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Abstract

Brain-Machine Interfaces (BMI) have emerged as a promising technology for restoring lost motor function

in patients with neurological disorders and/or motor impairments, e.g. paraplegia, amputation, stroke, spinal

cord injury, amyotrophic lateral sclerosis, etc. The past 2 decades have seen significant advances in BMI

performance. This has largely been driven by the invention and uptake of intracortical microelectrode

arrays that can isolate the activity of individual neurons. However, the current paradigm involves the use

of percutaneous connections, i.e. wires. These wires carry the information from the intracortical array

implanted in the brain to outside of the body, where the information is used for neural decoding. These

wires carry significant long-term risks ranging from infection, to mechanical injury, to impaired mobility and

quality of life for the individual. Therefore, there is a desire to make intracortical BMIs (iBMI) wireless,

where the data is communicated out wirelessly, either with the use of electromagnetic or acoustic waves.

Unfortunately, this consumes a significant amount of power, which is dissipated from the implant in

the form of heat. Heating tissue can cause irreparable damage, and so there are strict limits on heat flux

from implants to cortical tissue. Given the ever-increasing number of channels per implant, the required

communication power is now exceeding the acceptable cortical heat transfer limits. This cortical heating

issue is hampering widespread clinical use. As such, effective data compression would bring Wireless iBMIs

(WI-BMI) into alignment with heat transfer limits, enabling large channel counts and small implant sizes

without risking tissue damage via heating.

This thesis addresses the aforementioned communication power problem from a signal processing and

data compression perspective, and is composed of two parts. In the first part, we investigate hardware-

efficient ways to compress the Multi-Unit Activity (MUA) signal, which is the most common signal in

modern iBMIs. In the second and final part, we look at efficient ways to extract and compress the high-

bandwidth Entire Spiking Activity signal, which, while underexplored as a signal, has been the subject of

significant interest given its ability to outperform the MUA signal in neural decoding. Overall, this thesis

introduces hardware-efficient methods of extracting high-performing neural features, and compressing them

by an order of magnitude or more beyond the state-of-the-art in ultra-low power ways. This enables many

more recording channels to be fit onto intracortical implants, while remaining within cortical heat transfer

safety and channel capacity limits.
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Chapter 1

Introduction

1.1 Motivation

Millions of people around the world are living with complete or partial paralysis because of neurological disor-

ders such as stroke, Traumatic Spinal Cord Injury, Amyotrophic Lateral Sclerosis, and Parkinson’s. Millions

more are suffering from a loss of motory ability from amputation. As a whole, movement disorders come

with significantly reduced quality of life for the individuals and their loved ones. These can include reduced

autonomy and ability to participate in life, reduced employment opportunities and athletic performance,

and increased risk for other diseases. Furthermore, the financial burden for public and private healthcare

systems, as well as society at large, can be enormous. For example, 12,000 thousand new people experience

Traumatic Spinal Cord Injury every year in the United States, with an estimated total of approximately

273,000, with costs for each patient often quickly increasing into the hundreds of thousands of dollars [1].

To improve the lives of the patients and their loved ones, as well as alleviate the financial burden to both

individuals and society, effectively treating motor-impairments is of significant importance.

Brain-Machine Interfaces (BMIs) have emerged as a possible solution for treating motor-impairments.

By measuring activity in the motory cortices in the brain, damaged parts of the motory nervous system and

body can be bypassed, allowing one to control an avatar. According to patient surveys, patients’ highest

priority in terms of restoring ability is to restore hand kinematics [2–4]. In the past two decades, significant

progress has been made towards this goal, with Non-Human Primates (NHPs) and human patients using

BMIs to control computer cursors [5–9] and robotic arms [10–13].

The state-of-the-art in BMIs consists of using intracortical microelectrode arrays to measure neural

activity in the brain. This has very high spatial and temporal resolution, to the degree that one can

distinguish between individual neurons firing in the vicinity of the electrode [14].

However, a major obstacle to widespread clinical application is that intracortical BMIs currently use

percutaneous connections, i.e. wires. These wires serve to transfer the data from the intracortical electrodes

to an external decoder outside the brain, where computationally intensive processing of the neural data

is done. These percutaneous connections come with significant risks in terms of infection and mechanical

injury. They also significantly degrade the quality of life of the individual. As such, there has recently

been significant interest in exploring Wireless Intracortical Brain-Machine Interfaces (WI-BMIs). In WI-

BMIs, the information is wirelessly communicated out from the brain, e.g. with the use of radio waves.

However, this consumes significant amounts of power. This is a problem because any power that is used

on-implant is dissipated as heat into the neural medium. If too much heat is transferred into cortical tissue,

the tissue can be permanently damaged. Therefore there are strict limits on acceptable heat flux amounts

into cortical tissue. Furthermore, the communicated wave can also be absorbed by the neural medium, which
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can cause further heating, or even injury due to rapid pressure changes in the case of ultrasound. Therefore,

communication power must be limited.

Driven by the desire for more channels on-implant, the communication power is exceeding what is accept-

able in terms of power use. This is most notable in the case of free-floating mm or sub-mm scale implants,

which cannot communicate even a single raw broadband (i.e. full-spectrum) neural recording without exceed-

ing the power budget. As such, some form of data compression of the raw intracortical signal is warranted.

This is the topic this thesis will explore.

Data compression comes in two different forms: lossless and lossy. Lossless compression leverages infor-

mation theory to assign shorter codewords to more likely symbols, compressing the data without losing any

information [15]. However, WI-BMIs have limited processing power and memory, and lossless compression

algorithms are generally not designed for ultra-low resource environments such as WI-BMIs. As such, any

lossless compression techniques that are used should be tailored to the WI-BMI environment.

The second form of compression is lossy compression. This involves transforming the data so as to remove

or degrade aspects of it that are assumed to not be of interest to the final application. This concentrates the

relevant information in the data into fewer bits, reducing the bandwidth. In the case of motory BMIs, the

final application is, as guided by patient interest surveys, typically hand kinematics. Therefore, the objective

of lossy compression in motory BMIs is to eliminate as much superfluous information as possible from the

neural signal, while taking care to not degrade the decoding ability of the BMI. Furthermore, any on-implant

compression should be done using minimal hardware, to reduce the size of the implant. Additionally, the

communication power savings should be sufficient to warrant the additional processing power required for

the compression.

There are a small number of common, well-understood lossy compressions of the raw broadband intracor-

tical signal. These are typically divided into the Local Field Potential (LFP)-based features, and spike-based

features. Most intracortical BMIs target spikes, i.e. neural impulses. This is because they are understood

to represent the main unit of information processing in the brain. Spikes are typically encoded in one

of three different forms: Single-Unit Activity (SUA), Multi-Unit Activity (MUA), Entire Spiking Activity

(ESA). SUA consists of taking the spikes, and sorting them by spike shape, where similarly shaped spikes

are assumed to originate from the same putative neuron. As such, SUA gives us the neural firing rates of

individual neurons in the electrode vicinity. MUA is similar, but the spikes are not sorted: all spikes on the

same electrode are assigned to the same putative neuron. ESA is an analogue representation of MUA. It

is obtained by highpass filtering the broadband signal, rectifying the signal, and enveloping the result. As

such, it gives an envelope of unsorted spiking activity on a channel. Since LFPs and the mentioned spike-

derived features are well-understood lossy compressions of intracortical broadband signals, they represent

an excellent starting point for investigating the hardware efficient compression of data in WI-BMIs.

1.2 Research Objectives

This thesis aims to develop hardware-efficient lossless and lossy data compression algorithms for the com-

pression of intracortical neural recordings. In develop these algorithms, where possible, four metrics are

tracked.

1. Total on-implant dynamic power, defined as the sum of the communication and processing power

on-implant.

2. The required hardware resources for the implementation of the data compression algorithms, i.e. the

amount of Flip-Flop (FF)s, Look-Up Table (LUT)s, and memory (Read-Only Memory and Random

Access Memory (RAM)).

15



3. Behavioral Decoding Performance (BDP), which measures the similarity between the ‘true’ behavior

and that given as the decoded behavioral output by the motory BMI. In this thesis, BDP is defined

as the mean Pearson correlation coefficient between the BMI-predicted and observed X and Y-axis

velocities when decoding hand movements.

4. The fourth is Behavioral Temporal Resolution (BTR), which consists of the temporal resolution of the

decoded behavior. This should be sufficiently high to enable a seamless control loop for the user. A

typical target for BTR is 30ms or less, although values as high as 100ms also occur in the literature.

Together, these four metrics give a holistic understanding of the balance between power, hardware re-

sources, BDP and BTR, for the different data compression algorithms. Our objective is to minimize power

and hardware resources, while maximising BDP and giving as fine a BTR as possible. This optimisation

problem, along with the typical data flow for WI-BMIs, is shown in Fig. 1.1.

Figure 1.1: Data flow in behavior-decoding BMIs. Also shown is the optimisation problem of on-implant

power, resources behavioral decoding performance and temporal resolution.

To achieve this objective, we set two main objectives for this thesis:

• Compress the MUA signal. As the MUA signal is the most common signal in modern WI-BMIs,

it warrants starting our work there. The standard representation of the MUA signal involves 1-bit

sampling at a sampling frequency of 1 kHz, where channels are multiplexed. However, this translates

into a Bit Rate (BR) of 1000 bps/channel. For many WI-BMI applications, this is an unacceptably

high bandwidth. Therefore, it is necessary to compress the MUA signal to enable a broader range of

applications.

• Compress the ESA signal. The ESA signal is obtained by highpass-filtering the broadband signal, and

then rectifying and enveloping it. It has been shown to have state-of-the-art BDP [16], outperforming

even the MUA signal. Considering that it is quite simple to compute from the broadband signal,

it seems like a very attractive signal for motory WI-BMIs. However, its BR is unacceptably high,

typically sampled at 1 kHz and 16 bits. As such, it is important to investigate whether the ESA signal

can be extracted and compressed in a hardware-efficient, low-power way that balances the four metrics.
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1.3 Thesis Outline

This thesis is composed of two parts, each tackling one of the aforementioned research objectives. The

structure of this thesis is as follows:

• Chapter 2 | Brain-Machine Interfaces: Background and State of the Art

This chapter gives the necessary background on BMIs, with a focus on signal processing and data

compression. We start by giving a general overview on BMIs, including history and different BMI

types. We discuss heat limits in BMIs, and give background on data compression in the context

of resource-constrained environments such as WI-BMIs. We give an overview of different common

intracortical neural features, in the context of WI-BMI data compression. Finally, we give an overview

of BMI behavioral decoding, as well as different decoders.

Part I: Compressing Multi-Unit Activity

• Chapter 3 | Static Huffman Compression of Intracortical Neural Signals

In this chapter, we investigate the use of Static Huffman (SH) encoders for the compression of a broad

class of intracortical neural signals. This was a preliminary investigation into whether SH encoders are

appropriate or not for intracortical signals, and did not consider the MUA signal. This is because the

MUA signal requires more processing than the considered LFP, EAP and ESA signals, and so is dealt

with in detail in the next chapter.

• Chapter 4 | Static Huffman Compression of MUA

In this chapter, we use windowing to lossily compress the MUA signal, and tailor the SH encoder to

the resulting signal. We introduce various hardware-efficient techniques for improving SH compression

of MUA, including sample histogram mapping and the use of multiple encoders with assignment. We

perform a large grid search of the parameter space, and present the results in terms of the four key

metrics: total dynamic power, hardware resources, BDP and BTR. Finally, we test a specific system

that showed top performance, and present the results.

• Chapter 5 | Comparison to Event-Driven Architectures for Compressing MUA

We develop various event-driven SH compression schemes for MUA that tackle some of the weak-

nesses of the windowing method, specifically poor BTR. We introduce these schemes, and analyse

their compression performance and hardware complexity. Finally, we give recommendations of which

algorithm is best given the implant conditions, such as desired BTR and the number of channels hosted

on-implant.

Part II: Compressing Entire Spiking Activity

• Chapter 6 | Minimum Requirements for the Processing and Compression of ESA

In this chapter, we investigate low-complexity and hardware-efficient ways to extract and compress the

ESA signal. We minimize the number of on-implant computations, e.g. by using delta-sampling as a

means of highpass filtering, and windowing as a means of enveloping and downsampling. We perform

a grid search, and analyse the results in terms of BR, BDP and BTR.

• Chapter 7 | Conclusion and Future Directions

This chapter concludes the work, and highlights novel contributions. It also highlights potential future

research directions.
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Chapter 2

Brain-Machine Interfaces:

Background and State of the Art

This chapter considers general background on WI-BMIs. It introduces common intracortical neu-

ral signals, the problem of thermal dissipation in WI-BMIs, the fundamentals of data compression,

as well as how data compression applies to the WI-BMI environment. Finally, we present the

fundamentals of BMI behavioral decoding, and the datasets used in this thesis.

This chapter has been adapted from the following published articles:

Savolainen, Oscar W., et al. “Hardware-Efficient Compression of Neural Multi-Unit Activity.”

bioRxiv (2022).

2.1 History of Brain-Machine Interfaces

BMIs, also referred to as Brain-Computer Interfaces (BCI), are electronic devices that measure neural activ-

ity, extract features from that activity, and convert those features into outputs that replace, restore, enhance,

supplement, or improve human functions. They allow the individual to interact with their environment, us-

ing their thoughts alone, regardless of other neurological or physical impairments. They can, for example,

be used to treat paraplegia, quadriplegia, movement disorders, Locked-in syndrome and more [17,18].

BMI research originated in 1968, when Evarts showed that the Firing Rates (FRs) of individual neurons

in the Primary Motor Cortex (M1) of NHPs [19] were correlated with the movements of the wrist. In 1977,

Vidal showed that a computer cursor could be moved around a screen with Electroencephalogram (EEG)

signals [20].

BMI research accelerated significantly in the 1990’s, with the advent of intracortical microelectrode arrays.

Intracortical microelectrode arrays allow the simultaneous recording of the extracellular activity of multiple

neurons, and are considered state-of-the-art. In 1996, Kennedy and Bakay carried out the first invasive BMI

trial in a human patient suffering from locked-in syndrome due to Amyotrophic Lateral Sclerosis. They used

a neurotrophic electrode [21] that measured neurological signals, and showed that they could be voluntarily

modulated by the user. In 1999, Birbaumer et al. demonstrated a non-invasive EEG device that allowed fully

locked-in patients to type out text onto a computer screen [22]. More advanced intracortical BMI systems

were then developed in NHPs for the neural decoding of hand kinematics, to control robotic arms [5,10,23]

and computer cursors [6, 7, 24]. In 2004, the BrainGate project was launched to accelerate BMI research,
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Figure 2.1: Overview of some of the milestones in modern BMI development.

with the aim of translating them into clinical human trials [25]. Multiple milestones were reached, such

as that of paralysed patients controlling a computer cursor [11], a robotic arm [26], and even functional

electrical stimulation systems [27]. The current state-of-the-art in intracortical BMI decoding was reached

when Wodlinger et al. demonstrated a robotic arm with ten degrees of freedom [13].

While BMIs come in different forms, such as EEG, Electrocorticography (ECoG), fMRI, and optical

methods, intracortical BMIs are the most invasive form and offer the highest spatial and temporal resolution

[14]. intracortical BMIs are capable of measuring the FRs of individual neurons in the vicinity of the

electrodes. For example, the Neuropixel probe was reported in 2017 [28]. It consists of multiple multiplexed

probe sites micro-fabricated along rigid penetrating silicon shanks, with 384 recording channels that can

programmably address 960 sites along the shank. The Neuropixel 2.0, introduced in 2021, has over 5000

sites that can be addressed, also with 384 recording channels [29]. These allow the simultaneous measurement

of hundreds of individual neurons, as well as the coverage of different recording locations without invasive

relocation of the shank probe.

For an in-depth review of BMIs from basic science to neurorehabilitation, see [30]. For a comprehensive

review of intracortical BMIs, see [31]. An overview of some of the milestones in modern BMI development

is given in Fig. 2.1. The basic data flow in intracortical BMIs is also given in Fig. 2.2.

2.2 Wireless Intracortical Brain-Machine Interfaces

Intracortical BMIs, as aforementioned, have seen significant development. However, as with the Neuropixel

probe, the current intracortical BMI paradigm in clinical trials in humans involves the use of percutaneous

connections, i.e. wires, to transfer the measured neural information to outside the body [12, 26, 32]. These

percutaneous connections come with significant infection and mechanical health risks, as well as significantly

reduced quality of life for the individual [30, 33]. Wired connections are also a significant source of device

failure [33], as well as of electromagnetic interference, crosstalk and power inefficiencies [34]. Furthermore,

the implantation procedure of wired devices can involve invasively tunnelling for leads, increasing tissue

damage and foreign body response [35]. While devices can be made wireless with the use of batteries, these

require some form of expert or even surgical intervention to replace, as battery life is finite. Fully wireless
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Figure 2.2: Basic block diagram of typical BMI data flow. Optional processing and compression of the

recorded data takes place on-implant, and more computationally intensive processing, i.e. advanced feature

extraction and/or behavioral decoding, takes place off-implant.

powering would enable chronic use without having to replace the implant. As such, the next generation

of intracortical BMIs are desired and expected to be wireless. This is a major remaining bottleneck to

widespread clinical use. To overcome this, both the communication and powering must be wireless.

It is also desired that these systems record from different parts of the brain, and that the spatial coverage

be both high resolution and customisable. As such, a distributed network of free-floating sub-mm scale

implants is particularly attractive [14]. Other than offering attractive spatial coverage, this minimises foreign-

body response and tissue trauma due to implantation [35]. Ultra-minimized probe sizes can enable ultra-

minimally invasive delivery methods such as laparoscopy or injection [34]. Furthermore, a distributed network

increases the robustness of the system, where if an individual probe fails the rest of the system continues to

function. This reduces the need for invasive replacement surgery, as well as protecting against the negative

effects from the loss of operation of the implant. A distributed sensor system is theoretically promising,

however it requires that the individual sensor node size is ultra-miniaturized while maintaining a high-fidelity

neural interface [36].

Significant research has gone into the developing communication methods for WI-BMIs. These either use

acoustic ultrasound, or electromagnetic radio frequency waves. On the acoustic front, a team at UC Berkeley

proposed a system of 10-100µW scale, free-floating, independent sensor nodes, powered and communicating

via ultrasound [37]. However, ultrasound powering can suffer from acoustic link misalignment, where if the

piezo-electric crystal’s surface is not perpendicular to the incoming wave, the absorbed power is reduced.

For example, [34] reported that an in vivo mm-scale peripheral nervous system StimDust neuro-simulator

ultrasound mote, with ideal link alignment, required an acoustic intensity equal to 7.8% of the safety limit for

diagnostic ultrasound of 720mW/cm. However, with a 75◦mote angular misalignment range, the required

acoustic intensity increased to 36% of the safety limit. This was for a single mote, although it was a

bidirectional peripheral nervous system interface capable of both recording and stimulation.

Various radio drequency powered WI-BMIs have also been proposed. The ENGINI (Empowering Next

Generation Implantable Neural Interfaces) platform uses a cranial transponder to inductively couple power

to, and communicate data from, a distributed array of mm-scale freely-floating intracortical probes [38]. The

cranial transponder then communicates the data to an external decoder. The system targets LFP signals

along the cortical column, with 8 intracortical microwire electrodes.
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First detailed in 2019, the Neurograin platform uses a distributed system of independent, sub-mm scale

nodes, each hosting a single channel [36], each with a 40µW power budget. This was first demonstrated as a

distributed network of probes measuring ECoG signals at a 500Hz bandwidth, but in concept can be applied

more broadly. As of the most recent publication, a custom time-division multiple access communication

protocol was designed to scale up to 770 Neurograins [39].

Other radio frequency based WI-BMIs, that eliminate the wired connection between a monolithic implant

to external electronics, have also been proposed [40–43]. For example, in 2016 Neuralink was founded, which

is a private BMI company that seeks to develop and commercialise radio frequency-based WI-BMIs. They

use an intracranial transplant that houses a monolithic chip, with feedthroughs for microwire electrodes that

are implanted using a ‘sewing-machine’, Machine Vision robotic surgeon. Powering and communication is

achieved via backscattering of radio frequency waves.

2.3 Communication Bandwidth as a Constraint

2.3.1 Heat Limits in intracortical BMIs

Due to heating constraints in cortical tissue, on-implant power usage is strictly limited in WI-BMI to a 1 ◦C

temperature increase or 1.6mW/g of Specific Absorption Rate in tissue [14,44,45]. In the context of heating

due to absorption of radio frequency, the IEEE standard C95.1-2019 gives limits for Specific Absorption

Rate heating depending on radio frequency frequency [46]. However, it specifies that the understood Specific

Absorption Rate limits in brain tissue are generally derived from models and lack rigorous studies in live

animals or humans, with significant variance between models [46]. FDA regulations further dictate that

the local heat increase of brain tissue due to intracortical implants should be limited to only 0.5 ◦C [47].

In muscle and lung tissue, it is understood that up to 40mW/cm2 heat flux can be allowed, however the

limit is likely lower in cortical tissue [44]. For example, a retinal implant device was found to provide a

heat flux of 15.5mW/cm2 when including the size of the insulation, and the temperature increases were

less than a degree [44, 48], which is assumed to be acceptable. In the same study, when the power was

increased to represent 62mW/cm2, the temperature increases reached as high as 3◦C [44, 48], which is

unacceptable. While no equivalent study exists on neural tissue, it is best to err on the side of caution.

Therefore, throughout this thesis we will assume a maximum heat flux limit of 10mW/cm2 to hopefully

provide a reasonable safety margin [37], given the extreme paucity of data on the effects of chronic heat flux

on cortical tissue [44, 49].

This severely limits the available power on-implant. For example, a 1 × 1mm scale free-floating intra-

cortical implant, with a maximum permitted heat flux of 10mW/cm2, would have a maximum total power

budget of 200µW, assuming equal heat flux from both planes of the implant and negligible heat flux from

the edges of the device.

Furthermore, in the case of radio frequency WI-BMIs, any power that is used on-implant needs to be

wirelessly transferred to it, which heats the tissue via absorption of radio frequency waves [44]. The current

literature shows that, in the best case, only 32% of transmitted power can be recuperated on-implant with an

inter-coil distance of 20mm, meaning that the remaining portion is absorbed by the cortical environment [50].

This value is typically much lower, with efficiencies often lower than 1% [50]. As such, any tissue heating

from the power delivery also needs to be accounted for. Every µW that is used on-implant is responsible for

another few µWs or even tens of µWs of heating due to transfer loss. Therefore, even a 10mW/cm2 heat

flux limit may be overly optimistic for WI-BMIs given the effects of wireless powering. As such, methods to

reduce on-implant power usage, to minimize all aspects of tissue heating, are highly desirable.
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2.3.2 Communication energy estimates

The WI-BMI data communication channels can be described as uplink and downlink. Uplink refers to the

data flow from the implant to an external device, and downlink refers to the flow from external device to

implant. WI-BMIs generally require a higher uplink data rate than a downlink, since they need to transmit

significant amounts of neural data to an external device.

Radio frequency data communication schemes are typically implemented using different types of shift

keying (e.g. amplitude, phase, on-off) [51–55]. They are the most power-efficient solutions for radio frequency

implants; however, their BR limits are below 20Mbps. The ultra-wideband uplink proposed in [56] achieved

46Mbps with 118.3 pJ/bit. The implantable microsystems that are designed and fabricated based on full-

custom Application Specific Integrated Circuits (ASICs) are more power-efficient than microcontroller and

Field Programmable Gate Array (FPGA) based solutions [57, 58].

Different communication energies that have been achieved in the literature are given in Table 2.1. How-

ever, it is worth mentioning that the studies cited in Table 2.1 measured each system’s communication energy

while outside the neural medium. The neural medium is highly lossy for radio frequency waves [37] with

the aforementioned low transfer efficiencies. Therefore, one should assume that the actual communication

energy is significantly higher than given in Table 2.1 to account for transfer loss. Furthermore, one should

assume that the difference between FPGA and ASIC communication energies is significantly reduced in the

neural medium, given that the transfer loss is independent of hardware efficiency and will dominate the

processing power differences.

Table 2.1: Wireless radio frequency data communication power consumption comparison. Produced by

Peilong Feng in our co-authored work [59].

Publication Downlink Uplink

Modulation Bit rate Power Modulation Bit Rate Power

[51] ASK 15 kbps - Backscatter - -

[52] OOK-PPM 50 kbps 4 nJ/bit OOK 6.78Mbps 1.34 nJ/bit

[53] OOK 1Mbps 13 pJ/bit OOK 16Mbps 50.4 pJ/bit

[54] ASK 11Kbps 1.25 nJ/bit - - -

[56] - - - UWB 46Mbps 118.3 pJ/bit

[55] ASK-PWM 1Mbps - BPSK 10Mbps -

[60] - - - Backscatter 0.5Mbps 240 pJ/bit

[61] Nordic - nRF24L01+ 2Mbps 16.95 nJ/bit Nordic - nRF24L01+ 2Mbps 20 nJ/bit

[62] - - - Backscatter 1.25Mbps 87 nJ/bit

Throughout this thesis a 20 nJ/bit uplink communication energy [61] is assumed. This is state-of-the-art

for FPGAs (Table 2.1). This is an optimistic estimate, however the goal of this thesis is to analyse the effects

of data compression. Therefore, if the communication power is higher than 20 nJ/bit, as is likely, then the

effect of data compression will be even more significant in terms of power savings. As such, assuming very low

communication energy gives a conservative estimate of the power savings obtained from data compression.

The motivation for using FPGAs instead of ASICs in this thesis is expanded upon later in Section 2.6.

2.3.3 Communication power estimates

The average communication power per channel can then be calculated from the BR, given in (bps/channel):

Comm. power = BR× Comm. energy per bit [W/channel] (2.1)
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Raw broadband data is typically sampled at 25-30 kHz and 16 bits/sample [17,63–65], although resolutions

as low as 7 kHz and 6 bits/sample are possible for applications such as spike detection of large spikes [66].

This creates very large communication bandwidths, ranging from 42-480 kb/s/channel. For 20 nJ/bit, this

translates into a communication power demand of 0.84-9.6mW/channel. For the 1mm×1mm scale implant

considered earlier, with a power budget of 200µW derived from the 10mW/cm2 heat flux limit, not even a

single broadband channel could be communicated off-implant. This is without even considering the power

required for recording the signal, or the static power consumption of the implant. As such, some form of

data compression is necessary to enable wireless communication.

It also warrants mentioning that similar studies on per bit energy cost have not been undertaken for

acoustic ultrasound communication: it is not clear how much power is required to communicate acoustically

for WI-BMIs. This is the case for both monolithic and distributed acoustic systems.

A highly optimistic breakdown of WI-BMI power consumption, for an implant of arbitrary size, is given in

Fig. 2.3. It shows that, after transfer loss, the power consumption is absolutely dominated by communication

power. Furthermore, the transfer loss component is also dominated by the communication power requirement.

As such, it makes clear that reducing the communication power is a clear priority. Doing so would reduce

the on-implant power, but also the transfer losses.

2.3.4 Channel capacity

Another motivation for on-node data compression is finite channel capacity. There is no consensus on an

upper limit for channel capacity in WI-BMIs (Table 2.1). However, the channel capacity is finite given the

tissue’s finite ability to absorb either acoustic or electromagnetic waves without damage. As such, the BR of

each node limits the size of a distributed network of free-floating WI-BMI nodes. For example, in the case

of distributed nodes communicating via a time-division multiple access protocol, the amount of available

nodes is limited by the size of each node’s data packet and the channel capacity [39]. As such, if the data

packet size could be reduced, more nodes could be fit into the network without risking packet collisions. For

example, the Neurograins network in [39] can be scaled to 1000 channels at the maximum, but with smaller

data packets, a larger number of nodes could be accommodated.

Monolithic implants suffer from the same problem: a finite channel can only communicate out so much

data. Eventually, if more information is to be extracted from the brain, bandwidth becomes a constraint

and on-node data compression is required.

2.4 Data Compression

There are two main methods for compressing data: lossless and lossy compression.

2.4.1 Lossless Compression

Lossless compression began with Claude Shannon’s seminal work [15]. In it he proved that, for any given

message, giving shorter codewords to more likely symbols reduces the number of bits required to store the

message, without losing any information. This is the basis of lossless compression: more likely symbols get

shorter codewords. Lossless compression works best if a subset of values are much more likely than others,

e.g. if the data histogram is very narrow and/or skewed, i.e. non-flat. As such, lossless compression generally

consists of two steps. The first is pre-processing the data to make certain values more likely. The second is

then applying an entropy encoding that assigns shorter codewords to more likely values.
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Figure 2.3: Highly optimistic breakdown of WI-BMI power consumption. Each power estimate, in µW, is the

lowest estimate for that module that I could find in the literature. It assumes a front-end Neural Recording

ASIC with 0.87µW power consumption [67], an FPGA static power of 162µW shared across 96 channels (see

Chapter 4), a spike detection power of 0.04µW/channel [68], a 0.96µW/channel Multi-Unit Activity (MUA)

binning power (to 1ms temporal resolution) (see Chapter 4), and a 20 nJ/bit communication energy [61],

coming to a 20µW communication power assuming a 1 kbps/channel MUA BR (see Section 2.4.2). Finally,

the power transfer loss of 50.12µW is calculated as the loss after a 32% power transfer efficiency [50], given

as 23.56µW × (100-32)% / 32%. In reality, the power consumption will likely be much higher, especially due

to a higher communication energy and larger transfer losses. However, on-implant recording and processing

power may even be reduced, due to an ASIC implementation. Furthermore, the static power calculation

assumed 96 channels on-implant, which can of course vary.
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2.4.1.1 Pre-processing

The simplest form of pre-processing in time-series data (of which neural data is an example) is delta-sampling.

