13 research outputs found

    Design and optimization of a rectangular microstrip patch antenna for dual-band 2.45 GHz/ 5.8 GHz RFID application

    Get PDF
    This paper introduces a new rectangular slot antenna structure based on a simple rectangular shape with two symmetrical rectangular slots on the radiated element. The aim of this work is to design an antenna and enhance it to function in the band (2.45 GHz and 5.8 GHz). We formulated the dimensions of the antenna using the transmission line model of the analytical methods and then we optimized these parameters using the CST Microwave Studio simulator. We made changes to two important parameters in our design: the position and width of the slots when the other parameters are kept constant. The resulting antenna provides good adaptation, high gain that achieves 5.96 dBi at 2.45 GHz and 6.491 dBi at 5.8 GHz, good return loss values of -49.859 dB and -34.303 dB for the lower and upper operating frequencies respectively. For radio frequency identification (RFID) implementations, the proposed antenna is ideal, and its main advantage is that it has high gain and is simple to design and fabricate

    A Closed-Loop Bidirectional Brain-Machine Interface System For Freely Behaving Animals

    Get PDF
    A brain-machine interface (BMI) creates an artificial pathway between the brain and the external world. The research and applications of BMI have received enormous attention among the scientific community as well as the public in the past decade. However, most research of BMI relies on experiments with tethered or sedated animals, using rack-mount equipment, which significantly restricts the experimental methods and paradigms. Moreover, most research to date has focused on neural signal recording or decoding in an open-loop method. Although the use of a closed-loop, wireless BMI is critical to the success of an extensive range of neuroscience research, it is an approach yet to be widely used, with the electronics design being one of the major bottlenecks. The key goal of this research is to address the design challenges of a closed-loop, bidirectional BMI by providing innovative solutions from the neuron-electronics interface up to the system level. Circuit design innovations have been proposed in the neural recording front-end, the neural feature extraction module, and the neural stimulator. Practical design issues of the bidirectional neural interface, the closed-loop controller and the overall system integration have been carefully studied and discussed.To the best of our knowledge, this work presents the first reported portable system to provide all required hardware for a closed-loop sensorimotor neural interface, the first wireless sensory encoding experiment conducted in freely swimming animals, and the first bidirectional study of the hippocampal field potentials in freely behaving animals from sedation to sleep. This thesis gives a comprehensive survey of bidirectional BMI designs, reviews the key design trade-offs in neural recorders and stimulators, and summarizes neural features and mechanisms for a successful closed-loop operation. The circuit and system design details are presented with bench testing and animal experimental results. The methods, circuit techniques, system topology, and experimental paradigms proposed in this work can be used in a wide range of relevant neurophysiology research and neuroprosthetic development, especially in experiments using freely behaving animals

