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ABSTRACT 

Electrostatic discharge (ESD) related failure is a major IC reliability concern and this is 

particularly true as technology continues shrink to nano-metric dimensions. ESD design window 

research shows that ESD robustness of victim devices keep decreasing from 350nm bulk 

technology to 7nm FinFET technologies. In the meantime, parasitic capacitance of ESD diode 

with same It2 in FinFET technologies is approximately 3X compared with that in planar 

technologies. Thus transition from planar to FinFET technology requires more robust ESD 

protection however the large parasitic capacitance of ESD protection cell is problematic in high-

speed interface design. To reduce the parasitic capacitance, a dual diode silicon controlled 

rectifier (DD-SCR) is presented in this dissertation. This design can exhibit good trade-offs 

between ESD robustness and parasitic capacitance characteristics. Besides, different bounding 

materials lead to performance variations in DD-SCRs are compared. Radio frequency (RF) 

technology is also demanded low capacitance ESD protection. To address this concern, a π-

network is presented, providing robust ESD protection for 10-60 GHz RF circuit. Like a low 

pass π filter, the network can reflect high frequency RF signals and transmit low frequency ESD 

pulses. Given proper inductor value, networks can work as robust ESD solutions at a certain 

Giga Hertz frequency range, making this design suitable for broad band protection in RF 

input/outputs (I/Os). To increase the holding voltage and reduce snapback, a resistor assist 

triggering heterogeneous stacking structure is presented in this dissertation, which can increase 

the holding voltage and also keep the trigger voltage nearly as same as a single SCR device.  

Keywords: ESD, low capacitance, high speed, design window, TLP. 
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CHAPTER 1 INTRODUCTION 

1.1 ESD Event and Protection Methodology 

Electrostatic discharge (ESD) is defined as the transfer of charge between objects at 

different potentials in a quite short time. ESD events not only occur in the dry cold winter day 

when someone reaches the metal handle of his or her house door, but also can occur throughout 

the whole life of an integrated circuit (IC) product from the manufacturing, testing, shipping, 

handing, to end user operating stages. Damages introduced by ESD events results in a loss of 

millions dollars to the semiconductor industry each year. It has been reported that more than 35% 

of the failures in integrated circuits are ESD induced. Therefore, the ESD related failure is a 

major IC reliability concern and this is particularly true as microelectronics technology continues 

shrink to nano-metric dimensions.  

The duration of ESD stress is as short as nanosecond (ns) to millisecond (ms)[1], which is 

one of its major characteristics. Besides, ESD stress has high energy, which could results in a 

high voltage at the level of a few kilovolts (kV) and large current at the level of tens of amps (A). 

Such a high voltage and large current induced by ESD could cause serious damages to 

semiconductor device or circuits. The example of silicon and metal damages induced by ESD 

stress are shown in Figure 1-1 [2] and Figure 1-2 [3] respectively.  

Due to the concerns of ESD damages, ESD protection is very important and gradually get 

more attentions with technology development. For example in 7nm FinFET technologies, the 

FET device is much vulnerable to ESD stress and can barely handling any ESD current. Thus, 

sufficient ESD protections in advanced technologies are extremely important and highly 

demanded.  
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The basic idea of ESD protection design is during ESD event, it adds a path with a low 

impedance to shunt the ESD current away from the internal core circuit as well as to clamp the 

I/O and power pad voltage to a relative safe level, while during normal circuit operation, it is 

transparent to internal circuit. Requirements for idea ESD protection design include zero on-

resistance, finite clamping voltage, small footprint, instantaneous turn-on time (~1ns), no leakage 

current, no parasitic capacitance, and surviving the burn-in test etc.   

 

Figure 1-1 Drain junction damage induced by ESD stress. 

 

Figure 1-2 Metal melt damage by ESD stress. 

ESD protection design should fit in the ESD design window [4-6]. Figure 1-3 shows the 

scheme of ESD design window. ESD design window defines the boundaries in which ESD 

device and circuit have to operate for effective protection. To provide a successful ESD 

protection, ESD device should turn on and clamp the voltage within the design window 
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boundaries. The left side boundary is set as the operation voltage Vdd of the circuit or I/O plus a 

margin, the right side boundary is set as failure voltage of the protected/victim devices or circuit, 

and the upper boundary is set as the failure current of ESD devices themselves.  

In Figure 1-3, the I-V curves of the snapback and non-snapback type ESD protection 

device are depicted with solid and dash line, respectively. Snapback is the part with negative 

resistance in the IV curve, between the trigger voltage Vt1 and the holding voltage Vh. Large or 

deep snapback means the Vt1 – Vh is large [7]. For protection device with snapback, the trigger 

voltage is large, while ESD current can be discharged at low clamping voltage. Therefore, it can 

prevent false triggering and also prevent unexpected harm to internal circuit caused by large 

clamping voltage.  

 

Figure 1-3 ESD protection design window. 

Vt1/It2 is the trigger voltage/current of the ESD device, Vt2/It2 on the curve is the failure 

voltage/current of the ESD device, Vh/Ih is the holding (clamping) voltage/current of the ESD 
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device, and Vgox/Vt2 on the x-axis is gate oxide breakdown voltage/failure voltage of the victim 

device. In order to prevent latch-up, the holding voltage of protection device should be larger 

than Vdd plus a safety margin voltage (typically 10% of Vdd). On the other hand, the ESD 

protection device should be triggered before the damage of the victim device, thus the trigger 

voltage of ESD device should be smaller than the Vgox or Vt2 of the victim device. 

  

1.2 ESD Models 

ESD event can happen in different occasions such as semiconductor manufacturing, 

measurement and applications. In these procedures, static charges can accumulate in different 

objects, such as human body, manufacturing machine or IC itself. Discharge happens when the 

charged objects contact a grounded surface, and the discharge waveforms are different since the 

corresponding equivalent capacitance and resistance can vary a lot in different discharging paths. 