Instead of sending out the current value, one sends out the difference between it and the previous value.

This can be generalised to any previous value:

y[n] = x[n]− x[n− u] (2.2)

for u ∈ Z
+. If the difference between the subtracted values is likely to be small relative to the previous

dynamic range of the data, this narrows the data histogram. However, there are more advanced methods.

For example, Linear Neural Network Time (LNNT) sampling uses a learned linearly weighted sum of h past

samples to predict the current sample [69]. The prediction error is then communicated off-implant. As long

as the weights are known off-implant, the signal can be reconstructed from the prediction error.

LNNT is a generalisation of delta-sampling, where in delta-sampling only 1 past value is used to predict

the current value, and the past value is given a weight of 1. LNNT can also be thought of, from a signal

processing perspective, as an Finite Impulse Response (FIR) filter that seeks to filter out the signal one

is measuring. In this way, the prediction error (i.e. the output of the FIR filter) will be small, i.e. the

histogram will be narrow.

In practice, the weights are obtained by training a single-neuron Linear Neural Network on offline training

data. The Linear Neural Network finds a linearly weighted sum of h past values that closely estimates the

current value. h is chosen prior to training by the researcher. LNNT encoding in a BMI context was first

proposed in [69], where LNNT was used to compress 16-bit Extracellular Action Potential (EAP) band

recordings sampled at 20 kHz.

2.4.1.2 Entropy encoding

Once pre-processing has narrowed the data histogram, the next step is to use an entropy encoding to losslessly

compress the data. Many different entropy encodings have been proposed. These include Huffman encoding,

Arithmetic encoding, Lempel-Ziv, etc.

2.4.1.2.1 Huffman encoding

Huffman coding uses a dictionary where each symbol is represented by a unique codeword. Each codeword is

optimally close in length to the symbol’s Shannon entropy [15] while being independently decodable [70]. As

such, it gives optimal compression among methods that encode symbols individually. Huffman compression

is especially interesting for WI-BMIs.

Firstly, this is because Huffman encoders can be static. Static encoders are pre-trained offline on rep-

resentative data and do not adapt to the data they are compressing. As such, if the histogram of the

to-be-compressed data can be accurately estimated a priori, a static encoder can be used. Relative to

an adaptive encoder, this dramatically reduces the required operations and hardware resources because a

SH encoder can be implemented using only a few LUTs. An example of Huffman encoder LUTs given in

Table 2.2 (a-b), where compression is achieved by giving shorter codewords to more likely symbols. For ex-

ample, given the codeword lengths and frequencies in Table 2.2 (b), the average encoded length of a symbol

will be 0.8× 1 + 0.1× 2 + 0.07× 3 + 0.03× 3 = 1.4 bits, instead of the 2 bits that are normal for the binary

representation of 4 values (e.g. codewords of 00, 01, 10, 11).

Secondly, each symbol is represented by a unique, fixed codeword. In particular, Huffman coding is a

prefix coding. This means that no codeword is the prefix of another codeword. An advantage of this is that

multiplexed channels can use different encoders. As long as the sequence of channel-encoder pairs is correctly
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Table 2.2: Demonstration of multiplexed Huffman encoding. (a) Huffman encoder a, trained on equal

probabilities. (b) Huffman encoder b, trained on skewed probabilities. (c) Pairings of encoder to symbol

sequence to channel. (d) Each symbol can be assigned to any encoder, and the sequence can be fully decoded

if the pairings are known. This allows channels to use appropriate encoders from a selection.

(a) (c)

Encoder a Huffman Table Symbol - Encoder - Channel pairings

Symbol Frequency Huffman Code 1st Symbol Encoder a Channel 1

0 0.25 00 2nd Symbol Encoder b Channel 2

1 0.25 01 3rd symbol Encoder b Channel 3

2 0.25 10

3 0.25 11

(b) (d)

Encoder b Huffman Table Encoding and Decoding Signal

Symbol Frequency Huffman Code

Multiplexed signal

(channel 1, channel 2,

channel 3)

3; 0; 1

0 0.8 1 Encoded mult. signal 11101

1 0.1 01

Decoded mult. signal

From encoder a: 11 = 3;

From encoder b: 1 = 0;

From encoder b: 01 = 1;

2 0.07 001

3 0.03 000

known by the decoder, the sequence can be fully decoded. Considering that multi-channel neural recordings

are often multiplexed and can have differently shaped histograms, this can be of great benefit. For example,

each channel could use its own encoder. Alternatively, a handful of static Huffman encoders could be placed

on-implant. The channels could then be assigned to different encoders based on which offered maximum

compression.

As such, Huffman encoders are very simple encoders which offer a lot of flexibility, and are generally well-

suited to the WI-BMI environment. An example scenario with two multiplexed Huffman encoders, encoding

different channels of neural data, is given in Table 2.2. Channel 1 uses encoder a, channel 2 uses encoder

b, etc. (Table 2.2 (c)). The multiplexed signal can be decoded if the symbol-channel-encoder couplings are

known by the decoder (Table 2.2 (d)).

2.4.1.2.2 Arithmetic encoding

Another form of compression, considered optimal for multi-symbol compression, is Arithmetic encoding. It

works by encoding an entire string of data with a single codeword, based on the probability distribution of

each element of the string. An example of an Arithmetic encoder is given in Fig. 2.4.

In terms of hardware efficiency, it can suffer as it typically requires multiple multiplication modules in

floating point. However, fixed-point versions that require only a single multiplier have been proposed [71].

They are an interesting avenue for WI-BMI on-implant compression.

2.4.1.2.3 Lempel-Ziv encoding

Lempel-Ziv encoding is another commonly used lossless compression technique. It involves real-time building

of a dictionary of incoming symbol-sequences.

26



Figure 2.4: Example of Arithmetic encoding.

If a measured symbol-sequence already exists in the dictionary, its codeword is sent out. If it is not

already in the dictionary, it is added to the dictionary. A binary example is given by:

AABABBBABAABABBBABBABB

The data is scanned, and partitioned into novel sequences. ‘A’ is the first novel sequence, and so is stored

in the dictionary. ‘AB’ is the next novel sequence, followed by ‘ABB’, followed by ‘B’, etc.

A | AB | ABB | B | ABA | ABAB | BB | ABBA | BB

Each sequence is then stored in the dictionary as a codeword that builds on the earlier dictionary entries.

‘A’ is the first sequence, so it is encoded in binary as ‘0’ with position 1. Since it is an individual symbol,

we add a reference ‘x’ to the beginning, encoded as ‘00’. ‘AB’ consists of reference ‘A’, which is stored in

the dictionary in position 1, and ‘B’, which is new novel element as so is encoded in binary as ‘1’. Therefore

‘AB’ is encoded as (position of reference A) + (binary representation of ‘B’) = ‘11’, as position 2 (10 in

binary). Importantly, the position is encoded with g bits, where g = ceiling(log2(position)). This process is

repeated for every element of the sequence, given in Table 2.3. The final encoded sequence is then:

0001110100101001011100101100111

There are many different implementations of the Lempel-Ziv encoding, but they all require a larger

amount of memory. This is because building the dictionary in real time requires a large amount of memory,

as well as processing power to continuously access the RAM. As such, they are not appropriate for extremely

hardware restrained environments like WI-BMIs. Therefore, they were not further considered in this thesis.

2.4.2 Lossy Compression

The second form of compression is lossy compression, i.e. feature extraction. It consists of compressing

data by removing information that is assumed to not be of interest. For example, downsampling data is a

form of lossy compression. Similarly, reducing the sampling resolution is a form of lossy compression. In
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Table 2.3: Example of Lempel-Ziv encoding dictionary.

Position 1 2 3 4 5 6 7 8 9

Sequence A AB ABB B ABA ABAB BB ABBA BB

Numerical

Representation
xA 1B 2B xB 2A 5B 4B 3A 7

Code

(Position of

reference +

new symbol)

00+0 1+1 10+1 00+1 010+0 101+1 100+1 011+0 0111

neuroscience, it is typical to extract the single-unit FRs by highpass filtering the broadband signal, applying

some threshold or wavelet transform for spike detection, applying Principal Component Analysis (PCA) on

the spike shape, and finally performing clustering of spike shapes to sort each spike to a putative neuron.

This another form of lossily compressing the broadband signal.

More generally, intracortical electrophysiological features come in 2 major classes: data-agnostic and

data-adaptive methods. Data-adaptive methods obtain samples and or/statistics on the data, and adapt

their transform to the data. A classic example is PCA, which is a common form of pre-processing neural data.

It is used in spike-sorting, as well as during dimensionality reduction of spike trains. It works by losslessly

projecting the inputted features into a new linear-algebraic basis, where the outputted principal components

are orthogonal to each other and ranked by how much of the variance of the inputted features they explain. A

means of lossy data compression is then to only communicate out a small number of the principal components

that explain most of the variance. However, it is currently infeasible to compute PCA on-implant in WI-

BMIs, because of the significant amount of required memory and matrix multiplications during the eigenvalue

decomposition. Other well known data-adaptive methods include Independent Component Analysis (ICA)

and T- distributed Stochastic Neighbor Embedding (t-SNE), which are both also computationally intractable

in WI-BMIs.

Data-agnostic methods involve performing the same transform on the data, regardless of what the data

turns out to be. As such, they are typically far more hardware-efficient than data-adaptive methods. In

intracortical BMIs, data-agnostic feature extraction can be further split into two major classes: LFP and EAP

features. This is because the raw broadband extracellular signal can be split into two major components [28],

the LFP and the EAP, both of which are sparse and shown in Fig. 2.5.

2.4.2.1 Local Field Potentials

LFPs consist of the lowpassed broadband at 100-300Hz, and are believed to result from the sum of extracellu-

lar currents and spike activity in the vicinity of the electrode [72,73]. While low bandwidth, easy to measure

and chronically available, it has not been shown to have as good decoding performance as higher-frequency

features such as those derived from the EAP [16].

2.4.2.2 Extracellular Action Potential

The EAP consists of the approx. 300Hz highpassed broadband. It is highly sparse, given the infrequency

of neural spiking events which are believed to contain most of the interesting information in neural signals.

Most of what makes up the EAP signal is spikes of varying amplitude combined with thermal and electronics

noise [66,74,75]. To remove the uninteresting noise, many different EAP compressions have become common,

e.g. SUA, MUA and ESA. These are shown in Fig. 2.5.
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2.4.2.3 Single Unit Activity

SUA consists of measuring the spike firing times of individual neurons in the vicinity of the electrode. It

is obtained by identifying neurons firing in the EAP, detectable via a sudden spike in the signal. This is

often done via setting a threshold in combination with a nonlinear energy operator, and if the threshold is

exceeded then a spike is considered to have occurred. An alternative method is template matching, often

done with custom wavelets. Once the spikes in a recording have been detected, the spike shapes are then

clustered, where similarly shaped spikes are assumed to originate from the same putative neuron. This is

often automated with specialized software, such as Wave clus [76]. Spike sorting requires daily re-calibration

of intracortical BMIs due to micro-motions between the electrodes and neurons that cause drift in spike

shape. However, the re-calibration times have gotten to as low as 37 seconds [77].

SUA recordings are generally held to have the highest information content of intracortical neural signal

representations. This is because the contributions of individual neurons to the overall signal are explicitly

identified [30]. However, the SUA encoding often deteriorates in quality over the course of a few months after

implantation of the electrodes. This is due to the foreign body response where the electrodes are encapsulated

by fibrous scar tissue [78]. This scar tissue physically distances the electrodes from active neurons, acting as a

lowpass filter and making spike sorting difficult. While this can be mitigated by research into material science

and non-invasive electrode insertion methods, so far long-term recordings of single-units have been difficult

to achieve in free-moving animals [78]. Additionally, SUA is considered to be prohibitively computationally

expensive to compute on-implant in WI-BMIs without a computer-to-implant downlink [66, 79]. As such,

SUA is highly informative, but unstable and likely too computationally expensive for WI-BMIs. There has

been work to extract and compress the spike shapes to send them off-implant for sorting [80,81].

2.4.2.4 Multi Unit Activity

MUA is similar to SUA, however the spikes are not sorted. The difference is that one treats all spikes on

the same electrode as originating from the same putative neuron. Although evidence is somewhat mixed,

it is generally believed that MUA gives very similar decoding performance to SUA [16,82–84]. By reducing

the broadband to only the spikes in either SUA or MUA, significant de facto compression is achieved, along

with power savings [74, 79].

Most modern WI-BMI systems target the MUA signal [74,77,84,85]. This is likely due to its well under-

stood and sparse nature, ease of measurement, and high BDP with a standard BR of at most 1000 bps/channel

[64, 74, 86, 87]. It has also been reported that the MUA signal can also be reliably extracted using very few

hardware resources and a very small power budget [88]. Unlike the SUA signal, the MUA signal has been

reported to be chronically available, as spike detection is significantly more robust than spike sorting.

Since the MUA signal is the premier signal in modern WI-BMI, a significant portion of this thesis will

investigate methods for its compression. The typical MUA BR of 1000 bps/channel is because the MUA

signal is typically sampled at 1 kHz, at 1-bit sampling [74, 86]. Alternatively said, the spikes in the MUA

signal are binned at a 1ms Binning Period (BP), and the binned values are thresholded at a maximum value

of 1. This 1ms resolution is because spikes typically last some 2ms [66], and so 1ms is considered lossless

in terms of temporal resolution. However, increasing the MUA BP for data compression is an area of active

investigation for intracortical BMIs [74], and will be extensively investigated in this thesis.

2.4.2.5 Entire Spiking Activity

ESA, sometimes also confusingly referred to as MUA, consists of rectifying the EAP and then lowpass

filtering it at ∼50Hz. This gives an envelope of unsorted spiking activity, and has been found to offer high
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Figure 2.5: Typical BMI data processing and compression flow, with common extracted features / lossy

compressions of intracortical broadband data. The numerical values beneath the signals give approximate

BRs per channel for that signal. Figure co-created with Zheng Zhang (Z.Z.), co-author of [59], where this

figure is taken from.

decoding performance [16, 63, 89, 90]. While SUA and MUA involve the detection of binary events, ESA

is more analogue. It is underexplored as a signal, but sampling rates as low as ∼1000Hz (with a Nyquist

rate of 24Hz) and sampling resolutions of 16 bits/sample offered exceptional decoding performance [16]. By

comparing the BDP of SUA, MUA, LFP and ESA signals, across a wide range of decoding algorithms, it was

found that the ESA signal had the highest BDP [16]. Furthermore, the ESA signal is chronically recordable,

outperforming the LFP, SUA and MUA signals in terms of reduced loss in decoding quality as a function

of time [16]. For chronically implanted intracortical BMIs, the ESA is thus an interesting signal. It may be

that the sampling rate and resolution could be significantly reduced without degradation in the decoding

performance. Non-linear quantisation, and lossless compression of ESA such as in [69], may offer further

reductions in BR. This will also be explored in this thesis.

2.5 Neural Decoding

2.5.1 Supervised Machine Learning

Motory BMIs rely on decoding neural activity into behavioral signals. This is done using machine learning.

There are three major different kinds of machine learning: supervised learning, unsupervised learning, and

reinforcement learning. Which to use depends on one’s problem and available data. BMI decoding is typically

done using supervised machine learning, since the data is clearly labelled as either neural or behavioral.

Specifically, BMI decoding is an example of time-series prediction, which is a form of regression. This is

because BMI decoding consists of predicting the behavioral time-series output from neural time-series input.

To do so, firstly, one splits the neural and behavioral data, with matching timestamps, into “training”

and “testing”. The training data will be used to train the algorithm. The testing data will then be used to

test the performance of the final trained application. The second step is to split the training data, again,

into what is a bit confusingly referred to as the training and validation data. For the sake of clarity, here we

will refer to the data from the 1st split as train1 and test, and the data from the 2nd split as train2 and

validation. Fig. 2.6 gives an example of supervised machine learning data flow to decode neural data into

behavioural data.
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Figure 2.6: Supervised machine learning data flow for BMI decoding problem. corrcoef: Pearson correlation

coefficient, here used as the Behavioral Decoding Performance (BDP) metric. Red: Neural data, Blue:

Behavioral data; Green: Trained decoder; Grey: Parameters.

The reason for the train2 and validation split is because machine learning / feature extraction al-

gorithms can have a large number of parameters, and the workflow involves determining which parameters

will perform the best for the given data. The parameters of a specific machine learning algorithm, e.g. the

number of neurons in a Neural Network layer, are referred to as hyper-parameters. Decoder validation,

during training, is used to find decoder hyper-parameters and feature extraction / algorithm parameters

that give the best decoding result. This is done by trying out many different parameters in parallel when

training using the train2 data, and comparing the decoded results to the ground truth validation data.

The best-performing validation parameters are then tested on the separate, so-far-untouched testing

data. The reason validation is done is to avoid what is called “overfit”. This is because there may be noise in

the train1 data that the chosen parameters are over-fitting to, meaning they fit to specific noise in the data

and not to general features that will perform well across datasets. That is why we have separate decoder

validation and testing: testing gives us an unbiased estimate of our decoder performance.

To mitigate overfit during validation, it is common to use something called k-fold cross-validation. The

idea is to split up the train1 data into k (e.g. 10) non-overlapping segments. Then, for each of the k

parallel runs, one of the k segments is used as the validation data, and the other (k-1) segments are used

as the validation data. For each of the k runs, you try all of the different parameter combinations. You

then select the parameters that on average performed best across the k runs. This gives a less biased, more

general estimate of what are good parameters, as this is less likely to overfit to noise in any 1 random

train2/validation split. This is not represented in Fig. 2.6, and would correspond to the 2nd data split.

A 80-20% data split for train1-testing is common, but arbitrary, and will vary by application.

2.5.2 Neural Decoding Algorithms

Significant work has been done on analysing the performance of different decoders for motory BMIs. In

particular, [16,91] analysed the performance of various classical and Deep Learning algorithms for decoding

from various neural features, i.e. SUA, MUA, LFP and ESA. In general, DL decoders such as Long-

Short Term Memorys (LSTMs) [92] and Quasi-Recurrent Neural Networks (QRNNs) outperform classical

decoders such as Kalman filters, Wiener filters, and Wiener Cascade Filter, but take significantly longer
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to train. However, of all classical decoders, Wiener Cascade Filter performed the best. As such, given

the significantly shorter training times, this thesis made significant use of Wiener Cascade Filter for neural

decoding.

2.5.3 Behavioral Decoding Performance

Throughout this thesis, the X and Y-axis cursor velocities in hand reaching tasks were used as the observed

behavioral data. The BDP is defined in this thesis as the across-axes average Pearson correlation coefficient

r between the predicted and observed X and Y-axis velocities. The BDP metric is given in Eq. 2.3:

BDP =

∑n
i=1(V xo

i −
¯V xo

i )(V xp
i −

¯V xp
i )

2
√∑n

i=1(V xo
i −

¯V xo
i )

2

√∑n
i=1(V xp

i −
¯V xp

i )
2

+

∑n
i=1(V yoi −

¯V yoi )(V ypi − ¯V ypi )

2
√∑n

i=1(V yoi −
¯V yoi )

2

√∑n
i=1(V ypi − ¯V ypi )

2

(2.3)

where V xo
i and V xp

i are the observed and decoder-predicted X-axis cursor velocities at sample i, V yoi and

V ypi are the equivalents for the Y-axis, and n is the number of samples in the recording.

The Root Mean Squared Error (RMSE) is also a common BDP metric. However, this thesis has not made

use of it, since it does not provide any intuitive understanding about the mismatch between the predicted

and observed output. Furthermore, the two could be perfectly correlated, but scaled differently, and the

RMSE would tell us that the signals are mismatched when it is merely a question of gain. As such, this

thesis uses the Pearson correlation coefficient as the unique BDP metric.

2.5.4 Behavioral Temporal Resolution

Another metric to consider during decoding is BTR. The decoder may achieve high BDP, but if the decoder

only outputs decoded hand velocities at a BTR of 10 s intervals, that is unacceptable for most decoding

applications. BTRs in the literature vary, but a BTR 100ms or less is typical [64, 74, 77, 86, 87]. In [93], it

was shown that the mean human reaction time in 120 healthy 18-20 medical students was larger than 220ms

for both auditory and visual stimuli. Therefore, it may be that a BTR of 100ms may be well tolerated for

motor decoding applications in terms of delay in user experience.

However, there is some concern that a BTR of 30ms or smaller should be prioritised, since it can improve

the fluidity of the user feedback loop. A 100ms pause each time a cursor moves is not a fluid experience

for the user, and so there is good reason to believe that a smaller BTR should be prioritised. However, if

smoothness of the user feedback loop is what needs to be prioritised, it may be that adding a smoothing

function to a controlled cursor, for example, may solve the problem, enabling larger BTRs. The ideal BTR

for hand kinematics has not been identified in the literature, and so this thesis will treat the ideal BTR

agnostically, while remaining below 100ms.

2.6 ASIC vs. FPGA

ASIC designs are optimal in terms of minimising power consumption and chip area. However, the design

process of FPGAs is significantly less expensive and easier compared to that of ASICs. FPGAs also benefit

from increased flexibility for programming, which accommodates rapid testing of algorithmic changes better.

FPGA results are also a good approximation of the ultimate ASIC design [57, 58, 94]. As a result, it is
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typical for researchers to use FPGAs to validate the ASIC’s performance before full development of the

ASIC [58,95].

That is the approach adopted in this thesis: we consider systems implemented in reconfigurable hardware

FPGA. In particular, we make extensive use of the Lattice ice40LP FPGA board as an example target for

our WI-BMI. This is because it is an ultra-low power, high-performance FPGA with 40 nm technology and

small BGA package that is ideal for the thinnest devices like implantable BMIs. The Lattice ice40LP1K in

particular is an ultra-low-power FPGA board with 1280 logic cells and sixteen 4kbit bRAM memory blocks.

Therefore, to determine the power consumption of the different algorithms considered throughout this

thesis, the algorithms were simulated on the Lattice ice40LP. This simulation was done to assess the overhead

on power and resources brought by compression to guide our configuration selection. All programs are written

in Verilog, simulated on Mentor Modelsim Lattice Edition, and synthesized with iCECube 2020.12.

The resource occupation was obtained from the Placing Summary of ICEcube2, and indicates the number

of LUTs and FFs used. To get the power consumption, it is not practical, given the massive parameter space,

to download all the different configurations to the FPGA board and measure their power consumption

individually. The iCEcube2 power estimator was used to estimate the processing power to reduce the

assessment load. Although the estimation is not the real power consumption, it is accurate enough for

estimating the effect of different configurations and guiding the selection process.

Ultimately, any design for WI-BMIs should be implemented in ASIC hardware, for reductions in power

and chip area [57,58,94]. As such, the FPGA results throughout this thesis should be interpreted as guiding

the selection process for an eventual ASIC design. The FPGA power and resource occupation simulation

results are sufficient to allow us to make a decision on a well-performing FPGA system. However, when

interpreting the FPGA results to guide the ASIC architecture, some nuances should be observed.

The four metrics that we judge our compression work on are power consumption, hardware resources,

behavioral decoding performance and temporal resolution. The key discrepancy between ASIC and FPGA

will be the trade-off between processing and communication power, and so the results of this thesis should

be read with that in mind.

As shown in Fig. 2.3, the single largest aspect of power consumption is power transfer loss. It is not

obvious how that should be accounted for: should it be considered as part of the heating budget, or not?

The heating via transfer loss is significantly more diffuse than the heating caused by the on-implant power-

consumption, and so how to account for it in the power budget is not clear. In either case, we can be

very confident that the communication power reduction from FPGA to ASIC is less impressive than the

reduction in processing power. In Table 2.1, we see that ASIC solutions are much more power efficient for

communication than FPGA solutions. However, these measurements were made outside of the lossy neural

medium, whereas it is likely that a minimum communication power will be needed to traverse the lossy

medium. Given that, the difference between FPGA and ASIC communication energy may be quite small, as

the dominating factor in communication power is hardware-independent. As such, it is likely that the role

of communication power in ASIC will be even more important than shown for FPGAs in Fig. 2.3.

As such, when implementing an algorithm in ASIC, it would likely be best to prioritize lowering the BR,

and therefore communication power, even at the expense of lowering the processing power. Processing power

in ASIC is likely to be negligible, and therefore more-hardware intensive solutions, if they give compression

gains, are likely to be more attractive in ASIC than they would be in FPGA.

As discussed in Section 2.3, this preference for lowering communication power over processing power

should also true to a lesser extent when interpreting the FPGA results in this thesis. The 20 nJ/bit FPGA

communication energy used throughout this thesis is a very low estimate of what is achievable in vivo. There-

fore, when considering power efficiency, even in FPGA one should prioritize more significant compression

over lowering processing power. We use a low estimate of communication power to be conservative about
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the utility of hardware-efficient compression in WI-BMIs.

2.7 Datasets

To get a broad sample of neural recording conditions, five publicly available intracortical recording datasets

were used throughout this thesis. These are summarised in Table 2.4, and further detail are given in Appendix

A.
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Table 2.4: Dataset summaries.

Dataset
Neural

data type

Species, electrode

type and brain region
Details Behaviour

Flint [64] SUA

Rhesus macaque monkey

Utah array

M1

One subject

12 recordings across 5 days

96 channels

Recording lengths

(quartiles, s):

597, 604, 630

Free-reaching hand task

Continuous data stored

Brochier [96] SUA

Rhesus macaque monkeys

Utah array

M1 and PMv/PMd

Subjects N and L

Single session recordings

96 channels

Recording lengths (s):

N: 1003

L: 709

Hand reaching task

Target stored

Sabes

Processed [65]
SUA

Rhesus macaque monkeys

Utah array

M1 and S1

Subjects Indy and Loco

37 recordings for Indy

across 10 months

10 recordings for Loco

across a month

96-192 channels

Recording lengths

(quartiles, s):

Indy: 472, 524, 816

Loco: 1771, 1928, 2384

Free-reaching hand task

Continuous data stored

Sabes Raw

Broadband [65]
Broadband

Rhesus macaque monkeys

Utah array

M1

Subject Indy

30 recordings

across 10 months

96 channels

Recording lengths

(mean, s):

Indy: 520

Free-reaching hand task

Continuous data stored

Jackson

and Hall [97]
Broadband

Rhesus macaque monkeys

Microwire array

M1

Subjects Dusty, River

and Silver

64 recordings

10-24 channels

Recording lengths

(quartiles, s):

364, 396, 473

Not Accessed

M1: Primary Motor Cortex; PMv: Ventral Premotor Area; PMd: Dorsal Premotor Area; S1: Primary Somatosensory Cortex;

Utah array: A type of 100-channel microelectrode array (Blackrock Microsystems, Salt Lake City, UT).
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Part I

Compressing Multi-Unit Activity
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Chapter 3

Static Huffman Compression of

Intracortical Neural Signals

This chapter addresses the need for hardware-efficient compression of neural signals in WI-BMIs.

This chapter introduces the use of Static Huffman (SH) encoders to solve this problem. It inves-

tigates the compression performance of SH encoders for compressing LFP, EAP and ESA signals

at various sampling resolutions.

This chapter has been adapted from the following published article:

Oscar W. Savolainen and Timothy G. Constandinou. “Lossless compression of intracortical

extracellular neural recordings using non-adaptive huffman encoding.” 2020 42nd Annual Inter-

national Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,

2020. [98]

3.1 Background

SH encoders are an interesting lossless compression technique for WI-BMIs. They have not been explored

previously in WI-BMIs, but have significant benefits (refer to Background, Section 2.4.1.2.1 for details).

As is typical in lossless compression, they can also be combined with various pre-processing techniques to

improve the compression.

This chapter describes a preliminary study to show that intracortical signals could be effectively com-

pressed with SH encoders [98]. Four different SH paradigms were considered: 1st and 2nd order SH encod-

ing [70], Delta SH encoding, and LNNT SH encoding [69]. Maximum codeword-length limited versions are

also considered to protect against overfit to training data. The considered intracortical signals are the EAP

signal, the ESA signal, and the LFP signal. Sample resolutions of 5 to 13 bits are considered.

The EAP, ESA and LFP signals were considered in this chapter because they have either been used

directly for Behavioral decoding [90] [99], or for the extraction of other signals often used in Behavioral

decoding, e.g. SUA [66], MUA [99]. Broadband signals were not considered. This is as they can be more

effectively broken into their LFP and EAP components [28]. MUA signals require more pre-processing than

these signals for effective compression, and so MUA was not considered in this preliminary study, and will

be dealt with in the following chapters.

This chapter also builds on the work done in [69] and [100] to expand the application of LNNT to
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Figure 3.1: Histogram of values used to scale segments prior to concatenation. The values are centered at

100 µV.

different intracortical neural signals at different sample resolutions. It also pioneers the use of limiting the

maximum-codeword length in SH encoders via clipping of the probability distribution.

3.2 Methods

All work was done in MATLAB R2019A, using neural recording data from Andrew Jackson and Thomas

Hall [97], detailed in Table 2.4.

3.2.1 Signal Pre-processing

All the neural signals were produced from the same intracortical extracellular neural recordings. The record-

ings originated from [97], and were taken from NHP M1 (Animals: Dusty, Silver and ‘Ukiah’). The recordings

consisted of Broadband data sampled at 24.4 kHz at 16-bit precision using microwire arrays. In this work,

50 s segments from 63 channels across 25 recordings were concatenated together to produce a single recording

of length 3150 s. This is so as to represent a wide range of microwire recording conditions.

3.2.1.1 Scaling signals

LFPs and EAP band signals normally range from 10µV to 1mV in amplitude [67]. As such, the peak-to-peak

amplitudes of neural signals vary by roughly 2 on a base-10 logarithmic scale. Prior to concatenation, each

segment’s amplitude was individually scaled to a random value from a normalised logarithmic distribution

(µ = 1, σ = 1). This ensured that the varying amplitudes observed in neural recordings were realistically

represented in the used data. The largest scale value was 104 times the smallest. A histogram of the scaling

values is given in Fig. 3.1. No other processing was performed on the Broadband data.