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous élaborons une interface cerveau-machine (ICM) entièrement sans fil afin de fournir un système de liaison directe entre le cerveau et les périphériques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thèse, nous explorons la modélisation de canal, les antennes implantées et portables en tant que propagateurs appropriés pour cette application, la conception du nouveau système d’un émetteur-récepteur UWB implantable, la conception niveau système du circuit et sa mise en oeuvre par un procédé CMOS TSMC 0.18 um. En plus, en collaboration avec Université McGill, nous avons conçu un réseau de seize antennes pour une détection du cancer du sein à l’aide d’hyperfréquences. Notre première contribution calcule la caractérisation de canal de liaison sans fil UWB d’implant à l’air, l’absorption spécifique moyennée (ASAR), et les lignes directrices de la FCC sur la densité spectrale de puissance UWB transmis. La connaissance du comportement du canal est nécessaire pour déterminer la puissance maximale permise à 1) respecter les lignes directrices ANSI pour éviter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisées. Nous avons recours à un modèle réaliste du canal biologique afin de concevoir les antennes pour l’émetteur implanté et le récepteur externe. Le placement des antennes est examiné avec deux scénarios contrastés ayant des contraintés de puissance. La performance du système au sein des tissus biologiques est examinée par l’intermédiaire des simulations et des expériences. Notre deuxième contribution est dédiée à la conception des antennes simples et à double polarisation pour les systèmes d’enregistrement neural sans fil à bande ultra-large en utilisant un modèle multicouches inhomogène de la tête humaine. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à l’implantation ; nous étudions des matériaux à la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposées sont conçues pour fonctionner dans une plage de fréquence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant à la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les résultats de simulation et montrent que les antennes flexibles ont peu de dégradation des performances en raison des effets de flexion (en termes de correspondance d’impédance). Finalement, une comparaison est réalisée entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, à la polarisation simple, 2) une rigide, à double polarisation, 3) une flexible, à simple polarisation et 4) une flexible, à double polarisation. Dans tous les cas une antenne rigide est utilisée à l’extérieur du corps, avec une polarisation appropriée. Plusieurs avantages ont été confirmés pour les antennes à la polarisation double : 1) une taille plus petite, 2) la sensibilité plus faible aux désalignements angulaires, et 3) une plus grande fidélité. Notre troisième contribution fournit la conception niveau système de l’architecture de communication sans fil pour les systèmes implantés qui stimulent simultanément les neurones et enregistrent les réponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-récepteur qui partage une antenne ultra large bande, un émetteur-récepteur simplifié, travaillant en duplex intégral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous présentons une démonstration expérimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la réalisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique à 0,5, 1 et 2 Gb/s des débits de données pour la télémétrie de liaison montante (UWB) et 100 Mb/s pour la télémétrie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatrième contribution présente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est présentée dans notre troisième contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densité (les canaux de stimulant et d’enregistrement) avec des débits de données asymétriques. L’émetteur (TX) et le récepteur (RX) partagent une seule antenne pour réduire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basé sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz récepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non réglementé (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur à faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numérique binaire à déplacement de phase (BPSK). Le FDT proposé offre une double bande avec un taux de données de liaison montante de 500 Mbps TX et un taux de données de liaison descendante de 100 Mb/s RX, et il est entièrement en conformité avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW à 100 Mb/s pour RX, et de 5,4 mW à 500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquième contribution est une collaboration avec l’Université McGill dans laquelle nous concevons des antennes simples et à double polarisation pour les systèmes de détection du cancer du sein à l’aide d’hyperfréquences sans fil en utilisant un modèle multi-couche et inhomogène du sein humain. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à des applications portables. Les antennes flexibles miniaturisées monopôles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), à être en contact avec des tissus biologiques du sein. Les antennes proposées sont conçues pour fonctionner dans une gamme de fréquences de 2 à 4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impédance dans les différentes positions sur le sein. De Plus, deux antennes à bande ultralarge flexibles 4 × 4 (simple et à double polarisation), dans un format similaire à celui d’un soutien-gorge, ont été développés pour un système de détection du cancer du sein basé sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    VLSI Circuits for Bidirectional Neural Interfaces

    Get PDF
    Medical devices that deliver electrical stimulation to neural tissue are important clinical tools that can augment or replace pharmacological therapies. The success of such devices has led to an explosion of interest in the field, termed neuromodulation, with a diverse set of disorders being targeted for device-based treatment. Nevertheless, a large degree of uncertainty surrounds how and why these devices are effective. This uncertainty limits the ability to optimize therapy and gives rise to deleterious side effects. An emerging approach to improve neuromodulation efficacy and to better understand its mechanisms is to record bioelectric activity during stimulation. Understanding how stimulation affects electrophysiology can provide insights into disease, and also provides a feedback signal to autonomously tune stimulation parameters to improve efficacy or decrease side-effects. The aims of this work were taken up to advance the state-of-the-art in neuro-interface technology to enable closed-loop neuromodulation therapies. Long term monitoring of neuronal activity in awake and behaving subjects can provide critical insights into brain dynamics that can inform system-level design of closed-loop neuromodulation systems. Thus, first we designed a system that wirelessly telemetered electrocorticography signals from awake-behaving rats. We hypothesized that such a system could be useful for detecting sporadic but clinically relevant electrophysiological events. In an 18-hour, overnight recording, seizure activity was detected in a pre-clinical rodent model of global ischemic brain injury. We subsequently turned to the design of neurostimulation circuits. Three critical features of neurostimulation devices are safety, programmability, and specificity. We conceived and implemented a neurostimulator architecture that utilizes a compact on-chip circuit for charge balancing (safety), digital-to-analog converter calibration (programmability) and current steering (specificity). Charge balancing accuracy was measured at better than 0.3%, the digital-to-analog converters achieved 8-bit resolution, and physiological effects of current steering stimulation were demonstrated in an anesthetized rat. Lastly, to implement a bidirectional neural interface, both the recording and stimulation circuits were fabricated on a single chip. In doing so, we implemented a low noise, ultra-low power recording front end with a high dynamic range. The recording circuits achieved a signal-to-noise ratio of 58 dB and a spurious-free dynamic range of better than 70 dB, while consuming 5.5 ÎĽW per channel. We demonstrated bidirectional operation of the chip by recording cardiac modulation induced through vagus nerve stimulation, and demonstrated closed-loop control of cardiac rhythm