To standardize the designing and measurement process of ESD protection, semiconductor 

manufacturers and ICs design house have derived several ESD stress models and test methods to 

mimic the ESD events in real world. Typical ESD models include human body mode (HBM), 

machine model (MM), and charged device model (CDM) [3]. Testing techniques such as 

Transmission Line Pulse (TLP) Tester are also proposed. These ESD models and test methods 

produce repeatable discharge pulses to evaluate the robustness of ESD protection structures 

under different ESD stress. Standardization groups such as ESD Association (ESDA) and Joint 

Electron Device Engineering Council (JEDEC) are continuously reviewing and re-edit these 

models and providing corresponding protection levels to specify globally applied test standards.  
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1.2.1  Human Body Model 

 

Figure 1-4 A simplified equivalent circuit of HBM. 

 

Figure 1-5 Current waveform of HBM when VHBM = 2KV. 
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The HBM model is the most classical and commonly used discharge model in 

semiconductor industry. HBM simulates the ESD event which occurs when a charged person 

touches a device. Typically, it has a rise time of 2 to 10 ns, and a pulse duration of 130 to 170 ns 

[8]. Figure 1-4 shows an equivalent circuit of the HBM, which has a simple RC network to 

simulate the discharge from a human body. Two key elements including equivalent body 

resistance and equivalent body to ground capacitance are 1500 Ω and 100pF, respectively. The 

primary standards of HBM include JEDEC/ESDA JS-001-2017 [9] and JEDEC JEP155A.01 

[10], etc. Current waveform of HBM when VHBM equals to 2KV is shown in Figure 1-5, the peak 

current of this stress can be 1.33A. In HBM testing, IC failure modes typically show gate oxide, 

contact spike, and junction damage. 

1.2.2 Machine Model 

 

Figure 1-6 A simplified equivalent circuit of MM. 
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Machine Model simulates discharge events which are caused by equipment used in 

manufacturing (functional test, burn-in, reliability testing, etc.). Accumulated charges can 

discharge from the machine through the device to the ground. Typically, MM can generate an 

ESD pulse with a rise time of 10 to 15 ns and a pulse duration of approximately 40 ns [8]. Figure 

1-6 shows the equivalent circuit of MM. An equivalent 750 nH machine inductor of and an 

equivalent 200 pF machine capacitor are included in the circuit.  The primary standard of MM 

includes JEDEC JESD22-A115C [11]. Current waveform of MM with VMM equals to 200V is 

shown in Figure 1-7, the corresponding peak current is about 3.6A, which is much higher 

compared with HBM model.   

 

Figure 1-7 Current waveform of MM when VMM = 200V. 
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1.2.3 Charged Device Model 

 

Figure 1-8 A simplified equivalent circuit of CDM. 

 

Figure 1-9 Current waveform of CDM when VCDM = 500V. 
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CDM simulates the ESD event occurring when a charged device is discharged to a 

metallic ground. The electrostatic discharge of CDM happens from the inside of IC to the outside 

ground. CDM has a rise time of 100ps to 500ps and a pulse duration of under 1ns [8]. Figure 1-8 

shows an equivalent circuit of CDM, and Figure 1-9 shows the typical current waveform of 

CDM. The primary standard of CDM includes ESDA/JEDEC JS-002-2014 [12]. CDM currents 

are higher than HBM currents because there is no current limiting resistor in the discharge path. 

For a 500V test voltage, the peak current can goes to 6A. 

 

1.2.4 ESD Model Comparison 

 

Figure 1-10 Current waveform comparison of HBM, MM and CDM model. 

Figure 1-10 and Table 1-1 compares the different current waveforms of HBM, MM, and 

CDM models. As shown in Figure 1-10, the higher parasitic capacitance and lower overall 
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impedance of MM contributes to higher peak current than HBM pulse. While HBM and MM 

have similar rise time, thus this cause comparable joule heating and gives similar failure modes 

[13]. MM can be seen as a worst case of HBM. In contrast, CDM, with its sharp rise time 

(<0.5ns), gives faster and more severe voltage drops, resulting in unique oxide failures. 

Table 1-1 Current waveforms and ESD protection levels of HBM, MM and CDM models. 

Model HBM MM CDM 

Protection Level V [9] 1 K 200 250 

Pulse Width (10-90%) ~150 ns ~40 ns ~1 ns 

Rise Time 2-10ns 10-15ns 100-500ps 

 

Since the failure mode and discharge processes of the MM test are generally the same as 

that of the HBM test, the HBM test could guarantee MM ESD robustness in most of the cases. 

On the other hand, CDM is completely different from HBM and MM, so there is no correlation 

between them. Therefore, CDM and HBM tests are commonly used to test ESD protection 

circuits. HBM and CDM protection level has been reduced to 1KV [14] and 250V [15] 

separately in advanced silicon technologies.  

1.2.5 Transmission Line Pulse Tester 

The limitation of existing HBM, MM and CDM test methods is that they only offer the 

results of ESD failure threshold of the ESD protection structures, but without insights into the 

current-voltage characteristics of those structures during ESD stress, thus short of important 

information to analyze possible failure mechanisms and assist the design of ESD protection 

devices. Transmission Line Pulse (TLP) is thus proposed as a testing method to describe the 
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behaviors of device under ESD stress by characterizing current-voltage curves and leakage 

current information. Figure 1-11 shows the simplified equivalent circuit of TLP. The principle 

for TLP testing is to produce a stable square waveform to stress the device under test (DUT) and 

record the respond curve across the DUT as shown in Figure 1-12. Typically, the TLP tester 

begins with low voltage pulses and successively increases in amplitude with a certain voltage 

step. The transmission line is firstly charged by a high voltage DC source first, and the charged 

transmission line discharges through DUT. Key ESD parameters could be obtained from the TLP 

measurement, including trigger voltage/current Vt1/It1, holding voltage/current Vh/Ih, failure 

voltage/current Vt2/It2, DC leakage current, on-resistance RON and DC breakdown voltage 

VBD. 