3.2.1.2 EAP

The EAP signal was obtained by highpass filtering the Broadband signal at 300Hz. It was then lowpass

filtered at 3.5 kHz to avoid aliasing, and then downsampled to 8.1 kHz. EAP signals sampled at 7 kHz have

been found to enable SUA extraction [66]. Thus, the EAP signal was downsampled by an integer factor of

3 from 24.4 kHz to avoid any distortion via interpolation.
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3.2.1.3 ESA

The ESA signal was obtained by taking the absolute value of the EAP signal, and then lowpass filtering the

result at 50Hz. The ESA was then downsampled to 200Hz.

3.2.1.4 LFP

The LFP was taken by lowpass filtering the Broadband at 300Hz, and downsampling to 1.2 kHz.

3.2.1.5 Miscellaneous

All filters used were digital 3rd order Butterworth FIR filters, designed using the designfilt function. The

signals are shown in Fig. 3.2. The first 30% of the signal was used as training data and the remaining 70%

as testing data. The training data was chosen as to be somewhat mismatched with the testing data. This is

so as to observe the encoders’ performances in unexpected environments.

The sample resolution b was varied between 5 and 13 bits inclusive for all of the signals. Therefore,

post-processing, each signal was scaled to between 1 and 2b at its given resolution b so that each sample

value was an integer.

3.2.2 Training SH encoders

The dynamic range of the encoders were set to equal that of the concatenated signal. This is practically

unrealistic due to saturation concerns. However, this was done to avoid artificially boosting the Compression

Ratio (CR) by compressing empty symbol-space, as is unfortunately common with CR measurements. As

such, this chapter’s key findings are the performances of the encoders relative to eachother, and relative to

the ideal CRs gained from the entropy of the testing data.

3.2.2.1 1st order encoder

In this work, 1st order SH encoding is based on the 1st order Shannon entropy. This is representative of

the sample values’ frequency of appearance in the sequence [15]. The frequencies were calculated for each

symbol α within the training data x, where α ∈ Z and 1 ≤ α ≤ 2b.

3.2.2.2 Delta encoder

Delta 1st order SH encoding works along the same principle as 1st order encoding. The only difference is

that the data was delta-sampled prior to encoding.

3.2.2.3 2nd order encoder

2nd order SH encoding is based on the conditional probabilities between adjacent samples. This exploits

redundant information in the time domain. As such, it gives a codeword to the current sample that is

dependent on the value of both the current and previous sample, i.e. a 1st order Markov source.

The probabilities of any symbol β following any symbol α within each sequence x were calculated, where

{α, β} ∈ Z and 1 ≤ α, β ≤ 2b. A set of 2b Huffman dictionaries were then created, one for each symbol in α,

with 2b codewords each, one for each symbol of β. The same codewords are used within each α dictionary,

but represent different β values.
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Figure 3.2: Produced signals, with amplitude normalised between 0 and 1. Blue represents the training data

and black represents the testing data.

3.2.2.4 LNNT encoding

The LNNT prediction error erk is a linear sum of the current sample value and past h values in the training

sequence x, using weights W :

erk =
h∑

i=1

Wixk−i (3.1)

The signal can then be reconstructed off-implant:

yk =
h∑

i=1

yk−iWi − erk (3.2)

The LNNT predictor weights were trained using h ∈]1 : 10[ past samples, and MATLAB’s trainNetwork

function. The LNNT predictor was paired with a 1st order Huffman encoder to compress the prediction

error. The LNNT predictor was trained using only ∼ 1 s of the training data, and with 2000 epochs [69].

The rest of the training data was fed through the predictor. Then the resulting er signal was used to train

the Huffman encoder.

3.2.3 Maximum codeword length limitation

A significant issue with pre-trained encoders is overfit to training data. In the worst case, with a large

dynamic range, if a value does not occur in the training data it can be given a very large codeword. If

it occurs sufficiently often in the testing data, the entire compression will be ineffective. A way to defend

against overfit is to limit the maximum codeword size. This gives non-ideal codeword sizes based on the

training data, but mitigates the effects of mismatch between training and testing data. As such another set

of encoders was trained, where the maximum codeword length was limited to c = 5 bits of the unencoded
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word length. For example, a sample resolution of 5 bits would have a maximum encoded codeword length of

10 bits. The choice of c was predicated on work done in [101], which suggests that the average compressed

word length increases at most by R ≈ 1/(2c) bits.

However, this seems empirically to not be true. R seems rather to represent the amount of probability

that is transferred across the distribution in the worst case. As such, the choice of c is perhaps arbitrary and

warrants further research. The codeword length was limited by assigning each probability a minimum value

of 1/(2b + c), and subtracting the sum of added probabilities from the most occurring value. In the worst

theoretical case this was R ≈ 0.03, deemed acceptable. After the distributions were edited, the training of

the encoders was as in Section 3.2.2.

3.3 Results

The CRs of the encoders were then tested with the testing data, where in each case the testing data was

pre-processed in the expected way. Additionally, the encoders’ successful decompression of the compressed

testing data was verified. The achieved CRs for each signal are given in Tab. 3.1 (p. 4). They are dependent

on the sample resolution, compression method, and in the case of LNNT for the number of past samples

used. The CRs were obtained by dividing the product of the original sample resolution and the length L of

the sequence by the length of the encoded signal.

Also included in Tab. 3.1 is the correlation between h and the resulting LNNT CR. It is only included if

the value was found to be statistically significant (p < 0.05). Finally, the ideal CRs derived from the testing

data entropies are given for each case (Ideal CR = b/Entropy). They are not given for LNNT encoding, due

to unknown ideal weights for each case. These give the ideal performance of the encoders where the testing

data is compressed down to its entropy. This ideal performance depends on the encoding type, e.g. Ideal

2nd order SH encoding uses the 2nd order Shannon entropy, Ideal Delta 1st order SH encoding uses the 1st

order Shannon entropy of delta-sampled data, etc.

The results indicate that, firstly, that maximum codeword-limited encoders universally closely match

their regular counterparts at lower sample resolutions, and outperform them at higher sample resolutions.

However, the sample resolution of divergence varies by encoding method and signal. The stronger perfor-

mance of maximum codeword-limited encoders is likely due to their protection against overfit, which is a

greater problem at higher sample resolutions due to a larger dynamic range. Maximum codeword-limited

encoders often have CRs close to the ideal based on the testing signal’s entropy. This highlights the value

of overfit-protection in pre-trained encoders.

Secondly, we find that different encoders work best for different signals and sample resolutions. For

example, LFP signals have a larger amount of low-frequency content, meaning the previous value will be

more predictive of the current value. Accordingly, the clipped Delta 1st order SH, Delta 1st order SH and

clipped 2nd order SH encoders performed on average the best for the LFP signal. However, at higher sample

resolutions and with signals with higher frequency content (e.g. ESA, EAP), encoders that rely on the

previous sample value to predict the current value, e.g. clipped and non-clipped 2nd order SH encoding,

perform less well than their peers.

3.4 Discussion

3.4.1 Hardware Efficiency of 2nd order SH encoding

Having 2b dictionaries, each with 2b codewords, is untenable in resource constrained environments such

as WI-BMIs. However, there is significant redundancy within these codewords between dictionaries, and
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Table 3.1: Achieved and Ideal Compression Ratios (CR) for Lossless Static Huffman Encoders Applied to

Different Intracortical Neural Signals, at Various Sample Resolutions.

Signal Bits Compression Ratio (CR)

SH1 CSH1
Ideal

SH1
DSH1 CDSH1

Ideal

DSH1
SH2 CSH2

Ideal

SH2
LNNT 1 LNNT 10

Corr

(h,CR)
CLNNT 1 CLNNT 10

Corr

(h,CR)

LFP 5 3 3 3.2 4 3.9 6 4 4 6.8 1.7 1.7 x 1.5 1.6 x

” 6 2.5 2.5 2.6 4 3.8 4.6 3.9 4 5.1 2 2.2 x 1.9 2.2 x

” 7 2.1 2.1 2.2 3.4 3.3 3.5 3.1 3.5 3.8 2.2 2.4 x 2.1 2.4 x

” 8 1.8 1.9 1.9 2.6 2.6 2.8 2.2 2.9 3 2 2.1 x 2 2.1 x

” 9 1.6 1.7 1.7 2.2 2.2 2.4 1.3 2.4 2.6 2 2.1 x 2 2.1 x

” 10 1.5 1.6 1.6 1.9 2 2.1 0.62 2.1 2.2 1.9 1.9 x 2 2 x

” 11 1.3 1.5 1.5 1.5 1.9 1.9 0.21 1.8 2 1.5 1.6 0.74 1.8 1.8 x

” 12 0.99 1.4 1.5 1.1 1.7 1.8 0.06 1.6 1.9 1.1 1.2 0.65 1.7 1.7 x

” 13 0.65 1.4 1.4 0.68 1.6 1.7 0.02 1.4 1.8 0.68 0.81 0.89 1.6 1.6 x

EAP 5 3.2 3.1 3.7 2.9 2.8 3.2 3.3 3.3 4.3 1.6 1.6 x 1.5 1.5 x

” 6 2.6 2.6 2.7 2.4 2.3 2.5 2.7 2.8 3 1.7 1.9 x 1.7 1.8 x

” 7 2.1 2.2 2.3 1.9 2 2.1 2.2 2.4 2.5 1.6 1.8 x 1.7 1.8 x

” 8 1.9 1.9 2 1.7 1.8 1.9 1.7 2 2.1 1.6 1.7 0.77 1.7 1.7 x

” 9 1.7 1.7 1.8 1.6 1.6 1.7 1.1 1.8 1.9 1.5 1.6 0.89 1.6 1.7 0.77

” 10 1.5 1.6 1.6 1.4 1.5 1.6 0.62 1.7 1.8 1.4 1.5 0.94 1.5 1.6 0.82

” 11 1.3 1.5 1.6 1.2 1.5 1.5 0.26 1.5 1.7 1.2 1.3 0.94 1.5 1.5 0.87

” 12 1.1 1.4 1.5 0.94 1.4 1.5 0.08 1.4 1.6 0.93 1 0.9 1.4 1.4 0.89

” 13 0.78 1.4 1.4 0.61 1.4 1.4 0.02 1.3 1.5 0.6 0.63 x 1.4 1.4 0.93

ESA 5 2.2 2.2 2.3 2.3 2.3 2.4 2.2 2.6 3.1 1.5 1.3 -0.91 1.5 1.4 -0.86

” 6 1.7 1.8 2 1.9 1.9 2 1.7 2.3 2.6 1.2 1.1 -0.76 1.3 1.2 -0.76

” 7 1.4 1.7 1.8 1.6 1.7 1.8 1.1 2 2.2 1.2 1.4 x 1.4 1.5 x

” 8 1.2 1.6 1.7 1.4 1.6 1.7 0.56 1.8 2 1.1 1.3 x 1.4 1.6 x

” 9 0.86 1.5 1.6 1.2 1.5 1.6 0.22 1.6 1.8 0.79 1.2 0.85 1.4 1.5 0.81

” 10 0.56 1.4 1.5 0.91 1.4 1.5 0.07 1.4 1.7 0.54 0.8 0.9 1.4 1.5 0.86

” 11 0.31 1.3 1.4 0.59 1.4 1.4 0.02 1.2 1.7 0.31 0.54 0.91 1.3 1.4 0.82

” 12 0.15 1.3 1.4 0.32 1.3 1.4 0.01 1.1 1.7 0.16 0.28 0.97 1.3 1.4 0.79

” 13 0.07 1.3 1.3 0.13 1.3 1.3 0.00 0.95 1.8 0.08 0.13 0.98 1.3 1.3 0.8

SH1: 1st order Static Huffman encoding; DSH1: Delta-sampled 1st order Static Huffman encoding;

SH2: 2nd order Static Huffman encoding; The C-prefix, e.g. CHS1, signifies the probability distribution the data was trained on was clipped.

‘Ideal’ signifies a CR estimate based on the entropy of probability distribution used to train the SH encoder.

Corr(h,CR)=Correlation between increasing h and LNNT encoding CR. x values indicate correlation measurements that were statistically non-significant (p > 0.05).

Together, these tell us how much increasing the LNNT h size improves compression performance.

CRs below 1 indicate unsuccessful compression, where the encoded sequence is longer than the original. The best achieved CRs are given in bold.
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therefore the size of the total 2nd order encoder can be reduced dramatically. However, it must be kept in

mind that the size of 2nd order SH encoders is a serious negative. Additionally, the compression performance

of 2nd order encoders is not significantly better than other encoders for any given signal and sample resolution.

Therefore, we would argue that the use of 2nd order SH encoders is not warranted in WI-BMIs, at least in

the case of ESA, EAP or LFP signals.

3.4.2 Choice of encoding

It is anticipated this chapter can inform the choice of compression method for ESA, EAP and LFP signals

in intracortical BMIs. For LFP signals, the results suggest that the clipped Delta 1st order SH encoding

encoding is best. For EAP signals, the clipped 1st order encoding performed the best, compressing to near

the 1st order entropy. For ESA signals, the clipped 1st order, clipped Delta 1st order and clipped LNNT

encoders performed virtually the same at higher sample resolutions. At lower sample resolutions, the clipped

LNNT encoder performed less well, likely due to maladaptive LNNT weights.

3.4.3 LNNT encoding

It is worth noting, for the EAP and ESA signals, that at sample resolutions of 9 bits and above, increasing

the number of past samples in clipped LNNT encoding statistically improved the performance. The upper

limit of how many past samples it is beneficial to add is not known.

It is also worth noting that the LNNT encoding, as a whole, did not outperform the Delta encoding.

This is counter-intuitive, since the LNNT is simply a generalisation of Delta encoding. A likely explanation

is that using only 1 s of data to train the LNNT weights was not sufficient. The motivation for using so little

was to have sufficient data to train the encoder, but with hindsight this was unnecessary. It would likely

have been more effective to use all of the train data to train the LNNT weights, and then pass the data

through the LNNT pre-processing again, which could then be used to train the SH encoder.

Therefore, the results from this chapter are insufficient to state that LNNT encoding is inferior to delta-

sampling, particularly as LNNT is in theory more powerful. As such, it still warrants consideration, but care

should be taken to use a sufficient amount of LNNT training data.

3.5 Conclusion

Various SH encoder configurations were investigated to compress EAP, ESA and LFP signals, and the results

analysed. The result show that overfit-protection dramatically improves compression, especially at larger

dynamic ranges. This is because it protects against mismatched training and testing data. In particular,

it protects against sparse values in the training data being more present than expected in the testing data.

Across signals, 2nd order encoding generally performed best at lower sample resolutions, and 1st order, Delta

and LNNT encoding performed best at higher sample resolutions. However, 2nd order SH encoding is largely

untenable due to hardware constraints. It did not significantly outperform the other encodings to the point

that it justified its extra hardware costs. Having determined that SH encoding is effective for compressing

various intracortical signals, the next step involves seeing if the same is true for MUA signals, given some

extra pre-processing.

The proposed SH methods should also generalise to other remote sensing applications, of which WI-BMIs

are a subset. SH encoders are appropriate for any remote sensing application where the distribution of the

sensed data can be estimated a priori.
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Chapter 4

Static Huffman Compression of MUA

This chapter builds on the work in Chapter 3 by applying SH encoders for the compression of

MUA. We performed a holistic analysis, looking at the effects of MUA data compression on BTR,

BDP, hardware requirements and total on-implant power. We achieved extreme hardware effi-

ciency and compression rates for MUA data that were at least an order of magnitude greater

than the standard rate of 1000 bps/channel, with little to no reduction in BDP. This work was

done in collaboration with Zheng Zhang (Z.Z.), a peer and PhD student at the Next Generation

Neural Interfaces (NGNI) lab, Imperial College London, who contributed the hardware design and

optimisation work.

This chapter has been adapted from the following published article:

Savolainen, Oscar W., et al. “Hardware-Efficient Compression of Neural Multi-Unit Activity.”

IEEE Access, 2022.

4.1 Background

In the previous chapter, we developed SH methods for the compression of the EAP, ESA and LFP intra-

cortical signals. It was a preliminary work to investigate SH encoders for intracortical data. However, the

MUA signal was not immediately considered, as it requires further pre-processing, affecting its BTR and

BDP. Given the success of SH encoders for other intracortical signals, this chapter tackles the MUA sig-

nal. As such, this chapter performs a holistic analysis of compressing MUA signals with SH encoders using

a ‘windowed’ method, looking at the effects of compression on BDP, BTR, hardware resources and total

on-implant power.

4.1.1 Standard Windowed MUA representation

Multi-channel MUA is typically represented as multiplexed data. The length of the data block is n × m,

where n is the number of channels and m is the number of bits used to represent the number of MUA events

per BP on each channel. An example using a standard binary representation with m and n = 3:

001 111 000

would indicate that 1 neuron fired (001) on channel 1, 7 neuron firings occurred (111) on channel 2, and 0

(000) on channel 3. An advantage is that the channel ID is implicitly encoded in bit position, and so does
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not need to be explicitly encoded. E.g.,

c = ceil(t/m) (4.1)

where c ∈ [Z, 1 ≤ c ≤ n] is the channel ID, t ∈ [Z, 1 ≤ t ≤ n×m] is the bit position and ceil is the ceiling

function. m is the number of bits required to represent all possible MUA FRs losslessly, and is generally set

as ceil(log2(max(X)+ 1)), where X is the multi-channel MUA data.

While this does not have a standard name in the literature, in this thesis we refer to it as the “windowed

encoding”. This is because it sends out the number of MUA events in a non-overlapping window of length

BP for each channel, regardless of whether an event occurs on a channel or not. It is ubiquitous throughout

MUA BMI work [74,86] since it is easy to implement and interpret.

As such, the windowed encoding, in it simplest form, has a BR of:

BR =
m

BP
[bps/channel] (4.2)

As discussed in the Background Section 2.4.2.4, MUA signals typically use a BP, i.e. temporal resolution,

of 1ms. At a 1ms BP with 1-bit sampling (m = 1), this corresponds to a standard BR of 1 kbps/channel.

4.1.2 Prior Work in the Compression of MUA

It was proposed in [74, 102] that increasing the MUA BP from the standard 1ms may be an efficient way

to lossily compress MUA data. This will be investigated in this chapter. However, this compression is lossy

because increasing the BP reduces the temporal resolution of the MUA firing times. This could cause two

problems.

The first is increased delay in BMI-user experience: the BTR. When we increase the BP, we increase

the maximum possible lag between a neuron firing and the data being communicated off-implant. In this

system the BP is equal to the BTR, since the BP is the temporal bottleneck of the system. There are no

other significant delays in the MUA WI-BMI data flow other than the spike counting, as the communication

and other processing of the data occur on the ns scale. As such, increasing the BP increases the BTR,

which should probably be kept at 30ms or lower, and almost certainly at less than 100ms as discussed in

Section 2.5.4. In this chapter, we will investigate BPs, and therefore BTRs, between 1 and 100ms.

The second potential issue with increasing BP is reduction in BDP. The reduced temporal resolution of

neural firing times may reduce our decoding ability. [91] found that, for SUA signals, there was no difference

in hand kinematic decoding ability between BPs of 10-100ms for LSTM, Feedforward NN, and Wiener filter

neural decoders. However, they also found that, when using Kalman filter decoders, increasing the SUA BP

up to 50ms improved the decoding, although not to the level of the NN decoders. Additionally, a 100ms

BP for motor decoding is a common choice by researchers [64, 87,91].

As such, the effect of MUA BP on BDP is not clear, and it has been hypothesised that it likely varies by

decoding algorithm and decoded task [74]. The effect of BP and limiting the dynamic range of MUA data

on compression and BDP are one important aspect that will be further investigated in this chapter.

4.1.3 This Work

This chapter proposes and compares multiple hardware efficient windowed MUA compression schemes. To

the best of the author’s knowledge, it represents the first study on compressing MUA signals. It also evaluates

how using one or multiple SH encoders, saturating the dynamic range, using on-implant histograms to add

adaptivity into SH encoders, and setting different BPs can compress the data and affect the behavioral

decoding quality. The goal of this chapter is to seek the best MUA compression algorithm with minimal
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resources to reduce BR so as to reduce the on-implant power (processing and communication power) without

degrading BDP, while also keeping the BTR within an acceptable range. The original contributions of this

chapter are summarised below:

• Empirically showing the degree to which increasing MUA BP lossily decreases the communication

bandwidth.

• Limiting the dynamic range of MUA data to reduce the communication bandwidth.

• The use of SH encoders for the compression of MUA data.

• The use of a sample histogram with mapping to add adaptivity to SH encoders.

• The use of multiple SH encoders, with assignment via a sample histogram, to add adaptivity to SH

encoders.

• A novel machine learning algorithm for the offline selection of the best combination of SH encoders.

• A holistic analysis of the effects of MUA data compression on total implant power, BDP, hardware

requirements, and temporal resolution of output data in a extremely low-power FPGA target.

• The use of statistical analysis to calculate the maximum amount of channels that could be hosted

on-implant within power budget limits, given the variable-codeword lengths.

The rest of this chapter is structured as follows. Section 4.2 describes the dataset used in this work

and the different compression schemes. Section 4.3 shows the results of compression, decoding, and related

hardware power consumption and resource usage. A recommended setting is then given that trades off

among these metrics. Section 4.4 discusses some design consideration based on the results and Section 4.5

concludes this chapter.

4.2 Materials and Methods

The public datasets were loaded with Python 3.8 and MATLAB 2020a, the analysis was performed in Python

3.8, and the FPGA design in Modelsim Lattice Edition and iCEcude2 2020. The analysis Python code and

FPGA Verilog code and designs have all been made publicly available at [103]. The formatted data and

results have been made available at [104]. Researchers can use these to select their own compression system

depending on their overall system requirements.

4.2.1 Datasets

To get a broad sample of MUA conditions, the Flint, Sabes Processed and Brochier datasets were used

(Table 2.4). For each dataset, the SUA data was intra-channel collated to MUA, then binned to the desired

BP. The behavioral data was resampled to the same BP resolution using linear interpolation.

For both the Flint and Sabes datasets, the BDP metric was as defined in Section 2.5.3. However, in the

Brochier et al. dataset, the behavioural data consisted of labelled actions. As these were not continuous

measurements, the behavioral decoding for the Brochier et al. dataset was not analysed in this work so as

to keep the BDP metric consistent.
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4.2.1.1 Training-testing data split

The data was split into training (A) and testing (B) data. This was because many different systems with

different parameters were considered, e.g. different BPs and S values, different module combinations, etc.

Therefore, the training data was used to identify a well-performing system. The final system was then tested

on the test data B so as to give an unbiased estimate of the system performance on new data.

The Flint dataset was split so that the first 4 days of recording sessions were included in A. This

corresponded to 10 out 12 recording sessions. The remaining 2, taking place over another day, were used as

testing data and included in set B. The Brochier dataset was all included in the testing data B. Finally, the

Sabes dataset was split so that data from subject Indy was included in A, and the data from subject Loco

was included in B. This was done so that the testing data included data from completely new subjects. This

strengthened the test data, allowing us to test the system on new subjects to see if the BR performance and

BDP were as desired.

4.2.2 Compression Modules

The full system overview is given in Fig. 4.3. Different module combinations (Detailed in Section. 4.2.2.5)

were investigated and a full grid search of all system parameters was performed. We investigated each

system in terms of BDP, temporal resolution, hardware resources and on-implant power consumption. That

allowed us to analyse and trade-off among different metrics of interest for a WI-BMI so as to identify the best

configuration. Finally, we tested the selected configuration on neural data from new subjects, and confirmed

its compression and behavioral decoding performance. Details of the modules are given below.

4.2.2.1 Binning and saturation

Two lossy compression steps have been applied to compress the MUA data. Binning the MUA data at

a certain BP to obtain the FR is a primary means of compressing the MUA data. We also investigated

saturating the FR at a maximum value S − 1 to limit its dynamic range, where all FRs > (S − 1) were set

to (S − 1). This means that there are fewer FR values that can be communicated, reducing the communi-

cation bandwidth. In order to test how different BP and S values can affect the compression and decoding

performance, BPs of {1, 5, 10, 20, 50, 100}ms and S values of {3, 5, 7, 9} were tested.

These two operations perform a lossy compression to MUA signal, and therefore the degree to which they

degrade the BDP was evaluated. The method is described in Section. 4.2.3.

4.2.2.2 SH encoding

Applying SH encoders can losslessly compress the MUA data. As in Table 2.2 (a-b), the idea is to give

shorter codewords to more common values in an extremely hardware-efficient way. In this case, we give

shorter codewords to more common FRs. The SH encoders were of length S, i.e. they had S input values

and output codewords, representing FRs between 0 and S − 1.

SH encoders need to be trained before use on representative data. Based on our observation on various

recordings, we found that the firing rate distribution on average followed a decaying exponential, where

smaller FRs were more common than larger FRs. This is shown in Fig. 4.1. As such, we trained the SH

encoders on a decaying exponential, so they gave shorter codewords to smaller FRs. Further details are given

in Appendix B.1. The SH encoder is represented by the ‘Encoder(s)’ block in Fig. 4.2. The use of multiple

SH encoders will be discussed soon in Section 4.2.2.4.
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Figure 4.1: (a) A random sample of 100 channels’ MUA FR probability distributions with a 100ms BP. (b)

Average MUA FR probability distribution for each analysed dataset, with a 100ms BP.
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On-implant compression
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Figure 4.2: Compression data flow for each configuration. In the full system, a portion of the data is used

for on-implant calibration, i.e. used to train a sample histogram for mapping and encoder selection. The

mapping and selected encoders are then transferred to the main compression data flow, where the rest of the

data is compressed. In the version without sorting and mapping, i.e. the ‘Without Mapping’ configuration,

the green shaded modules are removed. If only u = 1 Huffman encoder is used on-implant, then the orange

shaded module is removed, as no assignment is necessary. Finally, in the ‘Only Binning’ configuration,

no on-implant calibration is performed, and the data goes straight from binner to transmission without a

encoder.
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Figure 4.3: Use of a sample histogram to improve bit rates. A sample histogram is derived from the beginning

of each channel’s recording. It is then sorted using a hardware-efficient sorting, where smaller indices are

given to more common firing rates. The sorting is stored as a mapping, used to sort the rest of the data, i.e.

the to-be-compressed data. The data is then compressed after mapping, where if a firing rate was found to

be the xth most common in the sample histogram, it was given the xth shortest codeword. As such, the data

histogram is approximated by taking a sample, and if the sample is well-representative of the rest of the

data, this may help shorter codewords be given to more common firing rates, improving compression. In the

example we can see the mapped compressed data requires only 9 bits, relative to the unmapped compressed

data which requires 14 bits.

4.2.2.3 Firing rate mapping using histogram

As shown in Fig. 4.1 (b), for BP ≤ 100ms, smaller MUA FRs are on average more common than larger ones.

However, as can be observed in Fig. 4.1 (a), this is not always the case for each individual channel. As such,

assigning shorter codewords to smaller FRs will not always give optimal compression. Here we investigate

the use of a sample histogram to address this problem. The beginning of each channel’s recording was used

to fill a sample histogram. This histogram was then used to estimate the relative frequencies of the FRs for

each channel. The most common FRs in the histogram were then, for the rest of the data in each channel,

assigned the shortest codewords via a hardware-efficient sorting (Appendices, Section B.4). This was referred

to as mapping the most common FRs to the shortest codewords, given the sample histogram estimate. As

such, some semi-adaptability was introduced into the SH encoders. A demo histogram sorting and mapping

process is represented in Fig. 4.3.

This module is represented by the ‘Histogram’, ‘Sorter’ and ‘Mapper’ blocks in Fig. 4.2. We considered

histogram sizes of d = {0, 2, 4, 6} bits/bin, where there were S bins. Once 2d samples had been measured,

the histogram was considered to be full and was then used to estimate the FR frequencies. In the case of

d = 0 bits, no histogram, sorting or mapping was used.

4.2.2.4 Utilising multiple SH encoders

Multiple SH encoders can be used to increase the on-implant compression adaptiveness. This works by using

the sample histogram to estimate which encoder would compress each channel the best. Each channel is then

assigned its optimal encoder. Such assignment was obtained by taking the dot product of the histogram and

the Sorted Codeword Length Vector for each encoder. Dividing the dot product by BP and 2d gives the BR.
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As such, we assigned each channel to the encoder that gave the channel histogram the smallest dot product

(i.e. BR).

To give more information, the Sorted Codeword Length Vector is a vector of integers that represent the

length of each of the SH codewords. For example a SH encoder of

{0, 10, 110, 111}

would have an Sorted Codeword Length Vector of

{1, 2, 3, 3}

The dot product gives the total size of that channel’s communicated data after compression using an equiv-

alent SH encoder.

For a SH encoder of size S, there are h possible non-redundant (i.e. with unique Sorted Codeword

Length Vectors) SH encoders. We designed a custom machine learning offline algorithm to select the top

co-performing u encoders from amongst all h possible encoders. In other words, this selected the best

combination of u SH encoders by using offline MUA training data. This ensured that we had the best u

encoders on-implant that channels could be assigned to, with u ∈ Z
+ and 1 ≤ u ≤ h. The multiple on-

implant SH encoders are represented by the ‘Encoder Assigner’ and ‘Encoder(s)’ block in Fig. 4.2. If u = 1

there was only one encoder on-implant, and so assignment was redundant since all channels went to the same

encoder. We considered u values of {1, 2, 3, 5, 7, 10, 15, 20}.

The machine learning algorithm is further detailed in Section B.1.3 of the Appendices. It is an offline

algorithm used in selecting which u SH encoders go on-implant, and is not itself present on-implant.