    Integrated Microsystems for Wireless Sensing Applications

    Get PDF
    Personal health monitoring is being considered the future of a sustainable health care system. Biosensing platforms are a very important component of this system. Real-time and accurate sensing is essential for the success of personal health care model. Currently, there are many efforts going on to make these sensors practical and more useful for such measurements. Implantable sensors are considered the most widely applicable and most reliable sensors for such accurate health monitoring applications. However, macroscopic (cm scale) size has proved to be a limiting factor for successful use of these systems for long time and in large numbers. This work is focused to resolve the issues related with miniaturizing these devices to a microscopic (mm scale) size scale which can minimize many practical difficulties associated with their larger counterparts currently. To accomplish this goal of miniaturization while retaining or even improving on the necessary capabilities for such sensing platforms, an integrated approach is presented which focuses on system-level miniaturization using standard fabrication procedures. First, it is shown that a completely integrated and wireless system is the best solution to achieve desired miniaturization without sacrificing the functionality of the system. Hence, design and implementation of the different components comprising the complete system needs to be done according to the requirements of the overall integrated system. This leads to the need of on-chip functional sensors, integrated wireless power supply, integrated wireless communication and integrated control system for realization of such system. In this work, different options for implementation of each of these subsystems are compared and an optimal solution is presented for each subsystem. For such complex systems, it is imperative to use a standard fabrication process which can provide the required functionality for all subsystems at smallest possible size scale. Complementary Metal Oxide Semiconductor (CMOS) process is the most appropriate of the technologies in this regard and has enabled incredible miniaturization of the computing industry. It also provides options for designing different subsystems on the same platform in a monolithic process with very high yield. This choice then leads to actual designs of subsystems in the CMOS technology using different possible methods. Careful comparison of these subsystems provides insights into different design adjustments that are made until the desired functions are achieved at the desired size scale. Integration of all these compatible subsystems in the same platform is shown to provide the smallest possible sensing platform to date. The completely wireless system can measure a host of different important analyte and can transmit the data to an external device which can use it for appropriate purpose. Results on measurements in phosphate buffer solution, blood serum and whole blood along with wireless communication in real biological tissues are provided. Specific examples of glucose and DNA sensors are presented and the use for many other relevant applications is also proposed. Finally, insights into animal model studies and future directions of the research are discussed. </p

    Physical principles for scalable neural recoding

    Get PDF
    Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power–bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices

    The Use of Skeletal Muscle to Amplify Action Potentials in Transected Peripheral Nerves