 

Figure 1-11 A simplified equivalent circuit of TLP tester. 
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Figure 1-12 TLP tester measures I and V at each voltage pulse. 

TLP could generate a ESD-like pulse with a rise time of 0.5 to 10 ns and a pulse width of 

50 to 150 ns [8, 16]. A typical rise time of 10 ns and pulse width of 100 ns is usually used to 

correlate the HBM. Another test method, named very fast TLP (vfTLP) testing, can describe the 

transient behavior of ESD protection structures for CDM application [17]. In this work,  some of 

the measurements were performed by the Barth 4002 transmission line pulsing (TLP) and Barth 

4012 very fast transmission line pulsing (vfTLP) testers, some were performed by high power 

pulse instruments (HPPI) TLP/vfTLP test system. 

 

1.3 ESD Protection Device 

To avoid or reduce the ESD failure in ICs, two methods are widely used in 

semiconductor industry. One is using static control and awareness programs to reduce the build-

up of static charges and the IC ESD exposure. It can be achieved by improving the 

manufacturing working environments, such as wearing wrist strap, covering work surface by 

conductive material, and neutralizing all insulator materials with ionizer [18, 19]. The other 

method is implementing ESD protection devices and circuits to shunt high discharge current and 
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keep ESD strikes away from protected internal circuit during ESD event. ESD protection level 

can be significantly increased by adding proper ESD protection structures, resulting in improved 

reliability of the ICs and electronic systems. 

This work is focusing on the second method: several improved on-chip ESD protection 

structures are proposed to enhance the robustness of the IC. These structures are modified from 

the basic ESD protection devices, including diode, Grounded Gate N-type MOSFET (GGNMOS) 

and Silicon Controlled Rectifier (SCR) [8]. Basic ESD devices can be divided as non-snapback 

device and snapback device. Among the three basic protection structures, diode is non-snapback 

device, while GGNMOS and SCR are snapback devices. 

ESD protection structures should fit in the design window shown in Figure 1-3, and an 

ideal ESD protection devices prefer to have zero on-resistance, finite clamping voltage, small 

footprint, instantaneous turn-on time (~1ns), no leakage current, no parasitic capacitance, and 

surviving the burn-in test. In this section, we will introduce the structures of the basic ESD 

protection devices and their operation and parasitic characteristics under ESD events.  
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1.3.1  Diode 

 

Figure 1-13 Cross section view of a P+/NW diode. 

 

Figure 1-14 Cross section view of a series diode. 

Because of its simple structure and good performance, the junction diode is widely used 

for ESD protection at I/O pins of integrated circuits. The cross section views of P+/NW and 

series diode are shown in Figure 1-13 and Figure 1-14, respectively. The parasitic capacitance of 

diode is the junction capacitance Cj [20, 21], which is determined by the area of the junction. By 

stacking the diode in series, the capacitance can be greatly minimized [22]. Diodes especially 

series diode (stacking) are popular in high frequency circuit protection due to its less capacitive 

characteristic. 
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The TLP I-V curve of diode is shown in Figure 1-15. This diode is fabricated in 28nm 

technology. Diode is no-snapback device. The trigger voltage of the forward biased junction 

diode is about 0.7V. After triggering, the diode can conduct significant current with very low on-

state resistance.  

 

Figure 1-15 TLP characteristics of diode. 

1.3.2 GGNMOS 

Due to GGNMOS has simple structure and it is compatible with CMOS technology, it is 

also a popular device in ESD protection [23]. GGNMOS is modified from the normal NMOS 

device. In GGNMOS, the drain of NMOS serves as the anode, and the shorted gate, source and 

body contact are tied together to serve as the cathode. Figure 1-16 shows the equivalent circuit 

and cross section view with of a GGNMOS. When ESD pulse stresses on the drain contact of 

GGNMOS, drain voltage increases and leads to an increasing substrate current. The current 
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contribute to the increasing bias (VBE) at the PW/N+ junction.  When VBE of the parasite 

bipolar junction transistor (BJT) exceeds 0.7 V, the parasite NPN turns on to sink ESD current. 

After trigger of GGNMOS, the GGNMOS goes into snapback operation region due to the bipolar 

action in the device. With drain voltage further increases, it finally reaches the thermal failure. 

The parasitic capacitance of GGNMOS comes from junction capacitance Cj and gate 

capacitance Cg. Figure 1-17 shows the equivalent parasitic capacitance of GGNOMS.  Cj and Cg 

are connected in parallel, thus the total capacitance equals to Cj + Cg. Besides, Cg is much larger 

than Cj. Under same condition, the parasitic capacitance of GGNOMS is much larger diode and 

SCR. Therefore in high frequency circuit ICs, GGNMOS is seldom used.  

      

Figure 1-16 Equivalent circuit and cross section view with parasite NPN of a GGNMOS. 

 

Figure 1-17 Equivalent parasitic capacitance of GGNMOS. 
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1.3.3 SCR 

SCR is also known as the thyristor. SCR is popular for its area efficiency: with same ESD 

protection level SCR occupies smallest area among the three basic devices [24]. The cross 

section view and the equivalent circuit of a SCR are shown in Figure 1-18, in which consisting a 

PNPN structure. Two BJTs are embedded in the structure: one is NPN (NW/P-substrate/ N+ 

cathode) bipolar and one is PNP (P+ anode/NW/P-substrate). The P+ in NW serves as anode, 

while the N+ in PW serves as cathode. When ESD pulse stress on the anode, the anode voltage 

increases, and the electric field at the NW/PW junction increases accordingly. When the electric 

field increasing to a certain level, avalanche breakdown happens at the NW/PW junction and the 

SCR structure trigged. After trigger, the SCR will exhibits a snapback I-V characteristics as 

shown in Figure 1-19. With anode voltage continue increasing, it finally reaches the thermal 

failure.  

