639 research outputs found

    A SDK improvement towards gesture support

    Get PDF
    Human-Computer Interaction have been one of the main focus of the technological community, specially the Natural User Interfaces (NUI) field of research as, since the launch of the Kinect Sensor, the goal to achieve fully natural interfaces just got a lot closer to reality. Taking advantage of this conditions the following research work proposes to compute the hand skeleton in order to recognize Sign Language Shapes. The proposed solution uses the Kinect Sensor to achieve a good segmentation and image analysis algorithms to extend the skeleton from the extraction of high-level features. In order to recognize complex hand shapes the current research work proposes the redefinition of the hand contour making it immutable to translation, rotation and scaling operations, and a set of tools to achieve a good recognition. The validation of the proposed solution extended the Kinects Software Development Kit to allow the developer to access the new set of inferred points and created a template-matching based platform that uses the contour to define the hand shape, this prototype was tested in a set of predefined conditions and showed to have a good success ration and has proven to be eligible for real-time scenarios

    An IoT System for Converting Handwritten Text to Editable Format via Gesture Recognition

    Get PDF
    Evaluation of traditional classroom has led to electronic classroom i.e. e-learning. Growth of traditional classroom doesn’t stop at e-learning or distance learning. Next step to electronic classroom is a smart classroom. Most popular features of electronic classroom is capturing video/photos of lecture content and extracting handwriting for note-taking. Numerous techniques have been implemented in order to extract handwriting from video/photo of the lecture but still the deficiency of few techniques can be resolved, and which can turn electronic classroom into smart classroom. In this thesis, we present a real-time IoT system to convert handwritten text into editable format by implementing hand gesture recognition (HGR) with Raspberry Pi and camera. Hand Gesture Recognition (HGR) is built using edge detection algorithm and HGR is used in this system to reduce computational complexity of previous systems i.e. removal of redundant images and lecture’s body from image, recollecting text from previous images to fill area from where lecture’s body has been removed. Raspberry Pi is used to retrieve, perceive HGR and to build a smart classroom based on IoT. Handwritten images are converted into editable format by using OpenCV and machine learning algorithms. In text conversion, recognition of uppercase and lowercase alphabets, numbers, special characters, mathematical symbols, equations, graphs and figures are included with recognition of word, lines, blocks, and paragraphs. With the help of Raspberry Pi and IoT, the editable format of lecture notes is given to students via desktop application which helps students to edit notes and images according to their necessity

    A new framework for sign language alphabet hand posture recognition using geometrical features through artificial neural network (part 1)

    Get PDF
    Hand pose tracking is essential in sign languages. An automatic recognition of performed hand signs facilitates a number of applications, especially for people with speech impairment to communication with normal people. This framework which is called ASLNN proposes a new hand posture recognition technique for the American sign language alphabet based on the neural network which works on the geometrical feature extraction of hands. A user’s hand is captured by a three-dimensional depth-based sensor camera; consequently, the hand is segmented according to the depth analysis features. The proposed system is called depth-based geometrical sign language recognition as named DGSLR. The DGSLR adopted in easier hand segmentation approach, which is further used in segmentation applications. The proposed geometrical feature extraction framework improves the accuracy of recognition due to unchangeable features against hand orientation compared to discrete cosine transform and moment invariant. The findings of the iterations demonstrate the combination of the extracted features resulted to improved accuracy rates. Then, an artificial neural network is used to drive desired outcomes. ASLNN is proficient to hand posture recognition and provides accuracy up to 96.78% which will be discussed on the additional paper of this authors in this journal

    Analysis of the Efficacy of Real-Time Hand Gesture Detection with Hog and Haar-Like Features Using SVM Classification

    Get PDF
    The field of hand gesture recognition has recently reached new heights thanks to its widespread use in domains like remote sensing, robotic control, and smart home appliances, among others. Despite this, identifying gestures is difficult because of the intransigent features of the human hand, which make the codes used to decode them illegible and impossible to compare. Differentiating regional patterns is the job of pattern recognition. Pattern recognition is at the heart of sign language. People who are deaf or mute may understand the spoken language of the rest of the world by learning sign language. Any part of the body may be used to create signs in sign language. The suggested system employs a gesture recognition system trained on Indian sign language. The methods of preprocessing, hand segmentation, feature extraction, gesture identification, and classification of hand gestures are discussed in this work as they pertain to hand gesture sign language. A hybrid approach is used to extract the features, which combines the usage of Haar-like features with the application of Histogram of Oriented Gradients (HOG).The SVM classifier is then fed the characteristics it has extracted from the pictures in order to make an accurate classification. A false rejection error rate of 8% is achieved while the accuracy of hand gesture detection is improved by 93.5%

    Human-Computer interaction using hand gesture recognition

    Get PDF

    Automated Tracking of Hand Hygiene Stages

    Get PDF
    The European Centre for Disease Prevention and Control (ECDC) estimates that 2.5 millioncases of Hospital Acquired Infections (HAIs) occur each year in the European Union. Handhygiene is regarded as one of the most important preventive measures for HAIs. If it is implemented properly, hand hygiene can reduce the risk of cross-transmission of an infection in the healthcare environment. Good hand hygiene is not only important for healthcare settings. Therecent ongoing coronavirus pandemic has highlighted the importance of hand hygiene practices in our daily lives, with governments and health authorities around the world promoting goodhand hygiene practices. The WHO has published guidelines of hand hygiene stages to promotegood hand washing practices. A significant amount of existing research has focused on theproblem of tracking hands to enable hand gesture recognition. In this work, gesture trackingdevices and image processing are explored in the context of the hand washing environment.Hand washing videos of professional healthcare workers were carefully observed and analyzedin order to recognize hand features associated with hand hygiene stages that could be extractedautomatically. Selected hand features such as palm shape (flat or curved); palm orientation(palms facing or not); hand trajectory (linear or circular movement) were then extracted andtracked with the help of a 3D gesture tracking device - the Leap Motion Controller. These fea-tures were further coupled together to detect the execution of a required WHO - hand hygienestage,Rub hands palm to palm, with the help of the Leap sensor in real time. In certain conditions, the Leap Motion Controller enables a clear distinction to be made between the left andright hands. However, whenever the two hands came into contact with each other, sensor data from the Leap, such as palm position and palm orientation was lost for one of the two hands.Hand occlusion was found to be a major drawback with the application of the device to this usecase. Therefore, RGB digital cameras were selected for further processing and tracking of the hands. An image processing technique, using a skin detection algorithm, was applied to extractinstantaneous hand positions for further processing, to enable various hand hygiene poses to be detected. Contour and centroid detection algorithms were further applied to track the handtrajectory in hand hygiene video recordings. In addition, feature detection algorithms wereapplied to a hand hygiene pose to extract the useful hand features. The video recordings did not suffer from occlusion as is the case for the Leap sensor, but the segmentation of one handfrom another was identified as a major challenge with images because the contour detectionresulted in a continuous mass when the two hands were in contact. For future work, the datafrom gesture trackers, such as the Leap Motion Controller and cameras (with image processing)could be combined to make a robust hand hygiene gesture classification system

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding
    corecore