22 research outputs found

    Design Of Silicon Controlled Rectifers Sic] For Robust Electrostatic Discharge Protection Applications

    Get PDF
    Electrostatic Discharge (ESD) phenomenon happens everywhere in our daily life. And it can occurs through the whole lifespan of an Integrated Circuit (IC), from the early wafer fabrication process, extending to assembly operation, and finally ending at the user‟s site. It has been reported that up to 35% of total IC field failures are ESD-induced, with estimated annual costs to the IC industry running to several billion dollars. The most straightforward way to avoid the ICs suffering from the threatening of ESD damages is to develop on-chip ESD protection circuits which can afford a robust, low-impedance bypassing path to divert the ESD current to the ground. There are three different types of popular ESD protection devices widely used in the industry, and they are diodes or diodes string, Grounded-gate NMOS (GGNMOS) and Silicon Controlled Rectifier (SCR). Among these different protection solutions, SCR devices have the highest ESD current conduction capability due to the conductivity modulation effect. But SCR devices also have several shortcomings such as the higher triggering point, the lower clamping voltage etc, which will become obstacles for SCR to be widely used as an ESD protection solutions in most of the industry IC products. At first, in some applications with pin voltage goes below ground or above the VDD, dual directional protection between each two pins are desired. The traditional dual-directional SCR structures will consume a larger silicon area or lead to big leakage current issue due to the happening of punch-through effect. A new and improved SCR structure for low-triggering ESD iv applications has been proposed in this dissertation and successfully realized in a BiCMOS process. Such a structure possesses the desirable characteristics of a dual-polarity conduction, low trigger voltage, small leakage current, large failing current, adjustable holding voltage, and compact size. Another issue with SCR devices is its deep snapback or lower holding voltage, which normally will lead to the latch-up happen. To make SCR devices be immunity with latch-up, it is required to elevate its holding voltage to be larger than the circuits operational voltage, which can be several tens volts in modern power electronic circuits. Two possible solutions have been proposed to resolve this issue. One solution is accomplished by using a segmented emitter topology based on the concept that the holding voltage can be increased by reducing the emitter injection efficiency. Experimental data show that the new SCR can posses a holding voltage that is larger than 40V and a failure current It2 that is higher than 28mA/um. The other solution is accomplished by stacking several low triggering voltage high holding voltage SCR cells together. The TLP measurement results show that this novel SCR stacking structure has an extremely high holding voltage, very small snapback, and acceptable failure current. The High Holding Voltage Figure of Merit (HHVFOM) has been proposed to be a criterion for different high holding voltage solutions. The HHVFOM comparison of our proposed structures and the existing high holding voltage solutions also show the advantages of our work

    Design, Characterization And Analysis Of Electrostatic Discharge (esd) Protection Solutions In Emerging And Modern Technologies

    Get PDF
    Electrostatic Discharge (ESD) is a significant hazard to electronic components and systems. Based on a specific processing technology, a given circuit application requires a customized ESD consideration that includes the devices’ operating voltage, leakage current, breakdown constraints, and footprint. As new technology nodes mature every 3-5 years, design of effective ESD protection solutions has become more and more challenging due to the narrowed design window, elevated electric field and current density, as well as new failure mechanisms that are not well understood. The endeavor of this research is to develop novel, effective and robust ESD protection solutions for both emerging technologies and modern complementary metal–oxide–semiconductor (CMOS) technologies. The Si nanowire field-effect transistors are projected by the International Technology Roadmap for Semiconductors as promising next-generation CMOS devices due to their superior DC and RF performances, as well as ease of fabrication in existing Silicon processing. Aiming at proposing ESD protection solutions for nanowire based circuits, the dimension parameters, fabrication process, and layout dependency of such devices under Human Body Mode (HBM) ESD stresses are studied experimentally in company with failure analysis revealing the failure mechanism induced by ESD. The findings, including design methodologies, failure mechanism, and technology comparisons should provide practical knowhow of the development of ESD protection schemes for the nanowire based integrated circuits. Organic thin-film transistors (OTFTs) are the basic elements for the emerging flexible, printable, large-area, and low-cost organic electronic circuits. Although there are plentiful studies focusing on the DC stress induced reliability degradation, the operation mechanism of OTFTs iv subject to ESD is not yet available in the literature and are urgently needed before the organic technology can be pushed into consumer market. In this work, the ESD operation mechanism of OTFT depending on gate biasing condition and dimension parameters are investigated by extensive characterization and thorough evaluation. The device degradation evolution and failure mechanism under ESD are also investigated by specially designed experiments. In addition to the exploration of ESD protection solutions in emerging technologies, efforts have also been placed in the design and analysis of a major ESD protection device, diodetriggered-silicon-controlled-rectifier (DTSCR), in modern CMOS technology (90nm bulk). On the one hand, a new type DTSCR having bi-directional conduction capability, optimized design window, high HBM robustness and low parasitic capacitance are developed utilizing the combination of a bi-directional silicon-controlled-rectifier and bi-directional diode strings. On the other hand, the HBM and Charged Device Mode (CDM) ESD robustness of DTSCRs using four typical layout topologies are compared and analyzed in terms of trigger voltage, holding voltage, failure current density, turn-on time, and overshoot voltage. The advantages and drawbacks of each layout are summarized and those offering the best overall performance are suggested at the en

