proof: Initially, no channel is allocated to any cell. Since neighboring cells do not borrow the same

channel concurrently, it follows that neighboring cells do not use the same channel concurrently.

2

Lemma 3.5.3 The proposed channel allocation algorithm is deadlock free.

Proof: Under the proposed algorithm, when a cell sends a request message (or a transfer(r)

message, where r is the channel selected to borrow), it sets a timer. A cell starts computing

whenever its timer expires or it gets from each neighbor a response corresponding to each of its

request messages (or transfer(r) messages). So, there is no hold and wait situation. Thus, the

proposed algorithm is dead-lock free. 2

3.6 Comparison to Related Works

In [34], the authors proposed a distributed algorithm for allocating channels for both intra-cell

and inter-cell communication. We do not compare our algorithm with that in [34], because our

algorithm focuses only on channel allocation for intra-cell communication.

51

To our knowledge, the algorithm proposed in [29, 30] is the only channel allocation algorithm

in the literature for cellular networks with mobile base stations that divides the set of channels into

two disjoint subsets for the two different types of links, namely, intra-cell and inter-cell links. So

we compare our algorithm with their short-hop channel allocation algorithm, which we described

in Section 3.3. Our channel allocation algorithm has the following advantages:

• Fault-Tolerance: Our algorithm is fault-tolerant because in order to borrow a channel,

a cell does not need to get channel usage information from all its neighbors. In [29, 30],

when a cell does not get channel usage information from a neighbor, it assumes that the

neighbor either has moved out of its neighborhood or has crashed. This assumption may

not be true. In cellular networks, messages exchanged between base stations could be lost.

By making such an assumption, the algorithm in [29, 30] may cause co-channel interference

(i.e., the algorithm may not work correctly). However, our algorithm does not rely on such

an assumption.

• No Co-Channel Interference: Our algorithm ensures no co-channel interference for com-

munication between a mobile host and a base station, while in the short-hop channel allo-

cation algorithm proposed in [29, 30], co-channel interference may arise. In [29, 30], if a cell

does not receive response from a neighbor within a timeout period, it assumes that either that

neighbor has crashed or moved out of its co-channel interference range. But this assumption

may not necessarily be true because messages could be lost. By assuming this, neighboring

cells may choose the same channel to use concurrently. Thus, co-channel interference may

arise. For example: in Figure 3.4, Ci’s neighbors are: Cj, Ck, Cm and Cx. Cj’s neighbors

are: Ci, Ck, Cm and Cy. Any two of Ck, Cm, Cx and Cy are not neighbors. Suppose Ci needs

to borrow a channel. It sends a request message to all neighbors and receives a reply message

from all its neighbors. It chooses a channel r to borrow, where r is allocated to both Cj and

Cx but not being used by any of them. It sends a transfer(r) message to them. Suppose

that Ci receives an agree(r) message from Cx, but does not receive an agree(r) or refuse(r)

message from Cj within a timeout period. According to the algorithm proposed in [29, 30],

Ci assumes that Cj has crashed or moved out of its co-channel interference range and an

agree(r) message is received from Cj. Ci uses channel r since it gets all agree(r) messages it

52

needs. But Cj may use channel r at the same time. A refuse(r) message may be sent by Cj,

but this message is lost and Ci never receives such a message. Thus co-channel interference

arises. Note that Ci may use r even when it does not receive a response from both Cx and

Cj because of the assumption.

k 1 * d

k 1 * dC i C j

C k

C m

C y

C x

Figure 3.4: The cases where co-channel interference arises

3.7 Performance Evaluation

In this section, we present the results of the performance evaluation of our algorithm. We compare

our algorithm with the short-hop channel allocation algorithm in [29, 30] for the reason stated in

Section 3.6. The short-hop channel allocation algorithm in [29, 30] is not fault-tolerant, therefore,

we cannot compare it with our algorithm directly. For purpose of comparison, we modified it to

be fault-tolerant. The modification is as follows. When a cell Ci needs to borrow a channel from

its neighbors, it sends a request message to each neighbor and sets a timer. If the timer times

out before it receives replies from all neighbors, then it drops the call. Otherwise, it proceeds as

normal. When a cell Ci sends a transfer(r) message to neighbors, it also sets a timer. If this timer

expires before it can borrow a channel successfully, then it drops the call; otherwise, it uses the

borrowed channel to support the call.

Three metrics are used to evaluate the performance of the algorithms: call blocking rate,

handoff drop rate, and call failure rate. Call blocking rate is defined as the ratio of the number

of new calls that cannot be supported (i.e., blocked new calls) to the total number of new calls.

Handoff drop rate is defined as the ratio of the number of inter-handoff calls dropped to the total

number of inter-handoff calls. Call failure rate is defined as the ratio of total number of calls

53

dropped (including blocked new calls and dropped inter-handoff calls) to the total number of calls

processed. Call arrival rate is defined as the number of call requests per cell per hour.

3.7.1 Simulation Parameters

To evaluate the performance of the algorithm, we used CSIM18 2 Simulation Engine to implement

our simulation. CSIM18 is a process-oriented, discrete-event simulator. We assumed that a total of

300 channels are available for intra-cell communication. The simulated cellular network consists

of 100 mobile base stations. Each mobile base station is associated with a number of mobile

hosts. All the mobile base stations are within a square of 15 kilometers. At the beginning of the

simulation, mobile base stations are distributed evenly within the square, so that adjacent stations

are 1.5 kilometers apart either along x axis or y axis. The movement of a mobile base station is

modeled as follows. Initially, each mobile base station chooses a destination within the square and

a speed between 0 and a maximum speed of 10 kilometers per hour. Once a mobile base station

selects a destination and a speed, it moves towards the destination with that speed until it arrives

at the destination. Then, it stays there for a random period of time. Afterwards, it selects a new

destination and a new speed and moves to the new destination. This movement pattern continues

until the end of the simulation.

During the simulation, mobile hosts are generated according to call arrival rate at each cell

covered by a mobile base station. Once generated, a mobile host sends a call request to the mobile

base station and waits for the response. If a channel is allocated to the mobile host, then the

mobile host uses this channel for communication. We assume that the average service time per

call is 3 minutes. A mobile host stays with a mobile base station for an average of 30 minutes.

After 30 minutes, it may move to an area covered by a neighboring mobile base station. If this

happens while it is involved in a communication, an inter-handoff occurs.

We assume that the average one-way communication delay between two neighboring mobile

base stations is 4 milliseconds. This average delay includes transmission delay, propagation delay,

and message processing time. The value of the timers used in the algorithm is 8 milliseconds, which

is twice the average one-way communication delay. Our algorithm only deals with the channel

allocation problem for intra-cell communications.

2CSIM18 Simulation Engine is a product of Mesquite Software, Inc.

54

In our simulation, the transmission range of a mobile base station is 1.0 kilometer, and the

intra-neighbor range of a mobile base station is 2.0 kilometers. Due to mobility, the neighborhood

information of a mobile base station changes. Two mobile base stations, say MBSi and MBSj ,

which initially are not neighbors, may move towards each other and become neighbors, or two

neighbors may move away from each other and cease to be neighbors. To track this change in

neighborhood, we re-compute the neighborhood information for each mobile base station period-

ically. The re-compute period is set to be 120 seconds in the simulation. When two mobile base

stations, MBSi and MBSj, that initially are not neighbors, move towards each other and become

neighbors, co-channel interference may arise because some channels could have been allocated to

both MBSi and MBSj. If this happens, the one with fewer available channels will keep such a

channel, while the other will release the channel, in order to avoid co-channel interference.

The simulation is conducted under a non-uniform traffic pattern, which is more realistic. Under

such a pattern, a cell can be in one of two states: normal state and hot state. When a cell is in

normal state, call arrival rate is low, and when it is in hot state, call arrival rate is high. The

parameters for non-uniform traffic pattern are given in Table 3.3 [6].

Table 3.3: Parameters for non-uniform traffic pattern

Mean call arrival rate in a normal cell λ
Mean call arrival rate in a hot cell 3λ
Mean rate changing from normal to hot state 1/1800s
Mean rate changing from hot to normal state 1/180s
Mean service time per call 180s

3.7.2 Simulation Results

We simulated 72 different scenarios (8 different arrival rates, 9 different values of number of failed

base stations, 8 × 9 = 72) for the two algorithms and ran each scenario ten times with different

seeds. In the simulation, each MH generates one or more calls, including new calls and inter-

handoff calls. To remove the start-up transients, data was collected only after the first 10, 000

calls were processed. The simulation ended after 100, 000 calls were processed. Data was retrieved

at the end of the simulation and used to compute the metrics. To study the performance of the

algorithm, we conducted the simulation over a wide range of call arrival rates. To test how well our

55

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.5: Performance without cell failure under non-uniform traffic pattern

algorithm tolerates failures, we conducted the simulation with different numbers of cell (mobile

base station) failures. First, we show the simulation results of our algorithm without cell failures.

Then, we analyze the performance of our algorithm with cell failures. In both cases, comparison

to the modified version of the algorithm in [29, 30] is also presented.

1. Without Cell Failures: In this set of experiments, no cell fails. The simulation results

are shown in Figure 3.5. As seen from the figure, all three metrics increase with call arrival

rate. There is not much difference between the performance of the two algorithms. This is

because when no cell fails, a cell, which sends out a request message to neighbors, can receive

channel usage information from all its neighbors before its timer expires in most cases.

2. With Cell Failures: We evaluated the performance of our algorithm with cell failures and

compared it with that of the modified version of the algorithm in [29, 30]. In our simulation,

we used a total of 100 cells (i.e., mobile base stations). We conducted the simulation with the

following numbers of cell failures: 1, 2, 3, 4, 5, 10, 15, and 20. The simulation was run under

exactly the same scenario, except that each time the number of cell failures is different. The

simulation results are shown in Figure 3.6 to Figure 3.13. As we can see from the figures,

all three metrics, namely call blocking rate, handoff drop rate, and call failure rate, not only

increase with call arrival rate, but also increase with the number of cell failures. This is

reasonable because when some cell fails, then it is more difficult for a neighboring cell to

find an available channel to borrow. The more cell failures, the harder for neighboring cells

to borrow channels. In the presence of different numbers of cell failures shown in Figure 3.6

56

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.6: Performance with one cell failure under non-uniform traffic pattern

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 200 400 600 800 1000 1200 1400 1600 1800
h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.7: Performance with two cell failures under non-uniform traffic pattern

to Figure 3.13, our algorithm always has a lower call blocking rate, handoff drop rate, and

call failure rate than the modified version of the algorithm in [29, 30]. The advantage of our

algorithm becomes prominent with the increase in the number of cell failures, hence, our

algorithm handles failures better.

3.8 Conclusion

Although many channel allocation algorithms have been proposed for cellular networks with static

base stations in the literature, not much work has been done for cellular networks with mobile

base stations. To our knowledge, only two algorithms [29, 30] have been proposed in the literature

to allocate channels for cellular networks with mobile base stations. However, both of these

algorithms did not address fault-tolerance issue very well. We proposed a more efficient fault-

tolerant channel allocation algorithm for commutation between a mobile host and a base station.

57

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.8: Performance with three cell failures under non-uniform traffic pattern

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.9: Performance with four cell failures under non-uniform traffic pattern

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.10: Performance with five cell failures under non-uniform traffic pattern

58

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.11: Performance with ten cell failures under non-uniform traffic pattern

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.12: Performance with fifteen cell failures under non-uniform traffic pattern

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 200 400 600 800 1000 1200 1400 1600 1800

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 200 400 600 800 1000 1200 1400 1600 1800

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

modified-Prakash-alg
our-alg

(a) (b) (c)

Figure 3.13: Performance with twenty cell failures under non-uniform traffic pattern

59

The proposed algorithm ensures no co-channel interference and achieves high channel utilization.

Under our algorithm, a cell (i.e., a mobile base station) may borrow a channel as long as it receives

channel usage information from a subset of its neighbors, and there is at least one common available

channel in the subset. Therefore, the proposed algorithm is fault-tolerant. Moreover, a cell can

lend a channel to multiple neighbors concurrently as long as no two of them are neighbors, and

hence increases the probability of a channel being reused.

Copyright c© Jianchang Yang 2006

60

Chapter 4

Comparison of Two Channel Allocation
Approaches: Channel Pre-allocation Vs.
Non-Pre-allocation

4.1 Introduction

As mentioned earlier in Chapter 1, channels allocated to a cellular network are limited, and should

be reused efficiently. Reusing channels efficiently means that the channel reuse pattern should be

compact, that is, a channel used by a cell Ci should be reused by all cells Cj, where the distance

between Ci and Cj is equal to or slightly greater than minimum channel reuse distance, i.e., Dmin.

Channels can be either pre-allocated to cells initially, or can be allocated to cells whenever the

need for additional channels arises. We observe that if channels are not pre-allocated to cells, the

channel reuse pattern may be non-compact depending on the call arrival pattern. A non-compact

channel reuse pattern implies that channels are not reused efficiently.