Typically, SCR has large snapback. The trigger voltage can be over tens of volts while 

the holding voltage is only several volts (~2V).  This characteristic can easily trigger latch-up. 

Therefore in most cases, SCR can’t be directly used in the ESD protection design, but need to be 

improved to adapt to different ESD design windows [25]. 

     

Figure 1-18 Equivalent circuit and cross section view with parasite BJTs of a SCR. 
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Figure 1-19 TLP characteristics of SCR. 

Similar with diode, the parasitic capacitance of SCR is junction capacitance of PW/NW 

Cj. Capacitance can be minimized by minimizing the junction area of PW/NW. SCR is also a 

popular ESD protection in high frequency circuit application [26]. 

1.4 ESD Protection Circuit 

ESD current will flow through the paths of least resistance, thus efficient low resistance 

discharge devices that can carry high current should be properly placed for circuit level 

protection. According to the ESD testing standards, to adequately protect the ICs from ESD 

damage, an ESD protection network must provide the current discharge path between any two 

pins. Typical ESD protection schemes can be divided to VDD-based and VSS-based protection 

scheme, which is shown in Figure 1-20 [27-29]. Both of the schemes have placed proper clamp 

between any combination of I/O, Vdd, Vss, such as I/O-to-VDD, I/O-to-VSS, I/O-to-I/O, and 

VDD-to-VSS [30] to protect positive or negative ESD discharge between them.  
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(a)                                                                                           (b) 

Figure 1-20 Typical ESD protection circuit topology: (a) VDD-based (b) VSS-based protection 

schemes. 

 

Figure 1-21 Double diode ESD protection scheme. 

A double diode ESD protection scheme is a VDD-Based scheme, shown in Figure 1-21. 

The current path for positive and negative pulse are also shown in this figure. In this scheme, the 
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I/O voltage must remain between VDD + Vdiode and VSS – Vdiode, otherwise the protection 

diode will forward biased (Vdiode is the diode forward biased voltage, ~0.7V). 

 

Figure 1-22 GGNMOS ESD protection scheme. 

 

Figure 1-23 SCR ESD protection scheme. 
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GGNMOS and SCR ESD protection schemes are shown in Figure 1-22 and Figure 1-23 

respectively. These two schemes are VSS-Based protection scheme and share the similar current 

discharge path. In these two protection scheme, the I/O voltage can rise above the power supply 

without sinking DC current into the signal pin. For low voltage I/O protection, diode string 

trigged SCR (DTSCR) is typically used in the SCR scheme, since DTSCR has a much lower 

trigger voltage compared with SCR. 

In applications, the choice of the protection schemes can vary according to the design 

window and available protection devices.  

 

1.5 Summary and Dissertation Outline 

ESD related failure is a major IC reliability concern and this is particularly true as 

microelectronics technology continues shrink to nano-metric dimensions. This chapter introduces 

the ESD fundamentals: several ESD stress models and on-chip ESD protection structures are 

discussed which are helpful to understand this dissertation. ESD models are developed by 

semiconductor industry to simulate the real world ESD phenomenon and ESD protection 

schemes are introduced to effectively protect the IC from ESD induced damage. 

The organization of the dissertation is as follow. Chapter 2 starts with reviewing ESD 

Design window across multiple technologies. The requirement to lower the HBM and CDM 

level further for FinFET technologies is discussed in details. Chapter 3 presents a dual diode 

SCR (DD-SCR) structure. It also compares DD-SCRs with different bounding materials. These 

designs can exhibit good ESD performance and low parasitic capacitance characteristics. Chapter 

4 investigates an inductor embedded π-network and its design methodology. The π-networks 
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work well for RF applications in the 7.5 GHz to 62 GHz frequency range. Chapter 5 present a 

resistor-assist triggering heterogeneous stacking structure, which can minimize the snapback of 

SCR device.  Chapter 6 comes summary and conclusion of the dissertation. 
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CHAPTER 2 STUDY OF ESD DESIGN WINDOW SCALING DOWN 

TO 7NM TECHNOLOGY NODE 

2.1 Introduction 

ESD design window defines the boundaries which ESD device and circuit have to 

operate in for effective protection. To provide a successful ESD protection, ESD device should 

turn on and clamp the voltage within the design window boundaries. Figure 1-3 shows the 

illustration of the ESD design window. It is clearly shown that the left side boundary is set as the 

operation voltage Vdd of the circuit or I/O plus a margin, the right side boundary is set as failure 

voltage of the protected/victim devices or circuit, and the upper boundary is set as the failure 

current of ESD devices themselves [4-6]. Since the left side boundary is fixed for a certain 

technology, and the upper boundary depends on ESD cell itself, knowing the right side boundary 

is critical to define the margin of the ESD design window.   

Figure 2-1 shows typical I/O schematics protected by ESD cells [31, 32]. In Figure 2-1, 

the gate oxide breakdown voltage Vgox of the victim FET that connects with CDM network 

defines the right side boundary of design window. On the other hand, the ESD event may turn on 

the victim FET that is connected with the I/O, therefore in this case the failure voltage Vt2 of the 

victim FET defines the right side boundary. One challenge for ESD design is that Vgox and Vt2 of 

FET keep decreasing with technology scaling. At the same time, normalized failure current (It2) 

is degrading, thus causing ESD design window to shrink drastically. 
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Figure 2-1 Typical I/O schematics. Rs in the red dash line is the series resistor that can extend 

Vt2. Victim FETs in the Green dash line.  