    Get PDF
    Upper limb amputees suffer with problems associated with control and attachment of prostheses. Skin-surface electrodes placed over the stump, which detect myoelectric signals, are traditionally used to control hand movements. However, this method is unintuitive, the electrodes lift-off, and signal selectivity can be an issue. One solution to these limitations is to implant electrodes directly on muscles. Another approach is to implant electrodes directly into the nerves that innervate the muscles. A significant challenge with both solutions is the reliable transmission of biosignals across the skin barrier. In this thesis, I investigated the use of implantable muscle electrodes in an ovine model using myoelectrodes in combination with a bone-anchor, acting as a conduit for signal transmission. High-quality readings were obtained which were significantly better than skin-surface electrode readings. I further investigated the effect of electrode configurations to achieve the best signal quality. For direct recording from nerves, I tested the effect of adsorbed endoneural basement membrane proteins on nerve regeneration in vivo using microchannel neural interfaces implanted in rat sciatic nerves. Muscle and nerve signal recordings were obtained and improvements in sciatic nerve function were observed. Direct skeletal fixation of a prosthesis to the amputation stump using a bone-anchor has been proposed as a solution to skin problems associated with traditional socket-type prostheses. However, there remains a concern about the risk of infection between the implant and skin. Achieving a durable seal at this interface is therefore crucial, which formed the final part of the thesis. Bone-anchors were optimised for surface pore size and coatings to facilitate binding of human dermal fibroblasts to optimise skin-implant seal in an ovine model. Implants silanised with Arginine-Glycine-Aspartic Acid experienced significantly increased dermal tissue infiltration. This approach may therefore improve the soft tissue seal, and thus success of bone-anchored implants. By addressing both the way prostheses are attached to the amputation stump, by way of direct skeletal fixation, as well as providing high fidelity biosignals for high-level intuitive prosthetic control, I aim to further the field of limb loss rehabilitation

    Hardware-efficient data compression in wireless intracortical brain-machine interfaces

    Get PDF
    Brain-Machine Interfaces (BMI) have emerged as a promising technology for restoring lost motor function in patients with neurological disorders and/or motor impairments, e.g. paraplegia, amputation, stroke, spinal cord injury, amyotrophic lateral sclerosis, etc. The past 2 decades have seen significant advances in BMI performance. This has largely been driven by the invention and uptake of intracortical microelectrode arrays that can isolate the activity of individual neurons. However, the current paradigm involves the use of percutaneous connections, i.e. wires. These wires carry the information from the intracortical array implanted in the brain to outside of the body, where the information is used for neural decoding. These wires carry significant long-term risks ranging from infection, to mechanical injury, to impaired mobility and quality of life for the individual. Therefore, there is a desire to make intracortical BMIs (iBMI) wireless, where the data is communicated out wirelessly, either with the use of electromagnetic or acoustic waves. Unfortunately, this consumes a significant amount of power, which is dissipated from the implant in the form of heat. Heating tissue can cause irreparable damage, and so there are strict limits on heat flux from implants to cortical tissue. Given the ever-increasing number of channels per implant, the required communication power is now exceeding the acceptable cortical heat transfer limits. This cortical heating issue is hampering widespread clinical use. As such, effective data compression would bring Wireless iBMIs (WI-BMI) into alignment with heat transfer limits, enabling large channel counts and small implant sizes without risking tissue damage via heating. This thesis addresses the aforementioned communication power problem from a signal processing and data compression perspective, and is composed of two parts. In the first part, we investigate hardware-efficient ways to compress the Multi-Unit Activity (MUA) signal, which is the most common signal in modern iBMIs. In the second and final part, we look at efficient ways to extract and compress the high-bandwidth Entire Spiking Activity signal, which, while underexplored as a signal, has been the subject of significant interest given its ability to outperform the MUA signal in neural decoding. Overall, this thesis introduces hardware-efficient methods of extracting high-performing neural features, and compressing them by an order of magnitude or more beyond the state-of-the-art in ultra-low power ways. This enables many more recording channels to be fit onto intracortical implants, while remaining within cortical heat transfer safety and channel capacity limits.Open Acces

    Advances in Bioengineering

    Get PDF
    The technological approach and the high level of innovation make bioengineering extremely dynamic and this forces researchers to continuous updating. It involves the publication of the results of the latest scientific research. This book covers a wide range of aspects and issues related to advances in bioengineering research with a particular focus on innovative technologies and applications. The book consists of 13 scientific contributions divided in four sections: Materials Science; Biosensors. Electronics and Telemetry; Light Therapy; Computing and Analysis Techniques
    corecore