The disadvantages of the no-channel-pre-allocation scheme can be illustrated in Figure 4.1. In

0C 1C 2C

3C 4C 5C

6C 7C 8C

0 51 2

2 3 64

8

6 1 3 7

87

8

3
0C 1C 2C

3C 4C 5C

6C 7C 8C

0 5

2 64

8

7

87

1 2

186

(a) (b)

Figure 4.1: Disadvantages of no-channel-pre-allocation

Figure 4.1-(a), there are 9 channels total in the system, with channel ids from 0 to 8. In each cell,

channel ids shown in italics are the channels available in that cell. For example, channels 6 and 8

are allocated to cell C1. Channel 6 is being used, while channel 8 is available in C1. Suppose that

61

C4 needs to borrow a channel and it gets channel usage information from all its neighbors. The

information is shown in Figure 4.1-(a). Based on this information, C4 cannot borrow any channel.

Channel 7 is available in C2, however, it is being used by C6. Cell C7 has channel 6 available, but

channel 6 is being used by C1. The fact is that although some neighbors have available channels,

they do not have common available channels.

Another disadvantage of not pre-allocating channels to cells is illustrated in Figure 4.1-(b).

The difference between Figure 4.1-(a) and Figure 4.1-(b) is that all the channels, 0 to 8, have

been allocated to cell C4 and its neighbors in Figure 4.1-(a), while in Figure 4.1-(b), channel 3 is

not allocated to C4 or any of its neighbors. Suppose that C4 needs to borrow a channel and it

gets channel usage information from all its neighbors except C5 (the channel usage information is

shown in Figure 4.1-(b); channel ids in italics indicate the channels that are not being used by that

cell). Based on this information, C4 cannot borrow a channel, even though channel 3 is available,

since it has not been allocated to C4 or any of its neighbors yet. This results in lower efficiency.

One way to solve these problems appears to be to pre-allocate all of the channels to cells.

In this chapter, we study how channel pre-allocation affects the performance of the channel

allocation algorithm. In order to do this, we modify the channel allocation algorithm proposed

in Chapter 2 to allow a subset of available channels to be pre-allocated to cells, while the rest

are kept in an open pool. By changing the size of the subset of pre-allocated channels, we can

pre-allocate to cells all channels, some channels, or no channel at all. We simulate all these cases

with respect to the modified channel allocation algorithm and compare their performance.

The rest of this chapter is organized as follows. In Section 4.2, system model is described.

Related works are reviewed in Section 4.3. In Section 4.4, the proposed algorithm is given in detail,

followed by the correctness proof. In Section 4.5, the performance of the proposed algorithm is

evaluated by simulation. Section 4.6 concludes the chapter.

4.2 System Model

We assume a 3-cell cluster model [33] (described in page 17). We use the terms “cell” and

“the base station (BS) in the cell” interchangeably. Figure 4.2 illustrates an example of a cellular

network. Each cell has 6 neighbors (by wrapping around the cells at the edge).

62

In our model, both BSs and communication links could fail. If a BS fails, then all the calls

supported by it fail at the same time. A mobile host could fail as well. The failure of a mobile

host only affects its ongoing communication.

4.3 Related Works

In [13], the authors propose a channel allocation algorithm for cellular networks. The Update

approach (described in page 6) is adopted and all channels are pre-allocated to cells. Channels

pre-allocated to a cell are called primary channels of that cell. Primary channels have higher

priority to be allocated for calls in each cell. A cell needs to borrow a channel only after it uses

up all of its primary channels and a new call originates. Whenever a cell acquires or releases a

channel, it informs all of its interference neighbors about this. The proposed algorithm is fault-

tolerant. In order to borrow a channel, a cell does not need to receive channel usage information

from all its interference neighbors. In [6, 40], the Search approach (described in page 7) is used,

instead of the Update approach. Similar to [13], all channels are pre-allocated to cells in [6, 40],

and the algorithms proposed there are also fault-tolerant.

In [33], the authors propose a distributed dynamic channel allocation algorithm under a 3-cell

cluster model. The Search approach is adopted and channels are not pre-allocated to cells. If a

channel is available when a cell Ci needs to support a call, then Ci picks it to use. Otherwise,

Ci sends a request message to each of its neighbors, asking for their channel usage information.

Based on the information received from all of its neighbors, Ci tries to select a channel r to borrow.

Ci can use r only if its request for borrowing r is granted by all of those neighbors to which r

has been allocated. After a cell grants a neighbor’s request, say Ci’s request, for some channel

r, it marks r for transfer. After that, it will not grant any other neighbor’s request for the same

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Figure 4.2: A cellular network

63

channel r even if that neighbor is not a neighbor of Ci; this limits channel reuse. Moreover, the

algorithm is not fault tolerant because a cell needs to get channel usage information from all its

neighbors to borrow a channel. In [43], the authors propose a channel allocation algorithm under

a 3-cell cluster model too. In the algorithm, the Search approach is adopted and channels are

not pre-allocated to cells. However, unlike the algorithm proposed in [33], the algorithm in [43]

is fault-tolerant in the sense that to borrow a channel, a cell does not need to get channel usage

information from all its interference neighbors.

4.4 Adaptive Channel Allocation Algorithm

4.4.1 Basic Idea

The adaptive channel allocation algorithm in this chapter is an extension of the algorithm proposed

in Chapter 2. First we review the data structures used in the algorithm. Each cell Ci has

6 neighbors and each neighbor is given a unique neighbor id: nb 1, nb 2, . . . , nb 6 . The set of

neighbors of Ci is denoted by NBi, i.e., NBi := {nb 1, nb 2, nb 3, nb 4, nb 5, nb 6} (see Figure 4.3).

Ci

_1nb

_2nb

_3nb

_4nb

_5nb

_6nb

Figure 4.3: Neighborhood relationship in the cellular network

The set of neighbors of Ci are divided into 5 groups:

1. Group 1 := {nb 1 , nb 4},

2. Group 2 := {nb 2 , nb 5},

3. Group 3 := {nb 3 , nb 6},

4. Group 4 := {nb 1 , nb 3 , nb 5},

5. Group 5 := {nb 2 , nb 4 , nb 6}.

There are N channels total and they are uniquely ordered. Channels are divided into two sets:

SPRE and SNOPRE . Channels 0 to M (0 ≤ M < N) belong to SPRE and channels M + 1 to N − 1

64

Sp1 Sp2

Sp3 Sp1

Sp3

Sp2

Sp1

Sp3

Sp2

Sp1

Sp3

Sp2

Sp2 Sp3 Sp1 Sp2 Sp3 Sp1

Sp1 Sp2 Sp3 Sp1 Sp2 Sp3

Sp3 Sp1 Sp2 Sp3 Sp1 Sp2

Sp2 Sp3 Sp1 Sp2 Sp3 Sp1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Figure 4.4: Channel pre-allocation pattern

are in SNOPRE. Channels in SNOPRE are not pre-allocated to any cell, while channels in SPRE are

pre-allocated to cells according to the following rule:

Channel Pre-allocation Rule: a channel can be allocated to at most one cell in a

cluster of 3 mutually adjacent cells.

SPRE is divided into three subsets: SP1, SP2, and SP3. Channels in these three subsets are

allocated to cells as shown in Figure 4.4. For any cell Ci, SCi
denotes the set of channels that have

been pre-allocated to Ci.

When a cell Ci needs a channel, it picks one of the available channels allocated to it with the

highest order for use. If no channel allocated to it is available, then it sends a request message to

get channel usage information from each neighbor and sets a timer. In this case, it is in Search

Mode and it is a borrower. If Ci receives channel usage information from all its neighbors before

the timer expires, then it first computes the set of channels that have not been allocated to any

of its neighbors as well as itself. It picks such a channel to use if there is one. If there is no such

channel, it computes the set of channels allocated to its neighbors that are not being used by any

of them. If this set is empty, then it drops the call; otherwise, it selects a channel from this set

to borrow. Even if Ci does not receive channel usage information from all its neighbors when the

timer expires, it may still be able to borrow a channel. It can do so as long as it receives channel

usage information from all members of any group (i.e., Group 1 through Group 5) and there is a

common channel allocated to all members of that group which is not being used by any of these

members. For example, in Figure 4.3, suppose cell Ci needs to borrow a channel and it receives

channel usage information from nb 1 and nb 4 only. Note that nb 1 and nb 4 form a group,

namely, Group 1. If both nb 1 and nb 4 have channel r available, then Ci can borrow channel

65

r. Since channel r is allocated to nb 1 , it could not have been allocated to nb 2 or nb 6 because

nb 2 or nb 6 is a neighbor of nb 1 . Similarly, channel r could not have been allocated to nb 3 or

nb 5 because they are neighbors of nb 4 . Therefore, if nb 1 and nb 4 grant cell Ci’s request for

borrowing channel r, then Ci can use r without causing co-channel interference.

When a call using a borrowed channel terminates in a cell Ci, Ci checks whether the borrowed

channel is in SNOPRE . If yes, then Ci keeps the channel for future use. If the borrowed channel

belongs to SPRE (i.e., a channel that was pre-allocated to one of its neighbors), then Ci returns

this channel to those neighbors from which it borrowed this channel.

Under our algorithm, a cell is allowed to lend a channel to several borrowers concurrently, as

long as no two of them are neighbors. This increases channel reuse. If there are two neighboring

cells that are in Search Mode concurrently (i.e., two neighboring borrowers) and each of them

borrows a channel, then the algorithm ensures that they do not borrow the same channel (this is

proved in Section 4.4.4).

Next, we present the algorithm. The following data structures are used in the algorithm. In

the following, we use the terms “cell Ci” and “the base station BSi in cell Ci” interchangeably.

4.4.2 Data Structures

The data structures maintained by each cell Ci are given in Table 4.1.

Table 4.1: Data Structures

Spectrum: the set of all channels in the system.
SPRE : the set of channels pre-allocated to cells.
SNOPRE: the set of channels not pre-allocated to cells.
SCi

: the set of channels pre-allocated to Ci.
NBi: the set of neighbors of Ci.
Allocatei: the set of channels currently allocated to Ci.
Busyi: the set of channels currently being used by Ci.
Transferi: the set of channels marked for transfer by Ci.
Grantedi: a set of sets in Ci.
Lenti: a set of sets in Ci.
Num Replyi: number of replies Ci gets after the timer expires.

Next, we explain the purpose of the data structures. |Spectrum| := N . SPRE := {0, 1, . . . , M},

where 0 ≤ M < N . SNOPRE := {M+1, M+2, . . . , N−1}. NBi := {nb 1, nb 2, nb 3, nb 4, nb 5, nb 6}.
66

Initially, Allocatei is equal to SCi
. At any given time, Allocatei ⊇ SCi

. Transferi is the set of

channels that Ci plans to transfer. At any given time, Transferi ∩ Busyi is an empty set, and

Transferi ⊆ Allocatei. In cell Ci, Grantedi is a set of sets. ∀ r ∈ Allocatei, Grantedi(r) denotes

the set of cells to which Ci has sent an agree(r) message. An agree(r) message from Ci to Cj

means that Ci agrees to grant Cj’s request to borrow channel r. Ci lends channel r to Cj only

when it is notified by Cj to release the channel. Lenti is also a set of sets maintained by cell

Ci. ∀ r ∈ Allocatei, Lenti(r) denotes the set of cells to which Ci has lent channel r. Initially,

Busyi, Transferi, Grantedi(r) and Lenti(r) are all empty sets. Each message is assigned a times-

tamp, using Lamport’s timestamp [23], the lower the timestamp, the higher the priority. Obsolete

messages are ignored by comparing timestamps.

4.4.3 The Algorithm

Formal description of the proposed algorithm is given in Table 4.2.

4.4.4 Correctness of the Algorithm

In this subsection, we prove that the algorithm is correct and it is deadlock-free.

Lemma 4.4.1 Two neighboring cells, Ci and Cj, are not allowed to borrow the same channel

concurrently under our algorithm.

Proof: Let r1 be the channel borrowed by Ci, r2 be the channel borrowed by Cj. Without loss

of generality, we assume that Ci’s request has lower priority than Cj’s request. We prove that

r1 6= r2. Since Cj’s request has higher priority, Cj will defer sending a reply to Ci until it finishes

its channel borrowing process (note that we use Lamport’s timestamp to determine the priority of

the request message). When Cj borrows channel r2 to use, it adds r2 to Busyj. If r2 ∈ SNOPRE,

it also adds r2 to Allocatej . Then, it sends a reply message to Ci. The following two cases arise

for cell Ci.

• case 1: Ci borrows r1 as a result of getting replies from all of its neighbors for its request.

Following two sub-cases arise.

– (1): r2 ∈ SNOPRE. If r1 ∈ Freei := Spectrum − ∪Allocatek (step C-1-α in the

algorithm), then, r1 6= r2, since (r2 ∈ Allocatej) ∧ (Cj ∈ NBi). If r1 ∈ Freei :=

67

Table 4.2: Our Adaptive Channel Allocation Algorithm

A: When a cell Ci needs a channel to support a call, Freei := Allocatei − Busyi − Transferi.

If Freei = ∅, it sets a timer and sends a request message to each neighbor;
else, it picks r ∈ Freei with the highest order to support the call, Busyi := Busyi ∪ {r}.

B: When a cell Cj receives a request from Ci, if its request has a lower timestamp than Ci’s request ,

it defers sending a reply to Ci; otherwise, it sends to Ci a reply message, including Allocatej ,
Busyj and Interferej . Interferej is computed as follows: (1): Tempj := ∅,
(2): ∀r ∈ Transferj , if (Grantedj (r) ∪ Lentj(r)) ∩ (NBi ∪ {Ci}) 6= ∅, Tempj := Tempj ∪ {r}, and
(3): Interferej := Busyj ∪ Tempj .