In this paper, the trend of design window scaling across bulk, silicon on insulator (SOI) 

and FinFET technologies in technology nodes from 350nm to 7nm is studied. Transmission line 

pulse (TLP) and very-fast-TLP (vfTLP) testing results of gate oxide breakdown voltage Vgox, 

trigger voltage Vt1, and normalized failure current It2 of silicided thin oxide (SG) and thick oxide 

(DG) NFETs and PFETs (victim devices), are given and discussed. Calculated failure voltage Vt2 

with different series resistors Rs (shown in Figure 2-1) are also presented to evaluate the potential 

of ESD design window extension. For the first time, all these parameters are reviewed and 

compared across multiple technology generations to establish the fact that digital drivers are 
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becoming vulnerable to CDM test and High-Speed Serial (HSS) designs may need a lower CDM 

target level for FinFET and beyond technologies due to device capacitance increase as 

technologies scale. 

 

2.2 Technology Background 

FETs of multiple generations of planar bulk, planar SOI and FinFETs are characterized in 

this paper.  Figure 2-2 shows representative 3-D structures of a FET in bulk, SOI and FinFET 

technologies. 

Bulk

 

SOI

 

Gate

N+

Psub

STI
 

Bulk FinFET

 

SOI FinFET 

 

Figure 2-2 3-D structure of NFETs in bulk, SOI and FinFET technology. 

Data presented in this work is based on GlobalFoundries’ developed process. Technology 

nodes introduced are 350nm, 180nm, 130nm, 65nm, 45nm, 32nm, 22nm, 14nm, and 7nm. Planar 

bulk and partially depleted silicon on insulator (PDSOI) are used in technologies from 180nm to 

22nm. Besides, one bulk technology in 350nm and one FDSOI technology in 22nm are 

considered. For FinFET technology, SOI FinFET technology in 14nm and bulk FinFET in both 
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14nm and 7nm are presented as well. The summary table is shown in Table 2-1 and Table 2-2 

along with various process elements that are included in each node. 

Table 2-1 Presented Technologies. 

Technology 

(nm) 

350 180 130 65 45 32 22 14 

(FinFET) 

7 

(FinFET) 

Bulk × × × × × × × × × 

PDSOI   × × × × × × ×   

FDSOI             ×     

 

Table 2-2 Technology Background. 

Nodes --> ≥45nm  32nm 22nm 14nm 7nm 

Feature Bulk  PDSOI Bulk PDSOI Bulk PDSOI FDSOI Bulk 

FinFET 

SOI 

FinFET 

Bulk 

FinFET 

Poly Gate x x         x       

Metal First 

Metal Gate High 

K Dielectric 

    x x             

Thin BOX             x       

Replacement 

Metal Gate High 

K Dielectric 

        x x   x x x 

Trench Silicide               x    x 

Epi S/D             x x x x 

 

Gate length (Lg) and gate thickness (Tox) are both scaling down with technology trend [33, 

34]. Figure 2-3 and Figure 2-4 show the evolution of Tox in each technology (normalized) for SG 

and DG respectively. Tox of SG and DG follows similar trend with technology scale: it is 

observed that the oxide thickness scales down as we move from 350nm to smaller technology 

node leading to a plateau around 65nm. After that it follows a less drastic slope, which can be 
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attributed to introduction of metal gate process in 32nm and beyond. Besides, Tox of PDSOI 

technologies usually have smaller Tox compared with its bulk counterpart. 

  

Figure 2-3 Normalized SG gate oxide thickness in different technologies. Ratio against Tox of 

350nm SG NFET. 

 

Figure 2-4 Normalized DG gate oxide thickness in different technologies. Ratio against Tox of 

350nm DG NFET. 
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2.3 Trend of Parameters 

Victim NFETs and PFETs with width ranging from 50µm to 200µm, and finger-number 

ranging from 1 to 5 are measured and compared in this section. Several key parameters for ESD 

design window are covered, including Vgox, Vt1, It2 and calculated Vt2 of both NFET and PFET. 

100ns TLP and 1ns vfTLP measurements are used for characterization. The results are depicted 

in Figure 2-5 to Figure 2-17.  A summarization of Vgox, Vt1 and It2 decreasing slope across the 

technology scale is given in Table 2-3. 

Gate oxide breakdown voltage Vgox is critical when characterizing the right side boundary 

of design window. In Vgox measurement, source and drain of FET are connected together as one 

terminal and gate of FET is the other terminal. The trends of how Vgox vary under 100ns TLP 

measurement for both SG NFET and SG PFET are presented in Figure 2-5 and Figure 2-6, 

respectively. Besides, result of DG NFET is present in Figure 2-7. 

 

Figure 2-5 100ns TLP gate oxide breakdown voltage of SG NFET in different technologies. 
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Figure 2-6 100ns TLP gate oxide breakdown voltage of SG PFET in different technologies. 

 

Figure 2-7 100ns TLP gate oxide breakdown voltage of DG NFET in different technologies. 

 

It is observed that there is almost an 8X reduction of oxide breakdown voltage from 

350nm node to 7nm node in SG FET. Due to technology scaling and introduction of metal gates, 

for advanced technology nodes between 22nm (FDSOI) to 7nm (FinFET), the gate oxide 

breakdown voltage of SG reduces significantly but stays within 2.5V-3V range. Due to larger Tox, 
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Vgox of DG NEFT on the other hand, drops significantly before 65nm, while stay stable within 

6V to 8V in advanced technology nodes. Considering the operation voltages of SG and DG are 

typically 0.9V and 1.5V respectively, these low Vgox in advanced technologies drive a significant 

reduction in the ESD design window.  

The slopes of Vgox of SG NEFTs across the technology are depicted in Table 2-3. Data 

comes from 100ns pulse width TLP test, and it is computed by the difference of the Vgox over the 

difference of technology scale (Lg). Results show that Vgox decreases fast from 180nm to 65nm, 

with a slope of 0.059 V/nm, and it continues decreasing with a slope of 0.031 V/nm during 

technology changing from 65nm to 14nm FinFET technology. However, the decreasing stops in 

FinFET technologies, with a negative slope of -0.014 V/nm, indicating Vgox slightly increase in 

FinFET technologies. 

