4 research outputs found

    Protection of Microgrids: A Scalable and Topology Agnostic Scheme With Self-Healing Dynamic Reconfiguration

    Get PDF
    Momentum towards realizing the smart grid will continue to result in high penetration of renewable fed Distributed Energy Resources (DERs) in the Electric Power System (EPS). These DERs will most likely be Inverter Based Resources(IBRs) and will be an integral part of the distribution system in the near future. The drive towards resiliency with these IBRs will enable a modular topology where several microgrids are tied together, operating synchronously to form the future EPS at the distribution level. Since the microgrids can evolve from existing distribution feeders, they will be unbalanced in load, phases, and feeder impedances. A typical control strategy of a conventional inverter that follows the grid voltage and frequency while injecting positive-sequence current can lead to undesirable performance for the unbalanced systems, especially in the islanded mode of operation. So, the dissertation will first focus on the control aspect of IBRs in an unbalanced system. Acceptable operating conditions with stability against disturbances and faults are the primary focus. For the proper functioning of these microgrids, there is a need for grid-forming inverters that can enable acceptable performance and coexist with conventional grid-following inverters that supply only positive-sequence currents. In addition to the control objectives, limiting inverter output during faulted or overload conditions with a current limiter is essential. These control objectives can be implemented in both the synchronous reference frame (dqdq coordinates) and the natural reference frame (abcabc coordinates). Hence a comparison study is performed to understand the merit of each implementation related to this specific topology. As 100\% IBR-based microgrid becomes an integral part of the distribution system, the issues and challenges arising from its implementation should be addressed for successful operation. Designing reliable protection is one of the significant challenges for microgrids. Most microgrid protection schemes found in published literature suffer from a lack of generality. They work well for the assumed topology, including the type and placement of sources. Other generic protection schemes tend to be too complicated, expensive, or both. To overcome these drawbacks, a topology-agnostic, scalable, and cost-aware protection based on fundamental principles is developed that works in the presence of high penetration of inverter-based resources (IBRs). The protection system includes primary and backup. It also implements stable automatic reconfiguration of the healthy sections of the system after clearance of fault, thus increasing resilience by self-healing. The scheme is validated in PSCAD for primary and backup protection and reconfiguration on the IEEE 123-node feeder in grid-connected and islanded modes with 15 IBRs connected to the system. As the designed protection scheme requires communication between protective devices and the microgrid controller, the method must be validated in real-time with cyber-physical co-simulation for a successful demonstration. In this regard, a Hardware-In-the-Loop (HIL) platform between a simulated power system model using RTDS and physical protective devices is built. In the HIL platform, the primary protection of the scheme is programmed in SEL 421-7 relay, and backup protection is programmed in MATLAB on a generic computer acting as a microgrid controller. The IEC 61850 models are used to communicate between the SEL-421-7 relay and RTDS, whereas TCP/IP communication connects the microgrid controller to RTDS. The focus of the work is to demonstrate the co-simulation platform with communication links established using both protocols and validate the proposed scheme in real-time on the IEEE 123 node distribution feeder. The IEC 61850 and TCP/IP communications configuration are discussed as the interface requires proper hardware and software setup. The real-time performance indicates the Hardware In the Loop (HIL) framework as a competent testing environment for the developed protection scheme for microgrids. In summary, a scalable and topology agnostic protection scheme with self-healing dynamic reconfiguration is developed for microgrids. Clear guidelines for implementation of the proposed scheme on any microgrid topology are also described

    Grid-Forming Converter Control Method to Improve DC-Link Stability in Inverter-Based AC Grids