4.2.2.5 Module combinations

The modules included in each system configuration in Fig. 4.2 are given in Table 4.1. Similarly, the total

parameter space investigated for the data compression is given in Table. 4.2.

There are in total 5 combinations. The first is the simplest system with only the binner and saturation,

referred to as the ‘Only Binning’ system. The others use Huffman encoding, where the binned and saturated

data goes straight to SH encoding. If multiple encoders are implemented, histogram and encoder assignment

modules are needed in a calibration phase to select the best encoder for each channel. If we assume the FR

data is not distributed according to a decaying exponential, the sorter and mapper are needed to map the

more common FRs to shorter codewords. Therefore, the remaining four combinations are according to w/

or w/o mapping and u = 1 or u > 1. We refer to the one combination using all modules as the ‘Full System’.

The FPGA implementation of the different modules is included in Appendices, Section B.4.

4.2.2.6 Communication power estimation

For each parameter combination in Table. 4.2, we measured the compressed data BR using the training data

A. From the BR, we derived the communication power from Eq. 2.1.

4.2.3 Impact of Lossy Compression on Behavioural Decoding Performance

Lossy compression involves losing information. In this case, the lossy aspects are increasing the BP, which

reduces the temporal resolution of the neural data, and decreasing S, which saturates the data at an FR of

S − 1. It is important to ensure that the lossy compression does not lose key information needed for the

final application. In this case, the final application is the behavioral decoding of hand kinematics, which is

a standard BMI behavioral measure.
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Table 4.1: Required modules for each system configuration. The histogram is used for both assignment

of encoders to channels, and for sorting/mapping of FRs. The system configurations vary if assignment

is required or not, e.g. if only 1 encoder is considered, or if the histogram is to be sorted or not. The

configuration also varies if no Huffman compression is considered, in which case only a binner and saturation

are required.

With Huffman encoding

With Mapping Without Mapping

u > 1 u = 1 u > 1 u = 1
Without Huffman encoding /

Only Binning

Binner and Saturater ✓ ✓ ✓ ✓ Binner and Saturater ✓

Histogram ✓ ✓ ✓ ✗ Histogram ✗

Encoder

Assignment
✓ ✗ ✓ ✗

Encoder

Assignment
✗

Encoder(s) ✓ ✓ ✓ ✓ Encoder(s) ✗

Sorting and

Mapping
✓ ✓ ✗ ✗

Sorting and

Mapping
✗

Table 4.2: Considered subset of analysed parameter space.

Subset of parameter space

BP (ms) 1, 5, 10, 20, 50, 100

S 3, 5, 7, 9

d (bits per bin) 0, 2, 4, 6

u 1, 2, 3, 5, 7, 10, 15, 20
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As such, to ensure that not too much relevant information is lost, a behavioral decoder was implemented.

It was used to decode the hand X and Y-axis velocities, using the BDP metric from Eq. 2.3. The input

to the decoder was the binned and saturated neural data, for BP values of {1, 5, 10, 20, 50, 100}ms. To

be exhaustive in our behavioral analysis, S values from 2 to 59 were investigated for their effect on BDP.

However, due to the impossibility of automating all of the hardware optimisation, only S values of {3, 5, 7,

9} were investigated for the compression work.

A Wiener Cascade Filter was used for the decoder. Wiener Cascade Filters have been found to have

good decoding neural performance relative to other simple decoders, although they have generally found

to not be as effective as deep learning methods [16, 91, 105]. However, their training times are significantly

shorter [105]. As such, in this work they were used to investigate the relationship between S, BP and BDP.

In this work, the Wiener Cascade Filter code from [16] was used. 5-fold cross-validation (hyper-)parameter

optimisation was performed, and the details given in Appendix B.2. Once the parameters were optimised

for each S and BP, the BDP was calculated for each combination using separate testing data.

4.3 Results

4.3.1 The impact of lossy compression

4.3.1.1 The impact of lossy compression on BR

It was proposed in [74,102] that increasing BP would lossily compress MUA data, but neither evaluated how

efficient that compression is. To the best of the author’s knowledge, the amount of compression to MUA

from increasing BP is empirically shown for the first time in this work. The BR required to communicate a

channel of binned data is equal to m/BP (bps/channel), where m is the number of bits required to represent

the unsaturated dynamic range (S′) of the FR. There is an approximately linear relationship between the

lossless FR dynamic range and BP (Fig. 4.4 (a)). This produces a positive, approximately logarithmic

effect on m from increasing BP (Fig. 4.4 (b). As such, merely increasing BP decreases the communication

bandwidth (m/BP), relative to a lower BP (Fig. 4.4 (c)).

Saturating the FR range by setting the dynamic range S to S < S′ can obviously further reduce the

BR, as the BR is proportional to the dynamic range to be transmitted. That is not the only advantage of

saturating. If a SH encoder is used, a large glossary of the possible FRs to be compressed means a large SH

codebook. Limiting the max FR from 10s to less than 10 can significantly reduce the size of the on-implant

SH encoder and therefore reduces the power and resources.

4.3.1.2 Impact of lossy compression on BDP

Fig. 4.5 (a) shows the BDP vs. BP and S results averaged across the Flint and Sabes datasets. Exam-

ples of observed and predicted behavioral data are shown in Fig. 4.5 (b-d). Detailed results are given in

Appendix B.3.

Fig. 4.5 (a) shows that the BDP improves as a function of BP, and is unaffected by S if S is large enough.

For BP ≤ 20ms, even S = 2, i.e. binary representation, is not lossy enough to affect the BDP. For BP at

50 or 100ms, S = 3 or 5 are large enough to have less than 2% BDP degradation. For example, a 100ms

BP and an S value of 5 would give a BR of ceiling(log2(S
′))/BP = 30 bps/channel, while using no lossless

compression. A typical bit rate of MUA signal is 1 kbps. Therefore, a 33 times bandwidth reduction can be

easily achieved with just the use of binning and saturation lossy compression, with minor to no degradation

on BDP, although the BTR is significantly affected.
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Figure 4.4: (a) A plot of S′ = max(X)+1, the dynamic range of the MUA FRs, as a function of BP, where X

is the multi-channel MUA data. (b) The number of bits m = ceiling(log2(S
′)) required to losslessly represent

the dynamic range S′ as a function of BP, without any lossless compression. (c) The communication bitrate

m/BP (bps/channel) required to communicate a dynamic range of S′. (a-c) The analysed MUA data X,

from which S′ is measured, is the entirety of the training data A.

4.3.2 The impact of Static Huffman encoding

The SH encoder is a lossless compression operation applied after binning and saturating. Fig. 4.6 shows the

reducing effect on BR from the addition of just a single SH encoder.

Overall, roughly another 50% bandwidth reduction can be achieved by using a single SH encoder. More-

over, as benefited from the saturation, the SH encoder with a small codebook can be implemented with only

minor resources (less than 100 logic cells) consuming negligible power compared to the binner.

4.3.3 The impact of improving adaptiveness

Using an on-implant histogram to map FRs and select a suitable encoder from multiple on-implant encoders

can improve the adaptiveness of the compression. This can be especially effective when the distribution of

FRs to be compressed is unlike in the training data.

The results show that using a histogram to map FR can reduce the BR by another 5% to 20% as the

histogram size increases. This improvement is only noticeable when the BP is 50ms or 100ms because

longer BPs cause the FR distribution to vary more from the standard decaying exponential. In which

case, increasing the histogram size estimates the true distribution more accurately, and so provides a more
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Figure 4.5: (a) Behavioral decoding performance (BDP) as a function of BP and S. Each S/BP combination

was parameter optimised on 5-fold CV, with the results averaged from the Sabes lab and Flint datasets.

(b-d) Example observed vs. predicted X-axis velocities from 5-fold CV, with corresponding BDP (r) for

random Flint recording and parameter combinations during parameter optimisation at a BP of 5ms.

Without SH encoding With SH encoding, u = 1
0

200

400

600

800

B
it
 R

a
te

 (
b

p
s
/c

h
a

n
n

e
l)

Figure 4.6: Boxplot of bit rates of all compression systems with and without Huffman encoding at u=1. This

shows that the addition of a single SH encoder improves compression performance by more than 2 times on

average.

accurate mapping, making the effect of the histogram notable. However, the FR distribution of short BPs

rarely deviates from the decaying exponential, which makes the mapping mostly redundant. Mapping the FR

with local information can even degrade the compression performance, regardless of BP, when the histogram

size is too small. This is because if the beginning of the recording is not representative of the rest of it, the

mapping may be maladaptive and perform worse than the assumed decaying exponential. As such, larger

histogram sizes are more reliable.

Using more encoders does not significantly improve the BR. Observing the results showed that the same

encoder was nearly always selected even when there were multiple available encoders. This ‘best’ encoder

was the one trained on a sharp decaying exponential, where the Sorted Codeword Length Vector was of form

{1 , 2, ... , S−1, S−1}. That suggests, on the one hand, that the proposed machine learning-based encoder

training algorithm works well in selecting the best encoder. On the other hand, the FR distribution when

BP is less than 100ms does not vary enough to require the adaptiveness provided by having more than one

encoder.
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Table 4.3: Chosen system parameters and encoder for testing and associated training (A) and testing (B)

results. For the training and testing results, all data in A and B were respectively used.

Chosen parameters
Training Results

(Flint, Sabes)

Testing Results

(Flint, Sabes, Brochier)

Architecture Full system Resources 246 246

BP (ms) 50 BR (bps/chan) 26, 28 27, 28, 21

S 3
Dynamic Power

(uW/chan)
1.49, 1.52 1.49, 1.52, 1.37

#Enc (u) 1 BDP

76%, 77%

(2% and 1% reductions

from S = max(x))

72%, 62%, null

(1% and 0% reductions

from S = max(x))

Histogram size (d) 6 bits/bin

Encoder (Symbol → Codeword)

0 → 0; 1 → 01; 2 → 11

Furthermore, introducing adaptiveness comes with additional hardware costs. The on-implant histogram,

dot product and sorting are all resource-hungry. Although intensive hardware optimisation was performed

(details are provided in Supplementary Section B.4), their resource occupation can still be the bottleneck of

the whole system.

4.3.4 System configuration selection

All the combinations of different modules, BP/BTR, S, histogram size and the number of encoders shown

in Tables. 4.1 and 4.2 were produced and tested. The resulting BDPs, BTRs, hardware total power (com-

munication + processing) and resource usages were then analysed together, as shown in Fig. 4.7 (a). Each

point stands for one parameter setting and different colors represent the system operating at different BTR.

The points high up on the resources axis indicate systems with larger S, histogram size or more on-implant

encoders. The points that are perpendicular to the rest, with low resources but high power, are the setting

with only the binner at different S values, as these had low hardware usage but higher communication power

since no lossless compression was used.

4.3.4.1 The selection of BTR and S

Increased BTR can bring higher BDP and lower communication power as the FRs are transmitted less

frequently. However, S needs to be sufficient for high BTRs to enable sufficient BDP. It was observed that at

a BTR of 100ms and S = 3 that the BDP suffered significantly. This can be observed in both Fig. 4.5 (a) and

Fig. 4.7 (a) as a cluster of dark points (100ms BTR) with low BDP. As such, given sufficient S, increasing

the BTR is a very attractive prospect. It needs to be balanced with the desired temporal resolution of the

decoded output, but it was decided that a 50ms BTR was worthy of consideration for the test case.

Regarding behavioural decoding, 50ms can be a good choice. It is tolerable in terms of the impact on user

delay, assuming a smoothing function for the cursor, while also having high BDP and low communication

power. As such, a BTR of 50ms was selected for the test case. Furthermore, according to Fig. 4.5, when the

BTR is 50ms, limiting the FR dynamic range to 3 produces a 2% BDP degradation. As such a combination

of BTR = 50ms and S = 3 was selected.
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4.3.4.2 The selection of the number of encoders and histogram size

As previously stated, using more than one encoder does not significantly reduce BR and therefore was not

considered further. Using no SH encoder can be especially resource-saving. However, the approx. 50%

bandwidth reduction brought by a single SH encoder can significantly reduce the communication power and

therefore the total power. The points that belong to a perpendicular segment relative to the rest of the data

in Fig. 4.7 show how the addition of SH can significantly reduce communication power.

With respect to the histogram size, although it needs more resources, it improves the compression while

the resource usage is still acceptable. To get more insight, we focused in on Fig. 4.7 (a) with BTR =

50ms, resources < 260 and dynamic power < 2.2µW/channel, shown in Fig. 4.7 (b). The bottom four

points from left to right are the configurations with one encoder, S = 3, and histogram sizes of {0, 2, 4, 6}

bits/bin respectively. It makes sense, in terms of scaling with channel count, to prioritise the lowest power

configuration. This is because resources are roughly static at 246 with increased channel count, which is

acceptable. Additionally, BDP increases somewhat logarithmically with channel count according to neuron

dropping curves [30, 106], and BTR is unaffected. However, power increases roughly linearly with channel

count, making it the parameter that scales least well. Therefore as long as the resource usage is acceptable,

reducing the power consumption should be the first priority. However, for resource-constrained scenarios,

the bottom left setting can be selected which is the configuration without histogram, i.e. no mapping, where

the encoder compresses the binned firing rate directly (for data flows see Fig. 4.2).
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Figure 4.7: (a) Integrated results: BDP and BTR values for different resources and dynamic power consump-

tion levels. (b) Sample of integrated results, with BP/BTR = 50ms, resources < 260, dynamic power <

2.2µW/chan for our 128 channel system. The outlined triangle represents the chosen system configuration

for our tested system. Note that the color bars for (a) and (b) are distinct.

4.3.5 Testing data results

Next, the chosen system was tested on data it had not seen yet. Given the chosen system parameters,

summarised in Table 4.3, the BR and BDP were determined on the testing data B, also shown in Table 4.3.

4.3.5.1 Communication power results

For the Flint, Sabes and Brochier data in B, the across-channel-and-recording average BRs were 26.5, 27.8,

and 20.6 bps/channel respectively, corresponding to dynamic power/chan values of 1.49, 1.52 and 1.37 µW.

These are highly similar to those in the training data, where the averages for the Flint and Sabes data were
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26.4 and 27.8 bps/chan and 1.49 and 1.52 µW respectively. This is especially significant for the Sabes and

Brochier test data, which consisted of subjects that were completely separate from the data in A. This means

that the system effectively compressed data from 3 entirely new non-human primate subjects. This can be

compared to the 40 bps/channel produced by the Only Binning configuration where no Huffman encoder is

used (ceiling(log2(3))/(50 ×10−3)).

4.3.5.2 Behavioral decoding results

The BDP was measured for the Sabes and Flint datasets using the testing data in B. Each channel was

split 90-10% into training and testing sets. S and the BP were fixed at 3 at 50ms respectively, and as in

Section 4.2.3 the Wiener Cascade Filter hyper-parameters and pre-processing parameters were 5-fold cross-

validated on the training set. The best parameters for each BP/S combination were taken, and the BDP

measured on the testing set.

The average BDP for the Flint dataset was 0.724, and for the Sabes data it was 0.616. These BDP

values from B are significantly lower than in the training data A. At first glance this is worrying, since

it may suggest the compression scheme was overly lossy and too much behavioural information was lost.

However, close examination of the results indicate that the tested system’s BDP values are lower because

the recordings have less behavioral information in them, or the recording quality is less good, etc. This is

shown by comparison of Fig. B.5 and B.8 in the Appendices, as well as Fig. 4.5. In particular for the Sabes

test data, they show that the data seemed to suffer from a few recordings with very low BDPs (e.g. at

approx. 0.4), which dragged down the average to significantly below the median BDP. A larger amount of

Sabes test recordings performed quite well (approx. 0.7), although they still generally performed worse than

the train A data. As such, the test recordings seem to simply be of worse quality than the train recordings.

Furthermore, across all test recordings, the tested system’s compression did not negatively affect the

BDP by more than 1.62% compared to the top observed BDP for each recording across all BP and S, and

for the overwhelming majority of recordings the impact was 0. This is encouraging, as it shows that the

quality of the recordings was the decisive factor in the BDP, not the lossy compression.

The main takeaway for the BDP results is that reducing S to 3 for a BP of 50ms had no significant

negative effect on BDP. It is expected that if the recording quality is similar to that in the training data,

higher BDPs will result. It is also likely that using more advanced deep learning decoders would result in

higher BDPs [16,91,102].

4.4 Discussion

4.4.1 The number of channels supported by the power budget

A 1mm × 1mm scale FPGA implant, with a maximum permitted heat flux of 10mW/cm2, has a power

budget B of 200µW. This assumes equal heat flux from both faces of the implant, and negligible heat flux

from the edges. With such a budget, one could wirelessly transmit up to 10 uncompressed MUA channels

if all the on-implant power was used for communication and the communication energy was 20 nJ/bit. In

practice, with a static FPGA power of 162µW, negligible spike detection power [88] and a processing power

for the 1ms binner of 0.96µW/channel, a maximum of 1 channel could be measured on-implant.

How many channels can our chosen compression system host while remaining within the power budget?

The chosen system depends on variable-length codewords. Therefore, there is a risk that the BRs will be

higher than the expected ∼27 bps/channel as given in Table 4.3. For example, one might measure a handful

of particularly active channels, and this may increase the BR. If one chooses the number of channels on-
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implant so as to be close to the permitted power budget, and the channels are more active than expected,

this may produce more heat than desired. As such, it warrants choosing the number of channels based on a

statistical understanding of the worst case scenarios.

As such, a random sample of the channels was selected. For sample size z ∈ Z
+, 10, 000 samplings were

taken of z random channels. For each random sampling Y , from the channels’ summed BRs we obtained

the resulting total system power P using the estimates in Equation 4.3:

PY =

z∑

i=1

(BRi)× Comm.Energy + z × Processing Power + Static FPGAPower

PY =

z∑

i=1

(BRi)× 20 nJ/bit + z × 0.96µW/channel + 162µW

[W] (4.3)

where BRi is the BR of the ith channel in sampling Y , where 1 ≤ i ≤ z, i ∈ Z
+.

It was then determined, for each number of channels z, what percentage of random channel combinations

exceeded the desired power budget B = 200µW:

p(z) =
1

104

104∑

Y=1

(PY > B) (4.4)

where (PY > B) is a boolean value equal to 1 if PY > B and 0 otherwise. As such, p(z) gave a permutation

derived p-value for each number of channels z not exceeding the power budget.

Using the chosen architecture and power budget of B = 200µW and averaged across the 30 CV runs,

it was found that from the training data results that having up to 23 channels never exceeded the power

budget. Having 24 channels had a p-value of ∼3e-3 of not exceeding the power budget, and 25 channels

or higher had significant chances of exceeding the power budget of p(z > 24) > 0.05. As such, we think

having approximately 22 channels for our 1mm × 1mm FPGA hardware is ideal assuming the given power

estimates hold true, while staying within a conservative heating safety margin. As such, by compressing

the MUA data one can send out over 22 times as many channels as when sending out the raw MUA data

for a similarly sized FPGA device. In ASIC, this difference would likely be far more pronounced, given

the reductions in dynamic and static power. However, the contribution of the front-end amplifier and ADC

would need to be included as they would likely be integrated. Given that ADCs with power consumption

as low as 0.87µW/channel have been achieved [67], there is reason to believe that impressive channel counts

could be obtained at mm-scale in ASIC.

Furthermore, if one increases the communication energy to 100 nJ/bit, not a single uncompressed channel

could be communicated by a similarly sized FPGA device. However, 15 channels, compressed with the chosen

system, could be communicated within the power budget.

4.4.2 Configuration selection considerations

If increased BDP is an absolute priority, then a configuration with a higher S may be appropriate. However,

one should consider that if increased power is required as a result, this can reduce the amount of allow-

able channels for an implant of the same size, perhaps reducing the final BDP. Similarly, if a system has

only a few recording channels, where communication power does not dominate, one may choose a system

that significantly reduces hardware requirements over marginally reducing BR, e.g. a ‘Without Mapping’

configuration.

It may be that a system with a small BTR should be prioritised. Unfortunately, the grid search of the

windowed SH method found an unfortunate trade-off between BTR and communication power. The systems
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with good BTR tended to be relatively power-hungry. For example, a BR of 100 bps/channel is required

for a BTR of 10ms. This BR may be too high. As such, this shortcoming of the windowed method will

be tackled in the next chapter, investigating other means of compressing the MUA signal while maintaining

good BTR and low BR.

4.4.3 The effect of BP on BDP

It was found that BDP increases as a function of BP between 1 and 100ms. Although this differs from some

other results that used different decoders [102], it has also been theorised in the literature that one should

expect BDP results to vary by decoded behavior and decoding algorithm [74]. [102] found that increasing BP

reduced BDP, but it used LSTM neural network decoders, which are a form of deep decoder. It is unsurprising

that a deep decoder that can exploit long-term temporal dependencies to find extra information in high-

precision timing of neural firing rates compared to a simple Wiener Cascade Filter decoder. As such, the

difference between the relationship between BP and BDP in Fig. 4.5 and [102] is not surprising.

4.4.4 Generalising the Results to Other Behaviors

How well lossy compression has performed depends on the final use of the data, and whether any key

information has been lost. In this work, the final outcome was the decoded hand kinematics, which are a

standard BMI behavioral measure [16,64,65,77,96,102] and the most desired by patient surveys. Therefore,

although the lossy aspect of the compression system is tailored to a specific task, it is a general task that is

ubiquitous across BMI research. Additionally, the lossy aspect of the data compression scheme is very simple:

increasing the BP, which is standard during BMI behavioral decoding [64, 74, 77, 86, 87], and saturating the

MUA data, which had only a negligible effect on BDP for this task.

For this hand kinematic task, the system’s BDP was tested on a completely new subject, ‘Loco’ of the

Sabes dataset, and for all tested recordings the BDP was at most negligibly reduced by data compression

(1.6% in the worst case, 0% in most cases). For the Flint test recordings (new recordings on the same Flint

subject as in the training data), the BDP was similarly unaffected by lossy compression. As such, we can

say that the performance of the compression system was robust across different subjects, which is a very

significant result. The tested compression scheme generalised very well to 3/3 new subjects in terms of

compression, and to 1/1 new subject in terms of behavioral decoding for hand kinematic tasks in WI-BMIs.

However, we cannot say the same across tasks, for lack of information. It is our belief that the results

will probably be consistent across tasks decoded from the motor cortex, but if not, then S can simply be

increased or BP varied.

4.4.5 Fixed Length vs. Variable Length Codewords and Bit-Flip Errors

It warrants mentioning that lossless compression works by giving variable length codewords to symbols. Due

to the multiplexed encoding of MUA, this makes losslessly compressed MUA data more vulnerable to bit

flip errors making the multiplexed communicated data block undecodable. As such, some noisy channel

encoding or decreasing the BP may be necessary, assuming the bit flip error rate is sufficient to warrant it.

This would increase the BR marginally, and is discussed further in Appendix B.6.

4.5 Conclusion

In conclusion, the objective of this chapter was to reduce the MUA data bandwidth. We did so via a large

grid search of various compression architectures, and qualified the results based on total power, required
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hardware resources, BDP, and BTR. We eventually achieved nearly 40 times MUA bandwidth reduction

from 1 kbps/channel to 27 bps/channel with 2% decoding degradation on training data, and less than 1% on

testing data, with a BTR of 50ms. Such a distinguishable achievement is made by a binner at 50ms BP,

a dynamic range limited to 3 possible values, hardware efficient mapping using a histogram size of 6 bits

and losslessly compressing the resulting signal with a pre-trained static Huffman encoder. Our results have

been across validated using 3 datasets (Flint, Processed Sabes and Brochier) and 3 new subjects suggesting

consistent compression performance. The system has been implemented on a FPGA platform using 246 logic

cells, consuming only 0.96µW/channel and can accommodate more than 300 channels within 4 kB RAM.

All results and hardware designs are made publicly available, and researchers are free to select from them

for their own system designs.

However, the compression at fine BTR was not satisfactory. For example, no compression was achieved

at a BTR of 1ms. Therefore, the next chapter will look at event-driven compression methods for the MUA

signal, aiming to improve compression at fine temporal resolutions.

Author Contributions

The work in this chapter was done in collaboration with Zheng Zhang (Z.Z.). Compression and behavioral

decoding work in this chapter was carried out by O.W.S., and hardware design, optimisation and processing

power estimation work was done by Z.Z. Details on hardware design and optimisation and power estimation

are given in Appendix B.
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Chapter 5

Comparison to Event-Driven

Architectures for Compressing MUA

This chapter addresses the weaknesses of the windowed MUA compression method at finer BTRs

discovered in the previous chapter. It proposes a number of event-driven MUA compression

schemes, and analyses their performance in terms of BR, BDP, hardware resources and total

on-implant power. This chapter is based on work done in collaboration with Z.Z. He contributed

the hardware designs and processing power estimations.

This chapter has been adapted from the following published article: OW Savolainen, Z Zhang,

TG Constandinou, “Ultra Low Power, Event-Driven Data Compression of Multi-Unit Activity”,

bioRxiv, 2022

5.1 Background

A hardware-efficient MUA compression system was introduced in the previous chapter. At its base, it used

binning, limiting the dynamic range and SH encoding. Additional techniques were also considered, such as

the use of sample histograms for SH mapping and the use of multiple SH encoders for channel assignment. It

achieved state-of-the-art compression performance, especially when the BTR was 50ms or above. However,

when the BTR was smaller, the compressed bandwidth was unsatisfactory. Given that there is a desire for

finer temporal resolution in BMIs, to enable a faster control loop and improve user experience, some form

of MUA compression, tailored to smaller BPs, is desired.

Shorter BPs make the firing rates sparse. In other words, in a smaller time window it is more likely

that a FR of 0 will occur. Using this known property of MUA signals can help us improve the compression

performance for BPs below 50ms.

In this chapter, we propose several event-driven architectures, where only data from active channels is

transmitted for the given BP, taking advantage of sparse MUA FRs at lower BPs. These are compared

to the windowed method from the previous chapter. Overall, four compression schemes will be examined:

the windowed scheme from Chapter 4, an Explicit Event-Driven (EED) method, which transmits the active

channel IDs with corresponding spike counts, a Delta Event-Driven (DED) method, which transmits the

delta-sampled active channel IDs with corresponding spike counts, and a Group Event-Driven (GED) method

which uses a form of run-length encoding.
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This chapter contains multiple original contributions to MUA compression. These are as follows:

• Design and analysis of novel MUA data compression architectures, such as the EED, DED, and GED

encodings.

• The hardware designs, made publicly available, of these encodings.

• Comparison of these encodings to the state of the art in MUA compression. Very large improvements

were made in terms of communication bandwidth for BTRs of 20ms and below, appropriate for higher

temporal resolution MUA-based BMIs. Compression performance was improved by up to over an order

of magnitude for finer BTRs relative to the state of the art. This allows for significantly more MUA

channels to be fit on-implant while staying within heating limits. This was found to be true using data

from 3 different publicly available datasets, including 5 non-human primate subjects and a total of 23

hours of Utah array 96-channel recordings.

• We further strengthen the case for SH encoders. We show that SH encoders, trained on distributions

that make simple assumptions about MUA data, perform just as well as non-causal Adaptive Huffman

encoders while being far more hardware-efficient and causal. As such, SH encoders seem to be a very

attractive means of data compression for MUA-based WI-BMIs.

• We investigate the use of sample histograms for mapping, as in [59], for the event-driven schemes

proposed in this work. We determined their effect on BR and processing power, as well as analyzing

trade-offs in their use.

The rest of this chapter is organised as follows: Section 5.2 introduces three datasets used in this work

and details the compression methods. Section 5.3 shows the compression performance and hardware cost

of each method. Based on these results, we give the recommend compression settings at different BP and

channel counts, trading off between the BR, processing power and hardware cost. Section 5.4 discusses some

algorithm and hardware design considerations in MUA compression and Section 5.5 concludes this work.

5.2 Methods

All compression algorithm work was done in MATLAB R2021A. All hardware design and optimisation work

was done using ModelSim Lattice Edition and IceCube2020.12. All code and results are publicly available

at [107].

For each encoding, the BRs were calculated based on the probability of each symbol occurring. All of

the mathematical details are given in Appendix C.

5.2.1 Dataset and Data Formatting

Brain signal conditions can vary across subjects and tasks. In order to reduced the bias, we used three

different publicly available datasets. As in the previous chapter, we used the Flint, Processed Sabes and

Brochier datasets [64, 65, 96], summarised in Table. 2.4. For each dataset, the SUA data was intra-channel

collated to MUA, then binned to the desired BP, where BP ∈ {1, 5, 10, 20, 50, 100}ms. Based on the results

in Fig. 4.5 from Chapter 4, we limited S to [2, 2, 2, 2, 3, 5] for BPs of {1, 5, 10, 20, 50, 100}ms respectively.

The length of the recordings was largely irrelevant for the sake of this work, as all encoding was done

without using a time derivative and the bandwidth was measured in [bps/channel], normalising for time. As

such, a standard length of 100 s was set for each recording, long enough to gather a stable distribution for each

channel for any of the tested BPs. To maximize the use of the data in observing the effect of channel count,
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recordings were split into consecutive 100 s segments and collated together. For example, a 400 s recording

was represented as 4 parallel channels of 100 s long recordings, where xo,...,xN/4−1 became one channel,

xN/4,...,xN/2−1 became the next, etc., where xk is a single-channel MUA recording and N = 400 s/BP is the

length of the recording in samples. A total of 79200 channels were available after splitting and collation.

The data was then split into training and testing sets. This is because the encodings have parameters

that need to be optimised, which was done on the training set. The testing of parameter-optimised encoding

on the testing set can then provide an objective estimation of the encoding performance on the unseen

data. The training-testing split was done by randomly selecting 30000 channels and placing them into

the training set. The remaining 49200 were put into the testing set. For each encoding, BP, S and n

combination, the training and testing results were each averaged across 5 training and testing runs. For each

run, n ∈ {10, 100, 1000, 10000, 30000} channels were selected randomly without replacement from amongst

all training or testing channels. Different numbers of channels n were considered because the event-driven

encodings performance depend son the number of channels.