Vt1 is defined by the voltage between drain and source, at which the parasitic NPN can be 

triggered by an ESD event and go into avalanche breakdown mode. In the measurement, gate is 

connected with source as one terminal and drain is the other terminal. The trends of 100ns TLP 

trigger voltage Vt1 of SG NFET/PFET and DG NFET in different technologies are shown in 

Figure 2-8, Figure 2-9 and Figure 2-10 respectively. 
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Figure 2-8 100ns TLP trigger voltage of SG NFET in different technologies. 

 

Figure 2-9 100ns TLP trigger voltage of SG PFET in different technologies. 
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Figure 2-10 100ns TLP trigger voltage of DG NFET in different technologies. 

 The slopes of Vt1 of SG NEFTs across the technology are depicted in Table 2-3. Data 

comes from 1ns pulse width vfTLP test, and it is computed by the difference of the Vt1 over the 

difference of technology scale (Lg). Results show that Vt1 decreases slowly from 180nm to 65nm, 

with a slope of 0.015 V/nm, but it decreases faster during technology changing from 65nm to 

14nm FinFET technology with a slope of 0.035 V/nm. As Vgox, decreasing stop also happens in 

Vt1 in FinFET technologies, with a negative slope of -0.043 V/nm. This confirms that Vt1 within 

FinFET technologies stay stable and even slightly increase when changing from 14nm to 7nm. 

Failure current It2 defines how much ESD current a victim FETs can handle after 

triggering. Normalized It2 of silicided SG NFETs/PFETs and DG NFETs under 1ns vfTLP are 

shown in Figure 2-11, Figure 2-12 and Figure 2-13 respectively. It2 of NFETs is higher than 

PFETs in most of the technologies. It2 of NFETs is approximately 30mA/μm in bulk 180nm 

technology, which keeps decreasing across various technology nodes leading to ~6X decrease at 

20nm node (the last planar technology node). It2 for FinFETs showed an even further dip and a 
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reduction of another ~4X when compared against 20nm bulk/PDSOI technology. In bulk 

technology, the slope of It2 decreasing in 65nm to 32nm segment is almost 9X compared with 

180nm to 65nm segment, indicating failure current decreases more quickly in advanced 

technologies. 

 

Figure 2-11 1ns TLP normalized It2 of SG NFET in different technologies. 

 

Figure 2-12 1ns TLP normalized It2 of SG PFET in different technologies. 
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Figure 2-13 1ns TLP normalized It2 of DG NFET in different technologies. 

 

The slopes changing of It2 are depicted in Table 2-3. Data comes from 1ns pulse width 

vfTLP test of SG NEFTs, and it is computed by the difference of the It2 over the difference of 

technology scale (Lg). Results show that It2 decreases slowly from 180nm to 65nm, with a slope 

of 0.078 mA/(µm*nm), but it decreases much faster during technology changing from 65nm to 

14nm FinFET technology with a slope of 0.363 mA/(µm*nm). Decreasing slows down again in 

FinFET technologies, with a slope of 0.121 mA/(µm*nm). This informs that decrease of It2 

contributes to the shrinking of the design window at 65nm and this decreasing still happens in 

FinFET technology. As technologies scale, the ESD design window becomes significantly 

smaller making ESD protection much harder. 
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Table 2-3 Summarization of the trend of parameters. Slope of Vgox, Vt1 and It2 decreasing with 

technology sale are given. Data comes from SG NFETs test. 

Slope v.s. Tech 7nm-14nm  14nm-65nm 65nm-180nm 

Vgox (100ns) -0.014 0.031 0.059 

Vt1 (1ns) -0.043 0.035 0.015 

It2 (1ns) 0.121 0.363 0.078 

 

Final failure voltage (Vt2) of bulk and SOI technologies are shown in Figure 15 to Figure 

18, to evaluate the potential of further extending ESD design window. 

As shown in Figure 2-1, having a resistance (Rs) in series with the victim FET would 

increase Vt2, which can be calculated as: 

                                    Vt2 = Vt1 + It2×W×Rs                                  (1) 

where It2 is normalized per µm width of the FET, W is the total gate width of the FET in 

µm. In Figure 2-14 to Figure 2-17, calculated Vt2 for various Rs (0 Ω, 10 Ω, 25 Ω, 50 Ω) are 

presented. The W used in the calculation is 50μm. 

 

Figure 2-14 1ns TLP calculated Vt2 of SG NFET in different bulk technologies. 
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Figure 2-15 1ns TLP calculated Vt2 of SG NFET in different SOI technologies. 

 

Figure 2-16 1ns TLP calculated Vt2 of DG NFET in different bulk technologies. 
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Figure 2-17 1ns TLP calculated Vt2 of DG NFET in different SOI technologies. 

 

Results show the voltage window improvement obtained by adding a resistor. For 

example, by adding 25Ω series resistance to a 50μm SG NFET, Vt2 of 180nm bulk technology 

can increase from 6.4V to 42.65V, which is ~5.6X increase. However, for the same configuration, 

Vt2 of 14nm FinFET increases from 2.9V to 4.8V, which is only ~1.6X increase. This means, the 

possibility to extend Vt2 by adding Rs has decreased significantly in advanced technologies. 

2.4 Design Window and ESD Protection Level 

Based on the data collected, it is observed that at 65nm FET trigger voltages and failure 

current dropped significantly. This basically drove the need for the first reduction in human body 

model (HBM) (2KV to 1KV) and CDM (500V to 250V) targets [14, 15]. As we drove the 

technology to the FinFET era, in 14nm/7nm the trigger voltage does not drop significantly, and 

hence we can conclude that no driving force is needed to reduce HBM level below 1KV based 
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on Vt1 decrease. While due to the small It2 values as observed in 14nm and 7nm node, the design 

window is reduced in those nodes as described in section III. 

On the other hand, we observed a large drop in Vgox from 180nm to 130nm node. 