C: After Ci receives a reply message from each neighbor or after its timer expires, Freei := ∅.
1: If Num Replyi = 6,

α: If (Freei := Spectrum −∪Allocatek) 6= ∅, k ∈ {nb 1, nb 2, nb 3, nb 4, nb 5, nb 6, i},
it picks r ∈ Freei with the highest order to support the call. Allocatei := Allocatei ∪ {r},
Busyi := Busyi ∪ {r}. Grantedi(r) := ∅, and Lenti(r) := ∅.

β: Otherwise, Freei := Spectrum −∪Busyk. If Freei = ∅, it drops the call; else it sets
a new timer, picks a channel r ∈ Freei with the lowest order, and sends transfer(r) messages to
neighbors to which r has been allocated.

2: If Num Replyi < 6:
α: If Num Replyi = 2, let x and y be the two neighbors from which a reply has been received.

If ((∃m ∈ {1, 2, 3}) ∧ ({x, y} = Group m)), Freei := ∩k∈Group m(Allocatek − Interferek).
β: If Num Replyi = 3, let x, y and z be the three neighbors from which a reply has been received.

If ((∃m ∈ {1, 2, 3}) ∧ ({x, y, z} ⊃ Group m)), Freei := ∩k∈Group m(Allocatek − Interferek);
else if ((∃m ∈ {4, 5}) ∧ ({x, y, z} = Group m)), Freei := ∩k∈Group m(Allocatek − Interferek).

γ: If Num Replyi = 4, let x and y be the two neighbors from which a reply has NOT been received.
If ∃m ∈ {1, 2, 3} ∧ (NBi − {x, y}) ⊃ Group m, Freei m := ∩k∈Group m(Allocatek − Interferek).
If ∃n ∈ {4, 5} ∧ (NBi − {x, y}) ⊃ Group n, Freei n := ∩k∈Group n(Allocatek − Interferek).
Freei := Freei m ∪ Freei n.

δ: If Num Replyi = 5, let x be the neighbor from which a reply message has NOT been received.
If ∃m ∈ {1, 2, 3} ∧ (NBi − {x}) ⊃ Group m, Freei m := ∩k∈Group m(Allocatek − Interferek).
If ∃n ∈ {4, 5} ∧ (NBi − {x}) ⊃ Group n, Freei n := ∩k∈Group n(Allocatek − Interferek).
Freei := Freei m ∪ Freei n.

If Freei = ∅, it drops the call. Otherwise, if (Temp := Freei ∩ SNOPRE) 6= ∅, it picks a channel
r ∈ Temp with the lowest order. If Temp = ∅, it picks a channel r ∈ Freei with the lowest order.
Ci sets a new timer and sends a transfer(r) message to neighbors to which r has been allocated.

D: When Cj receives a transfer(r) message from Ci:

If ((r /∈ Busyj) ∧ (∀ Cm ∈ Grantedj(r) ∪ Lentj(r), Cm /∈ NBi)), it sends an agree(r) to Ci,
adds Ci to Grantedj(r), and if ((r ∈ Allocatej) ∧ (r /∈ Transferj)), it adds r to Transferj .

Otherwise, it sends a refuse(r) message to Ci.
E: After Ci gets a response corresponding to each of its transfer(r) before the new timer expires,

If all the responses are agree(r) messages, it uses r to support the call, sets Busyi := Busyi ∪ {r}
and sends a release(r) message to the neighbors from which an agree(r) was received.
If r ∈ SNOPRE , Allocatei := Allocatei ∪ {r}, Grantedi(r) := ∅, and Lenti(r) := ∅.

Otherwise, it sends a keep(r) message to neighbors from which it received an agree(r) message.
Freei := Freei − {r}, and it tries to borrow another channel if Freei 6= ∅.

F: If the new timer expires before Ci gets a response corresponding to each of its transfer(r) message,

it drops the call and sends a keep(r) message to each neighbor from which it received an agree(r).
G: After Ci supports or drops a call, it sends a reply to neighbors whose request has been deferred.
H: When a call using a channel r terminates in cell Ci,

Busyi := Busyi − {r}. If ((r ∈ SPRE) ∧ (r /∈ SCi
)), Ci sends a return(r) message to each neighbor

Cj such that r ∈ SCj
.

I: When Cj receives a release(r) message from Ci,

Grantedj(r) := Grantedj(r) − {Ci} and Lentj(r) := Lentj(r) ∪ {Ci}.
If (r ∈ Allocatej ∩ SNOPRE), Allocatej := Allocatej − {r}, Transferj := Transferj − {r}.

J: When a cell Cj receives a keep(r) message from cell Ci, Grantedj(r) := Grantedj(r) − {Ci};

if ((r ∈ Allocatej ∩ SNOPRE) ∧ (Grantedj(r) = ∅)), then it sets Transferj := Transferj − {r};
if ((r ∈ SCj

) ∧ (Grantedj(r) ∪ Lentj(r) = ∅)), then it sets Transferj := Transferj − {r}.

K: When Cj gets a return(r) from Ci: it sets Lentj(r) := Lentj(r) − {Ci};

if Grantedj(r) ∪ Lentj(r) = ∅, it sets Transferj := Transferj − {r}.

68

Spectrum−∪Busyk (step C-1-β in the algorithm), then r1 6= r2, because (r2 ∈ Busyj)∧

(Cj ∈ NBi).

– (2): r2 ∈ SPRE. If r1 ∈ Freei := Spectrum−∪Allocatek (step C-1-α in the algorithm),

then, r1 6= r2, because r1 ∈ SNOPRE (note that ∪Allocatek ⊇ SPRE and Freei ⊆

SNOPRE). If r1 ∈ Freei := Spectrum − ∪Busyk (step C-1-β in the algorithm), then

r1 6= r2, because r2 ∈ Busyj ∧ Cj ∈ NBi.

• case 2: Ci borrows r1 as a result of getting replies from only a subset of its neighbors for

its request. In this case, Ci must have borrowed r1 from some Group m (m ∈ {1, . . . , 5}).

r1 ∈ (Freei := ∩k∈Group m(Allocatek − Interferek)) (step C-2 in the algorithm). Because

Interferek ⊇ Busyk, we have r1 /∈ Busyk. Following two sub-cases arise.

– Cj ∈ Group m. Because Cj sends a reply message only after it finishes its channel

borrowing process, r2 ∈ Busyj. Thus, r1 6= r2 since r1 /∈ Busyj.

– Cj /∈ Group m. Because Ci and Cj are neighbors, they have two common neighbors.

Let them be Cm and Cn. Group m contains at least one of Cm and Cn. Thus, we have

r1 ∈ (AllocateCm
∪ AllocateCn

). Suppose r1 = r2 = r. There are two sub-cases:

∗ (1): r ∈ SPRE . We have r ∈ SCm
(note that SCm

= SCn
). It follows that Cm and Cn

grant both Ci’s and Cj’s request to borrow channel r. However, this is impossible.

According to our algorithm, a cell does not grant two cells’ requests for the same

channel if the two cells are neighbors. This is done in Step D of the algorithm.

Thus, r1 6= r2.

∗ (2): r ∈ SNOPRE . There are three sub-cases:

· (A): r ∈ AllocateCm
− AllocateCn

just before Ci and Cj borrow channel r.

It follows that Cm grants both Ci’s and Cj’s request for channel r. This is

impossible due to the same reason mentioned above.

· (B): r ∈ AllocateCn
− AllocateCm

. This is similar to sub-case (A).

· (C): r ∈ AllocateCm
∩ AllocateCn

. It follows that Cm and Cn grant both Ci’s

and Cj’s request for channel r. This is similar to case 2-(1).

Thus, r1 6= r2.

69

Lemma 4.4.2 Two neighboring cells are not allowed to use the same channel concurrently under

our channel allocation algorithm.

Proof: Channels in set SPRE are allocated to cells in such a way that the same channel is

not allocated to neighboring cells. Moreover, neighboring cells do not borrow the same channel

concurrently. It follows that neighboring cells do not use the same channel concurrently. 2

Lemma 4.4.3 The proposed channel allocation algorithm is deadlock-free.

Proof: In our algorithm, a timeout mechanism is used for getting response for request messages

as well as transfer messages. So, hold and wait situation does not arise. Therefore, the algorithm

is deadlock-free. 2

4.5 Performance Evaluation

4.5.1 Definitions

In this section, we study the performance of our algorithm by varying the size of pre-allocated

channels and show how channel pre-allocation improves the performance of the algorithm. We

evaluated the performance with respect to three parameters, namely, call blocking rate, handoff

drop rate, and call failure rate. Call blocking rate is defined as the ratio of the number of new calls

dropped (i.e., blocked new calls) to the total number of new calls. Handoff drop rate is defined as

the ratio of the number of inter-handoff calls dropped to the total number of inter-handoff calls.

Call failure rate is defined as the ratio of total number of calls dropped (including blocked new

calls and dropped inter-handoff calls) to the total number of calls processed. Call arrival rate is

defined as the number of call requests per cell per hour.

4.5.2 Simulation Parameters

To evaluate the performance of the algorithm, we used CSIM18 1 Simulation Engine, which is a

process-oriented, discrete-event simulator. The simulated cellular network consists of 6 ∗ 6 cells.

Each cell has 6 neighbors (by wrapping around the cells at the edge). There are a total of 300

1CSIM18 Simulation Engine is a product of Mesquite Software, Inc.

70

channels available in the system. The number of channels in SPRE is a simulation parameter. We

investigated the effect of this parameter on the performance of the proposed algorithm.

We assume that the average one-way communication delay between two cells is 4 milliseconds.

This average delay includes transmission delay, propagation delay and the message processing

time. In the simulation, once a mobile host is generated, it sends a call request to the base station

in the cell. Upon receiving such a request, the base station tries to allocate a channel to support

the call by using the proposed channel allocation algorithm. If no channel can be found to support

the call, then the call is dropped and is counted as a call failure. If a channel can be allocated to

support the call, then the mobile host will use this channel for its communication.

We assume that the average service time per call is 3 minutes. During communication, the

mobile host may move from one cell to an adjacent cell (i.e., an inter-handoff occurs). If this

happens, it releases the channel that is supporting the call to the cell from which it is moving

and sends a call request to the cell to which it is moving. The new cell to which it is moving

is responsible to allocate a new channel to support the inter-handoff call. If no channel can be

allocated for this inter-handoff call, then it is dropped and counted as an inter-handoff failure. At

the end of the simulation, the number of inter-handoff failures, the number of call failures and the

total number of processed calls were collected.

The simulation was conducted under a non-uniform traffic pattern, which is more realistic.

Under non-uniform pattern, a cell can be in normal state or hot state. When a cell is in normal

state, call arrival rate is low, and inter-handoff rate is high. When a cell is in hot state, call arrival

rate is high and inter-handoff rate is low. The parameters for the non-uniform traffic pattern are

given in Table 4.3 [6].

Table 4.3: Parameters for non-uniform traffic pattern

Mean call arrival rate in a normal cell λ
Mean call arrival rate in a hot cell 3λ
Mean inter-handoff rate in a normal cell 1/80s
Mean inter-handoff rate in a hot cell 1/180s
Mean rate changing from normal to hot state 1/1800s
Mean rate changing from hot to normal state 1/180s
Mean service time per call 180s

71

4.5.3 Simulation Results

We conducted our simulation under 144 different scenarios (6 different call arrival rates, 4 different

values of the size of set SPRE , and 6 different number of cell failures, 6× 4× 6 = 144). Simulation

was run ten times under each scenario, each time with a different seed. Thus, our simulation run

total 1440 times. In each run of the simulation, 40, 000 to 60, 000 mobile hosts were generated.

Once generated, each mobile host generates one or more calls, including new calls and inter-handoff

calls. In order to remove the start-up transients, data was collected only after the first 10, 000 calls

were processed. The simulation ended after 100, 000 calls were processed. In the simulation, there

are 300 channels in total. The size of the set SPRE is set to be 0, 150, 210 and 300. By changing

the size of SPRE , we investigated the effect of the size of pre-allocated channels on the performance

of the proposed adaptive algorithm. The simulation was conducted under two scenarios: without

cell failures and with cell failures.

1. Without Cell Failures: In this set of experiments, no cell fails. The simulation results

are shown in Figure 4.5. As seen from these figures, all the three metrics increase as call

arrival rate increases. Moreover, the more channels pre-allocated to cells, the better the

performance.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1000 1200 1400 1600 1800 2000

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1000 1200 1400 1600 1800 2000

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1000 1200 1400 1600 1800 2000

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

(a) (b) (c)

Figure 4.5: Performance without cell failure under non-uniform traffic pattern

2. With Cell Failures: We evaluated the performance of our algorithm with cell failures. We

set the size of the set SPRE to be 0, 150, 210, and 300 as before, and varied the number of

cell failures from 1 to 5. The simulation was run under exactly the same scenario, except

that each time the number of cell failures is different. The simulation results are shown in

Figure 4.6 to Figure 4.10.

72

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800 2000

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800 2000

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800 2000

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

(a) (b) (c)

Figure 4.6: Performance with one cell failure under non-uniform traffic pattern

We can see from these figures that all the three metrics increase as call arrival rate increases.

Moreover, the three metrics also increase with the number of cell failures. In all the cases

(from one cell failure to five cell failures), the one with 300 pre-allocated channels always

outperforms the other three (i.e., the ones with 0, 150, and 210 pre-allocated channels), in

terms of all the metrics. This better performance is attributed to the channel pre-allocation

feature of our algorithm: the more pre-allocated channels, the more likely to find an available

channel to use (or borrow), causing a lower call failure rate, call blocking rate, and handoff

drop rate.