5.2.2 Windowed encoding

The windowed encoding from the previous chapter was the first scheme to be implemented. As aforemen-

tioned, it is called “windowed” because it sends out the number of MUA events in a non-overlapping window

of length BP for each channel, regardless of whether an event occurs on a channel or not. See Section 4.1.1 for

more details. In this chapter, the windowed encoding was implemented using a single SH encoder, given the

result from the previous chapter that 1 SH encoder was sufficient for compression while being significantly

simpler to implement in hardware.

The SH encoder was pre-trained on a decaying exponential which mimics the distribution of MUA FRs

at BPs ≤ 100ms (Fig. 4.1), where smaller codewords are given to smaller FRs.

5.2.3 Explicit Event-Driven encoding

In the windowed architecture, the FR of each channel is encoded. The channel ID is implicitly encoded in

bit position. To the best of the authors’ knowledge, the following event-driven architectures are proposed for

the first time in MUA compression. In these event-driven architectures, the channel ID is explicitly encoded

and only active channels will be transmitted. i.e., the channel ID is only sent out if a non-zero FR occurs

on that channel, followed by a binary codeword representing the rate. If a channel has a FR of 0, nothing

gets communicated for that channel, and the offline decoder assumes the missing channels had FRs of 0. For

sparse signals, i.e. where FRs not equal to 0 are rare, this can offer reduced bandwidth over the windowed

paradigm, where even FRs of 0 need to be communicated for each channel.

As the channel IDs need to be explicitly encoded, the simplest method is to give the channels a standard

binary codeword of length k1, where:

k1 = ceil(log2(n)) [bits] (5.1)

Similarly, the MUA FR for each channel is encoded as a binary codeword of length m2:

m2 = ceil(log2(S − 1)) [bits] (5.2)

An exception occurs if S = 2, i.e. m2 = 1 and i is limited to 0 and 1. In that case the FR codeword

is unnecessary as the decoder can assume that all received channels have an FR of 1. An example of the

encoding without lossless compression, with n = 4, k1 = 2 and m2 = 2, is given by:

0001 0100 1011

63



This shows that channel 1 (00) had a FR of 2 events (01) in the bin, channel 2 (01) had FR = 1 (00), channel

3 (10) had FR = 4 (11), and channel 4 had a FR = 0 (absent). In this work, this encoding was named

the explicit event-driven (EED) encoding because the FR per channel is explicitly encoded in the m2-length

codeword that follows the channel ID.

To include the SH encoder, there was no good way to compress the channel IDs, since they are a priori

equally likely to be active. Therefore, the EED encoding uses the same k1 length codeword for the channel

IDs, but uses varying length SH codewords for the FRs. As in the SH windowed implementation, the FR

SH encoder was trained on a decaying exponential.

5.2.4 Delta Event-Driven encoding

The previous encoding suffers since the probability of each channel being active is a priori equal. As such,

the channel IDs, in the form that they are, cannot be efficiently compressed with SH encoders. However,

pre-processing can fix this problem. The channel difference between two successive active channels has

varying probability, and therefore entropy encoding can be effective. In other words, we can encode the

delta-sampled channel IDs of active channels. Therefore, in this ‘delta event-driven’ (DED) encoding, if a

channel has a FR above 0, it is given a ∆ value by subtracting its ID, jcurrent, from the ID of the previous

channel to have a FR above 0, jprevious. I.e., ∆ = jcurrent − jprevious.

Then, the ∆-sampled channel IDs were compressed using a SH encoder trained on a decaying exponential.

Significant memory optimisation was also done by setting a maximum ∆-sampled SH encoder size, using a

form of run-length encoding. This reduced BR slightly but significantly reduced memory requirements. The

details of this optimisation are extensively detailed in Appendix C.3 and C.4. The FRs were compressed

with the same SH encoder as in the EED encoding.

5.2.5 Group Event-Driven encoding

In the GED encoding, one uses position and stop symbols to encode the FRs. As in the EED encoding,

one explicitly encodes the channel ID, but here one encodes the FR per channel implicitly in channel ID

position. For example, in decimal,

2 4 stop2 1 6 stop3 stop4 3

signifies that channels 2 and 4 had a FR of i = 1 in the given bin, channels 1 and 6 had a FR of i = 2,

channel 3 had FR i = 4, and the rest of the channels had FR i = 0. For the codeword lengths, the simplest

implementation is to give the stop symbols and the channel IDs a codeword of length k2 bits from the same

dictionary, where:

k2 = ceil(log2(n+ S − 2)) [bits] (5.3)

E.g. n = 2, S = 4, means that there are 2 channels, FRs between 0 and 3 inclusive can be encoded, and

k2 = 2. Channel 1 gets a codeword of 00, channel 2 gets a codeword 01, and the stop symbols for i = 2 and

i = 3 get codewords of 10 and 11 respectively. It essentially involves sorting the channels by FR, and using

a form of run-length encoding for the channel IDs.

There was no clear role for SH encoding, since the stop symbols and FR codewords need to come from

the same encoder. Estimating these probabilities a priori is difficult. As such, no SH encoding for the group

encoding was used.
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Figure 5.1: BRs for communication schemes at a BP ∈ [1, 5, 10, 20, 50, 100]ms. For each BP, S was

respectively fixed as [2, 2, 2, 2, 3, 5]. At S = 2, the explicit and GED encodings are mathematically

identical, and so their BRs overlap for BPs ≤ 20ms. ‘W’ stands for the windowed encoding.

5.2.6 Hardware Implementation

As in the previous chapter, the above encoding algorithms were implemented on the Lattice ice40LP1K

FPGA in order to assess their hardware complexity (power consumption and resources usage). The hardware

implementations are given in Appendix C.3. The hardware static power is 162µW.

5.3 Results

In Fig. 5.1, we plot the BRs of each encoding at different BPs and n. We can observe that the windowed and

DED encodings perform best, with the best one depending on BP and n. From the hardware perspective,

the windowed encoding is far more hardware efficient than the DED encoding. Whilst the amount of logic

cells is similar for the two encodings, the DED encoding uses significantly more memory, and therefore the

processing power is higher. Additionally, the windowed scheme performs the same independent of channel

count. However, the DED scheme is affected by channel count. When n increases, the delta-sampled channel

IDs can be larger, meaning longer codewords and higher BRs. As such, increasing n slightly increase the

DED BR, but significantly less than for the EED and GED encodings.

As such, the optimal selection generally varies as a function of channel count and BP. Ultimately, we

want the total power on-implant to be reduced. As such, Fig. 5.2 shows the total dynamic power for the

FPGA implementation, made up of the processing power for each encoding and the communication power,

estimated as the BR multiplied by an estimated 20 nJ/bit communication energy.
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Table 5.1: Suggested static encodings and corresponding BRs, hardware resources and dynamic power for

each BTR and channel count. The BR and power results are from the test data. ‘W’ represents the windowed

encoding. ‘x’ entries are where the memory requirements exceeded those of the FPGA platform we selected.

The FPGA Logic Cells and Memory are shared across all channels.

(a) Recommended Encoding (b) Bit Rates (bps / channel)

n n

BTR S 10 102 103 104 3×104 BTR S 10 102 103 104 3×104

1 2 DED DED DED DED DED 1 2 50 99 151 177 183

5 2 DED DED DED DED DED 5 2 45 75 78 79 79

10 2 DED DED DED DED DED 10 2 44 62 62 62 62

20 2 DED W W W W 20 2 31 50 50 50 50

50 3 DED W W W W 50 3 25 29 29 29 29

100 5 W W W W W 100 5 20 21 22 22 22

(c) FPGA Logic Cells (d) FPGA Memory (bits)

n n

BTR S 10 102 103 104 3×104 BTR S 10 102 103 104 3×104

1 2 114 144 164 207 242 1 2 60 648 2448 20448 60448

5 2 124 153 174 217 252 5 2 60 968 2768 20768 60768

10 2 130 159 180 223 258 10 2 60 968 2768 20768 60768

20 2 135 128 134 162 192 20 2 60 200 2000 20000 60000

50 3 183 171 176 207 x 50 3 140 400 4000 40000 x

100 5 232 246 251 286 x 100 5 60 600 6000 60000 x

(e) FPGA Dynamic Power (µW / channel)

n

BTR S 10 102 103 104 3×104

1 2 2.03 3.05 4.1 4.74 5.39

5 2 1.93 2.58 2.66 2.76 3.34

10 2 1.95 2.32 2.35 2.42 2.97

20 2 1.7 1.96 1.98 2.03 2.55

50 3 1.59 1.54 1.58 2.07 x

100 5 1.4 1.43 1.46 2 x
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Figure 5.2: Total communication + processing power, i.e. dynamic power, for the windowed (‘W’) and DED

compression schemes at a BP ∈ [1, 5, 10, 20, 50, 100]ms. For each BP, S was respectively fixed as [2, 2, 2,

2, 3, 5]. For BPs/BTRs of 50 and 100ms, the power is not given for 10000 and 30000 channels since the

memory requirements exceeded the FPGA target memory budget.

5.3.1 Optimal Encoding Selection

From Fig. 5.2 and our analysis of the hardware costs in the Appendices Section C.4, for each BTR and n

we selected the optimal compression system. These are given in Table 5.1 (a). We then determined each

selected system’s performance on the test data, i.e. data that had hereto been untouched. The resulting BRs

are given in (b). The associated required number of FPGA logic cells and memory are given respectively in

Table 5.1 (c) and (d). The total dynamic power on the Lattice ice40LP FPGA target, determined on the

testing data, is given in (e). In summary, the DED encoding is suitable for short BTRs (less than approx.

20ms) while the windowed encoding is preferred when the channel count or BTR is increased.

5.3.2 Testing the Encoding/Decoding

While having the BRs for each encoding and implementation is important, it is necessary to verify that

each encoding functions as desired and is feasible. As such, encoding functions that encoded the binned and

S-saturated MUA data according to each encoding and implementation, as well as with histogram-integrated

versions, were implemented. The BRs were determined from the encoded data directly and were verified

to match the analytically derived BRs. The full decodability of the data was then verified by decoding the

original binned and S-saturated MUA data from the encodings and verifying that the original and decoded

versions were a perfect match. This was done successfully for each method. The MATLAB code for each

method and implementation’s encoding and decoding is given at [107].
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5.4 Discussion

5.4.1 Impact of Compression on Channel Counts in FPGA Target

From Table 5.1, knowing the compressed BRs per BP and channel count, we can derive how many channels

can be hosted on-implant, for different FPGA board dimensions and BPs. We assume:

• A 10mW/cm2 heat flux limit;

• An FPGA static power of 162µW;

• A separate power and hardware budget for the front-end amplifiers, filters and ADCs;

• A 20nJ/bit communication energy;

• A binner processing power of 0.96µW, independent of BP.

Using the information from Table 5.1 (e), we can derive how many channels can be hosted on-implant

while staying within implant power limits. This is compared to the number of channels that can be hosted

given the standard uncompressed MUA representation at 1ms BP, S = 2, that has a 1000 bps/channel BR.

The results are shown graphically in Fig. 5.3. It can be observed that between 4.6 and 26 times more

MUA channels can be fit on-implant with data compression, depending on BP ∈ {1, 5, 10, 20, 50, 100}ms

and FPGA size ∈ {1, 2.5, 5, 7.5}mm. As such, one can observe that data compression allows one to fit many

more MUA channels onto the same implant. Therefore, the compression schemes developed in the last two

chapters are a useful addition to MUA-based WI-BMIs.

5.4.2 Effects of Different Firing Rates and Communication Energy

As in the previous chapter, it is worth noting that the BRs are taken from 3 datasets that all target the

motor cortex during hand kinematic tasks, using Utah arrays. It may be that different tasks, cortical

regions and microelectrode arrays will have varying FRs, which will affect the measured BRs. Similarly, a

20 nJ/bit communication energy estimate is used, but this could be overly optimistic. Such values have been

observed outside the neural medium, and communication energies within the neural medium are likely to

be much higher. As such, while the processing power and resource estimates in this work are robust, the

communication energy, made up of the BR and comm. energy per bit, may vary.

Cortical areas, microelectrode arrays and tasks that have higher MUA FRs will be better served, all else

held equal, by the windowed scheme. This is because the windowed scheme works better if the FRs are

non-sparse. However, higher communication energies will make the communication power dominate, and so

the importance of the processing power, which is higher in the DED encoding, will be less important when

choosing a system. It may be that, even with higher FRs than shown in this work, the DED scheme will be

the best option given that it generally has lower BRs than the windowed scheme. This is especially true at

finer BTRs.

Additionally, at higher communication energies, the role of data compression as a whole becomes more

important. As such, the ratio of compressed to uncompressed channels that can be fit on-implant within

heat limits, shown in Fig. 5.3, may be a conservative estimate. With significantly higher communication

energies, a much larger ratio of compressed channels to uncompressed channels could be fit on-implant.
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Figure 5.3: Number of MUA channels we can host on a Lattice ice40LP FPGA of different dimensions for

the selected communication schemes at a BP ∈ [1, 5, 10, 20, 50, 100]ms while remaining within the power

budget. This is compared to the number of channels that can be hosted given the standard uncompressed

MUA representation at 1ms BP, S = 2, that has a 1000 bps/channel BR. The required power for any front-

end ADC and pre-amplifiers is ignored. The total dynamic power budget is given by the FPGA dimensions

multiplied by a heat flux limit of 10mW/cm2, assuming heat flux from both faces, minus the FPGA static

power. For each BP and FPGA dimension pair, the ratio of how many more channels can be fitted on-

implant with compression is also given.
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5.4.3 Adaptive Huffman vs. Static Huffman encoding

While it is not shown in the main manuscript to simplify it, this work did not just look at SH encoding.

For each of the four compression architectures, we also investigated modes with no lossless compression,

with Adaptive Huffman encoding, which trains the Huffman encoders using the data collected on-implant

in real time, and the entropic bandwidth, which gives the minimum BRs that could be achieved for each

architecture given a perfect compression scheme. These modes are described in detail in the Appendix C,

and the BR results given in Appendix C.2.

An interesting observation was that the SH encodings performed virtually identically to the Adaptive

Huffman encodings, which were fully adaptive and assumed perfect knowledge of the to-be-compressed

data. As such, we can conclude that SH encoders are a remarkably hardware-efficient and well-performing

compression scheme for MUA data. This is because the shape of the to-be-compressed data is more or less

known a priori, and so on-implant training is unnecessary.

5.4.4 Sample Histograms for Mapping

The use of sample histograms to add adaptivity into the SH encodings, as in the previous chapter, was

also investigated. Also to simplify the manuscript, detailed discussion and the BR results are given in the

Appendix C. It was found that sample histograms did improve the BRs, but that their hardware and process-

ing power costs, while not very large, were noticeable. It was deemed that, for a 20 nJ/bit communication

energy, the use of sample histograms was not justified for the reduction in communication power. However,

with larger communication energies, the use of sample histograms may be warranted to reduce the BR and

so the communication power, which may be the dominating factor.

5.5 Conclusion

In this chapter, we looked at various algorithms for compressing MUA data for WI-BMIs. We made significant

use of SH encoders because of their hardware efficiency and good compression performance. We found

that they performed exceptionally well, and that the MUA signal could be compressed to varying degrees

depending on BP. For example, at the standard BP of 1ms, between 4.6 and 26 times more channels can

be fitted onto the same mm-scale implant merely because of the addition of the DED compression scheme

proposed in this work.

It was found that for BPs ≤ 10ms, the DED method had the lowest total processing + communication

power and reduced the BR by up to almost an order of magnitude relative to the classical windowed method

(e.g. to approx. 151 bps/channel for a BP of 1ms and 1000 channels on-implant.). However, at larger BPs

the windowed method performed best (e.g. approx. 29 bps/channel for a BP of 50ms, independent of channel

count).

As such, the work in this chapter can guide the choice of MUA data compression scheme for BMI

applications, where the BR can be significantly reduced in hardware efficient ways. This enables the next

generation of wireless intracortical BMIs, with small implant sizes, high channel counts, low-power, small

hardware footprint, and good BTRs. MUA is already the most popular neural signal for WI-BMIs [14, 74,

77, 85]. The results from this work suggest that the MUA signal can be made even more attractive, given

the possibility for hardware-efficient, ultra-low power compression. All code and results in this chapter have

been made publicly available at [107].
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Part II

Compressing Entire Spiking Activity
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Chapter 6

Minimum Requirements for the

Processing and Compression of ESA

This chapter addresses the hardware-efficient and low-bandwidth extraction of the ESA signal.

While most modern WI-BMIs use the MUA signal, the ESA signal has been shown to have supe-

rior decoding ability. It is also, in theory, simple to extract on-implant, however this has not been

investigated. Therefore in this chapter we looked at hardware optimisations for the on-implant

extraction of the ESA signal. We found that in terms of its BDP and BR results, it often rivals

the MUA signal while having a simpler extraction process.

6.1 Background

6.1.1 Entire Spiking Activity

Methods for the hardware-efficient and low power extraction of the MUA signal have been developed [68].

Furthermore, the compression of the MUA signal has been extensively explored in Part I of this thesis.

However, the extraction and compression process of the MUA signal continues to be slightly complicated,

involving highpassing the broadband, setting an appropriate, potentially adaptive spike-detection thresh-

old [68], binning, and compression using advanced algorithms whose complexity depends on the required

temporal resolution of the data (Chapter 5). As such, finding other, simple to extract intracortical signals

with high BDP and low bandwidth would be beneficial.

The ESA signal is underexplored as a signal. However, recent work has shown that the ESA signal may

contain the most behavioral information from amongst all common intracortical features [16]. By comparing

the BDP of SUA, MUA, LFP and ESA signals, across a wide range of decoding algorithms, it was found that

the ESA signal had the highest BDP [16]. It is generally extracted via highpass filtering of the broadband

signal at approx. 300Hz, followed by rectification and enveloping, and finally downsampling/binning. This

process is shown in Fig. 6.1 in the context of WI-BMIs. Given the simple nature of the ESA extraction

process and the high BDP it has been shown to have, it would be ideal if this signal could be extracted in

a hardware-efficient way, with small bandwidth while maintaining high BDP. As such, in this chapter we

investigate hardware-efficient and low-power means to extract and compress the ESA signal, in the hopes of

obtaining an easy-to-extract, low BR, and high BDP signal for use in WI-BMIs.

Given our success with SH encoders for compressing the ESA signal in Chapter 3 and for compressing the
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Figure 6.1: Typical ESA processing flow, shown for WI-BMIs.

MUA signal in Chapters 4 and 5, this chapter will also make use of SH encoders. It warrants mentioning that

the ESA signal is significantly less sparse than the MUA signal. This is because values of 0 are significantly

rarer due to the more analogue nature of the ESA signal, where background spiking activity is included.

This reduced sparsity is obvious in comparing Fig. 4.1 and 6.2. As such, the windowed SH method was the

main one used.

6.2 Methods

6.2.1 Analysed Data

For this chapter, we used the publicly available dataset from [65] (Sabes Raw Broadband from Table 2.4). It

consists of raw neural intracortical broadband signals taken from a NHP subject with Utah arrays inserted

in M1, with stored behavioral data. A random sample of 15 recordings were used as training data, and the

remaining 12 as test data. The split is detailed in Table D.1 in Appendix D. Each recording has n = 96

channels.

6.2.2 ESA extraction process

6.2.2.1 Analog-to-Digital converter

The first processing step was to imitate an ADC. For both reduced power and hardware footprint, it would

be convenient to have a low sampling rate and sample resolution. As such, we downsampled the resolution

from the original 16 bits to b bits, and the frequency from 24.4 kHz to f kHz. The frequency downsampling

was done via linear interpolation, and no anti-aliasing filter was used prior to downsampling. While this

introduces distortion into the signal, it was found to be minor enough to have no effect on BDP. Furthermore,

the lack of a lowpass filter greatly improved the hardware efficiency.

6.2.2.2 Highpass filtering and Rectification

When processing neural signals, it is common to use a classical highpass filter, e.g. Butterworth, Elliptic,

Chebyshev, etc. However, recent work has found that a basic, extremely hardware efficient highpass filter

can be made by simply delta-sampling the data [68]. As in econometrics, this removes long term trends

from the data, i.e. low-frequency components. It is highly distorting in the frequency domain, however if

the BDP does not suffer, the distortion is ultimately irrelevant for BMI purposes. It is as hardware efficient

as possible for a highpass filter, consisting of a single subtraction operation.

Therefore, given our goal of achieving ultimate hardware efficiency, we opted for a simple delta-sampling

operation as our highpass filter. Furthermore, the next step in processing flow is rectification, which is simply
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Figure 6.2: (a) A random sample of 1200 ESA grid search results’ FR probability distributions, with BTR

≈ 100ms. (b) Average ESA FR probability distribution across the above grid search results, with BTR ≈

100ms.
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achieved by removing the signed bit, as such it does not require any operation to perform. The complete

delta-sampling and rectification is given in Eq. 6.1.

y[k] =




x[k], if k ≤ h

abs(x[k]− x[k − h]), if k > h
(6.1)

where y is the delta-sampled and rectified signal, x is the input signal, k ∈ [Z+, 1 ≤ k ≤ p], and p is the length

of the recording on one channel in samples. abs is the absolute transform, and h ∈ Z
+ is an interleaving

value. To reduce the dynamic range, only the l LSB of y were kept. In other words, we saturated i.e.

thresholded the dynamic range of the rectified signal at l bits, so that y ∈ [Z+, 0 ≤ y ≤ (2l − 1)].

6.2.2.3 Enveloping and Downsampling

The next step in ESA processing is to envelope the rectified signal. Given that reducing the BR is a parallel

goal, it makes sense to simultaneously downsample the frequency of the signal. The simplest method to

accomplish both is to bin the signal with a non-overlapping window. By binning w samples together, this

reduces the sampling rate of the data from f to f/w. This gives a BP, i.e. BTR, of w/f s, which is a useful

metric for comparing the data flow to MUA data flows. The binned signal z is given by:

z[k2] =
w∑

i=1

y[(k2 − 1) × w + i] (6.2)

where k2 ∈ [Z+, 1 ≤ k2 ≤ p/w].

To reduce the BR, it is useful to reduce the dynamic range of the signal. We did so by downsampling

the resolution of the binned MUA signal, which consisted of keeping the m most significant bits of z, as

this allowed us to keep the general shape of the data whilst doing away with the smaller details in the

signal. Thresholding, as for the MUA signal in Part I, was also investigated for the ESA signal as a means of

reducing the dynamic range. However, it was found to not perform well do to it overly negatively affecting

the BDP.

6.2.2.4 Static Huffman compression with mapping

The next step was to integrate some lossless compression into the data flow. As throughout this thesis, SH

encoders were used due to their hardware efficiency and good performance. As in Chapter 5, only 1 encoder

was implemented on-implant, due to the result in Chapter 4 for the MUA signal that having 1 encoder often

gave optimal compression in a very hardware efficient way. Similarly, here the SH encoder was trained on

a decaying exponential so that smaller values received shorter codewords, with an Sorted Codeword Length

Vector (SCLV) of [1, 2, 3, ..., S − 1, S − 1].

SH encoders work best if the data is sorted so that the most common symbols index the shortest code-

words, as in Table 2.2 (b). As such, some way to estimate the on-implant ESA histogram is needed to

make full use of pre-trained SH encoders. In previous chapters, we used a sample histogram to improve the

adaptivity of the SH encoders for MUA data (Fig. 4.3). In this chapter, we adopted the same strategy for

the ESA signal.

6.2.2.4.1 Losslessly compressing the data

The first 2s − 1 samples from each channel were used to train the histogram, where s was the size of each

histogram bin in bits. Once the given number of samples had been used to populate the histogram, the

mapping was produced using the same pseudo-sorting algorithm from Chapter 4, detailed in Fig B.10 in the
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Appendices. The rest of the data was then mapped to its new values. The hope is that the more common

symbols will be mapped to smaller values. Those values are then compressed using the SH encoder defined

above, which gives shorter codewords to smaller values. Again, this process is shown in Fig. 4.3. If s = 0,

then no histogram or mapping was used and the data was treated as if it was already sorted.

6.2.2.4.2 Calculating the BR

For each parameter combination, using the processed data, the final compressed BR is analytically given by:

BR =

∑2m−1
i=0

(
SCLVi+1 ×

∑n
c=1

∑p/w
k=1(Zc,k == i)

)

n× f/w
[bps/channel] (6.3)

where (Zc,k == i) has a boolean value of 1 if the kth element of the processed ESA data on channel

c ∈ [Z, 1 ≤ c ≤ n = 96] is equal to i, and a value of 0 otherwise. Additionally, SCLVi is the length of the ith

codeword, i.e. the ith element of the SCLV of the aforementioned SH encoder.

6.2.2.5 Behavioral Decoding

The final step is to ensure that the processing has not eliminated too much useful data. This is done by

using the processed ESA signal (without the lossless compression from the previous section) to decode the

tracked behavior. To do so, we used a Wiener Cascade Filter decoder to decode the X and Y-axis cursor

velocities associated with this neural dataset. For each processing flow parameter combination, the decoder

was hyper-parameter optimised. These hyper-parameters included the Wiener Cascade Filter α value, the

degree of the Wiener Cascade Filter, a lag parameter that specified the lag between the kinematic and

neural data, the amount of timesteps (i.e. taps) the Wiener Cascade Filter considered, and the width of a

causal moving average filter used to smooth the neural data prior to being feed into the decoder. l2 (also

known as ridge or Tikhonov) regularisation was used. The hyper-parameter optimisation was done via 5-fold

cross-validation, with a 80-20% training-testing split. The final BDP was then measured on the testing data,

using the hyper-parameters determined from the 5-fold cross-validation.

6.2.3 Parameter Optimisation

The objective was to find a combination of b, f, h, l, w,m and s that maximised BDP while minimizing

the required hardware and BR. As such, a grid search was used to iterate through different parameter

combinations. An initial narrow set of parameters was scanned, and it was found that h had little effect,

and so was set to the best overall performing value of h = 3.

Next, a broad set of parameters was iterated through each recording of the training data. These parame-

ters are shown in Table 6.1. For each parameter combination, hyper-parameters were optimised using 5-fold

cross-validation, and the final BDP on the testing set was taken as the BDP for that parameter combination.

For each parameter combination, the BDP and BR were then stored, along with the final BTR. It may be

worth mentioning that the histogram size s does not affect the BDP and only impacts the BR and hardware

resources, since it affects the lossless compression.

6.3 Results

The grid search results were plotted in Fig. 6.3 as a 2D colored scatter plot, where BDP was shown as a

function of BR and the BTR of the data for each parameter combination.

77



Table 6.1: ESA grid search parameter space.

ESA Extraction Parameters Description

f (kHz) 4, 5, 6, 7, 8, 9 Sampling frequency

b (bits) 8, 9, 10, 11, 12 Sampling resolution

h 3 Interleaving value

l (bits) 3, 4, 5, 6
Dynamic range of

rectified signal

w (samples) 2**[7, 8, 9, 10, 11, 12] Binning window

m (bits) 4, 5, 6, 7
Nb. of most significant bits

to keep in the final signal

s (bits/bin) 0, 1, 2, 3, 4, 5 Histogram size

Behavioral Decoder Hyper-parameters Description

α 0, 10−2, 10−3 Wiener Cascade Filter hyper-parameter

Degree 2, 3, 5 Wiener Cascade Filter hyper-parameter

Timesteps 5, 10, 15
How many samples

(i.e. taps) to use.

Lag 0, 10 times f/w
Introduced lag between

neural and kinematic data.

Moving Average

Window (ms)
0, 50, 100 Causal window width
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Figure 6.3: Grid search results from Table 6.1. Each parameter combination is represented by a data point,

and is plotted as a function of its BR, BDP and BTR.
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The results are encouraging, in that BDPs above 80% were achieved at BRs below 20 bps/channel.

However, generally speaking, a lower BR meant a higher BTR. One would prefer a low BTR, where we have

a high temporal resolution for the data, and also a low BR. As such, there is an unfortunate but intuitive

tradeoff. Sending out the data at a low temporal resolution reduces the bandwidth. Similarly, a higher

temporal resolution requires a higher BR.

6.3.1 Comparing the training data ESA results to state-of-the-art MUA results

Chapters 4 and 5 included the same Sabes dataset, for the compression of the MUA signal, as in this chapter

for the processing of ESA. As such, we can make a direct comparison of the exact same recordings, comparing

the MUA and ESA BRs, BTRs and BDPs. This is important, as there can be significant variation in the BDP

and BR between recordings, and so making comparisons between the same recordings removes confounding

factors. Therefore, for each occurring BTR value, we selected a parameter combination for the ESA signal

that had a good trade-off between BDP and BR. We then looked at the MUA results from Table 5.1, and

chose MUA processing parameters and encodings that were found to be optimal across the 3 datasets, for

BTRs ∈ [1, 5, 10, 20, 50, 100]ms.

In Chapter 5, the MUA compression results depend on the number of channels, where having more

channels sometimes increases the BR. However, there were only 15 training recordings used in this work,

with 96 channels each. As such, a maximum of 1440 channels were available. As such, we considered having

1000 channels on-implant, and used the selection from Table. 5.1 in Chapter 5 for 1000 channels. As such,

for BTRs ∈ [1, 5, 10, 20, 50, 100]ms, we selected encoding schemes [DED, DED, DED, W, W, W] with MUA

S = [2, 2, 2, 2, 3, 5] respectively.