Historically, this is when many products started seeing first CDM failures and secondary CDM 

protection becomes a must for receivers design. As we moved into technologies below 32nm, it 

is shown that oxide scaling flattened out. Utilization of series impedance match resistance 

certainly helped in pushing the ESD design window of output drivers in digital IO IPs during 

CDM event further, as shown in Figure 2-14 to Figure 2-17. But that also runs out of steam in 

14nm and 7nm node. This could lead to possible CDM fails for drivers. Hence in 7nm and 

beyond, ESD design window shows need for having a secondary ESD protection element to 

mitigate CDM risks in output driver. 

 

Figure 2-18 Normalized diode capacitance and area at a fixed It2 with technology scaling. Ratio 

against capacitance and area of 180nm PDSOI diode. 
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Figure 2-19 Normalized current handling ability (current/width of the metal (A/µm)) of metal 

line. Ratio against current handling ability of 32nm M1. 

High-Speed Serial (HSS) interface design in advanced ASIC design drives very low 

capacitance loading while meeting required ESD protection level. High data rates (>20Gb/s) 

applications limits the ESD loading capacitance to be less than 100 fF [35, 36]. In addition, a 

similar or even larger footprint of ESD diode is required due to transition from planar to FinFET 

technology to achieve the same ESD level, shown in Figure 2-18. It requires ESD robustness to 

an optimal level but drives the capacitance load to a higher value which is problematic for HSS 

interface designs [21, 37]. A Figure of Merit (FOM) is used to describe this concern, as shown in 

Figure 2-18. Based on the FOM (calculated as total capacitance for a given It2), it is observed 

that ~3X increase of ESD component capacitance while transitioning from planer (45nm-32nm) 

to FinFET (14nm-7nm) nodes. This clearly dictates a direction towards further lowering of the 

HBM and CDM targets for HSS interface designed for 14nm and beyond technologies. 

Another risk is the decreasing of metal current handling ability in FinFET technology. As 

depicted in Figure 2-19, in 14nm FinFET node, current handling ability of first level metal has 



40 

 

decreased to ~60-70% compared with 32nm node. This leads to having larger metal width 

requirement to meet the same ESD current handling limit, which in turn drives a larger 

capacitance loading or higher Vdd/Vss resistance for the same metal width. This create 

additional challenges for both digital and HSS interface design. 

 

2.5 Conclusion 

Vgox, Vt1, It2 and calculated Vt2 of FET were measured and reviewed across multiple 

generations of technologies. Results indicated that ESD design window based on Vt1 and Vgox is 

shrinking drastically with technology scaling. It is shown that for technologies where the 

silicided victim FETs can handle ESD current, the design window can be expanded significantly 

by using impedance matching resistances in series with the driver. There could be a need for 

having secondary protection for drivers in 7nm and beyond to meet CDM protection level for 

digital design. On the other hand, for high speed designs, one needs to consider lowering the 

HBM and CDM level further for FinFET technologies as ESD device capacitance loading 

becomes significantly higher while no improvement observed in Vt1 or It2 for FETs. 
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CHAPTER 3 DUAL-DIODE SCR WITH REDUCED CAPACITANCE 

AND OVERSHOOT VALTAGE FOR HIGH SPEED INTERFACE 

APPLICATIONS 

3.1  Introduction 

Along with the design of high speed data rate integrated circuits and the development of 

advanced process technology, integrating ESD protection at high speed communication 

Input/Output  (I/O) pins draws increasing attentions in the literature [38-46]. Protection solutions 

are often limited by a variety of design trade-offs for narrow- and wide- band I/Os applications 

[39-46]. As an example, common design constraints include the inability to incorporate passive 

devices as part of the interface circuit protection, the complexity to optimize the design of a 

custom device in a new process, and the negative consequences of the protection components on 

performance. This is because in addition to the requirement of ESD robustness, parasitic 

capacitance, can be detrimental to the interface circuit signal processing integrity [42-47].   

 

Figure 3-1 Stacked diodes used as ESD protection cell at I/O pads. 
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Figure 3-2 Proposed DD-SCR integrated as part of an example of high data rate I/O ESD 

protection cell. 

Figure 3-1 shows an ESD protection structure consisting of stacked diodes [48]. Under 

normal operating conditions, the diodes are reverse biased and hence in the off-state. During an 

ESD stress, the diodes forward bias and divert the ESD-induced current away from the internal 

circuit. The drawbacks of such a structure include the relatively large on-state resistance and 
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added complexity in optimizing the interconnect metallization parasitic, in particular for 

advanced CMOS process technologies [45]. 

An alternative to addressing the limitations of the conventional stacked diode protection 

architecture consists of merging the stacked diodes into a single structure. Doing so can create a 

parallel conduction path, improving the ESD performance and reducing the protection cell 

capacitance [48-51]. However, the specific design trade-off in these structures can vary 

substantially depending on process technology and application of concern. 

Figure 3-2 shows the ESD protection scheme proposed for a data-communication 

interface circuit. For instance, this can include an analog to digital (ADC) input buffer interface, 

with a voltage swing in the range of ± 0.5 V, an input buffer power bias between -1V and 2.5 V, 

and data rate up to 10 GBPS. Note that particularly critical for this application is the capacitance 

linearity versus the voltage, as this affects the degree of distortion. 

In this particular reference design, a new dual-diode silicon controlled rectifier (DD-SCR) 

is included as protection element at the input pin. Notice that the input pin is directly connected 

through an RC circuit to the input gate transistors.  

Due to stringent distortion design constraint in high data rate applications, the value and 

linearity in the input capacitance introduced by the protection elements in this broadband 

functionality circuit is required to be under 40 fF, with an allowance of less than 2 fF capacitance 

variation within the operating voltage range. As for the leakage current, it is specified to be less 

than 10 nA. In addition, during the stress condition, the cell should have the ability to withstand a 

stress of ~ 1000 V HBM [14]. Furthermore, for robustness under Field-Induced Charged Device 
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Model (FICDM), the protection devices are required to respond sufficiently fast to prevent a 

large voltage overshoot at the interface pin [52].  