From the figures, we can see that the proposed algorithm can tolerate cell failures very

well. In Figure 4.10-(a), under non-uniform traffic pattern and with five cell failures, call

failure rate with 300 pre-allocated channels is 9.11% when call arrival rate is 2000. In other

words, when 13.89% of the cells (there are 36 cells total) in the system fail and when the

system is heavily loaded (represented by a high call arrival rate), 90% of the calls can still be

supported. In Figure 4.5-(a), under the same traffic pattern and the same call arrival rate,

but without cell failure, call failure rate with 300 pre-allocated channels is 8.21%. Thus, as

cell failure rate increases from 0% to 13.89%, we only observe an increase in call failure rate

of about 1%.

4.6 Conclusion

To our knowledge, the effect of pre-allocating channels to cells on the performance of channel

allocation has not been studied quantitatively. In this chapter, we presented an adaptive dis-

tributed channel allocation algorithm which allows the flexibility of pre-allocating different number

73

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800 2000

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.05

 0.1

 0.15

 0.2

 1000 1200 1400 1600 1800 2000

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800 2000

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

(a) (b) (c)

Figure 4.7: Performance with two cell failures under non-uniform traffic pattern

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800 2000

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1000 1200 1400 1600 1800 2000

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1000 1200 1400 1600 1800 2000

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

(a) (b) (c)

Figure 4.8: Performance with three cell failures under non-uniform traffic pattern

 0

 0.05

 0.1

 0.15

 0.2

 1000 1200 1400 1600 1800 2000

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.05

 0.1

 0.15

 0.2

 1000 1200 1400 1600 1800 2000

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.05

 0.1

 0.15

 0.2

 1000 1200 1400 1600 1800 2000

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

(a) (b) (c)

Figure 4.9: Performance with four cell failures under non-uniform traffic pattern

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1000 1200 1400 1600 1800 2000

c
a
ll
 f
a
il
u
re

 r
a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1000 1200 1400 1600 1800 2000

c
a
ll
 b

lo
c
k
in

g
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1000 1200 1400 1600 1800 2000

h
a
n
d
o
ff
 d

ro
p
 r

a
te

call arrival rate

zero channel pre-allocated
150 channel pre-allocated
210 channel pre-allocated
300 channel pre-allocated

(a) (b) (c)

Figure 4.10: Performance with five cell failures under non-uniform traffic pattern

74

of channels to cells. The simulation results show that channel pre-allocation helps in lowering call

blocking rate, handoff drop rate, and call failure rate. More the channels pre-allocated, better the

performance. Therefore, we conclude that distribute channel allocation algorithms based on total

pre-allocation of channels will have better performance than algorithms that do not pre-allocate

channels.

Copyright c© Jianchang Yang 2006

75

Chapter 5

A Distributed Fault-Tolerant Channel
Allocation Algorithm for Cellular
Networks Under Resource Planning
Model

5.1 Introduction

From the results in Chapter 4, it is clear that a channel allocation algorithm benefits from pre-

allocating all channels to cells, which is an example of Resource Planning Model (described on

page 7). In this chapter, we present a more general algorithm for channel allocation under Resource

Planning Model.

A channel allocation algorithm usually has two parts: a channel acquisition algorithm and

a channel selection algorithm. The task of the former is to compute the set of channels that

are not being used by cells within distance Dmin. The goal of the latter is to choose a channel

from the computed set of channels smartly so that good channel reuse pattern can be achieved.

Channel selection algorithm is very important because it affects channel utilization. A good

channel selection algorithm improves channel utilization.

The main contribution of this chapter is that we propose a distributed and fault-tolerant

channel allocation algorithm which reuses channels efficiently. It is fault-tolerant because a cell

does not need to get channel usage information from all its interference neighbors to borrow a

channel. It includes a new channel selection algorithm which takes into account the interference

caused by borrowing a channel to the cells which have the channel allocated to them. The selection

algorithm chooses a channel in such a way that it increases the chance of reusing the same channel

76

and hence increasing channel utilization.

The rest of this chapter is organized as follows. System model is given in Section 5.2. Related

works are reviewed in Section 5.3. Section 5.4 presents the details of the distributed channel

allocation algorithm. The performance analysis of the proposed algorithm and the simulation

results are given in Section 5.5 and Section 5.6. Section 5.7 concludes the chapter.

5.2 System Model

We assume the Resource Planning Model, under which the set of all cells is divided into k disjoint

subsets, S0, S1, . . . , Sk−1, such that in the same subset, the distance between any two cells is

at least Dmin. The set of all channels is divided into k disjoint subsets, PC0, PC1, . . . , PCk−1,

correspondingly. Channels in PCi are allocated to the cells in Si and are called primary channels

of cells in Si and secondary channels of cells in Sj (i 6= j). Cells in Si are called primary cells

of channels in PCi and secondary cells of channels in PCj (i 6= j). Primary channels of a cell,

say Ci, have higher priority to be allocated to support a call in Ci than secondary channels. A

secondary channel is used to support a call only if there is no primary channel available. This is

illustrated in Figure 5.1. The set of all 81 cells is divided evenly into 9 disjoint subsets, namely,

A, B, C, D, E, F, G, H and I. Each subset has 9 cells. For example, subset A consists of cells A0,

A1, A2, A3, A4, A5, A6, A7, and A8. Dmin = 3
√

3 R where R is the cell radius. The distance

between any two cells in the same subset is equal to Dmin. The set of channels available in the

system is divided evenly into 9 disjoint subsets, namely, PCA, PCB, PCC, PCD, PCE, PCF ,

PCG, PCH, and PCI.

B0 C0 B1 B2C1 C2

B3 C3 B4 C4 B5 C5

B6 C6 B7 C7 B8 C8

D0 E0 F 0 D1 E1 F 1 D2 E2 F 2

D3 E3 F 3 D4 E4 F 4 D5 E5 F 5

D6 E6 F 6 D7 E7 F 7 D8 E8 F 8

G0 H0 I 0 G1 H1 I 1 G2 H2 I 2

G3 H3 I 3 G4 H4 I 4 G5 H5 I 5

G6 H6 I 6 G7 H7 I 7 G8 H8 I 8

A0 A1 A2

A3 A4 A5

A6 A7 A8

3Dmin = R3

R

Figure 5.1: A partition of a cellular network

77

Following are some definitions about Resource Planning.

Definition 5.2.1 For a given cell Ci, its interference neighbors, denoted by INbi, is the set of

cells, Cj, that are at a distance less than Dmin from Ci. i.e., INbi := {Cj | dist(Ci, Cj) < Dmin},

where dist(Ci, Cj) is the distance between Ci and Cj.

We assume that cells wrap around. Therefore, each cell in Figure 5.1 has 30 interference

neighbors. For example, the interference neighbors of cell A4 are the cells: B1, B3, B4, B6, C1, C3,

C4, C6, D1, D2, D3, D4, E1, E3, E4, F0, F1, F3, F4, G1, G2, G3, G4, H0, H1, H3, H4, I0, I1, and

I3, a total of 30 interference neighbors. If a channel r is being used in cell A4, to avoid co-channel

interference, none of its interference neighbors can use r concurrently. But r can be reused in cells

which are at a distance greater than or equal to Dmin from A4.

Definition 5.2.2 For a cell Ci /∈ Sj and a channel r ∈ PCj, the set of interference primary cells of

channel r relative to Ci, denoted by IPCi(r), is the intersection of the set of cells that are primary

cells of r and the set of cells that are interference neighbors of Ci. i.e., IPCi(r) := Sj ∩ INbi.

For example, in Figure 5.1, suppose channel r has been allocated to subset B, then B1, B3, B4

and B6 are in IPCA4
(r). Note that for any cell Ci /∈ Sj and a channel r ∈ PCj, there are at most

4 cells in IPCi(r). For any cell Ci, all its interference neighbors fall into several subgroups , with

neighbors in the same subset falling into the same subgroup, we call it a complete subgroup of

Ci. The complete subgroup of Ci containing neighbors in subset Sn is denoted by subi(Sn), where

n ∈ {0, 1, . . . , k − 1}. Cells in the same complete subgroup of Ci have the same set of primary

channels. For example, in Figure 5.1, cell A4’s 30 interference neighbors fall into 8 subgroups, with

neighbors in the same subset in one subgroup, i.e., there are 8 complete subgroups of A4: subA4
(B),

subA4
(C), subA4

(D), subA4
(E), subA4

(F), subA4
(G), subA4

(H), and subA4
(I). All the neighbors of

cell A4 that are in the same subset fall into the same complete subgroup. For example, subA4
(B)

includes B1, B3, B4 and B6, and subA4
(H) includes H1, H3 and H4. Following are some properties

of the Resource Planning Model [6, 13].

Property 5.2.1 ∀Cx, Cy ∈ Si (x 6= y), dist(Cx, Cy) ≥ Dmin.

78

Property 5.2.2 For any two cells Cx (Cx ∈ Si) and Cy (Cy ∈ Sj), and i 6= j, such that they are

in each other’s interference neighborhood and are requesting for the same channel r (r /∈ PCi ∧ r /∈

PCj), then they have at least one interference neighbor in common, which is a primary cell of r.

That is: ∀ Cx ∈ Si, Cy ∈ Sj : Cx ∈ INby =⇒ ∀ r : r /∈ PCi ∧ r /∈ PCj, IPCx(r) ∩ IPCy(r) 6=

∅.

For example, in Figure 5.1, C4 and A4 are in each other’s interference neighborhood. Suppose

they are requesting for the same channel r which is a primary channel of cells in subset B, then

they have at least one common interference neighbor, which is a primary cell of r. B4 is such a

common neighbor in this case. If we take C3 and A4 as an example, then B1, B3, B4, and B6 are

the common interference neighbors of both C3 and A4.

5.3 Related Works

In [5, 7], the Resource Planning Model is adopted. When a cell needs a channel to support a

call, if there are available primary channels allocated to the cell, then the cell selects one such

channel to support the call without consulting its neighbors. Otherwise, the cell tries to borrow

a secondary channel by sending request messages to its interference neighbors, asking for their

channel usage information. The cell can borrow a channel from its neighbors as long as using this

channel causes no co-channel interference. To ensure this, this cell consults its neighbors before

it uses the borrowed channel. When the call terminates, the borrowed channel is returned to the

cell from which it was borrowed. In these algorithms, if a cell wants to borrow a channel, it has

to wait until it receives channel usage information from all its interference neighbors. Thus, these

algorithms are not fault-tolerant.

In [6], a fault-tolerant channel allocation algorithm is proposed. Like [13, 5, 7], Resource

Planning Model is adopted in [6]. Unlike [13], the algorithm proposed in [6] adopts a Search

approach. We illustrate how the algorithm proposed in [6] works with an example using Figure 5.2.

Figure 5.2 contains cell A4 and all of its 30 interference neighbors from Figure 5.1. The 30

neighbors of A4 fall into 8 subsets. In Figure 5.2, we only highlight the neighbors in subset B and

neighbor G1 for the purpose of illustration of the algorithm. Neighbors in the same subset have

the same set of primary channels. Suppose cell A4 needs to borrow a channel from its neighbors.

79

B1

B3

B6

A4 B4

 : transfer(r) message

 : agree(r) message

G1

Figure 5.2: Illustration of the algorithm proposed in [6]

It sends request messages to all its neighbors, asking for their channel usage information. Upon

receiving a request message from cell A4, each neighbor of A4 will send back to A4 a reply message,

including the set of primary channels that are available for lending to A4. Assuming that cell A4

only gets reply messages from neighbors B1, B3, B4, and B6, cell A4 begins to compute the set of

channels that it may borrow. If there is a primary channel r that is not being used by all the cells

in the set {B1, B3, B4, B6}, then A4 can borrow the channel r by sending a transfer(r) message

to these four neighbors. Cell A4 borrows channel r successfully if all these four neighbors agree

to grant channel r for A4 to use. After cell A4 finishes using the borrowed channel r, it returns

channel r to these four neighbors. If not all these four neighbors of A4 agree to grant channel r for

A4 to use, then A4 cannot borrow r successfully. In such a case, it will notify these four neighbors

about its failure to borrow channel r.

For each primary channel r, cell B1 (B3, B4, B6) maintains a set IB1
(r) (IB3

(r), IB4
(r), IB6

(r)

respectively). IB1
(r) records all the neighbors to which B1 grants channel r. Assuming that IB1

(r)

is empty and r is an available channel when B1 receives A4’s transfer(r) message, then B1 will

grant channel r for A4 to borrow. B1 adds A4 into set IB1
(r). Suppose G1 also needs to borrow

a channel from neighbors and sends request messages to all its interference neighbors, including

cell B1. When B1 receives the request message from G1, it computes the set of available primary

channels and attaches this set of channels to its reply to G1. A primary channel r can be included

in this set of channels if the following two conditions are satisfied: (1) r is not being used by B1,

and (2) for each cell Ck ∈ IB1
(r), G1 and Ck are not interference neighbors. Since G1 and A4 are

80

interference neighbors, and A4 ∈ IB1
(r), B1 will not include channel r in its reply message to cell

G1.