As such, Fig. 6.4 shows the ESA vs. MUA BDPs as a function of BTR and BR. Each data point is a

parameter combination, and the BRs and BDPs are averaged across all training recordings, for both the

MUA and ESA results. We can observe a similar trend for both signals in decreasing BR being associated

with increased BTR. However, the MUA signal seems to have a lower BR for a similar BTR, for BTRs ≤

approx 50ms, with a slightly higher BDP. Contrary to that, at BTRs > approx. 50ms, the ESA signal has

virtually identical BR for the same BTR as the MUA signal. The ESA signal also seems to have a slightly

better BDP for the same BR and BTR, making it perform slightly better at BTRs ≥ approx. 50ms.

Given the findings in Table 5.1, we can also determine that the MUA signal would perform even better

at fewer than 1000 channels, but worse at more than 1000 channels at BPs equal or less than 20ms.

6.3.2 Test data results

Finally, we tested whether the system performed as expected on new data, as all results may have been

overfitted to the training parameter selection. To do so, we took the same ESA extraction parameters from

Fig. 6.4 (given in Supplemental Material, Table 2), and tested their performance on the testing data.

The ESA testing data BDPs, BTRs and BRs were calculated for the parameters and these are plotted vs.

the MUA test data. The MUA test data was compressed using the same parameters and algorithms as the

MUA train data, detailed in Table 5.1 of Chapter 5, and the MUA BDP averaged across the test recordings

from the MUA BDP results from Chapter 5.

The test recording results are shown in Fig. 6.5. We can observe that the BDPs in the test data are

somewhat lower than in the training data. However, the same relationship between ESA and MUA data holds

in the new test data as it does in the train data. This is encouraging, as it shows that the ESA processing

system is performing consistently and well on the new data. This shows that the results in Fig. 6.4 are not

merely the result of overfit to a broad parameter search.
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Figure 6.4: BDP as a function of BTR and BR, for both ESA results in this work and the MUA results using

the same recordings. All results are from the training data. Triangle markers with black outline represent

MUA results, and circular markers without outlines represent ESA results. We can observe a similar trend

for both signals in decreasing BR being associated with increased BTR. The MUA signal seems to perform

slightly better than the ESA signal at BTRs < approx. 50ms, and the ESA signal seems to perform better

at BTRs ≥ approx. 50ms. The processing parameters for the ESA signal for each data point are given in

Appendix, Table D.1.

Figure 6.5: BDP as a function of BTR and BR, for both ESA test results in this work and the MUA results

(from the recordings referred to in this work as test recordings) from Chapter 5. Triangle markers with black

outline represent MUA test results, and circular markers without outlines represent ESA test results. We

can observe a similar trend for both signals as in Fig.6.4.
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6.4 Discussion

6.4.1 Whether to select MUA or ESA depends on the desired BTR

The MUA signal processing flow is much more complex than the ESA processing flow. This is because a

highly-optimised MUA processing flow involves high-pass filtering, setting an appropriate and potentially

adaptive threshold for spike-detection, and then the binning and compression with a simple synchronous or

complex delta-asynchronous algorithm depending on BTR and channel count [59,68]. The ESA flow involves

only high-pass filtering and rectification via a single subtraction operation, binning via a summing operation,

and a simple compression algorithm. The compression scheme for the ESA signal in this chapter is in fact

the same windowed scheme as used for the MUA data in Chapter 5 for BTRs ≥ 20ms, with the addition of

a sample histogram. As such, considering that the ESA processing flow is simpler than the MUA processing

flow, the ESA signal seems superior to the MUA signal for WI-BMIs at BTRs ≥ approx. 50ms. This is

because, at BTRs ≥ approx. 50ms, the ESA gives similar BR and BDP results as the MUA signal for the

same BTR, with a simpler data flow.

For BTRs below 50ms, the MUA signal appears to be more appropriate, depending on whether the

additional complexity of the MUA signal processing scheme [68] is acceptable or not.

6.4.2 Each channel sharing the same histogram/mapping

It was also considered that each ESA channel could share the same histogram and mapping. This would

save on RAM memory. However, the number of logic circuits would be the same. This is because, even if

every channel has its own histogram, the histogram module’s use is multiplexed and so only one histogram

module exists. It was found that the compression performance was significantly better if each channel had

its own histogram. As such, a design choice was made to have every channel have its own histogram, even

if this requires more RAM.

6.4.3 Further optimisation

There are a number of other operations we could consider to improve the ESA processing flow. These include:

• We could investigate other SH encoder distributions (other than a decaying exponential).

• Rather than selecting the most significant bits to downsample the data, we could look at applying a

Discrete Wavelet Transform, and compressing the coefficients.

• One could have multiple SH encoders. Each channel’s histogram could be used for assignment of

channels to their optimal encoders, as in [59]. This increases hardware complexity, but may improve

BR somewhat.

• One could map the final pre-compression ESA values to a custom non-linear scale to reduce the

dynamic range and BR, while maximising the BDP as a function of BR. For example, one could use

each channel’s histogram to see what values occur on each channel. One could then communicate

out only those values as possibilities, reducing the dynamic range by customising it to each channel’s

signal.

• In Chapter 3, it was shown that LNNT pre-processing was an effective step for improving the compres-

sion performance of SH encoders. In particular, with enough training data, it may perform effectively.

It is relatively simple to implement in hardware, especially if the weights are powers of 2 and so the
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multiplication can be replaced with bit-shifting. However, there was not enough time to explore further

pre-processing methods. As such, while this thesis presents evidence that LNNT pre-processing can

improve ESA compression, it has not been analysed at the same level that the rest of the processing

methods in this chapter have been.

• In Chapter 3, we determined that clipping protects against overfit in the case of large dynamic ranges.

If the dynamic range of thew ESA signal cannot be reduced sufficiently, clipping may be an interesting

method to make the compression more reliable.

6.4.4 Hardware complexity suffers from large dynamic range

The hardware cost of the ESA compression is made worse by large dynamic ranges. For example, the pseudo-

sort algorithm for mapping the ESA values to codewords requires an LUT of dimensions S×S. As such, the

dynamic range S of the ESA signal should be minimised as much as possible. Its dynamic range is currently

unattractive, being significantly larger than that of the MUA signal, where S = 2m given in Table 6.1.

6.5 Conclusion

In this chapter, we looked at optimising the intracortical ESA signal for behavioral decoding BMI applica-

tions. We found that the signal can be highly optimised, to the point it rivals the bandwidth and decoding

performance of the most common intracortical signal in WI-BMIs, MUA. Additionally, the ESA on-implant

processing flow is significantly simpler. Further optimisations of the ESA processing flow are also likely

possible. As such, the ESA signal appears to be a strong candidate target for modern WI-BMI applications.

It gives high behavioral decoding performance at decent temporal resolutions and low bandwidths. It also

has an extremely hardware efficient on-implant extraction procedure. The dynamic range and its effect on

BRs is a continued issue that warrants further research. However, optimism is absolutely warranted: this

chapter shows that merely delta-sampling the broadband signal, and binning the result, gives state-of-the-art

behavioral decoding performance at reasonable BRs and BTRs.
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Chapter 7

Conclusion and Future Directions

As BMIs develop, a remaining bottleneck for widespread clinical application is wireless powering and com-

munication. Percutaneous connections are simply not a tangible solution for chronic BMI use. However,

wireless communication consumes significant power. This is especially true considering that every µW of

power used on-implant first has to be wirelessly transferred to it. This transfer is highly lossy, which only

further heats the tissue. As such, heat flux safety limits into cortical tissue are an immediate constraint for

WI-BMIs. Therefore, techniques to extract, process and compress intracortical neural signals in ultra-low

power ways are needed. Furthermore, given the extremely hardware constrained WI-BMI environment, any

such processing must be performed using minimal computation.

In this thesis, we tackled this problem. We showed that intracortical data compression is indeed possible

with minimal additional computation, even within the extreme hardware constraints.

7.1 Original contributions

This thesis contains multiple original contributions.

7.1.1 MUA compression

In Part I, the popular MUA signal was compressed by approximately an order of magnitude relative to

the general standard in hardware-efficient ways. Multiple compression schemes were introduced, such as

combining SH encoders with the common windowing method, as well as advanced methods such as the

Delta Event-Driven and Group Event-Driven encodings. Each of these methods was analysed intensively,

and a collaboration was undertaken with Z.Z. to produce the hardware designs of each. Furthermore, various

additional techniques were introduced to improve the performance of SH encoders, such as sample histograms

to map values along with a pseudo-sort algorithm, the use of multiple encoders with assignment, and clipping

to protect against overfit in the case of large dynamic ranges.

A final recommendation of the best MUA compression schemes for different scenarios was given in

Table 5.1, based on results from multiple NHP subjects. All together, this thesis contributes extremely

hardware-efficient means of compressing MUA signals with good BTRs and BDP. For example, one could

keep a 1ms BTR and obtain a lossless 151 bps/channel BR, relative to the standard 1 kbps/channel for

1000 recording channels. At a 20ms BTR, one could reduce the BR down to 50 bps/channel without any

degradation in behavioral decoding quality.
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7.1.2 ESA compression

The ESA signal is underexplored in BMI work, but recent work demonstrates its state-of-the-art decoding

ability [16]. This thesis introduces extremely hardware-efficient means of extracting and compressing the

signal. The basic flow involves delta-sampling as a rudimentary highpass filter, combined with binning for

simultaneous enveloping and downsampling. Finally, the windowed compression scheme from the MUA work

was applied to the ESA signal, with good results. Various pre-processing compression techniques were also

explored, such as LNNT encoding. Overall, it is remarkable that simply delta-sampling the broadband signal,

and binning the result, can reliably produce a signal with state-of-the-art behavioral decoding performance.

Further investigation is absolutely warranted.

7.2 Future directions

It is the opinion of the author that future work should target two areas:

1. The ESA signal. It has remarkable decoding ability and robustness, and it presents interesting research

opportunities. Improvements to its hardware-efficient extraction, beyond what was accomplished in

this thesis, are an attractive prospect. Furthermore, developing custom compression schemes, e.g.

applying LNNT along with sample histograms, could bring significant benefit. Overall, the ESA signal

has significant potential and continues to be underexplored as a signal in BMI research. I believe that,

in time, it is likely it will uproot MUA as the standard target signal in iBMIs thanks to its simple

extraction process, robust chronic performance and state-of-the-art BDP.

2. The exploration of implementing MUA compression schemes in ASIC hardware. Of the work on differ-

ent signals targeted in this thesis, the work on MUA compression is the most mature. However, there

is significant space to explore translation of the MUA encoding methods to ASIC hardware. ASICs

can tailor their hardware designs to the required computations, allowing significant improvements in

power and space compared to FPGAs. Furthermore, in ASICs the use of memory can be customised,

and the front-end processing of the MUA signal combined with the compression module in innovative,

yet-to-be-explored ways. Overall, this would facilitate the practical implementation of MUA extraction

and compression schemes into iBMIs as a whole, helping solve the obstacle to widespread clinical use

of iBMIs.

7.3 Concluding remarks

I am without doubt that iBMIs will be wireless, and that their clinical adaptation depends on it. The degree

to which they can scale will depend on how they can limit the communication power. Therefore, hardware

and power efficient means to process and compress the signal on-implant, prior to communication, are a

must. In line that that goal, this thesis showed that such processing and compression was indeed possible

within hardware and power limits. The reductions in communication power were significant, and enabled

large increases in the number of recording channels while remaining within safety limits of intracortical heat

flux. Overall, safer, more powerful BMIs result from smaller bandwidth, and I believe this thesis made

significant strides in that direction.
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Appendix A

Dataset details

The datasets from Table 2.4 are detailed here.

A.1 Flint-Slutzky 2012

The first dataset is the Flint-Slutzky 2012 dataset [64]. It has 12 recordings taken across 5 days. Each

recording consists of SUA data measured with a 96-channel Utah array in M1 in a non-human primate

performing a free reaching task. The SUA data was obtained by taking broadband recording sampled at

30 kHz, highpass filtering them at 300Hz, manually thresholding the resulting signal at an average of 5.2

standard deviations above the mean potential, and then manually sorting. In this work, MUA was derived

from the SUA via collation of intra-channel spikes. In this work, the X and Y-axis cursor velocities, sampled

at 100Hz, were used as the observed behavioral data.

A.2 Brochier et al. 2018

The second dataset is the Brochier et al. 2018 dataset [96]. This consisted of two recordings, one obtained

from each of two non-human primates (referred to as L and N) from a 96-channel Utah array in both the

M1 and the dorsal (PMd - subject L) or ventral (PMv - subject N) premotor cortex. The recording from

subject L was approximately 1.5 hours long from a single session, and the recording from subject N was

approximately an hour long, also from a single session. The broadband data was first filtered with a 1st order

0.3Hz high pass filter (full-bandwidth mode) and a 3rd order 7.5 kHz Butterworth low pass filter. The SUA

was then obtained via manual offline thresholding and sorting, from broadband data sampled at 30 kHz.

For subject L, prior to thresholding, the data was highpassed at 250Hz. Subject L had some noisy spikes

that were not removed in this work. For subject N, prior to thresholding, the data was passband filtered

between 0.25 and 5 kHz. The behavioural data consisted of labelled actions. As these were not continuous

measurements, the behavioral data from Brochier et al. was not analysed in this work so as to keep the BDP

metric consistent.

A.3 O’Doherty Sabes lab 2017-2020 processed

The third dataset is the O’Doherty Sabes lab 2017 (updated in 2020) dataset [65]. Two adult male Rhesus

macaque monkeys (Indy and Loco) were recorded performing a free-reaching task. The neural recordings

consisted of SUA from Utah arrays implanted in M1 (and for some sessions also in S1). As such there were
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either 96 or 192 channels per session, where some channels had no spiking activity and so were removed. 37

sessions spanning 10 months were recorded from Indy, and 10 sessions spanning a month from Loco. The

hand and cursor X and Y positions were sampled at 250Hz. The X and Y velocities were taken to be the

observed behavioral data in this work, taken as the 1st derivative of position.

A.4 O’Doherty Sabes lab 2017-2020 raw broadband

This dataset consists of the raw broadband recordings from the previous dataset [65]. Only the subject

‘Indy’ had broadband recordings.

The recordings are across 30 sessions. They are not segmented into trials, and have an average duration of

∼520 seconds. The broadband data was pre-amplified with a PZ2 Preamplifier (Tucker-DEDvis Technologies,

Alachua, FL) with a frequency response of 3 dB: 0.35Hz – 7.5 kHz; 6 dB: 0.2Hz – 8.5 kHz [108]. There was

also an anti-aliasing filter built-in to the pre-amplifier: 4th order low-pass with a roll-off of 24 dB per octave

at 7.5 kHz. It was then sampled at Fs = 24414.0625Hz and 16-bit resolution using a RZ2 BioAmp Processor

(Tucker-DEDvis Technologies, Alachua, FL). There is an anti-aliasing filter built-in to the recording amplifier:

2nd order low-pass with a roll-off of 12 dB per octave at 7.5 kHz.

A.5 Hall and Jackson 2014

The data consists of raw Broadband microwire recordings from NHP M1 cortex, sampled at 16-bit resolution

and 24.4 kHz [97]. The data came from 3 animals (Dusty, River, Silver) and a ‘Ukiah’ dataset, which was

understood to originate from one of the 3 animals but using a different microwire array. The recording lengths

belong to vector RL = [205, 364, 396, 473, 646] s. Respectively, these values are the minimum length, the

1st quartile, the median, the 3rd quartile, and the maximum. The number of microwire electrodes ranged

from 10 to 24, depending on subject.
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Appendix B

Supplementary Material - Chapter 4:

Static Huffman Compression of MUA

B.1 Data Compression analysis process, full details

In this section, we determined the effect of various compression architectures on BR and therefore commu-

nication power. The role of the number of encoders, S, BP, and histogram memory size, which is used in

assignment of channels to encoders, were investigated. However, firstly, not all static Huffman encoders will

be useful for compressing MUA data at a given BP. As such, to identify the subset of interesting Huffman

encoders, a Machine-Learning (ML) strategy was adopted. This is because the subset of interesting Huffman

encoders, to be implemented on-implant, should be found in a way that is compatible with real-life appli-

cation. I.e., the choice of the subset of Huffman encoders implemented on-implant should not be influenced

by the data to be measured on-implant, as this is not known prior to implantation.

An approach was taken where all possible static Huffman encoders of length S were considered. During

each training-validation round, the set of Huffman encoders was reduced by removing the encoder that

contributed the least to the compression. Eventually, only u = 1 encoder, i.e. the ‘best encoder’, was left,

in which case no assignment or histogram were necessary and every channel used the same encoder. This is

discussed further in the Supplemental Material, Section B.1.3.1.

As required for a machine learning approach, a training/validation split was used. The training data was

used to reduce the set of Huffman encoders. The validation data was used to represent neural data recorded

on-implant, on which the quality of the assignment and compression was measured.

The training and validation data, from A, were split by taking the full recording from a channel and

assigning it to either training or validation. The training and validation channels were randomly selected

with a 50/50 split. The channels from the Flint and Sabes datasets were split separately, so that both were

represented 50/50 in training and validation. All 960 Flint channels in A were considered, and a random

2000 out of 4224 channels in the Sabes data in A were considered. The Sabes data was limited so that the

contribution of the Flint data was not overshadowed, and so prevented overfit to the Sabes data. It warrants

mentioning that this training-validation split is distinct from that in the Supplementary Material, Section 4,

that looked at the effect of BP and S on BDP, although both splits concerned data from A.

B.1.1 Sorted Codeword Length Vector representation

We wanted to determine how the best u (u ∈ Z, 1 ≤ u ≤ h) Huffman encoders, from the set of all possible h

Huffman encoders with S fields, would perform in compressing MUA data from multiple channels where each

96



Table B.1: Demonstrating a non-redundant representation of Huffman encoder codeword lengths, the SCLV.

(a) All Huffman code combinations for S = 3; (b) Vectors of the lengths of the Huffman codes, with copies

removed. (c) Sorted Codeword Length Vectors, with copies removed.

(a) (b)

All Huffman Encoders

of Length S = 3

Non-redundant Codeword

Length Vectors, S = 3

Huffman code

combination

1st

CW*

2nd

CW

3rd

CW

Huffman code

length

combination, key

1st CW

length

2nd CW

length

3rd CW

length

1 0 10 11 1 1 2 2

2 0 11 10 2 2 1 2

3 00 1 01 3 2 2 1

4 01 00 1

5 11 0 10 (c)

6 00 01 1
Non-redundant

Sorted Codeword Length Vector (SCLV)

*CW = Codeword
SCLV

combination

1st CW

length

2nd CW

length

3rd CW

length

1 1 2 2

channel was assigned to its ideal encoder. As such, all possible Huffman encoders of length S were produced.

For example, for S = 3, all possible Huffman encoder codeword combination are given in Table B.1 (a).

There are many redundant configurations of Huffman encoders, assuming the order of the symbols in

unimportant. The only constraint is that, in a Huffman encoder, the shortest codeword should represent the

most likely symbol in the data, the 2nd shortest should match the 2nd most likely, etc. As such, the Huffman

encoders were reduced down to a SCLV representation, which consisted of the ascending sorted vector of

codeword lengths. This process is shown in Table B.1 (a-c). In the case of S = 3, it can also be observed in

Table B.1 (c) that all h = 6 encoders reduce down to a single SCLV. Taking the dot product of the SCLV

and sorted histogram, where the histogram is sorted in descending order, gives the length of the data, in bits,

after compression by a Huffman encoder with the same SCLV as shown in Table B.2 (c). Dividing the dot

product by the number of samples gives avlen from Eq. 2 in the main manuscript, where dividing further by

BP gives the BR. This enables us to assign encoders to channels based on which encoder gives the smallest

BR (Table B.2 (d)). It warrants mentioning that, to actually compress the data, a Huffman encoder that

matches the SCLV is required. However the BR can be obtained from the SCLV via its dot product with

the sorted histogram.

Based on the BDP vs. S results that will be shown later in this section, and our knowledge of the

hardware costs of large S values that will be shown in Supp. Mat. Section B.5, we opted for the full

integrated results to only examine S values between 2 and 9 for our set of BPs. This allowed relatively

good BDP values, as discussed later, while minimising the resources. Therefore, for each integer value of

S {S ∈ Z, 2 ≤ S ≤ 9}, the full set of SCLVs was produced. The details are given in the next section.

B.1.2 Producing the Full Set of Huffman Sorted Codeword Length Vectors

For each integer value of S {S ∈ Z, 2 ≤ S ≤ 9}, the full set of SCLVs was produced by creating every non-

redundant combination of probability vectors p of length S, at a given discrete resolution q. Each probability
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Table B.2: Taking the dot product between the SCLVs (a) and example Channel Sorted Histograms (b) to

obtain the size of the compressed data blocks (c). From (c), we can determine the best SCLV-channel pairs.

In (d), the channel-average length avlen in bits of the encoded symbols after each channel is compressed

using its ideal encoder is obtained, with L = 1000.

(a) (b)

SCLVs Channel Sorted Histograms (SH)

SCLV \Symbol 0 1 2 3 4 Symbol \Chan. 1 2 3 4

1 1 2 3 4 4 0 650 500 300 950

2 2 2 2 3 3 1 200 200 300 5

3 1 3 3 3 3 2 100 120 200 31

3 50 100 100 7

(c) 4 0 80 100 7

Dot Product of Channel SHs and SCLVs

SCLV \Chan. 1 2 3 4 (d)

1 1550 1980 2300 1109
avlen =

1

n
Σn

i=1

min(dotprod[: , i])

L2 2050 2180 2200 2014

3 1700 2000 2400 1100
avlen =

1

4

1550 + 1980 + 2200 + 1100

1000
= 1.7075 bits

Best SCLV 1 1 2 3

value p[k], with k{k ∈ Z, 1 ≤ k ≤ S}, was equal to q × j, where q was the discrete increment and j ∈ Z
+

so that 0 ≤ p[k] = q× j ≤ 1. q was set to a low value of 0.1, and each non-redundant probability vector p of

length S was created.

Each p was then normalised to p′ so all of its k elements summed to 1. A Huffman encoder was then

trained on p′, where p′ was used to represented the frequencies of arbitrary symbols. Each Huffman encoder

was then reduced down to the SCLV representation, and the non-redundant SCLVs for each S stored. With

small enough q, every possible Huffman encoder, and so every possible SCLV, is generated.

B.1.3 ML process

B.1.3.1 Training

The system was trained by assigning the SCLVs to the training channels based on which SCLV gave the

best BR for each channel. Multiple channels could be assigned the same SCLV, and all of the data in each

channel was used.

To identify interesting SCLVs, i.e. train the system, the following strategy was used. Firstly, each training

channel’s sorted histogram was obtained. Secondly, one by one, with replacement, each SCLV was removed.

The average BR across channels was then measured after each channel was assigned to its best remaining

SCLV, e.g. as in Table B.2. Channels could be assigned to any SCLV, except the missing one. After the

total BR had been obtained for each missing SCLV, the SCLV that was found to be the least effective SCLV

for compressing the training data, in concert with the other SCLVs, was removed. As such, at the end of

the training round, one SCLV had been removed. This process is represented in Fig. B.1 (b).

B.1.3.2 Validation

Between each training round, validation was performed. The purpose of validation was to measure the BR

when each ‘on-implant’ channel was assigned to its ideal encoder from the selection of encoders available
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Figure B.1: Encoder-selection machine learning algorithm. Italics represent data dimensions. First, all

possible SCLVs are produced (as shown in (a)). Then, each round selects an increasingly smaller subset

of SCLVs based on which give the best compression in the training set (as represented in (b)). At each

round, i.e. with different numbers of SCLVs, the compression is tested on the validation dataset for different

on-implant histogram sizes (as represented in (c)).

during the current training round. In other words, it was tested what the on-implant BR would be given the

selection of encoders found during that training round. The method of assigning on-implant MUA channels

to encoders should be realistic to implement in hardware. In this work, the assignment was done by using

a segment from the beginning of each on-implant channel recording to produce a sample histogram. Each

channel was then assigned to an encoder based on which encoder gave its histogram the smallest BR. This

is represented in Fig. B.1 (c).

How much of the beginning of the ‘on-implant’ validation recording was used to calculate the sample

histogram depended on the size of the histogram. The considered histogram sizes were S × 2d − 1 samples,

where d ∈ [2, 3, 4, ..., 9, 10]. Each histogram bin, of which there were S, was given a size of 2d − 1 maximum

samples, i.e. of d bits. Once 2d − 1 samples had been measured across all bins, the histogram growth ended,

the histogram was sorted, and the channel was assigned to an encoder.

After assignment, the resulting BR was calculated. This was done for each channel by taking the rest of

the validation data, that which had not been used for assignment, and calculating its BR after compression.

In particular, only a segment of the remaining data was used, where the segment was always equal in length

to half of the total recording length. This was so that the amount of compressed data was the same across

all histogram sizes. This is shown in Fig. B.2, where the beginning of the recording is used for assignment,

and a segment of the rest for calculating the BR. The average BR across validation channels was then stored

for each histogram size.

We then moved to the next training-validation round. At each round, the least useful SCLV was removed

based on the training data. The validation channels were then assigned to the remaining SCLVs, and the

average BR for each histogram memory size stored. The process continued until only 1 encoder (i.e. the

best encoder for the training data) was left, where all validation channels were automatically assigned to

the last encoder. As such, for each round (i.e. number of non-redundant SCLVs), the mean BR, ideal set
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Figure B.2: Single-channel split of assignment (for sample histogram) and to-be-compressed validation data,

based on histogram memory size d and total recording length.

of encoders, and effect of histogram size on BR were all determined. 30 different cross-validation iterations

of this process were run in parallel, with different training-validation channel splits, and the results were

combined.

It is important to mention that, for any channel, the compressed on-implant data should be sorted the

same way its histogram was sorted. For example, if a firing rate of 3 MUA events per bin is found to

be the most common firing rate in the sample histogram, the occurrence of 3 MUA events in a bin in the

remaining to-be-compressed data should be given the shortest codeword during compression. This is because

the sorted ordering in the compressed data has to be determined somehow, and so is approximated using

the sample histogram for each channel. As such, the histogram serves to not only get an idea of the shape

of the channel’s histogram, used to find the ideal encoder for compression, but also to find the sorting order

of the to-be-compressed data, as the most common firing rates should be assigned the shortest codewords

within each encoder. We refer to this assignment of to-be-compressed firing rates to encoder fields, based

on the sample histogram, as mapping (e.g. mapping the symbols to the encoder fields). As such, the size of

the histogram affects the quality of both the assignment and the mapping, both which impact the BR. The

sorting and mapping implementation is discussed further in Section B.4.

B.2 Parameter optimisation during determining the effect of S

and BP on BDP

The only data that was observed was the training data A specified in Section 2.1.2 of the main manuscript.

Each recording in A was split into training and testing, using a 90-10% split. The training data was

then split into sub-training and validation using 5-fold cross-validation. The Wiener Cascade Filter hyper-

parameters and the pre-processing parameters were then optimised on the folds. The optimised decoder

hyper-parameters included the Wiener Cascade Filter degree, the alpha parameter, and the number of taps

i.e. timesteps used in the Wiener Cascade Filter. l2 (i.e. ridge or Tikhonov) regularisation was used

by default. The optimised pre-processing parameters included the lag between the neural and behavioral

data, and the width of the causal moving average window used to smooth the neural data. The optimised

parameter values are given in Table B.3.

The best-performing parameters across the 5 folds for each S and BP were then used as the parameters

for the decoder tested on the testing data, giving the BDP as a function of S and BP. Here, for testing the

effect of S on BDP, BPs of 1, 5, 10, 20, 50 and 100ms were investigated.
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B.3 BDP Results

B.3.1 BDP as a function of BP and S - Train data A

From Fig. B.5, it warrants mentioning that BDP increases with BP, assuming the effect of increasing S has

saturated to that of S = max(x) (where the line stabilizes horizontally for each BP). However, the value at

which the effect of S saturates increases for each BP. Interestingly, a lower BP can have a better BDP than

a higher BP at the same S, since no information is being saturated for the lower BP. However, even low

S values perform quite well relative to the peak values, even for a BP of 100ms. It is also interesting that

these results are opposite to those in [102], where BDP decreased linearly as a function of BP. However, [102]

used LSTM decoders whereas this work uses Wiener Cascade Filters. It isn’t surprising that deep learning

algorithms may be able to find more information because at higher temporal resolution than simple decoders

like the Wiener Cascade Filter. Also, [102] looked at the average effect of BP across different signal processing

parameters, whereas this work looked at the effects when using fully optimised system parameters. It also

warrants mention that, even if one generally gains BDP at a higher BP, one loses on temporal resolution

of the decoded output. Furthermore, one can always bin the data to a higher BP prior to decoding if one

wishes to gain a better BDP, as higher BPs are simply a lossy representations of lower BPs.

B.3.2 BDP as a function of BP and S - Test data B

From Fig. B.8, it can be seen that the BP/S relationship to BDP holds much the same in the test data

B. However, the BDP values are generally significantly lower in the training data (Fig. B.5). The same

parameter optimisation was performed, and so either the range of optimised parameters is non-ideal, the

test recordings have less behavioral data in them, or they are more noisy.

B.4 FPGA realisation

The work in this section, involving hardware design, was carried out by Z.Z., who also authored this section.

We simulated the presented architectures on an FPGA target, Lattice ice40LP, in order to assess the

overhead on power and resources brought by compression so as to guide our configuration selection. Such a

low-power, high-performance FPGA with 40nm technology and small BGA package is ideal for the thinnest

devices like implantable BMIs. All programs are written in Verilog, simulated on Mentor Modelsim Lattice

Edition and synthesised with iCECube 2020.12.