    Chip- and System-Level Reliability on SiC-based Power Modules

    Get PDF
    The blocking voltage, switching frequency and temperature tolerance of power devices have been greatly improved due to the revolution of wide bandgap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN). Owing to the development of SiC-based power devices, the power rating, operating voltage, and power density of power modules have been significantly improved. However, the reliability of SiC-based power modules has not been fully explored yet. Thus, this dissertation focuses on the chip- and system-level reliability on SiC-based power modules. For chip-level reliability, this work focuses on on-chip SiC ESD protection devices for SiC-based integrated circuits (ICs). In order to develop SiC ESD protection devices, SiC-based Ohmic contact and ion implantation have been studied. Nickel/Titanium/Aluminum (Ni/Ti/Al) metal stacks were deposited on SiC substrates to form Ohmic contact. Circular transfer length method (CTLM) structures were fabricated to characterize contact resistivity. Ion implantation was designed and simulated by Sentraurus technology computer aided design (TCAD) software. Secondary-ion mass spectrometry (SIMS) results show a good match with the simulation results. In addition, SiC ESD protection devices, such as N-type metal-oxide-semiconductor (NMOS), laterally diffused metal-oxide-semiconductor (LDMOS), high-voltage silicon controlled rectifier (HV-SCR) and low-voltage silicon controlled rectifier (LV-SCR), have been designed. Transmission line pulse (TLP) and very fast TLP (VF-TLP) measurements were carried out to characterize their ESD performance. The proposed SiC-based HV-SCR shows the highest failure current on TLP measurement and can be used as an area-efficient ESD protection device. On the other hand, for system-level reliability, this dissertation focuses on the galvanic isolation of high-temperature SiC power modules. Low temperature co-fired ceramics (LTCC) based high-temperature optocouplers were designed and fabricated as galvanic isolators. The LTCC-based high-temperature optocouplers show promising driving capability and steady response speed from 25 ÂșC to 250 ÂșC. In order to verify the performance of the high-temperature optocouplers at the system level, LTCC-based gate drivers that utilize the high-temperature optocouplers as galvanic isolators were designed and integrated into a high-temperature SiC-based power module. Finally, the high-temperature power module with integrated LTCC-based gate drivers was characterized by DPTs from 25 ÂșC to 200 ÂșC. The power module shows reliable switching performance at elevated temperatures