A disadvantage of this algorithm is that the whole pool of available channels is not reused

efficiently. Cell B1 could include channel r in the set of channels attached to its reply to G1

even though G1 and A4 are neighbors, because B1’s permission for A4 to use channel r does not

mean that A4 has already acquired channel r. To acquire a secondary channel r, A4 needs to get

permission from all its neighbors to which channel r is allocated as a primary channel (i.e., B1,

B3, B4, and B6). Because A4 may not be able to acquire channel r, G1 should be given at least a

chance to borrow channel r. If A4 is not successful in borrowing r, then excluding r from the set of

channels attached to B1’s reply to G1 makes the size of the set of available channels smaller than it

should be. Thus the available channels are not reused efficiently. In this chapter, we address this

issue and propose a better algorithm which makes use of the available pool of channels efficiently.

5.4 A Distributed Channel Allocation Algorithm

5.4.1 Basic Idea

Each message is timestamped with Lamport’s timestamp [23] (described on page 8). Outdated

messages can be detected by comparing timestamps and discarded. For each primary channel r

of a cell Ci, Ci keeps track of the set of cells which borrowed the channel r from Ci and have not

released it yet. Let’s denote this set as Lenti(r).

When cell Ci needs a channel to set up a call, it assigns a primary channel to support the call

if there exists such a primary channel. Otherwise, it sends request message to all its interference

neighbors, asking for their channel usage information. When such a request message is received,

each cell Cj (j 6= i) will check whether a certain primary channel r can be included in its reply

message. Cell Cj includes a primary channel r in its reply message to cell Ci if Cj is not currently

using channel r and (Ci ∪ INbi) ∩ Lentj(r) is an empty set. The basic idea behind this is that

as long as Cj is not using a primary channel r, and none of the cells to which it lent r is an

interference neighbor of Ci, Cj can lend r to Ci. For example, suppose r is a primary channel of

cell C4 in Figure 5.1 and LentC4
(r) is an empty set. Assuming that C4 first lends the channel r to

D5, thus, LentC4
(r) := {D5}. Also, suppose C4 granted cell H1’s request to borrow channel r, but

81

has not received any response from H1 yet (note that H1 is not included in set LentC4
(r)). Then

suppose C4 receives a request message from A4. Because C4 is not using r, and cell D5 which is

using r is not in A4’s interference neighborhood, C4 can include channel r in its reply to A4.

In our model (shown in Figure 5.1), a cell Ci has 30 interference neighbors. These neighbors

fall into 8 complete subgroups with respect to Ci. In order to borrow a channel, Ci does not

have to wait until it receives channel usage information from all its interference neighbors. For

example, in Figure 5.2, suppose cell A4 needs to borrow a channel and it only receives channel usage

information from neighbor B1, B3, B4 and B6. These four neighbors form a complete subgroup

with respect to cell A4. If there is a common available channel in this complete subgroup 1, then

A4 can borrow it.

If two interference neighbors, Ci and Cj, want to borrow the same secondary channel r at the

same time, then based on Property 5.2.2 of Resource Planning , they have at least one common

interference neighbor which is a primary cell of channel r. Let Ck be such a cell. At most one

borrower, Ci or Cj, can get a grant2 message from Ck.

5.4.2 The Channel Selection Algorithm

Given a set of channels available to borrow, how a cell chooses a channel to borrow is called the

channel selection problem. We adopt a priority based channel selection algorithm that assigns a

priority to each channel to borrow. A cell always selects the channel with the highest priority to

borrow.

Next, we explain how to compute the priority for each channel. For each primary channel r of

cell Cj, Cj keeps track of the set of cells which borrowed r successfully from it and have not released

r yet. When Cj receives a request message from Ci (i.e., Cj and Ci are interference neighbors),

it computes the set of primary channels available and includes them in the reply message to Ci.

For each primary channel r of cell Cj, if Cj is using r, or it has lent r to a neighbor Ck such that

Ci and Ck are neighbors, then r will not be included in the reply message to Ci, thus, Ci will not

be able to borrow r. Otherwise, Cj assigns r a priority, denoted by pr(j), and includes r together

with its priority in the reply message to Ci. The rules to assign priority to each primary

1A common available channel of cells in a complete subgroup is a common primary channel of these cells which
is not being used by any of them.

2grant message means that the cell agrees that the borrower can use the channel.

82

channel r included in Cj’s reply to neighbor Ci are as follows:

• (1): if Cj has lent r to some neighbors, and none of them is a neighbor of Ci, then it assigns

a high priority H to r, i.e., pr(j) = H;

• (2): if Cj has sent a grant(r) message in response to some of its neighbors for the same

primary channel r, and at least one such neighbor is a neighbor of Ci, then it assigns a low

priority L to r, i.e., pr(j) = L. Otherwise, (i.e., for each cell Ck to which Cj has sent grant(r)

message, Ck is not an interference neighbor of Ci) pr(j) = H (note that if the priority of r

has already been assigned in step (1), it will be re-assigned in this step);

• (3): if primary channel r is an available channel in Cj (i.e., Cj neither lent nor granted r

to any of its neighbors), then Cj assigns medium priority M to r, i.e., pr(j) = M (where

H � M > L).

After assigning priority, Cj includes the information about the available primary channels

with their priorities in the reply message and sends the reply message to Ci. When Ci receives

the channel usage information included in reply messages from neighbors, it computes the set of

channels that it can borrow. For each secondary channel r in this computed set, Ci computes

the priority of r. Let us assume that there are totally k ∗ n channels, which are numbered by

0, 1, . . . , k ∗ n − 1. The k ∗ n channels are divided evenly into k subsets: PC0, PC1, . . . , PCk−1.

The channels belonging to subset PCx (x ∈ {0, 1, . . . , k−1}) are: x∗n, x∗n+1, . . . , x∗n+(n−1).

Let us assume that channel r is numbered with x ∗n + y (y ∈ {0, 1, . . . , n− 1}). We have H � n.

Ci assigns priority to each borrowable secondary channel r according to the fol-

lowing rules:

• (1): priorityr = L, if ∃j : j ∈ IPCi(r) ∧ pr(j) = L; otherwise,

• (2): priorityr = y +
∑

j∈IPCi(r) pr(j).

Ci selects a secondary channel r with the highest priority from the set of channels which it can

borrow, and sends messages to cells Cj (Cj ∈ IPCi(r)) to borrow channel r. If Ci borrows a

channel r successfully, then the channel r can not be used in its primary cells Cj ∈ IPCi(r).

83

Next, we explain the intuition behind assigning priority to available channels. When Cj assigns

priority to primary channels included in its reply to Ci, the priorities are assigned in such a way

that it encourages Ci to borrow a channel r which has been lent to cells which are not neighbors

of Ci, because Cj can not use r anyway. This helps in increasing the reuse of a channel efficiently.

At the same time, Cj discourages Ci to attempt to borrow channel r corresponding to which it

sent a grant(r) message to some Ck where Ck and Ci are neighbors. The goal is to minimize

the degree of contention. When multiple cells try to borrow the same channel r, at most one of

them will succeed, while others will fail in this try. Thus such a channel r should be given a low

priority to be borrowed, decreasing the degree of contention. But in our algorithm a cell Ci still

has the opportunity to choose such a channel r to borrow. If Ci is not given a chance to choose

r to borrow, then channel utilization may decrease. For example, suppose cell Cj has granted a

neighbor Ck to borrow a primary channel r, and Cj receives another neighbor Ci’s request for its

channel usage information. If Cj does not include r in its reply to Ci, then there is no way that

Ci will choose r to borrow. However, the fact that Cj has granted Ck’s request to borrow r does

not mean that Ck will eventually borrow r successfully. Whether Ck can borrow r successfully

depends on response from its other neighbors with r as a primary channel. If Ck fails to borrow r,

then excluding r from Cj’s reply to Ci denies Ci’s opportunity to borrow r, and hence decreasing

channel utilization. Note that in such cases, r could have been included in Cj’s reply to Ci, i.e.,

giving Ci an opportunity to choose r to borrow. Under our algorithm, Cj will include r to its

reply to Ci in such cases, but Cj informs Ci that r has a low priority to borrow. If Ci chooses

r to borrow eventually, it may succeed in borrowing r. Compared with the case that Ck fails to

borrow r and all Ck’s neighbors are denied the opportunity to choose r to borrow from Cj, our

algorithm has better channel utilization.

Next, we explain the idea underlying the rules by which a cell Ci assigns priority to each

borrowable secondary channel r. Ci always selects a secondary channel r with the highest priority

to borrow. If Ci borrows r successfully, then r can not be used by its primary cells Cj ∈ IPCi(r).

Let IPCi(r) BEFORE denote the set of cells in IPCi(r) which can not use channel r before Ci

borrows r, and IPCi(r) AFTER denote the set of cells in IPCi(r) which can not use channel

r after Ci borrows r (note that IPCi(r) AFTER is equal to IPCi(r)). The goal of the channel

84

selection algorithm is to select a channel r in such a way that borrowing r causes less number of

cells in IPCi(r) to become newly unable to use r due to the fact that Ci borrows r. That is, we

want to reduce the size of the set (IPCi(r) AFTER − IPCi(r) BEFORE). By doing this, the

selection algorithm always chooses a channel to borrow in such a way that it increases the chance

of reusing the same channel. Let us illustrate the channel selection algorithm with an example.

In Figure 5.1, suppose cell A4 needs to borrow a channel. After computing the set of channels

which it can borrow, suppose it finds out that it can borrow channels r1 and r2. r1 is a primary

channel for cells B1, B3, B4, and B6. r2 is a primary channel for cells C1, C3, C4, and C6. Suppose

that r1 is an available channel in cells B1, B3, B4, and B6, while C1, C3, and C4 have either lent

r2 or granted r2 to some other cells which are not interference neighbors of A4, and C6 has r2

available. According to the channel selection algorithm, cells B1, B3, B4, and B6 will assign M to

pr1(B1), pr1(B3), pr1(B4), and pr1(B6) respectively. And C1, C3, and C4 will assign H to pr2(C1),

pr2(C3), and pr2(C4) respectively, and C6 will assign M to pr2(C6). Since H � n and H � M ,

the value of priorityr is dominated by the value of H. Then the calculated priority of r2 has a

higher priority than r1. Thus, A4 will select r2 to borrow. Suppose A4 borrows r2 successfully.

IPCi(r2) BEFORE := {C1, C3, C4} and IPCi(r2) AFTER := {C1, C3, C4, C6}. Compared with

IPCi(r2) BEFORE, the number of cells newly added to IPCi(r2) AFTER is 1. Thus only one

cell, namely C6, becomes newly unable to use r2, the other cells, C1, C3, and C4, can not use r2

even before A4 borrows r2. If A4 selected r1 to borrow, instead of r2, and borrowed r1 successfully,

then IPCi(r1) BEFORE := ∅ and IPCi(r1) AFTER := {B1, B3, B4, B6}. The number of cells

newly added to IPCi(r1) AFTER is 4, compared with IPCi(r1) BEFORE. Thus 4 cells become

unable to use r1. From this example, we can see that the channel selection algorithm always selects

a channel r in such a way that borrowing r helps in increasing the chance of reusing of r, and

therefore improving channel utilization.

5.4.3 Data Structures

The data structures used in the algorithm are given in Table 5.1.

5.4.4 The Algorithm

(A) When Ci needs a channel to support a call, it computes the set of channels that are free,

85

namely, Freei. If Freei = ∅, then Ci sets a timer and sends a request message to each cell

Cj ∈ INbi. Else, a channel r ∈ Freei is picked to support the call and added to Ui. When

the call terminates, r is deleted from Ui.

(B) When Ci receives a request message from Cj, it computes Ri. If Ri 6= ∅, then sends reply(Ri)

to Cj; else discards the request message.

(C) After Ci gets reply message from all its interference neighbors or the timer expires, it sets a

new timer, sets Availi := ∅, and does the following.

(C.1) ∀ r ∈ Spectrum, Availi := Availi ∪ {r} if the following two conditions are satisfied:

1: r /∈ Ui (i.e., r is not being used by Ci);

2: ∀Cj ∈ IPCi(r), Ci got reply(Rj) and r ∈ Rj.

(C.2) If Availi 6= ∅, then Ci chooses a channel r ∈ Availi as per the channel selection

algorithm and sends a transfer(r) message to all cells in IPCi(r). Otherwise, the call is

dropped.

(D) When Ci receives a transfer(r) message from cell Cj,

(D.1) It computes Freei. If r ∈ Freei, then Ci sends a grant(r) message to Cj and adds Cj

to Granti(r).

(D.2) Else if r ∈ Ui or Lenti(r) ∩ INbj 6= ∅, then Ci sends a refuse(r) message to Cj.

(D.3) Else let S := Granti(r) ∩ INbj. If S = ∅, then Ci sends a grant(r) message to Cj

and adds Cj to Granti(r).

(D.4) Else if ∀Ck ∈ S, the timestamp of Cj’s request is less than that of Ck’s request, then Ci

sends a conditional grant(S,r) message to Cj and adds Cj to the set Granti(r). Otherwise,

Ci sends a refuse(r) message to Cj.

(E) If Ci receives responses to its transfer(r) message from each cell in IPCi(r) before the timer

set in step (C) expires, it checks for the following three conditions:

(E.1) each response is either a grant(r) message or a conditional grant(S,r) message;

(E.2) there is at least one grant(r) message;

(E.3) ∀ conditional grant(S, r) and ∀ Cj ∈ S, a grant(r) message from some cell Ck has

been received by Ci where Ck ∈ (IPCi(r) ∩ IPCj(r)).