Lattice ice40LP1K is an ultra-low-power FPGA board with 1280 logic cells and sixteen 4kbit memory

blocks (bRAMs). The architecture of the FPGA implementation is shown in Fig. B.9, including the Binner,

Histogram counter, Sorter, Mapper, Encoder selector, Encoders and Memory. Referring to Table 4.1 and

Fig. 4.2 in the main manuscript, different configurations can be achieved by bypassing some of the compo-

nents. In the ‘one encoder’ version, there is only one encoder in Encoders and therefore no need for the

Encoder selector module. In the ‘Without Mapping’ configuration, we assume the events in the histogram

are already sorted and the sorter and mapper are bypassed. The Spike rate freq is connected with the Sorted

freq in the encoder selector, and the New spike rate is connected with the Mapped spike rate in Encoders.

Similarly, in the ‘Only Binning’ version, only the Binner module is implemented. A detailed breakdown of

Fig. B.9 is given below.
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Figure B.3: Behavioral decoding performance (BDP) as a function of BP and S for the Flint data in A.

Each S/BP combination was parameter optimised on 5-fold CV.
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Figure B.4: Behavioral decoding performance (BDP) as a function of BP and S for the Sabes data in A.

Each S/BP combination was parameter optimised on 5-fold CV.
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Table B.3: Optimised parameters and hyper-parameters for the behavioral decoders.

Timesteps 5, 10, 15

Kinematic to

neural lag (s)
0, 0.02, 0.04

Moving average

window length (s)
0, 0.05, 0.1, 0.2

Alpha 0, 1e-4, 1e-2

CWT Degree 2, 3, 4

Figure B.5: Behavioral decoding performance (BDP) for Flint and Sabes training data as a function of BP

and S, averaged across the recordings.
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Figure B.6: Behavioral decoding performance (BDP) as a function of BP and S for the Flint data in B.

Each S/BP combination was parameter optimised on 5-fold CV.
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Figure B.7: Behavioral decoding performance (BDP) as a function of BP and S for the Sabes data in B.

Each S/BP combination was parameter optimised on 5-fold CV.
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B.4.1 Binner

A timer and a recurrent spike rate counter is used for the Binner, which counts the number of in-coming

spike numbers in a given BP. The multiplexer (MUX) after the spike rate counter is used to clip the spike

rate within the preset range and reset the spike rates stored in memory when a BP is over.

B.4.2 Histogram

The Histogram is implemented using a Finite State Machine. The state transition diagram is shown in

Fig. B.9 (B). It accumulates the number of MUA events according to the Bin finished and new spike rate

signals. When the histogram overflows, a finish signal is issued and the histogram is emptied for the next

channel. As the maximum spike rate is clipped at S − 1, the number of registers required for storing the

different MUA frequencies is highly reduced. The index of the maximum value in the MUA histogram is

recorded in the histogram counter, to be used in the Sorter.

B.4.3 Sorter and mapper

Sorting the spike rate frequency in order can be resource-hungry or time-consuming in hardware. The

resources used for implementing a sorting algorithm such as merge sort or quick sort can overwhelm the

whole system. For sorting MUA histograms, we can take advantage of the fact that the MUA histogram,

even if it does not follow a decaying exponential, is almost always expected to follow a unimodal peak

distribution. As such, the sorted histogram can be easily estimated by setting the index 0 at the index of

the histogram maximum, and the index number will increment by iterating on both sides of the histogram

peak. For example, values to the left of the peak will take odd index numbers of 1, 3, 5, etc., while values to

the right of the peak will take even numbers. When indices can no longer be assigned on one side, the rest

are assigned serially to the other side. An example is illustrated in Fig. B.10 A. Using such an estimation,

we can reduce both the sorting space and time complexity to O(n).

From a hardware perspective, this estimated sort algorithm can be implemented with a finite state

machine (FSM). However, in Fig. B.9, we show a combinatorial implementation. As the estimated sort order

is only affected by the most frequent spike rate index, we can easily create a LUT that defines the sorting

order based on the measured maximum index. The spike rate Mapper can also be implemented using an

identical LUT. A demo of the sorted indices LUT when S = 5 is given in Fig. B.10. We also implemented

two other sort algorithms: a swapping sort and estimation sort with sequential logic, which are given in

Supplemental Material Section 5.

B.4.4 Encoder Selector

The encoder selector assigns encoders to channels. For the given channel, it selects the encoder that gives

the minimum encoded data length, determined by taking the dot product of the sorted histogram with the

SCLVs. The SCLVs are stored on-implant for each encoder. Since multiplications are resource-hungry in

hardware, we replace the multiplications with bit shifts. The number of bits to shift for different encoders

and codewords are stored on board.

B.4.5 Encoders

A Huffman encoder, in hardware, is a big LUT. Multiple encoders have been implemented on board. Different

encoders are selected according to the encoder selector. The selected set of Huffman codewords and codeword

length are then set as the outputs of this channel.
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B.4.6 Memory unit

The Memory unit consists firstly of a channel counter that counts the processed channels to schedule the data

flow among channels. Secondly it consists of RAM that stores each channels’ current MUA FR, their sample

histogram largest value’s index during calibration (used for mapping during regular encoding operation) and

their assigned encoders. Instead of using registers for each channel, utilising RAM increases the scalability,

making it possible to upscale to thousands of channels within only hundreds of logic cells. However, the clock

speed needs to be doubled to maintain the same data throughput. As the resources are highly constrained

in lattice iCE40LP, the RAM implementation is preferred over using registers.

Fig. B.9 (c) shows the timing of the clocks. CLK is the system clock and a clock generator is used to

generate MCLK for memory and PCLK for different processing units. The detection signal will be loaded

at the negedge of the PCLK. The RAM will provide the stored parameters for different processing units at

MCLK posedge. All processing happens on PCLK posedge and the results are stored back at the MCLK

negedge. These modules work together to compress the MUA data of each channel. The histogram counter,

sorter and encoder selector are used at the start of implant operation for encoder selection as a calibration

process. During the calibration, for each channel, the sample histogram largest value’s index and encoder

assignment will be determined and stored into RAM. One can also periodically recalibrate each channel

when the brain environment changes, or at some defined interval. After the calibration, the spike detection

signal of different channels will flow through the binner, mapper, encoder and RAM interchangeably for

compression.

B.4.7 Hardware implementation of the sort algorithms

Utilising the nature of the spike rate, we can customise sort operations to reduce the hardware cost. Besides

the combinatorial implementation introduced in the main context. We here proposed other two different

sort algorithms, we named it a real-time swap sort and the other is an estimated sort with sequential logic.

B.4.7.1 Swapping sort

The real-time swap sort the spike rate count histogram and also the order of spike rate (count lags) in

real-time during histogram accumulation. It is therefore balances the computation load temporally. Based

on the fact that every bin period the histogram counter reads the output spike rate from the binner, the

spike histogram count can only be increased by 1. Therefore, swapping the updated spike rate count with

the last value smaller than it can ensure the spike count histogram is in order.

In one iteration, the updated value only compare itself with the spike rate counts equal to the value

before it is updated. The complexity is still O(n) theoretically if the spike rate is random. However, as the

actually spike rate count is expected to follow a unimodal peak distribution, the number of comparisons is

much lower than O(n) in practice.

B.4.7.2 Estimation sort with sequential logic

Three important registers and two register banks have been used: Max stores the most frequent firing rate,

which is obtained in histogram count; Start stores the current location of the left of the most frequency

firing rate being sorted; End stores the current location on the right of the most frequency firing rate being

sorted; Freq is a bank of S registers that store the estimated sorted firing rate frequencies; Rate a bank of S

registers that store the original lags (firing rate) of the frequencies before sorting.

The sorter stays at IDLE when counting the firing rate histogram. After counting finishing, the sort

enters LOAD state, in which it will load the frequency of each firing rate from histogram into Freq, stores
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Table B.4: Logic cells were used in two different settings for three sort implementations.

Swapping sort Estimation sort - Seq Estimation sort - Comb

S = 5, hist size = 4 480 239 75

S = 9, hist size = 6 682 355 260

0 to S-1 in to Rate and set the current Start and End indices according to Max. When Max is 0, Start =

0. When Max is S - 1 (the largest possible firing rate), Start = S - 1, End = S. In other cases, Start =

Max - 1, End = Max + 1. It will also store Max and its frequency at the first index of Rate and Max. If

neither End = S nor Start = 0, the sorter will enter the SORT state, where Start and End will be stored

in the next even index and odd index in Rate, the frequencies will also be stored in Freq accordingly. After

that, Start will be reduced by one and End will be increased by one. If End = S, the sorter will enter RSRT

state. In that state, the right side of the Max has been sorted, and only the left side, i.e. Start side will be

processed. When Start becomes zero, sorting is finished. Note that, if Start is decreased to zero (the left

side sort finishing), before End is increased S, the sorter will also enter IDLE state, as the rest on the right

is already sorted.

Such an estimated sort, in the worst case when the maximum is the last value in the histogram, will take

S clocks to get the result. However, the maximum is normally only appeared in the left half and it takes less

than S/2 clocks after histogram count.

B.5 Hardware results

The work in this section, involving hardware design, was carried out by Z.Z., who also authored this section.

B.5.1 Resource usage

Resources usage reflects the area occupation of the implementation. The full results are given in Supplemental

Material 2 as an excel spreadsheet, and the same is available on the Github at [103]. The histogram and

encoder selector are two resource-hungry modules. The amount of resources required by the histogram is

mostly dependent on increased histogram size, but the S values also have a significant but smaller impact.

The resource usage of the encoder selector can exceed that of the histogram when S is larger than 7 because

of the dot product (implemented with bit shifting) between two vectors with length S. Alternatively, all

possible multiplication results could be pre-calculated and stored in a RAM. The selector logic would be

simplified, however this would sacrifice the processing speed as the results would need to be fetched from

RAM one by one and summed together. As a result, the calibration time would be increased. Such an

alternative approach could be useful if the limitation of the resources is extreme or the configuration requires

a large S, histogram size or number of encoders. It would be less effective when these values are small.

Aiming at finding the most compact compression scheme, we opted to use the bit-shift implementation

discussed in the Sup. Mat., Section B.4.

For the sorter, we have compared three different approaches: Swapping sort, and estimation sort with

sequential and combinatorial implementations. A summary of the resources needed for the three implemen-

tations is given in Table B.4.

One can notice that compared to the Swapping sort, the sequential estimation sort reduced the required

resources by half, which makes it possible to do on-implant sorting with limited resources available. More
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noticeable, when S = 5, histogram size = 4, the resources of the combinatorial implementation is only

one-third of the sequential implementation, making the sorting no longer the bottleneck for resource usage.

This advantage is lessened when the settings are extreme. However, even when S = 9 and histogram size =

6, in which case the whole system can require too many logic cells to be implemented within our resources

budget, the combinatorial one still uses fewer logic cells than the sequential version.

The remaining two modules, i.e. the Binner and Encoders, use few resources. These are normally below

100 LUTs+FFs each.

To guide the configuration selection, using only one encoder without sorting would be preferred because

it can get rid of the histogram, sorter, mapper and encoder selector. If one has a histogram, increasing

S would be preferred over increasing histogram size because increased histogram size has a large effect on

both the selector and histogram counter, which are the two resource-dominating modules. These findings

are purely from the resource perspective, the selection should also be guided jointly on the resultant total

power and BDP.

B.5.2 Power consumption

Power consumption is another aspect of concern. We should guarantee that the added processing power does

not exceed the reduced communication power. However, the estimated power indicates that the processing

power consumption per channel is consistent among different configurations. As the histogram counter, sorter

and encoder selector are only used during calibration, the Binner, Mapper, RAM and Encoder continuously

consume energy. The binner and RAM tick at the processing clock/memory clock speed, but the input of

the encoders only changes at 1
BP Hz, which is much lower than the clock speed. Therefore the power of the

Binner and RAM dominate the FPGA dynamic power, which is around 0.96µW per channel. The power of

the encoder is negligible at 1 to 20 nW, the binner consumes about 0.46µW per channel and RAM shares

the remaining 0.5µW per channel. For the remainder of this work, the combined compression/processing

and communication power is referred to as the dynamic power. The board static power is 162µW.

As all configurations use the binner and RAM, the processing power of different architectures is similar

whether we encode the firing rate or not. Therefore the total power reduction we gain from the compression

is proportional to the BR reduction.

Bases on the exploration of resources and power, we can conclude that it is the resources that constrain

the algorithm complexity for the on-implant Huffman encoding.

B.6 Fixed Length vs. Variable Length Codewords and Bit-Flip

Errors

An advantage of the multiplexed representation of MUA data is that the channel ID does not have to be

explicitely encoded. This is because the channel ID is implicitely encoded in bit position. E.g.,

c = ceiling(k/m)

where k ∈ [1 ≤ k ≤ n×m] is the bit position and c ∈ [1 ≤ c ≤ n] is the channel ID.

The principle technique of lossless compression is to transform fixed length codewords into variable length

codewords. This is to take advantage of the potentially narrow and skewed nature of the data’s histogram.

However, fixed-length codewords have an advantage when it come to bit-flip errors during communication of

multiplexed data. With fixed-length codes in multiplexed MUA, the channel ID is implicitly encoded in bit

position, and this remains fixed over time. Therefore, any bit-flip error will only affect the communicated
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number of MUA events recorded on one channel, in the time period of question associated with the code

block. No other channels will be affected.

With variable-length codewords, such as those produced by lossless compression techniques, all of the

symbols after the codeword with the bit-flip error may be affected. Specifically, it may offset the relationship

between symbols, encoders and channels. If different channels use different encoders, this can quickly make

the entire sequence after the corrupted bit undecodable. For example in Table 2.2 (d), if the 3rd bit in the

encoded multiplexed signal flips to a 1, then the sequence will be decoded as:

3, 2

instead of:

3, 0, 1

The consequences of the bit flip will propagate downstream. In this case, the 3rd symbol will be decoded as

whatever comes next in the sequence, which should have corresponded to the 4th symbol. Given different

channel-encoder pairings, the entire sequence post-error will likely become corrupted.

As such, if the bit-flip error rate is sufficiently high, some method may be required to reduce the con-

sequences of bit flip errors. The first obvious candidate is to reduce the BP, where the BR is increased,

but the temporal resolution of the data is increased. Therefore, if a data packet is corrupted, the user will

not notice much difference as the next data packet will arrive shortly. The second clear candidate is noisy

channel encoding.

B.6.1 Noisy channel encoding

Noisy channel encoding involves adding parity bits to communicated data blocks. These parity bits have

some relationship to the data. If a bit-flip error occurs, comparison of the codeblock and the parity bits can

signal the existence of errors. The parity bits can even signal the locations of the errors, depending on the

thoroughness of the noisy channel encoding and the number of parity bits.

If noisy channel encoding is used, the compression derived from variable-length codewords vs. fixed-length

codewordsneeds to be sufficient to warrant the addition of parity bits to the code block.

In this work, noisy channel encoding was not explicitly applied as the rate of bit flip errors is unknown.

However, calculating the required number of parity bits for each codeblock length is simple given the bit flip

error rate and code block length.
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Figure B.8: Behavioral decoding performance (BDP) for Flint and Sabes testing data as a function of BP

and S, averaged across the recordings.
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Figure B.9: A). The FPGA implementation includes Binner, Histogram, Sorter, Mapper, Encoder selector,

Encoders and Memory. For conciseness, several circuits are not shown: Clock generator for memory clock and

processing clock, reset and re-calibration logic, clip for New spike rate and MUXs selecting Minimum length

encoder out, Sorted indices out as the input to the RAM after calibration. B). State transition diagram

of the finate state machine in Histogram module. C). Clock timing diagram of the system clock (CLK),

Memory clock (MCLK) and Processing clock (PCLK). MCLK drives the RAM, it is read at the posedge

(R) and written at the negedge (W). PCLK trigers the Binner and Histogram at its posedge (P). It also

synchronise the detected signal at its negedge (L). The update of channel number is also happened at the

negedge of PCLK (L).
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Figure B.10: A). A demo for the estimated sort algorithm. Index 0 of the sorted histogram will be the
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sorted indices when S = 5. Max indicates the index of the peak value in the histogram, and Index is the

histogram field. Based on the peak value, the indices in the table are given to the histogram fields.
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Appendix C

Supplemental Material - Chapter 5:

Comparison to Event-Driven

Architectures for Compressing MUA

C.1 Calculating Bit Rates for Each Encoding

Here we give detailed explanations of each encoding, as well as how their Bit Rates (BR) are calculated.

The BR notation is BRX−y, where X is the encoding version, e.g. Basic (B), Static Huffman (SH), Adaptive

Huffman (AH) or Entropic Bandwidth (E), and where y is the encoding, e.g. Windowed (W), EED, DED,

or GED.

C.1.1 Windowed encoding

C.1.1.1 Static Huffman

Firstly, the average probability distribution of MUA FRs across channels, p̄i, was calculated. It is given by:

p̄i =
1

n

n∑

j=1

pj,i (C.1)

where pi,j is the measured probability of a FR of i MUA events/bin occurring on channel j in a given

BP across all of the considered data. As each channel’s histogram had the same number of samples, p̄i

is proportional to the sum of the channels’ histograms, meaning it is representative of the multi-channel

data. pi,j was calculated for each considered number of channels n, BP and S, using a random selection of

channels.

As such, the average BR per channel is given by:

BRSH−w =

∑S−1
i=0 (CLV s− shei × p̄i)

n×BP
[bps/channel] (C.2)

where CLV s− shei is the codeword length for FR = i events/bin, where the codeword is given by the static

Huffman encoder trained on a decaying exponential probability vector of length S, where FRs of 0 to S − 1

events/bin are encoded.

115



C.1.1.2 Adaptive Huffman

For the Adaptive Huffman version, a single Huffman encoder was trained on p̄i. Using p̄i meant that each

channel shared the same encoder. As such, it differs from the previous implementation in that the encoder is

trained on the to-be-compressed data, whereas the previous encoder was trained on a decaying exponential,

assumed to be a good fit to the data. The resulting BR is given by:

BRAH−s =

∑S−1
i=0 (CLV si × p̄i)

n×BP
[bps/channel] (C.3)

where CLV si is the ith element of the codeword length vector for the windowed encoding, which is a vector

of the Huffman code lengths where the ith element corresponds to the value with probability p̄i.

C.1.1.3 Entropic Bandwidth

The minimum number of bits per channel per second required for the windowed encoding is given by the

average of the channels’ Shannon entropies [15] divided by the BP:

BRE−s = −
1

n× BP

n∑

j=1

S−1∑

i=0

pj,i × log2 (pj,i) [bps/channel] (C.4)

Here we assume each channel j has its own encoder with codeword lengths −log2 (pj,i), giving the best

compression possible for this encoding.

C.1.2 Explicit asynchronous encoding

C.1.2.1 Basic implementation

In the windowed architecture, the FR per channel is encoded. The channel ID is implicitly encoded in bit

position. To the best of the authors’ knowledge, the following asynchronous architectures are proposed for

the first time in this work. In these asynchronous architectures, the channel ID is explicitly encoded. E.g.,

in this ‘explicit asynchronous’ architecture, the channel ID is only sent out if a non-zero FR of i events/bin

occurs on that channel, followed by a binary codeword representing i. If a channel has a FR of 0, that

channel is missing entirely from the communicated codeblock. As such, although the channel ID has to be

explicitly encoded, this is only if the FR is not 0 for that channel in the bin. For sparse signals, i.e. where

FRs not equal to 0 are rare, this may offer improved compression over the windowed paradigm, where even

FRs of 0 need to be communicated for each channel. As with the windowed architecture, the number of

encoded FRs can be saturated at an integer value S.

As the channel IDs need to be explicitly encoded, the simplest method is to give the channels a standard

binary codeword of length k1, where:

k1 = ceil(log2(n)) [bits] (C.5)

Similarly, the MUA FR for each channel is encoded as a binary codeword of length m2:

m2 = ceil(log2(S − 1)) [bits] (C.6)

This differs from m′ in that a codeword of length m′ can only encode up to 2m
′

−1 FRs, whereas a codeword

of length m2 can encode up to 2m2 FRs. This is because the case of FR = 0 does not need to be encoded

for the explicit asynchronous encoding. An exception is if S = 2, i.e. m2 = 1 and i is limited to 0 and 1. In
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which case the m2-length vector is unnecessary as the occurrence of the non-zero FR = 1 is already encoded

in the sending out of the channel ID.

An example of the basic implementation, with n = 4, k1 = 2 and m2 = 2, is given by:

0001 0100 1011

This shows that channel 1 (00) had a FR of 2 events (01) in the bin, channel 2 (01) had FR = 1 (00), channel

3 (10) had FR = 4 (11), and channel 4 had a FR = 0 (absent). In this work, this encoding was named the

explicit asynchronous encoding because the FR per channel is explicitly encoded in the m2-length codeword

that follows the channel ID.

For calculating the BR, one only sends out the channel ID and FR codeword if a non-zero FR occurs

on that channel in the given bin. As such, one sends out the channel ID of channel j and its m2-length

codeword with probability pcj :

pcj = 1− pj,0 (C.7)

where pj,0 is the probability of FR = 0 on channel j in the average time bin at the given BP. As such, the

BR is given by:

BRB−EED =
1

n× BP

n∑

j=1

pcj (k1 +m2) [bps/channel] (C.8)

C.1.2.2 Static Huffman implementation

In this implementation for the explicit asynchronous method, we used a SH encoder to losslessly compress

the FRs. Only the FRs are compressed, whereas the channel IDs are not. This is very simple to implement

in hardware while likely giving good compression. It uses the same k1 length codeword for the channel IDs,

but uses varying length codewords for the MUA FRs. As in the SH windowed implementation, the FR

encoder was trained on a decaying exponential.

The BR is given by:

BRSH−EED =
1

n× BP

n∑

j=1

(
pcj × k1 +

S−1∑

i=1

(CLV shei × pj,i)

)
[bps/channel] (C.9)

where CLV shei is the codeword length of FR = i, given by the static Huffman encoder trained on a decaying

exponential probability vector of length S−1, where FRs of 1 to S−1 events/bin are encoded. Importantly,

there is no FR codeword for i = 0 in this encoding, and the shortest codeword length is CLV she1.

C.1.2.3 Adaptive Huffman implementation

In this AH implementation, we seek to compress both the FRs and the channel IDs, using the correct

probability distributions observed on-implant. As such, this architecture differs from the previous one in

that both the FR and the channel IDs are losslessly compressed. The prefix code nature of Huffman encoding

can be taken advantage of to have two separate encoders: the first encoding the channel IDs, the second

encoding the FRs. This is possible since we know the encoded FR will always follow the encoded channel

ID, and so we know which encoder to use at each codeword. A design choice was made to train the FR

encoder based on the average channel histogram, rather than have a separate encoder per channel. This is

much more hardware efficient.

The ideal codeword length assigned to a FR depends on the relative probability of sending out FRs. As

such, the FR encoder is trained on the relative probabilities p̂ei:
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p̂ei =

∑n
j=1 pi,j

∑S−1
i=1

(∑n
j=1 pi,j

) , i > 0 (C.10)

where p̂ei represents the relative probability of any i > 0 FR occurring relative to other i > 0 FRs, averaged

across all channels. It is similar to p̄i, the difference being that the case of i = 0 is discounted.

The use of relative probabilities to train encoders warrants spending some time on, because the motivation

for absolute vs. relative probabilities is something that sets the considered asynchronous architectures apart

from the windowed one.

Relative probability gives how likely each symbol is to show up relative to other symbols, which is what

encoders are trained on so as to give the ideal codeword length to each symbol. However, this becomes

strange when it is no longer guaranteed that each channel will output a symbol that will receive a codeword.

In this case, FRs = 0 are not encoded. To give the ideal codeword length, we should not encode the case

where the codeword length will always be zero. Additionally, the sum of probabilities used to train the

Huffman encoder should sum to 1. As such, we train the encoder on the relative probability of each non-zero

FR occurring, so as to not waste bits on codewords that will never be used, e.g. FR = 0.

However, ultimately, the probability of that FR occurring is unchanged. Regardless of its optimal code-

word length, it will occur at the frequency it occurs at. As such, we need to differentiate between the absolute

probability, which predicts how often the FR will occur, and the relative probability, which gives the ideal

codeword length for the FR. And so, for the average FRs across channels, we differentiate between p̄i and

p̂ei.

The same concept applies to the channel IDs. Some channels may be dysfunctional and always have FRs

of 0, in which case they should not be encoded. While unlikely, it is ideal in terms of compression to account

for it. The relative probability p̂cj of sending out channel j’s ID is given by:

p̂cj =
pcj∑n

l=1 (pcl)
(C.11)

The BR is then given by:

BRAH−EED =
1
n

∑n
j=1(CLV cj × pcj) +

∑S−1
i=1 (CLV fri × p̄i)

BP
[bps/channel] (C.12)

where CLV cj is the Huffman codeword length of the jth channel ID, and CLV fri is the Huffman codeword

length for the i events/bin MUA FR, trained on p̂ei. The right hand side concerning CLV fr does not need

to be divided by n because the channels have already been averaged in p̄i.

C.1.2.4 Entropic Bandwidth

To calculate the lower limit of how many bits are needed for the explicit asynchronous encoding, four aspects

are calculated. The first two are the absolute and relative probability of channels having FR > 0, i.e. pcj

and p̂cj as calculated in Eq. C.7 and C.11.

The second two are the absolute and relative probabilities of each FR per channel, pi,j and p̂i,j . p̂i,j is

different from pi,j in that the case of a i = 0 FR is not represented. As such, p̂i,j is given by:

p̂i,j =
pi,j∑S−1

i=1 pi,j
, i > 0 (C.13)

In the entropy calculation, each channel was considered to have its own unique encoder, which is ideal in

terms of compression if not hardware realisation. This is why we used p̂i,j instead of p̂ei, the latter of which

is averaged across channels.
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From these four elements, we calculated the entropic BR, which is the minimum average number of bits

per channel per second required to represent the channel IDs and the subsequent i > 0 FRs.

BRE−EED = −
1

n× BP

n∑

j=1

(
pcj × log2(p̂cj) +

S−1∑

i=1

(pi,j × log2(p̂i,j))

)
[bps/channel] (C.14)

C.1.3 Delta-asynchronous encoding

C.1.3.1 Basic implementation

It may be that, rather than communicating out discrete codewords for the channel IDs, it would be better

to send out the encoded difference between adjacent channel IDs. In effect, we are delta-sampling the

communicated out channel IDs, i.e using a run-length encoding. If a channel has a FR above 0, it is given

a ∆ value by subtracting the ID of the previous channel to have a FR above 0, jprevious, from the current

channel’s ID, jcurrent. I.e., ∆ = jcurrent − jprevious. The first channel ID to be sent out in the BP will be

∆-sampled relative to a channel ID of 0.

However, there is no clear basic implementation of this method that does not involve compressing the

delta-samples. This is because the amount of bits required to represent each delta-sampled channel ID

∆ ∈ [Z, 1 ≤ ∆ ≤ n] is the same k1 bits as required to represent the channel IDs directly. This is because

the most extreme case of ∆ = n, where only the last channel has a FR above 0, needs to be accounted for.

Therefore ceil(log2(n)) = ceil(log2(n)) = k1 bits are required to encode ∆. As such, the basic implementation

of this method was ignored and we moved straight the SH implementation.

C.1.3.2 Static Huffman implementation

In this implementation, we assigned a SH codeword to the ∆-sampled channel IDs, where smaller ∆ values

received shorter codewords. This way, if channel IDs are communicated out often, the ∆ codewords will

likely be shorter than the standard k1 bits.

C.1.3.2.1 Training the ∆ encoder

However, a design choice has to be made on how to train the delta-sampled channel ID encoder. It was

decided to train the decoder on a decaying exponential so that smaller ∆ values were given shorter codewords.

However, the ideal rate of decay is an unknown parameter. Larger rates of decay will give smaller differences

shorter codewords, which is ideal if channel IDs are communicated out often. Smaller rates of decay will

give more equal codeword lengths for different ∆ values. This is ideal if the∆ values vary significantly. As

such, a set of d = −10f rates were considered, where d is the exponent of a decaying exponential and f is

an integer with f ∈ [Z, −3 ≤ f ≤ 2]. As such, decaying exponents of -10-2 to -103 were considered. The SH

encoder for delta-sampled channel IDs was then trained on a probability vector pd(d,∆) of length n, where:

pd(d,∆) =
ed×∆

∑n−1
g=1 e

d×g
(C.15)

As shown in Eq. C.15, pd(d,∆) was normalised across all ∆ so as to sum to 1 for each d value. For each BP,

S and n combination, each considered decay exponent d was used to train a delta-sampled channel ID static

encoder. The channel IDs were then delta-sampled. ∆ was then encoded using the static encoder trained

on pd(d,∆). The BR was stored for each d, and the best performing d was then chosen for each BP, S and

n combination.
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C.1.3.2.2 Saturating at a ∆max value

However, having an on-implant Huffman encoder stored in a Look-up Table (LUT), with a unique codeword

for each ∆ value for large n, can have significant memory requirements. As such, it was analysed whether a

shorter codebook of ∆ values could be used, truncated at a ∆max value. If a ∆ > ∆max, then a reset signal,

equal to ∆max + 1, was communicated out along with how many times the reset signal should be read and

the remainder, ∆max −∆. As such, ∆ was transformed into a concatenated sequence of:

∆ → ∆max + 1, γ, B

where ∆max+1 is the reset signal, γ is an integer value expressing how many times we should read the reset

signal, and B is the remainder. For example, for ∆max = 10 and ∆ = 45:

∆ → 11, 4, 5

where we first communicate the reset signal indicating that ∆max has been exceeded (∆max +1 = 11), then

we communicate how many times it has been exceeded (γ = 4), and finally the remainder (B = 5).

The ∆max + 1 reset value was encoded using the delta-encoder trained on pd(d,∆), and the quotient

value γ and remainder B were given fixed-length codewords of lengths θγ and θB respectively. Since the

fixed-length codewords only ever occur after the reset signal, the sequence is fully decodable.