    Chip- and System-Level Reliability on SiC-based Power Modules

    Get PDF
    The blocking voltage, switching frequency and temperature tolerance of power devices have been greatly improved due to the revolution of wide bandgap (WBG) materials, such as silicon carbide (SiC) and gallium nitride (GaN). Owing to the development of SiC-based power devices, the power rating, operating voltage, and power density of power modules have been significantly improved. However, the reliability of SiC-based power modules has not been fully explored yet. Thus, this dissertation focuses on the chip- and system-level reliability on SiC-based power modules. For chip-level reliability, this work focuses on on-chip SiC ESD protection devices for SiC-based integrated circuits (ICs). In order to develop SiC ESD protection devices, SiC-based Ohmic contact and ion implantation have been studied. Nickel/Titanium/Aluminum (Ni/Ti/Al) metal stacks were deposited on SiC substrates to form Ohmic contact. Circular transfer length method (CTLM) structures were fabricated to characterize contact resistivity. Ion implantation was designed and simulated by Sentraurus technology computer aided design (TCAD) software. Secondary-ion mass spectrometry (SIMS) results show a good match with the simulation results. In addition, SiC ESD protection devices, such as N-type metal-oxide-semiconductor (NMOS), laterally diffused metal-oxide-semiconductor (LDMOS), high-voltage silicon controlled rectifier (HV-SCR) and low-voltage silicon controlled rectifier (LV-SCR), have been designed. Transmission line pulse (TLP) and very fast TLP (VF-TLP) measurements were carried out to characterize their ESD performance. The proposed SiC-based HV-SCR shows the highest failure current on TLP measurement and can be used as an area-efficient ESD protection device. On the other hand, for system-level reliability, this dissertation focuses on the galvanic isolation of high-temperature SiC power modules. Low temperature co-fired ceramics (LTCC) based high-temperature optocouplers were designed and fabricated as galvanic isolators. The LTCC-based high-temperature optocouplers show promising driving capability and steady response speed from 25 ÂșC to 250 ÂșC. In order to verify the performance of the high-temperature optocouplers at the system level, LTCC-based gate drivers that utilize the high-temperature optocouplers as galvanic isolators were designed and integrated into a high-temperature SiC-based power module. Finally, the high-temperature power module with integrated LTCC-based gate drivers was characterized by DPTs from 25 ÂșC to 200 ÂșC. The power module shows reliable switching performance at elevated temperatures

    Design of Low-Capacitance Electrostatic Discharge (ESD) Protection Devices in Advanced Silicon Technologies.

    Get PDF
    Electrostatic discharge (ESD) related failure is a major IC reliability concern and this is particularly true as technology continues shrink to nano-metric dimensions. ESD design window research shows that ESD robustness of victim devices keep decreasing from 350nm bulk technology to 7nm FinFET technologies. In the meantime, parasitic capacitance of ESD diode with same It2 in FinFET technologies is approximately 3X compared with that in planar technologies. Thus transition from planar to FinFET technology requires more robust ESD protection however the large parasitic capacitance of ESD protection cell is problematic in high-speed interface design. To reduce the parasitic capacitance, a dual diode silicon controlled rectifier (DD-SCR) is presented in this dissertation. This design can exhibit good trade-offs between ESD robustness and parasitic capacitance characteristics. Besides, different bounding materials lead to performance variations in DD-SCRs are compared. Radio frequency (RF) technology is also demanded low capacitance ESD protection. To address this concern, a ?-network is presented, providing robust ESD protection for 10-60 GHz RF circuit. Like a low pass ? filter, the network can reflect high frequency RF signals and transmit low frequency ESD pulses. Given proper inductor value, networks can work as robust ESD solutions at a certain Giga Hertz frequency range, making this design suitable for broad band protection in RF input/outputs (I/Os). To increase the holding voltage and reduce snapback, a resistor assist triggering heterogeneous stacking structure is presented in this dissertation, which can increase the holding voltage and also keep the trigger voltage nearly as same as a single SCR device

    On-Chip ESD Protection Design: Optimized Clamps

    Get PDF
    The extensive use of Integrated Circuits (ICs) means complex working conditions for these tiny chips. To guarantee the ICs could work properly in various environments, some special protection strategies are required to improve the reliability of system. From all the possible reliability issues, the electrostatics discharge (ESD) might be the most common one. The peak current of electrostatics can be as high as tens of amperes and the peak voltage can be over thousand voltages. In contrast, the size of semiconductor device fabricated is continuing to scale down, making it even more vulnerable to high level overstress and current surge induced by ESD event. To protect the on-chip semiconductor from damage, some extra clamp cells are put together to consist a network. The network can redirect the superfluous current through the ESD network and clamp the voltage to a low level. In this dissertation, one design concept is introduced that uses the combination of some basic ESD devices to meet different requirements first, and then tries to establish parasitic current path among these devices to further increase the current handling capability. Some design cases are addressed to demonstrate this design concept is valid and efficient: 1. A combination of silicon-controlled-rectifier (SCR) and diode cluster is implemented to resolve the overshoot issue under fast ESD event. 2. A new SCR structure is introduced, which can be used as padding device to increase the clamping voltage without affecting other parameters. Based on this padding device, two design cases are introduced. 3. A controllable SCR clamp structure is presented, which has high current handling capability and can be controlled with by small signal. All these structures and topologies described in this dissertation are compatible with most of popular semiconductor fabrication process

