12 research outputs found

    Dynamic Performance of Electrical Balance Duplexing in a Vehicular Scenario

    Get PDF

    Electrical Balance Duplexer Field Trials in High-Speed Rail Scenarios

    Get PDF

    How Stability of Hybrid Coupler Characteristic Affects Front-End Isolation of In-Band Full Duplex System

    Get PDF

    RF system model for In-band full duplex communications

    Get PDF
    Abstract. In recent years by increasing the demands for communication services various technologies are examined in order to improve the throughput and spectrum efficiency of the wireless communication systems. For improving the performance a communication network, system deficiencies such as transmitter and receiver impairments need to be removed or compensated. One way to improve the network efficiency is to employ full duplex technology. Full duplex technology doubles the network capacity compared to the case when typical frequency division duplexing (FDD) or time division duplexing (TDD) are employed in a transceiver design. Although full duplex (FD) technology has enhanced the performance of the radio communication devices, the main challenge in full duplex communication is the leaking self-interference signal from the transmitter to the receiver. Different methods are employed to suppress the self-interference signal in digital and analog domains which are categorized as passive or active cancellations. These techniques are discussed in this thesis in order to understand from which point in the propagation path, the required signal for cancellation can be taken and how those techniques are employed in digital and analog domains. For having a good self-interference cancellation (SIC) both analog and digital cancellation techniques are needed since typical digital suppression method is low complex and somewhat limited. In this thesis, first we start with discussing about the full duplex technology and the reason why it has become popular in recent years and later full duplex deficiencies are examined. In the following chapters different cancellation methods are introduced and some results are provided in Chapter 5

    Circuits and Systems for On-Chip RF Chemical Sensors and RF FDD Duplexers

    Get PDF
    Integrating RF bio-chemical sensors and RF duplexers helps to reduce cost and area in the current applications. Furthermore, new applications can exist based on the large scale integration of these crucial blocks. This dissertation addresses the integration of RF bio-chemical sensors and RF duplexers by proposing these initiatives. A low power integrated LC-oscillator-based broadband dielectric spectroscopy (BDS) system is presented. The real relative permittivity ε’r is measured as a shift in the oscillator frequency using an on-chip frequency-to-digital converter (FDC). The imaginary relative permittivity ε”r increases the losses of the oscillator tank which mandates a higher dc biasing current to preserve the same oscillation amplitude. An amplitude-locked loop (ALL) is used to fix the amplitude and linearize the relation between the oscillator bias current and ε”r. The proposed BDS system employs a sensing oscillator and a reference oscillator where correlated double sampling (CDS) is used to mitigate the impact of flicker noise, temperature variations and frequency drifts. A prototype is implemented in 0.18 µm CMOS process with total chip area of 6.24 mm^2 to operate in 1-6 GHz range using three dual bands LC oscillators. The achieved standard deviation in the air is 2.1 ppm for frequency reading and 110 ppm for current reading. A tunable integrated electrical balanced duplexer (EBD) is presented as a compact alternative to multiple bulky SAW and BAW duplexers in 3G/4G cellular transceivers. A balancing network creates a replica of the transmitter signal for cancellation at the input of a single-ended low noise amplifier (LNA) to isolate the receive path from the transmitter. The proposed passive EBD is based on a cross-connected transformer topology without the need of any extra balun at the antenna side. The duplexer achieves around 50 dB TX-RX isolation within 1.6-2.2 GHz range up to 22 dBm. The cascaded noise figure of the duplexer and LNA is 6.5 dB, and TX insertion loss (TXIL) of the duplexer is about 3.2 dB. The duplexer and LNA are implemented in 0.18 µm CMOS process and occupy an active area of 0.35 mm^2

    Interference suppression techniques for millimeter-wave integrated receiver front ends

    Get PDF

    Ka-band full duplex system with electrical balance duplexer for 5G applications using SiGe BiCMOS technology

    Get PDF
    The current dominating communication system is 4G. However, with the increase in the data rate and in the number of users in the world, the 4G communication system has started to saturate and couldn’t manage to keep up with user demands and there is less room for progress at 4G systems. In search of finding a system that covers the future interests of users, a new communication scheme is being processed as 5G. The next generation systems require wider bandwidth, high spectral efficiency, and less latency. For these goals, designs with higher frequency and full-duplex operation mode have been started to gain attention. Developments in SiGe HBT technologies -higher fT and fmax- make them suitable for these challenges. Considering these trends which lead to the future of communication systems, in this thesis the design of Ka-band (25-32GHz) SiGe full duplex system with electrical balance duplexer for 5G applications is presented. This system is created by integrating. a duplexer, an LNA, and a PA. The electrical balance duplexer is realized by a hybrid transformer and a balancing network. The impedance of the antenna is mimicked by tuning the balancing network to provide high isolation between transmitter and receiver blocks. All the ports have better than 10dB return loss. Duplexer provides measured 39dB peak isolation at 28GHz, with 3.8dB insertion loss from the transmitter to the antenna and 4.7dB insertion loss from the antenna to receiver. The LNA achieves the measured gain of 15dB, NF of 3.5dB and OP1dB of 13.5dBm at 28GHz by including an input and an output BALUN transformer. The PA provides measured gain of 17dB and OP1dB of 14dBm at 28GH

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d
    corecore