86

If all the conditions E.1, E.2 and E.3 are met, then Ci sends a use(r) message to each

Cj ∈ IPCi(r) and uses channel r to support the call. r is added to Ui. When the call finishes,

Ci removes r from Ui and sends a release(r) message to each Cj ∈ IPCi(r). Otherwise(not all

conditions E.1, E.2 and E.3 are met or the timer set in step (C) expires), it sends an abort(r)

message to each cell in IPCi(r) from which a grant(r) message or a conditional grant(S,r)

message is received. r is deleted from Availi. If the timer set in step (C) does not expire,

then executes step(C.2); else drops the call.

(F) When a cell Ci receives an abort(r) message from Cj, it deletes Cj from Granti(r). When

a cell Ci receives a use(r) message from Cj, it deletes Cj from Granti(r) and adds Cj to

Lenti(r). When Ci receives a release(r) message from Cj, it deletes Cj from Lenti(r).

5.4.5 Proof of Correctness of the Algorithm

Theorem 5.4.1 Under the proposed algorithm, no two interference neighbors are allowed to use

the same channel concurrently.

Proof: Suppose that two cells Ci and Cj are in each other’s interference neighborhood, and they

are using the same channel r concurrently. They cannot both be the primary cells of channel r

since they are in each other’s interference neighborhood. So at most one of them is a primary cell

of r. There are three possibilities.

1: Both Ci and Cj are not primary cells of channel r.

This means both Ci and Cj have borrowed r. Without loss of generality, assume that Ci’s request

has a smaller timestamp than that of Cj’s request . Then, IPCi(r)∩IPCj(r) 6= ∅ (Property 5.2.2).

Let Ck ∈ IPCi(r) ∩ IPCj(r). There are two cases.

• Ck sends a grant(r) message to Ci first. In this case, when Ck receives Cj’s transfer(r)

message, a refuse(r) message is sent to Cj, since Cj’s request has a higher timestamp than

Ci’s. So Cj would not have been able to borrow channel r, which is a contradiction to our

assumption that Ci and Cj use r concurrently.

87

• Ck sends a grant(r) message to Cj first. In this case, when Ck receives Ci’s request, it

will send a conditional grant(S,r) message to Ci, according to step (D.4) in the algorithm.

If Cj got grant(r) messages from each cell in IPCj(r), then Ci would not have been able to

acquire r because it could not have got a grant(r) message from any cell in IPCi(r)∩IPCj(r),

in which case it would have failed to meet condition (E.3). If Ci received a grant(r) message

from any cell Cm ∈ IPCi(r)∩ IPCj(r), then Cm would have sent a refuse(r) message to Cj,

so Cj could not have acquired r, which is a contradiction to our assumption.

So Ci and Cj will not use the same channel r concurrently in this case.

2: Ci is a primary cell of r, Cj is a secondary cell of r.

In this case, Ci must have acquired r to support a call in its own cell and also must have lent

it to Cj. This is not possible because a cell lends a primary channel to a neighbor only if it is

not using this channel (see step (D.2) of the Algorithm). Moreover a cell does not use a primary

channel to support a call if this channel has been lent to an interference neighbor (see step (A) of

the Algorithm).

3: Cj is a primary cell of r, Ci is a secondary cell of r.

This case is similar to (2). 2

Theorem 5.4.2 The algorithm is deadlock-free.

Proof: In the channel allocation algorithm, a timeout strategy is used. A cell sets a timer when

it sends a request message or a transfer(r) (where r is the selected channel to borrow) message. It

starts to proceed either after it receives responses corresponding to each of its message (a request

or transfer(r)) or after the timer expires. So hold and wait situation does not occur and hence,

the algorithm is deadlock-free. 2

5.5 Performance of the Algorithm

In this section, we compare the performance of our algorithm with that of the algorithm proposed

in [6]. We choose the algorithm proposed in [6] for comparison because both our algorithm and the

algorithm in [6] are fault-tolerant. Moreover, both of them adopt the Resource Planning Model

and a Search approach. Some of the data structures used in [6] are shown in Table 5.2. The agree

88

and conditional agree messages in [6] are equivalent to the grant and conditional grant messages

in our algorithm respectively.

There are six main differences between our algorithm and the algorithm proposed in [6]. Let

r be a primary channel of cell Ci.

• 1: In [6], in cell Ci, no effort is made to distinguish the set of cells which have borrowed

channel r successfully from the set of cells which are attempting to borrow r. All potential

borrowers are maintained in one set, namely Ii(r), including both the cells which have already

acquired channel r successfully and the cells which are trying to borrowing channel r. In

our algorithm, we maintain two sets Granti(r) and Lenti(r). Granti(r) refers to the set of

borrowers which try to borrow channel r, but have not succeeded yet, while Lenti(r) is the

set of borrowers which have already acquired channel r successfully.

• 2: In [6], after a neighbor Cj borrows channel r from Ci successfully, Cj does not notify Ci

about this, while Cj explicitly notifies Ci about this in our algorithm.

• 3: Different way of computing set Ri which is attached to Ci’s reply message to Cj. In [6],

a primary channel r is not included into Ri if Ii(r) ∩ INj 6= ∅. This happens even when no

cell in Ii(r) has really acquired r at the time when Ri is computed. Doing so makes the size

of Ri smaller than it should be. The cells in Ii(r) may not acquire r successfully eventually,

in which case Cj should be given a chance to borrow r. In our algorithm, channel r can

be included into Ri as long as Ci is not using r and r has not been lent to any interference

neighbors of cell Cj.

• 4: Different way of handling a request message from cell Cj. In [6], Ci always sends reply

message to Cj upon receiving Cj’s request , while no reply message is sent if Ri = ∅ in our

algorithm.

• 5: Different way of handling a transfer(r) message from cell Cj. In [6], Ci sends condi-

tional agree(S,r) to Cj if (Ii(r) − CIi(r, j)) ∩ INj 6= ∅ and Cj’s request has the smallest

timestamp. In our algorithm, a refuse message will be sent to Cj if Lenti(r) ∩ INbj 6= ∅.

• 6: Different channel selection algorithm. In [6], a cell Ci always borrows a channel from its

89

Table 5.1: Data structures used in our algorithm at each cell Ci

Spectrum: all the channels in the system.
INbi: defined before.
IPCi(r): defined before.
Availi: the set of channels Ci may borrow.
PCi: the set of channels pre-allocated to cell Ci.
Ui: the set of channels being used at cell Ci. Initially Ui := ∅.
Ri: the set of channels Ci attaches to its reply message

in response to a request message from a neighbor Cj.
Ri := PCi − Ui − {r|r ∈ PCi ∧ (Lenti(r) ∩ (INbj ∪ Cj) 6= ∅)}
where INbj := {Ck|dist(Cj, Ck) < Dmin}.

Granti(r): the set of cells to which Ci has sent a grant(r) or
conditional grant(S,r) where S is a set of cells
computed dynamically. Initially, Granti(r) := ∅.

Lenti(r): the set of cells from which cell Ci has received a use(r)
message, i.e., the set of cells to which r has been lent.
Initially Lenti(r) := ∅.

Freei: the set of primary channels r of cell Ci such that Ci is
not using r and Granti(r) and Lenti(r) are empty. That is:
Freei := PCi − Ui − {r|r ∈ PCi∧ ((Granti(r) ∪ Lenti(r)) 6= ∅)}.

Table 5.2: Data structures used in the algorithm proposed in [6]

Pi: the set of primary channels assigned to Ci.
Ui: the set of channels being used in Ci.

Initially Ui is an empty set.
Ii(r): the set of cells to which Ci has sent an

agree(r) message. Initially Ii(r) is an
empty set. If Ii(r) 6= ∅, then r is an
interference channel of cell Ci. Ci can not
use r, but it can lend r to other cells.

CIi(r, j): a set of cells, which saves the state of
Ii(r) when Ci receives Cj’s request message.

INi: the set of interference neighbors of cell Ci.

90

richest neighbors. The richness of a neighbor Cj (Cj ∈ Sx ∩ INbi, Ci /∈ Sx) is defined as

the minimum number of primary channels which are available in the interference primary

cells of PCx. The goal of borrowing a channel from richest neighbors is to reduce the the

probability of the lender running out of channels. The interference caused by borrowing a

channel to the cells which have the channel allocated to them is not taken into account in

this algorithm. In our algorithm, when a cell Ci tries to select a channel to borrow, for each

secondary channel r that it may borrow, it computes the set of cells in IPCi(r) which can

not use channel r before it borrows r, this set is denoted by IPCi(r) BEFORE. It also

computes the cells in the set (IPCi(r) − IPCi(r) BEFORE) which become unable to use

r due to the fact that Ci borrows r. The goal is to reduce the size of this set, that is, to

reduce |IPCi(r)− IPCi(r) BEFORE|. By reducing the size of this set, channel utilization

is improved.

The first three differences make the set of channels which are included in the reply message larger

in our algorithm than in [6] because |Lenti(r)| ≤ |Ii(r)|. This makes our algorithm make better

use of the set of available channels. The fourth difference makes our algorithm to reduce message

complexity and save some bandwidth. It is of no use for Ci to send a reply message with an

empty set of available channels to a neighbor Cj. Doing this increases the message complexity and

wastes bandwidth. The fifth difference helps in acquiring a channel faster in our algorithm. The

last difference enables our algorithm to reduce the interference caused by borrowing a channel to

the cells which have the channel allocated to them, so improving channel utilization.

To help understand the differences between our algorithm and the algorithm proposed in [6],

suppose r is a primary channel of A4 in Figure 5.1. IA4
(r) := ∅ in [6] and GrantA4

(r) := ∅ ∧

LentA4
(r) := ∅ in our algorithm.

• Suppose A4 first sends a grant(r) (agree(r) in [6]) message to E3 and adds E3 to GrantA4
(r)

(IA4
(r) in [6]). Then it receives a transfer(r) message from I3. In [6], r will not be included

into Ri to cell I3 since E3 is an interference neighbor of I3 and E3 ∈ IA4
(r). In our algorithm,

r will be included into Ri since r is not being used by either A4 or any cell which is an

interference neighbor of cell I3. Thus under our algorithm, the set of channels included in

Ri is larger than that in [6] which results in better channel usage.

91

• Suppose A4 receives request messages from both E3 and I3, r is included in the reply message

to both of them. E3 first acquires r and A4 adds E3 to LentA4
(r) (IA4

(r) in [6]). Then A4

receives I3’s transfer(r) message. If I3’s request has a smaller timestamp than that of E3’s,

then a conditional agree message will be sent to I3 in [6]. I3 can never acquire channel r

because r is being used by E3 which is an interference neighbor of I3
3. But I3 will still try

to check (E.3) if it meets (E.1) and (E.2). This makes both A4 and I3 to waste time to

compute. In our algorithm, A4 will send a refuse message to I3 because A4 knows that E3 is

now using r and E3 is an interference neighbor of I3. I3 will not try to check (E.3) because it

receives a refuse message. Thus both A4 and I3 make decision faster in our algorithm than

in [6] in this case.

• Now, suppose A4 wants to borrow a channel from neighbors, and cells B1, B3, B4, and B6

are its richest neighbors. Suppose r is a common available primary channel in B1, B3, B4,

and B6, and r is borrowed by A4 according to the channel selection algorithm in [6]. Then

all these lenders of channel r can not use r. The number of cells in {B1, B3, B4, B6} that

become unable to use r due to the fact that A4 borrows r is 4. In our algorithm, suppose r is

a primary channel of cells I0, I1, and I3. Suppose I0 has lent r to C0, I1 has lent r to B2, and

I3 has lent r to E6. Suppose according to our channel selection algorithm, r has the highest

priority to borrow, then A4 borrows r. The number of cells in {I0, I1, I3} that become unable

to use r due to the fact that A4 borrows r is 0. Thus, the (newly added) interference caused

by borrowing channel r is reduced. Therefore, our channel selection algorithm helps improve

channel utilization.

5.6 Simulation Results

In this section, we compare the performance of our algorithm with that of the algorithm proposed

in [6] in terms of call failure rate under non-uniform traffic pattern. Call failure rate is defined as

the ratio of total number of calls dropped (including dropped new calls originating in the cell and

dropped inter-handoff calls) to the total number of calls processed. Call arrival rate is defined as

the number of call arrivals per hour per cell.

3I3 can not meet condition (E.3).

92

5.6.1 Simulation Parameters

The simulated cellular network consists of 9 ∗ 9 cells (see Figure 5.1). Each cell has 30 neighbors

(by wrapping around the cells). Totally the number of channels in the system is 44 ∗ 9, each

cell being allocated 44 primary channels. We assume that the average one-way communication

delay between two cells is 2 milliseconds when network congestion is not present. This average

delay includes transmission delay, propagation delay and the message processing time, which is

the same as that in [6]. We assume that the maximum delay an inter-handoff call can tolerate is

10.0 milliseconds which is the same as in [6]. In the simulation, a large number of mobile hosts

are generated. After generation, a mobile host sends call requests to the base station in its cell. It

may move from one cell to an adjacent cell while involved in a communication. We assume that

the average service time per call is 3 minutes, which is the same as used in [6].

Under non-uniform traffic pattern, a cell can be in one of the two states, namely, normal or hot.