    Analysis of design strategies for RF ESD problems in CMOS circuits

    Get PDF
    This thesis analyses the design strategies used to protect RF circuits that are implemented in CMOS technologies. It investigates, in detail, the physical mechanisms involved when a ggNMOS structure is exposed to an ESD event and undergoes snapback. The understanding gained is used to understand why the performance of the current RF ESD clamp is poor and suggestions are made as to how the performance of ggNMOS clamps can be improved beyond the current body of knowledge. The ultimate aim is to be able to design effective ESD protection clamps whilst minimising the effect the circuit has on RF I/O signals. A current ggNMOS based RF ESD I/O protection circuit is analysed in detail using a Transmission Line Pulse (TLP) tester. This is shown to be a very effective diagnostic tool by showing many characteristics of the ggNMOS during the triggering and conducting phase of the ESD event and demonstrate deficiencies in the clamp design. The use of a FIB enhances the analysis by allowing the isolation of individual components in the circuit and therefore their analysis using the TLP tester. SPICE simulations are used to provide further commentary on the debate surrounding the specification required of a TLP tester for there to be a good correlation between a TLP test and the industry standard Human Body Model (HBM) ESD test. Finite element simulations are used to probe deeper in to the mechanisms involved when a ggNMOS undergoes snapback especially with regard to the contribution parasitic components within the ggNMOS make to the snapback process. New ggNMOS clamps are proposed which after some modification are shown to work. Some of the finite element experiments are repeated in a 0.18Όπ7. process CMOS test chip and a comparison is made between the two sets of results. In the concluding chapter understanding that has been gained from previous chapters is combined with the published body of knowledge to suggest and explain improvements in the design of a ggNMOS for RF and standard applications. These improvements will improve homogeneity of ggNMOS operation thus allowing the device size to be reduced and parasitic loading for a given ESD performance. These techniques can also be used to ensure that the ESD current does not take an unintended path through the chip

    Electrostatic Discharge Protection Device for Digital Circuits and for Applications with Input/Output Bipolar Voltage Much Higher than the Core Circuit Power Supply

    Get PDF
    An electrostatic discharge (ESD) device and method is provided. The ESD device can comprise a substrate doped to a first conductivity type, an epitaxial region doped to the second conductivity type, and a first well doped to the first conductivity type disposed in the substrate. The first well can comprise a first region doped to the first conductivity type, a second region doped to a second conductivity type, and a first isolation region disposed between the first region and the second region. The ESD device can also comprise a second well doped to a second conductivity type disposed in the substrate adjacent to the first well, where the second well can comprise a third region doped to the first conductivity type, a fourth region doped to the second conductivity type, and a second isolation region disposed between the third region and the fourth region. Still further, the ESD device can include a first trigger contact and second trigger contact comprising highly doped regions of eith

    Semiconductor Device Modeling, Simulation, and Failure Prediction for Electrostatic Discharge Conditions

    Get PDF
    Electrostatic Discharge (ESD) caused failures are major reliability issues in IC industry. Device modeling for ESD conditions is necessary to evaluate ESD robustness in simulation. Although SPICE model is accurate and efficient for circuit simulations in most cases, devices under ESD conditions operate in abnormal status. SPICE model cannot cover the device operating region beyond normal operation. Thermal failure is one of the main reasons to cause device failure under ESD conditions. A compact model is developed to predict thermal failure with circuit simulators. Instead of considering the detailed failure mechanisms, a failure temperature is introduced to indicate device failure. The developed model is implemented by a multiple-stage thermal network. P-N junction is the fundamental structure for ESD protection devices. An enhanced diode model is proposed and is used to simulate the device behaviors for ESD events. The model includes all physical effects for ESD conditions, which are voltage overshoot, self-heating effect, velocity saturation and thermal failure. The proposed model not only can fit the I-V and transient characteristics, but also can predict failure for different pulses. Safe Operating Area (SOA) is an important factor to evaluate the LDMOS performance. The transient SOA boundary is considered as power-defined. By placing the failure monitor under certain conditions, the developed modeling methodology can predict the boundary of transient SOA for any short pulse stress conditions. No matter failure happens before or after snapback phenomenon. Weibull distribution is popular to evaluate the dielectric lifetime for CVS. By using the transformative version of power law, the pulsing stresses are converted into CVS, and TDDB under ESD conditions for SiN MIMCAPs is analyzed. The thickness dependency and area independency of capacitor breakdown voltage is observed, which can be explained by the constant ?E model instead of conventional percolation model