    Get PDF
    As renewable energy sources with power-electronic interfaces become functionally and economically viable alternatives to bulk synchronous generators, it becomes vital to understand the behavior of these inverter-interfaced sources in ac grids devoid of any synchronous generation, i.e. inverter-based grids. In these types of grids, the inverters need to operate in parallel in grid-forming mode to regulate and synchronize their output voltage while also delivering the power required by the loads. It is common practice, therefore, to mimic the parallel operation control of the very synchronous generators that these inverter-based sources are meant to replace. This practice, however, is based on impractical assumptions and completely disregards the key differences between synchronous machines and power electronic inverters, as well as the dynamics of the dc source connected to the inverter. This dissertation aims to highlight the shortcomings of conventional controllers and derive an improved grid-forming inverter controller that is effective in parallel ac operation without sacrificing dc-link stability. This dissertation begins with a basis for understanding the control concepts used by grid-forming inverters in ac grids and exploring where existing ideas and methods are lacking in terms of efficient and stable inverter control. The knowledge gained from the literature survey is used to derive the requirements for a grid-forming control method that is appropriate for inverter-based ac grids. This is followed by a review and comparative analysis of the performance of five commonly used control techniques for grid-forming inverters, which reveal that nested loop controllers can have a destabilizing effect under changing grid conditions. This observation is further explored through an impedance-based stability analysis of single-loop and nested-loop controllers in grid-forming inverters, followed by a review of impedance-based analysis methods that can be used to assess the control design for grid-forming inverters. An improved grid-forming inverter controller is proposed with a demonstrated ability to achieve both dc-link and ac output stability with proportional power-sharing. This dissertation ends with a summary of the efforts and contributions as well as ideas for future applications of the proposed controller

    On the inertia of power electronics converters

    Get PDF
    Electrical power systems are going through a transition in its energy matrix. Renewable energy sources based generation and distributed generation grow in number. There is a concern among academics and system operators that the lack of spinning mass’ inertia in these new generating units will negatively contribute to frequency stability in electrical power systems. However, there is not an adequate established method for quantifying the contribution a power electronics based generating unit provides to grid frequency stability. This work seeks to define such a method and to analyze control techniques from the point of view of contribution to electrical power systems frequency stability.Os sistemas elétricos de potência passam por um momento de transição da matriz energética. Crescem em número as unidades de geração baseadas em fontes renováveis de energia e as unidades de geração distribuída. Há uma preocupação entre acadêmicos e operadores do sistema elétrico de que a falta da inércia de uma massa girante nessas novas unidades geradoras contribua negativamente para a estabilidade de frequência de sistemas elétricos de potência. Entretanto, não há um meio adequado estabelecido de quantificar a contribuição de uma unidade geradora baseada em eletrônica de potência à estabilidade de frequência da rede. Este trabalho busca a definição de tal meio e a análise de técnicas de controle sob a perspectiva da contribuição à estabilidade de frequência de sistemas elétricos de potência

    Uncertainty and disturbance estimator design to shape and reduce the output impedance of inverter

    Get PDF
    Power inverters are becoming more and more common in the modern grid. Due to their switching nature, a passive filter is installed at the inverter output. This generates high output impedance which limits the inverter ability to maintain high power quality at the inverter output. This thesis deals with an impedance shaping approach to the design of power inverter control. The Uncertainty and Disturbance Estimator (UDE) is proposed as a candidate for direct formation of the inverter output impedance. The selection of UDE is motivated by the desire for the disturbance rejection control and the tracking controller to be decoupled. It is demonstrated in the thesis that due to this fact the UDE filter design directly influences the inverter output impedance and the reference model determines the inverter internal electromotive force. It was recently shown in the literature and further emphasized in this thesis that the classic low pass frequency design of the UDE cannot estimate periodical disturbances under the constraint of finite control bandwidth. Since for a power inverter both the reference signal and the disturbance signal are of periodical nature, the classic UDE lowpass filter design does not give optimal results. A new design approach is therefore needed. The thesis develops four novel designs of the UDE filter to significantly reduce the inverter output impedance and maintain low Total Harmonic Distortion (THD) of the inverter output voltage. The first design is the based on a frequency selective filter. This filter design shows superiority in both observing and rejecting periodical disturbances over the classic low pass filter design. The second design uses a multi-band stop design to reject periodical disturbances with some uncertainty in the frequency. The third solution uses a classic low pass filter design combined with a time delay to match zero phase estimation of the disturbance at the relevant spectrum. Furthermore, this solution is combined with a resonant tracking controller to reduce the tracking steady-state error in the output voltage. The fourth solution utilizes a low-pass filter combined with multiple delays to increase the frequency robustness. This method shows superior performance over the multi-band-stop and the time delayed filter in steady-state. All the proposed methods are validated through extensive simulation and experimental results
    corecore