When a cell is in normal state, call arrival rate is low, and handoff rate is high; when a cell is in

hot state it has high call arrival rate and low handoff rate. The parameters used for non-uniform

traffic pattern are given in Table 5.3.

Table 5.3: Parameters for non-uniform traffic pattern

Mean call arrival rate in a normal cell λ
Mean call arrival rate in a hot cell 3λ
Mean inter-handoff rate in a normal cell 1/80s
Mean inter-handoff rate in a hot cell 1/180s
Mean rate changing from normal to hot state 1/1800s
Mean rate changing from hot to normal state 1/180s
Mean service time per call 180s

5.6.2 Simulation Results

All the comparisons between our algorithm and the algorithm proposed in [6] are made under

non-uniform traffic pattern. First we compare the performance of the two algorithms in the

absence of cell failures. Figure 5.3 shows that under non-uniform traffic pattern, the failure rate

of our algorithm is smaller than that of the algorithm proposed in [6]. The reason is that in

our algorithm, the size of the set of channels in the reply message is larger than that in [6], and

93

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 700 750 800 850 900 950 1000

fa
ilu

re
 r

a
te

call arrival rate

Our algorithm
Cao’s algorithgm

Figure 5.3: Performance without cell failure

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 700 750 800 850 900 950 1000

fa
ilu

re
 r

a
te

call arrival rate

Our algorithm
Cao’s algorithm

Figure 5.4: Performance with one cell failure

the channel selection algorithm used in our channel allocation algorithm reduces the interference

caused by borrowing a channel, thus channels are reused in a more efficient way, making less calls

to be dropped.

Figure 5.4 and Figure 5.5 show performance comparison of our algorithm with that proposed

in [6] under non-uniform traffic pattern in the presence of one and two cell failures. The simulation

results show that call failure rate under our algorithm is lower than that of [6] under non-uniform

traffic pattern.

5.7 Conclusion

Existing distributed fault-tolerant channel allocation algorithms do not make full use of the avail-

able channels. In this chapter, we proposed a fault-tolerant algorithm for channel allocation which

makes efficient reuse of channels. Under our algorithm, a cell that tries to borrow a channel does

94

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 700 750 800 850 900 950 1000

fa
ilu

re
 r

a
te

call arrival rate

Our algorithm
Cao’s algorithm

Figure 5.5: Performance with two cell failures

not have to wait until it receives channel usage information from each of its interference neighbors.

A cell can borrow a channel as long as it receives channel usage information from each cell in a

subgroup in its interference neighborhood and there is at least one common primary channel which

is not being used by any cell in this subgroup, which makes the algorithm fault-tolerant. Moreover,

the channel selection algorithm used in the channel allocation algorithm takes into account the

interference caused by borrowing a channel. A cell Ci chooses a channel r to borrow such that

the number of neighbors that become newly unable to use r due to the fact that Ci borrows r is

reduced. By doing this, channel utilization is improved.

Copyright c© Jianchang Yang 2006

95

Chapter 6

Future Work

The main service supported by the current cellular networks is voice service, as well as low-bit-

rate data services. With the advance in cellular telecommunication technology, the services that

people want cellular networks to support also are on the increase. The future cellular networks

are expected to offer more and better services: high speed wireless Internet access and wireless

multimedia services, including audio, video, images, and data [25]. These new services have new

requirements on channel allocation. For example, wireless multimedia services ask for varied length

channel spectrum and they are time constrained. Quality of service (QoS) should be guaranteed

for these services. Thus new channel allocation algorithms need to be proposed to meet these new

demands.

Some research has been done to support QoS in multimedia wireless networks [31, 26, 14]. In

[31], the authors proposed an admission control scheme to provide QoS guarantees for multimedia

traffic carried in high-speed wireless cellular networks. The scheme is based on adaptive bandwidth

reservation. A connection is allowed and supported in a cell only if the cell can allocate enough

bandwidth for this connection and enough bandwidth can be reserved in all the neighboring cells.

When a mobile node moves from one cell to another during a connection, bandwidth is allocated

in the new cell and is reserved in all the neighboring cells of the new cell, and the reserved

bandwidth in more distant cells is released. Although this scheme may guarantee QoS to the

existing connections, it is, in many cases, too conservative and pessimistic. In [26, 14], schemes

that support QoS in multimedia application in high-speed wireless network were proposed. It

is indicated in these papers that multimedia applications could tolerate and adapt gracefully to

transient fluctuations in the QoS that they receive from the network. By exploiting this feature of

96

multimedia applications, algorithms were proposed to allow bandwidth to be borrowed temporarily

from the existing connections to support a newly admitted connection. The algorithm guarantees

that no connection gives up more than its fair share of bandwidth and the borrowed bandwidth is

returned to the degraded connection as soon as possible. Thus the bandwidth is used efficiently

and managed in a fair manner.

It is very important to design algorithms to allocate bandwidth efficiently and to guarantee QoS

for multimedia applications and other applications in high-speed wireless networks. It is better for

the algorithm to adapt to the current traffic load and bandwidth are reserved and allocated in an

adaptive way, instead of in a fixed manner. It is also desirable if bandwidth can flow from lightly

loaded cells to heavily loaded ones. Moreover, handoff is an even challenging issue in multimedia

applications in wireless networks. From the point view of user, it is less desirable to drop a handoff

connection than to drop a new connection.

In the future, we want to put effort in designing algorithms which can allocate bandwidth

and guarantee QoS to support multimedia application as well as non-multimedia applications in

high-speed wireless network.

Copyright c© Jianchang Yang 2006

97

Bibliography

[1] Dharma Prakash Agrawal and Qing-An Zeng. Introduction to Wireless and Mobile Systems.
Brooks/Cole Thomsom, 2003.

[2] A. Baiocchi, F. D. Priscoli, F. Grilli, and F. Sestini. The Geometric Dynamic Channel
Allocation as a Practical Strategy in Mobile Networks with Bursty User Mobility. IEEE
Trans. Veh. Technol., 44:14–23, Feb 1995.

[3] Azzedine Boukerche, Sungbum Hong, and Tom Jacob. A Performance Study of a Distributed
Algorithm for Dynamic Channel Allocation. ACM MSWiM 2000 (Modeling, Analysis and
Simulation of Wireless and Mobile Systems), pages 36–43, August 2000.

[4] Azzedine Boukerche, Sungbum Hong, and Tom Jacob. A Distributed Algorithm for Dynamic
Channel Allocation. Mobile Networks and Applications, 7:115–126, 2002.

[5] Guohong Cao and Mukesh Singhal. An Adaptive Distributed Channel Allocation Strategy
for Mobile Cellular Networks. Journal of Parallel and Distributed Computing, special issue
on Mobile Computing, 60(4):451–473, April 2000.

[6] Guohong Cao and Mukesh Singhal. Distributed Fault-Tolerant Channel Allocation for Cel-
lular Networks. IEEE journal on selected areas in communications, 18(7):1326–1337, JULY
2000.

[7] Guohong Cao and Mukesh Singhal. Efficient Distributed Channel Allocation for Mobile
Cellular Networks. Computer Communications, 23(10):950–961, May 2000.

[8] Manhoi Choy and Ambuj K. Singh. Efficient Distributed Algorithms for Dynamic Channel
Assignment. In Proceedings of 7th IEEE International Symp. on Personal, Indoor and Mobile
Radio Communication, 1996.

[9] J. C.-I. Chuang. Performance Issues and Algorithms for Dynamic Channel Assignment. IEEE
Journal on Selected Areas in Communications, 11(6):955–963, August 1993.

[10] Sajal K. Das, Sanjoy K. Sen, and Rajeev Jayaram. A Dynamic Load Balancing Strategy for
Channel Assignment Using Selective Borrowing in Cellular Mobile Environment. Wireless
Networks, 3:333–347, 1997.

[11] Sajal K. Das, Sanjoy K. Sen, and Rajeev Jayaram. A Structured Channel Borrowing Scheme
for Dynamic Load Balancing in Cellular Networks. In Proceedings of the 17th International
Conference on Distributed Computing Systems (ICDCS’97), pages 116–123, 1997.

[12] X. Dong and T. H. Lai. An Efficient Priority-Based Dynamic Channel Allocation for Mobile
Cellular Networks. In IEEE INFOCOM, pages 892–899, 1997.

98

[13] X. Dong and T. H. Lai. Distributed Dynamic Carrier Allocation in Mobile Cellular Net-
works: Search vs. Update. In Proceedings of the 17th International Conference on Distributed
Computing Systems(ICDCS’97), pages 108–115, May 1997.

[14] Mona EI-Kadi, Stephan Olariu, and Hussein Abdel-Wahab. A Rate-Based Borrowing Scheme
for QoS Provisioning in Multimedia Wireless Networks. IEEE Transactions on Parallel and
Distributed Systems, 13(2):156–166, February 2002.

[15] S. A. El-Dolil, W. C. Wong, and R. Steele. Teletraffic Performance of Highway Microcells with
Overlay Macrocell. IEEE Journal on Selected Areas in Communications, 7:71–78, January
1989.

[16] P.-O. Gaasvik, M. Cornefjord, and V. Svensson. Different Methods of Giving Priority to
Handoff Traffic in a Mobile Telephone System with Directed Retry. In 41st IEEE Vehicular
Technology Conference, Gateway to the Future Technology in Motion, pages 549–553, 1991.

[17] Samrat Ganguly, Badri Nath, and Navin Goya. Optimal Bandwidth Reservation Schedule in
Cellular Network. In Proceedings of the IEEE/INFOCOM 2003, San Francisco, CA, April
2003.

[18] D.J. Goodman. Cellular Packet Communication. IEEE Trans. Commun., 38:1272–1280, Aug
1990.

[19] J. Ioannidis, D. Duchamp, and G. Q. Maguire. IP-Based Protocols for Mobile Internetworking.
In Proceedings of the ACM SIGCOMM Symposium on Communication, Architectures and
Protocols, pages 235–245, September 1991.

[20] Jianping Jiang, Ten-Hwang Lai, and Neelam Soundarajan. On Distributed Dynamic Chan-
nel Allocation in Mobile Cellular Networks. IEEE Transactions on Parallel and Distributed
Systems, 13(10):1024–1037, October 2002.

[21] K. Kyamakya and K. Jobmann. Location management in cellular networks: classification
of the most important paradigms, realistic Simulation framework, and relative performance
analysis. IEEE Transactions on Vehicular Technology, 54(2):687–708, March 2005.

[22] Ten-Hwang. Lai, Jianping Jiang, and Tao Ma. A Relaxed Mutual Exclusion Problem with
Application to Channel Allocation in Mobile Cellular Networks. In Proceedings of the 20th
International Conference on Distributed Computing Systems(ICDCS), pages 592–599, 2000.

[23] L. Lamport. Time, Clocks and The Ordering of Events in a Distributed System. Commun.
ACM, 21(7):558–565, July 1978.

[24] W. C. Y. Lee. New Cellular Schemes for Spectral Efficiency. IEEE Transactions on Vehicular
Technology, VT-36, November 1987.

[25] Yi-Bing Lin and Imrich Chlamtac. Wireless and Mobile Network Architectures. John Wiley
and Sons, Inc., 2001.

[26] Anjlica Malla, Mona EI-Kadi, Stephan Olariu, and Petia Todorova. A Fair Resource Al-
location Protocol for Multimedia Wireless Networks. IEEE Transactions on Parallel and
Distributed Systems, 14(1):63–71, January 2003.

[27] R. Mathar and J. Mattfeldt. Channel Assignment in Cellular Radio Networks. IEEE Trans-
actions on Vehicular Technology, 42(4):647–656, November 1993.

99

[28] S. Nanda and D. J. Goodman. Dynamic Resource Acquisition: Distributed Carrier Allocation
for TDMA Cellular Systems. In Proc. GOLBECOM’91, pages 883–889, Dec 1991.

[29] Sanket Nesargi and Ravi Prakash. Distributed Wireless Channel Allocation in Networks with
Mobile Base Stations. In INFOCOM (2), pages 592–600, 1999.

[30] Sanket Nesargi and Ravi Prakash. Distributed Wireless Channel Allocation in Networks
with Mobile Base Stations. IEEE Transactions on Vehicular Technology, 51(6):1407–1421,
November 2002.

[31] Carlos Olieira, Jaime Bae Kim, and Tatsuya Suda. An Adaptive Bandwidth Reservation
Scheme for High-Speed Multimedia Wireless Networks. IEEE Journal on Selected Areas in
Communications, 16(6):858–874, August 1998.

[32] R. Prakash, N. Shivaratri, and M. Singhal. Distributed Dynamic Channel Allocation for Mo-
bile Computing . In Proc. 14th ACM Symp. on Principles of Distributed Computing(PODC),
pages 47–56, 1995.

[33] Ravi Prakash, Niranjan G. Shivaratri, and Mukesh Singhal. Distributed Dynamic Fault-
Tolerant Channel Allocation for Cellular Networks. IEEE Transactions on Vehicular Tech-
nology, 48(6):1874–1888, November 1999.

[34] Ravi Prakash and Mukesh Singhal. Distributed Wireless Channel Allocation in Cellular
Systems with Mobile Base Stations. In Workshop on Nomadic Computing(satellite workshop
of IPPS), Geneva, April, 1997.

[35] Mischa Schwartz. Mobile Wireless Communications. Cambridge University Press, 2005.

[36] Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operating Systems: Dis-
tributed, Database, and Multiprocessor Operating Systems. McGraw-Hill, Inc, 1994.