    Design And Characterization Of Noveldevices For New Generation Of Electrostaticdischarge (esd) Protection Structures

    Get PDF
    The technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications\u27 performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the design of robust protection structures and circuits remains challenging because ESD failure mechanisms continue to become more acute and design windows less flexible. The sensitivity of smaller devices, along with a limited understanding of the ESD phenomena and the resulting empirical approach to solving the problem have yielded time consuming, costly and unpredictable design procedures. As turnaround design cycles in new technologies continue to decrease, the traditional trial-and-error design strategy is no longer acceptable, and better analysis capabilities and a systematic design approach are essential to accomplish the increasingly difficult task of adequate ESD protection-circuit design. This dissertation presents a comprehensive design methodology for implementing custom on-chip ESD protection structures in different commercial technologies. First, the ESD topic in the semiconductor industry is revised, as well as ESD standards and commonly used schemes to provide ESD protection in ICs. The general ESD protection approaches are illustrated and discussed using different types of protection components and the concept of the ESD design window. The problem of implementing and assessing ESD protection structures is addressed next, starting from the general discussion of two design methods. The first ESD design method follows an experimental approach, in which design requirements are obtained via fabrication, testing and failure analysis. The second method consists of the technology computer aided design (TCAD)-assisted ESD protection design. This method incorporates numerical simulations in different stages of the ESD design process, and thus results in a more predictable and systematic ESD development strategy. Physical models considered in the device simulation are discussed and subsequently utilized in different ESD designs along this study. The implementation of new custom ESD protection devices and a further integration strategy based on the concept of the high-holding, low-voltage-trigger, silicon controlled rectifier (SCR) (HH-LVTSCR) is demonstrated for implementing ESD solutions in commercial low-voltage digital and mixed-signal applications developed using complementary metal oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) technologies. This ESD protection concept proposed in this study is also successfully incorporated for implementing a tailored ESD protection solution for an emerging CMOS-based embedded MicroElectroMechanical (MEMS) sensor system-on-a-chip (SoC) technology. Circuit applications that are required to operate at relatively large input/output (I/O) voltage, above/below the VDD/VSS core circuit power supply, introduce further complications in the development and integration of ESD protection solutions. In these applications, the I/O operating voltage can extend over one order of magnitude larger than the safe operating voltage established in advanced technologies, while the IC is also required to comply with stringent ESD robustness requirements. A practical TCAD methodology based on a process- and device- simulation is demonstrated for assessment of the device physics, and subsequent design and implementation of custom P1N1-P2N2 and coupled P1N1-P2N2//N2P3-N3P1 silicon controlled rectifier (SCR)-type devices for ESD protection in different circuit applications, including those applications operating at I/O voltage considerably above/below the VDD/VSS. Results from the TCAD simulations are compared with measurements and used for developing technology- and circuit-adapted protection structures, capable of blocking large voltages and providing versatile dual-polarity symmetric/asymmetric S-type current-voltage characteristics for high ESD protection. The design guidelines introduced in this dissertation are used to optimize and extend the ESD protection capability in existing CMOS/BiCMOS technologies, by implementing smaller and more robust single- or dual-polarity ESD protection structures within the flexibility provided in the specific fabrication process. The ESD design methodologies and characteristics of the developed protection devices are demonstrated via ESD measurements obtained from fabricated stand-alone devices and on-chip ESD protections. The superior ESD protection performance of the devices developed in this study is also successfully verified in IC applications where the standard ESD protection approaches are not suitable to meet the stringent area constraint and performance requirement
    corecore