This saved memory, since there were fewer possible ∆ codewords. However, limiting ∆ to ∆max in this

way increased the processing hardware resources and power. ∆max values of ∆ ∈ [2[3, 6, 7, 8, 9, 10], n] were

considered. If for a given parameter combination, n < ∆max, that parameter combination was ignored. The

values γ and B are given in the Table C.1.

C.1.3.3 Adaptive Huffman implementation

For the AH version, no ∆max was considered. Similar to the SH version, for the AH version the data was

iterated through time-wise and the ∆ values stored across all timesteps and channels. In effect, we counted

the number of occurrences of each ∆ value, and stored them in a vector u∆. A probability vector p̂∆, of

length n, was then obtained that gave the relative probabilities of each ∆ value occurring throughout the

data:

p̂∆ =
u∆∑n

∆=1 u∆
(C.16)

p̂∆ was used to train a Huffman encoder, that gave the encoded codeword lengths CLV∆ for each ∆ value.

The BR is given by:

BRAH−DED =

∑n
∆=1(CLV∆ × u∆)

n× v/BP
+

∑S−1
i=1 (CLV fri × p̄i)

BP
[bps/channel] (C.17)

Table C.1: Values for γ, B and θ values for ∆max in the SH Delta-asynchronous encoding. ‘floor’ is the floor

operation, and ‘mod’ is the modulus.

Parameter Value

γ floor((∆ - 1) / ∆max)

B mod(∆ - 1, ∆max) + 1

θγ [bits] ceil(log2((n / ∆max) - 1))

θB [bits] ceil(log2(∆max))

120



where CLV∆i is the codeword length of the ∆ values given by the Huffman encoder trained on p̂∆. v is the

data length in seconds, i.e. v = 100 s.

On the left hand side of Eq. C.17, we can see that we take the codeword length weighted sum of all of the

occurring delta values, and divide by the total data length in samples, i.e. n× 100 s/BP, to get the average

bps/channel for the channel IDs. We combine this with the FR component on the right hand side, which is

the same as in Eq. C.12, where we train a single AH encoder for all of the channels.

C.1.3.4 Entropic Bandwidth

There is a minor point to mention in the entropic calculation for the explicit asynchronous method with

delta-sampled channel IDs. We assume that, unlike in the AH version above, each channel has its own

unique FR decoder. This is optimal for compression but not for hardware complexity. This is theoretically

possible as the channel ID is encoded as delta-samples, and from the delta-sample the actual channel ID is

derived off-implant. Having derived the channel ID off-implant, one can decode the channel’s FR using the

channel’s FR decoder.

The BR is given by:

BRE−DED = −

∑n
∆=1(u∆× log2(p̂∆))

n× v/BP
−

∑n
j=1

∑S−1
i=1 (pi,j × log2(p̂i,j))

BP
[bps/chan] (C.18)

C.1.4 Group Event-Driven encoding

C.1.4.1 Basic implementation

In this GED encoding, one uses position and stop symbols to encode the FRs. As in the explicit asynchronous

encoding, one explicitly encodes the channel ID, but here one encodes the FR per channel implicitly in channel

ID position. For example, in decimal,

2 4 stop 1 6 stop stop 3

signifies that channels 2 and 4 had a FR of i = 1 in the given bin, channels 1 and 6 had a FR of i = 2,

channel 3 had FR i = 4, and the rest of the channels had FR i = 0. As with the explicit asynchronous

encoding, this asynchronous encoding benefits from not having to encode channels with FRs of 0 in the given

bin, making it perform well for sparse signals. As with the other architectures, the measurable FRs can be

saturated at S.

There is a design choice to be made on whether each number i ≥ 2 of events should have its own stop

codeword, or whether all event numbers should share the same stop codeword. We opted to have all of the

transitions have their own codeword. This alleviates the risk of requiring multiple stop codewords next to

each other. This risk is shown in the example above where no channels had 3 events/bin but one had 4. As

such, all values to the right of the i stop symbol have FRs ≥ i, where i ≥ 2. E.g., channel IDs before the

i = 2 stop symbol have FRs equal to 1, and there is no i = 1 stop symbol.

The stop symbol for each i ≥ 2 has, in the average codeblock, a probability psi of occurring. psi is equal

to the probability that there will be at least 1 channel on which there is a FR of i. This is equal to the

complement of the probability of no channels having a FR of i. As such, psi, a vector of length S − 2, is

given by:

psi = 1−

n∏

j=1

(1− pj,i), i ≥ 2 (C.19)

For the codeword lengths, the simplest implementation is to give the stop symbols and the channel IDs

a length of k2 bits, where:
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k2 = ceil(log2(n+ S − 2)) [bits] (C.20)

E.g. n = 2, S = 4, means that there are 2 channels, FRs between 0 and 3 inclusive can be encoded, and

k2 = 2. Channel 1 gets a codeword of 00, channel 2 gets a codeword 01, and the stop symbols for i = 2 and

i = 3 get codewords of 10 and 11 respectively. It warrants mentioning that for large numbers of channels,

typical S ≤ 20 values will have relatively little impact [59]. As such, relatively large dynamic ranges may

be achievable will little to no cost in this basic GED architecture for large n. Alternatively, the number of

channels should be chosen carefully in conjunction with S so as to maximize the use of the range given by

k2.

The average BR per channel is given by:

BRB−ga =
1

n× BP

( n∑

j=1

pcj × k2 +

S−1∑

i=2

psi × k2

)
[bps/channel] (C.21)

C.1.4.2 Static Huffman implementation

The GED encoding does not have an obvious SH version. This is because the codeword lengths are all

relative to both channel ID and stop symbol frequency. While these could be estimated, e.g. the channels

all have an equal likelihood of occurring and the stop symbols follow a decaying exponential, it becomes a

lot of guesswork very quickly in terms of the relative probabilities. As such, no SH version was considered

for the GED encoding. The basic version, where all codewords had an equal length, was assumed to be close

to what a SH version would have achieved.

C.1.4.3 Adaptive Huffman implementation

In the explicit asynchronous architecture, one knows that the channel ID codeword is followed by a codeword

encoding the channel’s FR. However, in this architecture it is unknown whether the next codeword will be

a channel ID or a stop symbol. As such, the codewords need to uniquely decodable, and so must come from

the same encoder. This is also why the channel IDs and stop symbols shared the same binary k2 codeword

basis in the basic implementation. The Huffman encoder in the GED architecture must be trained on the

combined probabilities of the channel ID and stop symbol occurring.

pg = [pc, ps] (C.22)

where pg is the collated probability vector of pc and ps. ps0 and ps1 are not included in the collation as

they are not valid values (see Equation C.19). The relative probabilities are given by:

p̂ga =
pga∑n+S−2

a=1 pga
(C.23)

where a ∈ [Z, 1 ≤ a ≤ n + S − 2] is the index of the concatenated probability vector. The encoder was

trained on p̂g. The BR is given by:

BRAH−ga =

∑n+S−2
a=1 (CLV ga × pga)

n× BP
[bps/channel] (C.24)

where CLV ga is the length of the Huffman codeword associated with the ath element of the combined

probability vector pg. Our convention was that if a ≤ n, CLV ga represents the length of a channel ID

codeword. Otherwise, it represents the length of a stop symbol.
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C.1.4.4 Entropic Bandwidth

The average entropic BR for each channel for the GED encoding is given by:

BRE−ga = −
1

n× BP

n+S−2∑

a=1

(pga × log2(p̂ga)) [bps/channel] (C.25)

C.1.5 GED encoding with delta-sampled channel IDs

A version of the GED encoding with delta-sampled channel IDs was not considered. This is because one

would have to delta-sample the channel IDs, but would have to delta-sample the channel IDs within the

same FR for the delta values to have any sense. E.g.

3 1 stop2 5 1

would indicate that channels 3 and 4 had FR of 1, and that channels 5 and 6 had FRs of 2. Adding in variable

length codewords for the combined relative probabilities of each delta-value and stop symbol seemed to be

very overly complicated an encoding, frankly. It is theoretically possible, but a static pre-trained version

seemed to be a significant amount of guesswork relative to the relative probabilities, and the hardware

implementation was not attractive to the authors. As such, although perhaps feasible as an encoding, a

GED encoding with delta-sampled channel IDs was not considered further by the authors.

C.1.6 Sample Histogram for Firing Rate mapping

The MUA histogram, for BP ≤ 100ms, typically follows a decaying exponential. In other words, smaller

FRs are more common than larger ones. However, this is not always the case. As such, automatically

assigning shorter codewords to smaller FRs will not always give optimal compression. In Chapter 4, the use

of a sample histogram was examined to address this problem. The beginning of each recording was used to

fill a sample histogram. This histogram was then used to estimate the relative frequencies of the FRs for

each channel. The most common FRs in the histogram were then, for the rest of the data in each channel,

assigned the shortest codewords via sorting. This was referred to as mapping the most common FRs to the

shortest codewords, given the sample histogram estimate. As such, some semi-adaptability was introduced

into the SH encoders. This process is shown in Fig. 4.3.

Using a histogram for mapping the firing rate was extremely hardware efficient (for small S), since the

sorting procedure was implemented using only combinatorial logic [59]. Furthermore, the sample histogram

and sorting logic modules were shared across channels, with access to them multiplexed.

As such, for the SH and AH implementations of each encoding, we looked at the effect of including

a sample histogram. We did not use them for the basic implementations, because there was no lossless

compression and all codewords are in equal length. We considered histogram bin sizes of hs = 0, 2, 3, 4,

5, and 6 bits. In the case of 0 bits, no histogram, sorting or mapping was used. Otherwise, the beginning

of each channel’s recording was used to train the histogram. When 2hs FR samples had been measured by

the histogram for a channel j, the histogram training was ended for channel j. It was then sorted, and the

mapping produced. The rest of the data was then compressed, after mapping. As such, only v/BP − 2hs

samples were compressed in the histogram-included versions of these encodings, where v = 100 s is the total

length of each channel’s recording.

For the asynchronous encodings, the effect is very important. With the FR histogram and mapping, one

is no longer sending out the information from a channel j if it has a FR > 0. Rather, one is sending out

its information if it has a FR different from its most common FR, as estimated by the histogram. This can

greatly improve the compression if a channel’s most common FR is not 0.
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Table C.2: Average Logic cell and power across different parameters of SH-w SH-EED, and SH-DED at

different channel counts

SH-w SH-EED
SH-DED

n = 10

SH-DED

n = 100

SH-DED

n = 1000

SH-DED

n = 10000

SH-DED

n = 30000

Logic cells 230 237 258 271 290 303 308

Power (uW) 0.96 1.04 1.06 1.07 1.11 1.23 1.76

C.2 All encodings and implementation BR results

The full BR results for the basic, SH and AH encodings are given here.

C.3 Hardware Results

The work in this section, involving hardware design, was carried out by Z.Z., who also authored this section.

There is basically no difference in hardware costs between the Basic and SH implementations of each

encoding. As such, we will show only the SH hardware results.

C.3.1 The number of logic cells is similar across encodings

Table C.2 shows the hardware requirements for the SH windowed (SH-w), explicit event-driven (SH-EED)

encodings. We also show the delta event-driven (SH-DED) encodings as a function of channel count (averaged

across all other parameters). This is because the SH windowed and SH explicit asynchronous hardware

requirements do not increase with channel count However, the number of logic cells for the SH-DED encoding

does depend on channel count, thus why different channel count values are shown for the SH-DED encoding.

It can be observed that there is little difference in hardware requirements between the encodings even in

the most extreme case of n = 30000 for the SH-DED encoding. Therefore, we can conclude that the choice

of encoding is basically unaffected by the number of required logic gates, although we would have a slight

preference towards the SH-w and SH-EED encodings.

C.3.2 The memory requirements vary by encoding

Table C.3 shows the trend of required resources for the SH-EED and SH-DED encodings as a function of

n, S and ∆max. Importantly, these trends are in addition to the required resources for the SH-w encoding.

As such, the SH-EED and SH-DED encodings require more resources than the SH-w encoding, and the

additional resources follow the trend shown in Table C.3.

We can observe that the required logic cells increase as a function of channel count n and S in the

SH-DED encoding, whereas for the SH-EED encoding it only increases as a function of S. However, the

SH-DED encoding’s memory requirements scale far better as a function of channel count n than the SH-EED

encoding, since one can set ∆max << n. As such, as far as memory is concerned, SH-DED scales better

with channel count, assuming ∆max is set to a value smaller than n.

As such, we can conclude that SH-w is the most hardware efficient option. The SH-EED and SH-DED

encodings require additional logic cells and memory relative to the SH-w encoding. However, the requirement

for additional logic cells is minor for the SH-EED and SH-DED encodings, especially considering these logic

cells are shared via multiplexing across channels. Between the SH-EED and SH-DED encodings, SH-DED

consumes significantly less memory if ∆max is set to a value ∆max << n.
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Figure C.1: BRs for communication schemes at a BTR of 1ms.
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Figure C.2: BRs for communication schemes at a BTR of 5ms.
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Figure C.3: BRs for communication schemes at a BTR of 10ms.
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Figure C.4: BRs for communication schemes at a BTR of 20ms.
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Figure C.5: BRs for communication schemes at a BTR of 50ms.
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Figure C.6: BRs for communication schemes at a BTR of 100ms.
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Table C.3: Logic cell, RAM and Read Only Memory scale-up speed of SH-EED and SH-DED with different

parameters. Importantly, these trends are relative to the SH-w encoding. As such, as they are positive

values, they are in addition to that required for the SH-w encoding.

SH-EED SH-DED

Logic cells log(S) log(S)+log(n)

RAM nlog(S) nlog(S)

ROM nlog(n) ∆maxlog(∆max)

C.4 Hardware result analysis

The work in this section, involving hardware design, was carried out by Z.Z., who also authored this section.

C.4.1 Hardware setting selection

Hardware cost includes the area occupation and power consumption. These two factors determine the suit-

ability of one algorithm for on-implant use. However, the ultimate solution for on-implant signal processing

should use ASIC design to minimise the cost, while we assessed the hardware cost using FPGA. Assessing

using FPGA can reduce the development time significantly, meanwhile FPGA power consumption is propor-

tional to the ASIC design and its resource usage is directly related to the area occupation. Considering the

enormous parameter space involves in this work, we used FPGA resource usage and core dynamic power as

a reference to assess the suitability of different proposed algorithms and compare across them.

To break down the hardware cost, the resource usage consists of the logic cells and block RAMs. Logic cells

consists of LUTs and flip-flops constructing the combinational and sequential processing logics. The block

RAMs can be used to construct RAM and ROM for storing temporal logic status or Huffman codewords.

The power consumption consists of the static power and dynamic power, while different implementation only

contributes to the dynamic power. For the ease of presenting, we further breakdown the dynamic power

consumption into the power contributed from the circuit working at clock frequency and the circuit working

at bin frequency. The bin frequency circuit share is much lower than that of the clock frequency circuit.

The mapper and encoder work at bin frequency and only consumes 0.06µW at 1ms bin period. Longer bin

period leads to the power consumption less than 0.01µW which is neglectable. Clock frequency power can

be more significant and all power mentioned later will be the dynamic power per channel from the clock

frequency circuit including binner, asyncing circuits, RAM and ROM.

Considering the superior performance of the SH over B implementation and the tiny cost of implementing

the encoding (10% contribution to resources and neglectable effect on power consumption) comparing to AH,

we prefer the SH architecture in this work. The GED implementation consumes much more than others

does (over 800 logic cells). Therefore, the best architecture should be selected among SH-w, SH-EED and

SH-DED.

Both SH-EED and SH-DED are built upon the SH-w implementation. The average logic cell usage

and power consumption is given in Table.C.2, SH-EED only takes less than 5% extra logic cells which is

neglectable. SH-DED uses more logic cells especially when channel count increases, but it is still acceptable

if we consider the average resource usage per channel. The power consumption shows similar tends as the

logic cells (Note that the power rocketing from n = 10000 to n = 30000 is from the addition memory usage).

Therefore, when SH-EED or SH-DED can provide better compression performance, they are preferred instead

of SH-w because of the tiny cost.
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In order to make selection between SH-EED and SH-DED, Table. C.3 summarises how logic cells, RAM

and ROM scales with different parameters. Details on how this table been derived is given in later two

sections. One can notice that when the channel count increases, the logic cells of SH-DED increases in

log-scale. However, the ROM usage of SH-EED increases in nlog-scale, which is much faster than the former

one which grows with the ∆max. We therefore prefer SH-DED especially when channel count is extreme.

Setting a small ∆max value can effectively limits the aggressive growth of the circuit size.

Next comes to select a reasonable ∆max value. However, there is no clear clue on how the number of

extra logic cells and power consumption are varying with ∆max the power consumption is overall consistent.

Therefore, one should trade off their ROM/area availably and BR requirement when selecting ∆max. As

the growing ∆max has opposite effect on the ROM usage and BR reduction. Fig.C.7 shows the trend of

power, bit rate and memory occupation (RAM+ROM) with different ∆max values at bin period 1ms. 64,

128 and 256 are three sweet points to set ∆max. Around 30% and 45% bit rate reduction can be achieved

respectively with acceptable memory/size cost. Power consumption in this case is not a concern as it stays

at similar levels among settings. When bin period exceed 1ms, there is no bit rate gain when ∆max is greater

than 64. Therefore, SH-DED with ∆max = 64 is recommended when async-compression can outperform the

sync-compression.

It was decided to fix ∆max at a value for each BP and n combination, which are the values that are

relevant to ∆max. This was done by comparing the hardware results to the compression results for different

∆max. For each BP, the BR, total processing power and required memory for each n and ∆max were

observed. A design choice was then made, to find a ∆max value that minimises BR, processing power and

memory. An example is shown in Fig. C.7, for BP = 1ms. As such, for a BP of 1ms, we decided to set:

∆max =




n, if n ≤ 100

64, if n > 100
(C.26)

For BPs larger or equal to 5ms, it was found that there was little benefit to BR to increasing ∆max beyond

64. As such, for BPs ≥ 5ms, the following ∆max values were set:

∆max =




n, if n ≤ 10

64, if n > 10
(C.27)

This gave small values for ∆max, minimising the required memory as given in Table C.3, while also giving

good compression performance.

The resource usage of SH-w has been introduced in detail in [59], so here we here will only introduce the

extra cost of SH-EED and SH-DED adding up to the SH-w later. As a reference, at bin period of 1ms, S =

3, histogram size = 2, SH-w occupies 129 logic cells and consumes 0.96µW . The idea is to investigate how

the extra hardware cost scales with certain parameters, and whether the extra cost in hardware worth the

gain in BR reduction in certain BP.

C.4.1.1 SH-EED

The extra logic cell cost of SH-EED scales as LCSH−EED ∝ log(S). In other words, in proportion to the bit

width for S. However, comparing to the logic cell usage of the example SH-w implementation, this below 10

additional logic cell usage is neglectable.

When it comes to the memory usage, the RAM usage stays the same while it needs extra space of ROM

to store the channel ID codewords. That ROM usage scales as ROMSH−EED ∝ n× log(n), as the bit width

of the codeword scales logarithmically with the channel number.
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Figure C.7: The processing power consumption, bit rate and memory usage of the FPGA implementation

with different ∆max values with BP = 1ms. We can see that processing power consumption is largely

unaffected by ∆max, and that channel count n is the main consideration for processing power. ∆max mainly

affects BR and memory consumption, where memory increases roughly linearly with ∆max and BR decreases

as a decaying exponential, with diminishing reductions in BR to increasing ∆max. It can be observed that,

depending on n, ∆max = 64, 128, 256 are three good selections with balanced trade-offs.
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As for the power consumption, our results suggest that the upscaling of the memory usage has less

impact on power consumption, while the increasing logic cell usage does. Therefore, as the extra logic cells

are neglectable, even though the memory occupation scales up quickly with the increasing channel count,

the power consumption only increased for only 0.03µW from 10 channels to 1000 channels.

C.4.1.2 SH-DED

This architecture was built upon the SH-EED adding the logic counting the channel difference and the

number of resetting. This extra logic is no longer neglectable. When there is no limitation on the max

channel difference, i.e. δmax = n, the extra logic cells scale as LCSH−EED ∝ log(n). The ROM occupation

is the same as SH-EED case. As for the power consumption, we can only test the channel number under

1000 limited by the available onboard block RAMs. We have observed a more-than-linear growing extra

power trend with increasing channel counts, comparing to the SH-DED. It needs less than 1% extra power

at 10 channels, while that becomes 10% at 1000 channels.

In the case of limited max channel difference, tiny number of extra logic cells (No more than 10 logic

cells) is need comparing to the ∆max = n case. Its power upscaling also shares similar trending. The usage

of ROM however can be highly constrained, which is translated to the reduced area occupation in future

ASIC design. The power consumption is also reduced because of the reduced ROM usage. However, there

is no clear clue on how the number of extra logic cells and power consumption are varying with ∆max the

power consumption is overall consistent. Therefore, one should trade off their ROM/area availably and BR

requirement when selecting δmax. As the growing ∆max has opposite effect on the ROM usage and BR

reduction.
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Appendix D

Supplemental Material - Chapter 6:

Minimum Requirements for the

Processing and Compression of ESA

D.1 Training and testing recordings

The training and testing recordings are specified below in Table D.1.

D.2 Selected parameters for ESA data

The selected parameters for each BP from Fig. 6.4 are given in Table D.2. The equivalent results from

Fig. 6.5 are given in Table D.3.
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Table D.1: Training and Testing recordings from Sabes Raw Broadband data

Training Filenames Testing Filenames

indy 20160624 03 indy 20160916 01

indy 20160915 01 indy 20160930 02

indy 20160921 01 indy 20161011 03

indy 20160927 04 indy 20161014 04

indy 20160927 06 indy 20161025 04

indy 20160930 05 indy 20161026 03

indy 20161005 06 indy 20161027 03

indy 20161006 02 indy 20161207 02

indy 20161007 02 indy 20161212 02

indy 20161013 03 indy 20170123 02

indy 20161017 02 indy 20170124 01

indy 20161024 03 indy 20170131 02

indy 20161206 02

indy 20161220 02

indy 20170127 03
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Table D.2: Hand-selected results from training data, chosen for high BDP and low BR, for each BP.

Train data results

f (Hz) b (bits) h l (bits) w (samples) m (bits) s (bits) BP BDP BR

9000 12 3 5 128 5 2 14.22 0.724 96.24

8000 11 3 6 128 7 1 16.00 0.736 84.37

7000 11 3 6 128 6 1 18.29 0.699 68.60

7000 12 3 4 128 4 2 18.29 0.748 76.59

6000 12 3 4 128 4 3 21.33 0.766 66.33

5000 11 3 6 128 7 4 25.60 0.780 55.36

9000 12 3 4 256 4 1 28.44 0.783 46.16

9000 11 3 4 256 5 3 28.44 0.802 49.69

8000 12 3 6 256 6 1 32.00 0.787 42.04

8000 11 3 5 256 5 1 32.00 0.749 37.68

7000 10 3 4 256 5 1 36.57 0.731 33.96

7000 12 3 4 256 5 4 36.57 0.772 40.60

6000 12 3 4 256 4 1 42.67 0.784 31.61

6000 12 3 4 256 5 1 42.67 0.840 39.97

5000 12 3 6 256 6 3 51.20 0.814 26.11

9000 12 3 4 512 5 4 56.89 0.824 28.82

8000 12 3 3 512 5 3 64.00 0.829 26.53

7000 12 3 4 512 5 4 73.14 0.815 21.07

6000 12 3 5 512 6 5 85.33 0.794 19.62

6000 12 3 5 512 7 3 85.33 0.869 27.09

5000 11 3 3 512 4 3 102.40 0.729 13.34

5000 12 3 4 512 5 3 102.40 0.776 15.62

5000 12 3 6 512 7 3 102.40 0.795 18.88

9000 12 3 5 1024 7 2 113.78 0.826 14.93

9000 12 3 5 1024 7 3 113.78 0.846 19.01

8000 12 3 5 1024 6 2 128.00 0.815 11.82

8000 11 3 3 1024 6 3 128.00 0.834 15.91

7000 11 3 6 1024 7 3 146.29 0.768 9.04

7000 12 3 4 1024 6 5 146.29 0.815 13.88

6000 11 3 4 1024 6 5 170.67 0.768 8.98

6000 12 3 3 1024 5 5 170.67 0.784 10.68

6000 12 3 5 1024 7 5 170.67 0.814 12.80

8000 10 3 6 512 7 3 64.00 0.692 17.48

8000 10 3 5 512 7 3 64.00 0.724 18.51

8000 12 3 3 512 4 3 64.00 0.779 21.10

7000 11 3 3 512 4 4 73.14 0.742 18.38

7000 12 3 4 512 6 4 73.14 0.837 32.37
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Table D.3: Test data results from the testing data, for same parameters as in Table D.2.

Test data results

f (Hz) b (bits) h l (bits) w (samples) m (bits) s (bits) BP BDP BR

5000 11 3 3 512 4 10 102.40 0.64 13.02

5000 11 3 6 128 7 15 25.60 0.66 69.21

5000 12 3 4 512 5 10 102.40 0.71 16.60

5000 12 3 6 256 6 15 51.20 0.70 29.01

5000 12 3 6 512 7 10 102.40 0.73 18.88

6000 11 3 4 1024 6 5 170.67 0.70 9.46

6000 12 3 3 1024 5 5 170.67 0.70 11.39

6000 12 3 4 128 4 15 21.33 0.63 70.42

6000 12 3 4 256 4 15 42.67 0.68 32.72

6000 12 3 4 256 5 15 42.67 0.73 42.68

6000 12 3 5 512 6 10 85.33 0.74 20.23

6000 12 3 5 512 7 10 85.33 0.77 30.51

6000 12 3 5 1024 7 5 170.67 0.75 13.46

7000 10 3 4 256 5 15 36.57 0.58 34.43

7000 11 3 3 512 4 15 73.14 0.67 18.64

7000 11 3 6 128 6 15 18.29 0.56 72.53

7000 11 3 6 1024 7 5 146.29 0.65 10.01

7000 12 3 4 128 4 15 18.29 0.63 80.65

7000 12 3 4 256 5 15 36.57 0.73 49.69

7000 12 3 4 512 5 15 73.14 0.74 22.79

7000 12 3 4 512 6 15 73.14 0.77 32.94

7000 12 3 4 1024 6 5 146.29 0.75 15.06

8000 10 3 5 512 7 15 64.00 0.69 24.46

8000 10 3 6 512 7 15 64.00 0.58 19.19

8000 11 3 3 1024 6 10 128.00 0.75 16.96

8000 11 3 5 256 5 15 32.00 0.60 40.43

8000 11 3 6 128 7 15 16.00 0.63 110.07

8000 12 3 3 512 4 15 64.00 0.70 23.67

8000 12 3 3 512 5 15 64.00 0.75 33.26

8000 12 3 5 1024 6 10 128.00 0.71 12.46

8000 12 3 6 256 6 15 32.00 0.69 50.29

9000 11 3 4 256 5 15 28.44 0.67 52.13

9000 12 3 4 256 4 15 28.44 0.66 49.36

9000 12 3 4 512 5 15 56.89 0.74 28.95

9000 12 3 5 128 5 15 14.22 0.62 116.97

9000 12 3 5 1024 7 10 113.78 0.78 20.80

138



Appendix E

Published Code and Results

E.1 Chapter 4 - Static Huffman Compression of MUA

The analysis Python code and FPGA Verilog code and designs for the windowed MUA compression have all

been made publicly available at [103]. The formatted data and results have been made available at [104].

E.2 Chapter 5 - Comparison to Event-Driven Architectures for

Compressing MUA

All code and results for the event-driven MUA compression are publicly available at [107].
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Appendix F

List of Publications

Towards a Distributed, Chronically-Implantable Neural Interface Nur Ahmadi, Matthew L Cavuto,

Peilong Feng, Lieuwe B Leene, Michal Maslik, Federico Mazza, Oscar Savolainen, Katarzyna M Szostak,

Christos-Savvas Bouganis, Jinendra Ekanayake, Andrew Jackson, Timothy G Constandinou. 2019 9th In-

ternational IEEE/EMBS Conference on Neural Engineering (NER), 719-724, 2019

Lossless Compression of Intracortical Extracellular Neural Recordings Using Non-Adaptive

Huffman Encoding OW Savolainen, TG Constandinou 2020 42nd Annual International Conference of the

IEEE Engineering in Medicine & Biology Society (EMBC), 4318-4321, 2020

Investigating the Effects of Macaque Primary Motor Cortex Multi-Unit Activity Binning Pe-

riod on Behavioural Decoding Performance OW Savolainen, TG Constandinou 2021 10th International

IEEE/EMBS Conference on Neural Engineering (NER), 436-439, 2021

Predicting Single-Unit Activity from Local Field Potentials With LSTMs OW Savolainen, TG

Constandinou. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology

Society (EMBC), 884-887, 2020

Algorithm and Hardware Considerations for Real-Time Neural Signal On-Implant Process-

ing Zheng Zhang, Oscar W Savolainen, and Timothy G Constandinou. Journal of Neural Engineering,

19(1):016029, 2022

Hardware-Efficient Compression of Neural Multi-Unit Activity OW Savolainen, Z Zhang, P Feng,

TG Constandinou. IEEE Access, 2022

Ultra Low Power, Event-Driven Data Compression of Multi-Unit Activity OW Savolainen, Z

Zhang, TG Constandinou. bioRxiv, 2022

Development of an Ultra Low-Cost SSVEP-Based BCI Device for Real-Time On-Device Decod-

ing James Teversham, Steven S Wong, Bryan Hsieh, Adrien Rapeaux, Francesca Troiani, Oscar Savolainen,

Zheng Zhang, Michal Maslik, Timothy G Constandinou. bioRxiv, 2022

The Significance of Neural Inter-Frequency Power Correlations OW Savolainen. Scientific reports

11 (1), 1-23, 2021
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