[37] T. Tugcu, I.F. Akyildiz, and E. Ekici. Location Management Framework for Next Generation
Wireless Systems. In Proceedings of the IEEE ICC’2004 Conference, Paris, France, June
2004.

[38] Jianchang Yang, Q. Jiang, D. Manivannan, and M. Singhal. A Fault-Tolerant Distributed
Channel Allocation Scheme for Cellular Networks. IEEE Transactions on Computers,
54(5):616–629, 2005.

[39] Jianchang Yang, Qiangfeng Jiang, and D. Manivannan. A Fault-Tolerant Channel Allocation
Algorithm for Cellular Networks with Mobile Base Stations. Accepted for publication in IEEE
Transactions on Vehicular Technology.

[40] Jianchang Yang and D. Manivannan. An Efficient Fault-Tolerant Distributed Channel Al-
location Algorithm for Mobile Computing Systems. In Proceedings of the Third Interna-
tional Conference on Parallel and Distributed Computing, Applications, and Technologies
(PDCAT2002), Sept.4-6, 2002, Kanazawa, Japan, pages 372–377.

[41] Jianchang Yang and D. Manivannan. A Fault-Tolerant Channel Allocation Algorithm for
Cellular Networks with Mobile Base Stations. In Proceedings of the 2003 International Con-
ference on Wireless Networks(ICWN’03), Las Vegas, Nevada, USA, (CSREA Press) June
23-26, pages 146–152, 2003.

100

[42] Jianchang Yang and D. Manivannan. An Efficient Fault-Tolerant Distributed Channel Allo-
cation Algorithm for Cellular Networks. IEEE Transactions on Mobile Computing, 4(6):578–
587, 2005.

[43] Jianchang Yang, D. Manivannan, and Mukesh Singhal. A Fault-Tolerant Dynamic Channel
Allocation Scheme for Enhancing QoS in Cellular Networks. In IEEE Proceedings of the
36th Hawaii International Conference on System Sciences (HICSS-36), Big Island of Hawaii,
January 6-9, 2003, pages 306–315.

[44] M. Zhang and T.-S. P. Yum. Comparisons of Channel-Assignment Strategies in Cellular
Mobile Telephones Systems. IEEE Transactions on Vehicular Technology, 38(4):211–215,
November 1989.

[45] M. Zhang and T.-S. P. Yum. The Nonuniform Compact Pattern Allocation Algorithm for
Cellular Mobile Systems. IEEE Transaction on Vehicular Technology, 40(2):387–391, May
1991.

[46] Y. Zhang, S. K. Das, and X. Jia. D-CAT : An Efficient Approach for Distributed Channel
Allocation in Cellular Mobile Networks . ACM Mobile Networks and Applications (Special
Issue on Parallel Processing Applications in Mobile Computing, Guest Eds: M. Kumar and
A. Zomaya), 9(4):279–288, July, 2004.

[47] Y. Zhang, X. Jia, , and S. K. Das. An Efficient Approach for Distributed Channel Allocation
for Cellular Mobile Networks. In Proceedings of the Fifth International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications (DIAL-M), Rome, Italy,
pages 87–94, July, 2001.

101

Vita

Jianchang Yang
Date of Birth: 12/30/1973

Place of Birth: Hebei Province, China

• EDUCATION

– B.S. in Medicine, May 1996. Capital University of Medical Science, Beijing, P.R. China.

• TEACHING INTERESTS

– program design and development, microcomputer applications

– operating systems, distributed operating systems

– networking core technologies, database development

– discrete mathematics, data structures, and algorithm

– Visual Basic, Javascript, C++, Java, C#, perl, php, mysql

– web page development, data-driven web design, Internet Servers administration

• PROJECTS

– Command Interpreter: This project implements a command interpreter, and it is a
simplified version of shell. It gets commands from user and executes them. It supports
I/O redirection, execution in background, and pipe.

– Process Synchronization: This project creates and maintains a Student database. Both
students and their advisors can access the database. The shard database is created
and loaded into a shared memory. Semaphores are used to synchronize accesses to the
database.

– Database: This project creates a sql database which stores and maintains information
for a food distribution center. Multiple tables are created and the relationship between
them is set up properly. Some tables are: individual, family, child, infant, adults,
agency, request, and allocate.

– Image Database: This project creates and manages an image database in Object Store.
It supports some basic operations, such as insert an image, delete an image, describe
an image and search an image. The system provides a GUI interface to the users using
java programming language.

– HTTP Server and Client: This project implements a simplified version of HTTP server
and client (yet the core part of the HTTP protocol). The HTTP Client gets a URL
from a user and interacts with the HTTP server using the HTTP protocol. The Server
receives requests from Client and sends response to Client.

– SMTP Client: This project implement a simple SMTP client in C, using basic socket
programming interfaces. The simple SMTP client includes the core part of the SMTP
protocol. The client supports the function of attachment.

102

– DNS Client: This project implements a simple DNS client in C. The client implements
the DNS protocol to interact with DNS server. The client gets an input from the user,
makes an query packet, and sends it to the DNS server using UDP. It then waits for a
response from the DNS server, interpret the response, and prints out the output.

– Simple Stateless Network File Server: This project implements a simple stateless net-
work file server. It supports remote file service model. It is implemented by using
Sun RPC. The server supports the following common operations on files: create, read,
write, list, copy, and delete.

– Simple Network Router: This project implements basic functions of a network router.
It listens to a particular socket, and waits for network packets to arrive. Once a packet
arrives, the simple router will process this packet by looking at its destination address. It
looks up the routing table and decides which output interface this packet should be sent
to. It also prints this information. This simple router supports packet fragmentation
and reassemble.

• PROFESSIONAL SKILLS

– Programming languages: Visual Basic, Javascript, C/C++, perl, Java, php, html,
mysql

– database development, web page development, data-driven web design

– Operating Systems: Unix, Solaris, Linux, Windows XP/NT/9x

– Software: Microsoft Office, Visual Studio

– Network Programming: TCP/IP, glomosim

– Computer simulations: csim, glomosim

• RESEARCH INTERESTS

– Mobile Computing Systems: Channel allocation and fault tolerance in mobile com-
puting systems.

– Distributed Systems: Checkpointing and recovery in distributed computing systems
and mobile computing systems.

– Ad Hoc Networks: Energy efficient routing and broadcasting in ad hoc networks.

– Bioinformatics: Inferring a protein’s shape and function from a sequence of amino
acids.

103

• PUBLICATIONS

– Journal papers:

∗ J. Yang, Q. Jiang, D. Manivannan and M. Singhal. “A Fault-Tolerant Distributed
Channel Allocation Scheme for Cellular Networks”. IEEE Transaction on Com-
puters 2005 volume 54, number 5, pages: 616-629.

∗ J. Yang and D. Manivannan. “An Efficient Fault-Tolerant Distributed Channel
Allocation Algorithm for Cellular Networks”. IEEE Transactions on Mobile Com-
puting 2005 volume 4, number 6, pages: 578-587.

∗ Jianchang Yang, Qiangfeng Jiang, and D. Manivannan. “A Fault-Tolerant Chan-
nel Allocation Algorithm for Cellular Networks with Mobile Base Stations”. Ac-
cepted by IEEE Transactions on Vehicular Technology.

∗ Jianchang Yang and D. Manivannan. “Performance Comparison of Two Channel
Allocation Approaches: Channel Pre-allocation Vs. Non-Pre-allocation”. submit-
ted to IEEE Transactions on Vehicular Technology.

∗ D. Manivannan, Q. Jiang, J. Yang and M. Singhal. “Asynchronous Recovery
based on Staggered Quasi-Synchronous Checkpointing”. submitted to Interna-
tional Journal of Information Science and Engineering.

– Conference publications:

∗ Jianchang Yang and D. Manivannan. “A Fault-Tolerant Channel Allocation
Algorithm for Cellular Networks with Mobile Base Stations”. In Proceedings of
the 2003 International Conference on Wireless Networks (ICWN’03), Las Vegas,
Nevada, USA, (CSREA Press) June 23-26, 2003, pages 146-152.

∗ Jianchang Yang, D. Manivannan and Mukesh Singhal. “A Fault-Tolerant Dy-
namic Channel Allocation Scheme for Enhancing QoS in Cellular Networks” In
IEEE Proceedings of the 36th Hawaii International Conference on System Sciences
(HICSS-36), Big Island of Hawaii, January 6-9, 2003.

∗ Jianchang Yang and D. Manivannan. “An Efficient Fault-Tolerant Distributed
Channel Allocation Algorithm for Mobile Computing Systems” In Proceedings of
the Third International Conference on Parallel and Distributed Computing, Ap-
plications, and Technologies (PDCAT 2002), Sept. 4-6, 2002, Kanazawa, Japan,
pages 372-377.

∗ D. Manivannan, Q. Jiang, J. Yang, and M. Singhal. “Asynchronous Recovery
based on Staggered Quasi-Synchronous Checkpointing”, International Workshop
on Distributed Computing (IWDC) 2005, pages 117-128.

• PROFESSIONAL ACTIVITIES

– served as a reviewer for WILEY’S WIRELESS COMMUNICATIONS AND MOBILE
COMPUTING JOURNAL and Journal of Parallel and Distributed Computing.

• REFERENCES

– Dr. D. Manivannan, Associate Professor
Department of Computer Science, University of Kentucky
231 James F. Hardymon Building, 301 Rose Street
Lexington, KY 40506-0495
Phone: (859) 257-9234, Fax: (859) 323-3740
E-Mail: mani@cs.uky.edu

104

– Dr. Mukesh Singhal, Professor and Gartner Group Endowed Chair in Networking
Department of Computer Science, University of Kentucky
234 James F. Hardymon Building, 301 Rose Street
Lexington, KY 40506-0495
Phone: (859) 257-3062, Fax: (859) 323-3740
E-mail: singhal@cs.uky.edu

– Dr. Grzegorz W. Wasilkowski
Professor and Director of Graduate Studies
Computer Science Department, University of Kentucky
777 Anderson Hall
Lexington, KY 40506-0046
Phone: (859) - 257 - 8029
Fax : (859) - 323 - 1971
Email: greg@cs.uky.edu

– Dr. Jun Zhang, Professor
Department of Computer Science, University of Kentucky
763F Anderson Hall, Lexington, KY 40506-0046
Phone: (859) 257-3892, Fax: (859) 323-1971
E-mail: jzhang@cs.uky.edu

– Paul Piwowarski, Lecturer
Department of Computer Science, University of Kentucky
227 Robotics Building, Lexington, KY 40506-0046
Phone: (859) 257-3678, Fax: (859) 323-1971
E-mail: paulp@cs.uky.edu

Jianchang Yang

105

	FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR CELLULAR NETWORKS
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Files
	1 Introduction
	1.1 Approaches for Channel Allocation in Cellular Networks
	1.1.1 Related Works

	1.2 Problems Addressed And Solved In This Dissertation
	1.3 Organization of the Dissertation

	2 A Distributed, Fault-Tolerant Channel Allocation Algorithm for Cellular Networks Under 3-Cell Cluster Model
	2.1 Introduction
	2.2 System Model
	2.3 Related Works
	2.4 A Fault-Tolerant Distributed Channel Allocation Algorithm
	2.4.1 Basic Idea
	2.4.2 Data Structures
	2.4.3 The Algorithm
	2.4.4 An Explanation of the Algorithm
	2.4.5 Correctness of the Algorithm

	2.5 Performance Evaluation
	2.5.1 Definitions
	2.5.2 Simulation Parameters
	2.5.3 Simulation Results

	2.6 Conclusion

	3 A Fault-Tolerant Channel Allocation Algorithm for Cellular Networks with Mobile Base Stations
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Contribution

	3.2 System Model
	3.3 Related Works
	3.4 A Fault-Tolerant Distributed Channel Allocation Algorithm for Intra-Cell Communication
	3.4.1 Basic Idea
	3.4.2 Data Structures
	3.4.3 A Channel Allocation Algorithm for Intra-cell Communication

	3.5 Correctness of the Algorithm
	3.6 Comparison to Related Works
	3.7 Performance Evaluation
	3.7.1 Simulation Parameters
	3.7.2 Simulation Results

	3.8 Conclusion

	4 Comparison of Two Channel Allocation Approaches: Channel Pre-allocation Vs. Non-Pre-allocation
	4.1 Introduction
	4.2 System Model
	4.3 Related Works
	4.4 Adaptive Channel Allocation Algorithm
	4.4.1 Basic Idea
	4.4.2 Data Structures
	4.4.3 The Algorithm
	4.4.4 Correctness of the Algorithm

	4.5 Performance Evaluation
	4.5.1 Definitions
	4.5.2 Simulation Parameters
	4.5.3 Simulation Results

	4.6 Conclusion

	5 A Distributed Fault-Tolerant Channel Allocation Algorithm for Cellular Networks Under Resource Planning Model
	5.1 Introduction
	5.2 System Model
	5.3 Related Works
	5.4 A Distributed Channel Allocation Algorithm
	5.4.1 Basic Idea
	5.4.2 The Channel Selection Algorithm
	5.4.3 Data Structures
	5.4.4 The Algorithm
	5.4.5 Proof of Correctness of the Algorithm

	5.5 Performance of the Algorithm
	5.6 Simulation Results
	5.6.1 Simulation Parameters
	5.6.2 Simulation Results

	5.7 Conclusion

	6 Future Work
	Bibliography
	Vita