This work present three optimized variations of an interface ESD protection structure 

composed of dual diodes embedded with a silicon controlled rectifier (DD-SCR) and reviews the 

design trade-offs for high data rate communication applications. Section II introduces the DD-

SCR structures, this is followed by a review of the experimental results in Section III. The latter 

includes capacitance, DC, and transmission line pulse (TLP) measurements. The TLP 

measurements emulate the response of the devices when subject to the human body model (HBM) 

and charged device model (CDM), respectively. Section IV concludes with the discussion of the 

design trade-offs between the different DD-SCR structures presented. 

 

3.2 Device Structure 

Figure 3-3 (a)-(f) show the cross-sectional views of single diode, stacked diodes, STI-

bounded DD-SCR, metal-bounded DD-SCR, and junction-bounded DD-SCR cells, respectively. 

In stacked diodes and DD-SCRs, two diodes are connected in series between the terminals T1 

and T2, and all the DD-SCRs have a SCR embedded in the structure (see the equivalent circuit 

annotated in Figure 3-3(d) and (e)). When an ESD stress is applied to terminal T1, the diodes 

conduct first due to the low forward-biased turn-on voltage of approximately 1.9V. Once the 

diodes are triggered, the current flowing through the NW and PW regions turns on the SCR. 

There is also a parasitic SCR structure (P+/NW/Psub/N+) in the P+/NW stacked diodes, which 

can increase the overall capacitance and affect the turn-on performance of the devices. In the STI 

DD-SCR, this parasitic phenomenon is less prominent. 



45 

 

The common features of the three DD-SCR cells are the following:  

1) Terminal T1 connects to the lower-level metal (metal 2) and terminal T2 connects to 

the upper-level metal (metal 8), a configuration that could minimize the capacitance between the 

two terminals;  

2) The two diodes are formed by P+/NW and N+/PW junctions; and  

3) DNW is used to isolate the active region from the substrate. 

The difference between the metal-bounded and STI-bounded cells is that the former uses 

a metal layer as a spacer between the N+ and P+ regions instead of an STI. As will be shown 

later, the different bounded structures give rise to different capacitance, overshoot voltage and 

on-state resistance RON, characteristics [53]. On the other hand, the locations of the P+ and N+ 

regions of metal-bounded and STI-bounded cell are also different, thereby resulting in different 

SCR current paths compared with the other two DD-SCRs and thus different trigger voltages and 

ESD robustness.  

For the junction-bounded cell, its main difference compared with STI-bounded cell is that 

the N+ of the first diode and the P+ of the second diode are connected together, and the N+ is 

placed across the NW and PW with a distance D (D = 0.2 µm is used in the measurements in 

Section III). This will affect overshoot voltage and capacitance. 

All the cell layouts are designed in similar dimensions in order to make useful 

comparisons. The lengths of NW and PW regions are 1.5µm, and lengths of P+ and N+ regions 

are 0.6µm for all the cells, except for the junction-bounded DD-SCR, whose N+ region has a 

length of 0.78µm. For the single diode and the stacked diodes, a spacing of 0.8µm between the 

NW regions is used as required by the process design rules. The P+ guard ring was not included 
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in the layouts of ESD devices considered, and such an omission should not affect the 

comparative study provided in this work. In practical applications, the guard ring should be 

included to provide adequate isolation. 

 

 

(a) 

 
(b) 

 
(c) 

   
(d) 

 (e) 

 
(f) 

Figure 3-3 Cross section views of (a) single diode (b) N+/ PW stacked diodes (c) P+/NW stack 

diodes (d) STI-bounded DD-SCR (e) metal-bounded DD-SCR, and (f) junction-bounded DD-

SCR. The cells have eight fingers and a total width of 40 µm. 
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3.3 Experimental Result 

The capacitance versus voltage measurement for each device is obtained between the 

terminals T1 and T2 at 100KHz in Figure 3-4 (a). The extra capacitance associate with the bond-

pads and metallization outside the device is de-embedded during open calibration.  Using a 

network analyzer and de-embedding method, the capacitances of the STI bounded and metal 

bounded DD-SCRs are also measured at frequencies up to 60GHz, as shown in Figure 3-4 (b). 

For reference, the capacitances of all the three the DD-SCRs variations are about half of the 

corresponding capacitance of a single diode, since there are two diode stacked together in the 

DD-SCR structure, this effectively includes two diodes in series. As shown in Figure 3-4 (a), 

among the three DD-SCRs, the STI-bounded cell has the lowest capacitance, followed by the 

junction-bounded cell, with the metal-bounded cell having the largest capacitance. This trend 

suggests that using the metal as a bounding material will give rise to a larger capacitance, 

because such a cell results in a spherical junction and consequently a larger effective junction 

area than the flat junction of the STI-bounded cell. In light of this, the capacitances of the metal-

bounded and junction-bounded DD-SCR are larger than that of the STI-bounded DD-SCR. 

In addition, a small spacing between the neighboring terminal metal lines (lines 

connected to the T1 and T2 terminals) can also contributes to an additional capacitance. This 

phenomenon is observed in the metal-bounded cell. The relatively narrow spacing between the 

two terminals of this cell leads to the largest capacitance among all of the three cells.  

The capacitance of the STI-bounded DD-SCR is smaller than that of P+/NW stacked 

diodes due to the fact that the parasitic SCR in the P+/NW stacked diodes introduce a relatively 

large capacitance to the cell. 
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(b) 

Figure 3-4 (a) Capacitance vs. voltage characteristic of STI-bounded, metal-bounded, junction-

bounded DD-SCRs and single diode measured at 100 kHz. (b) Capacitance versus frequency of 

STI bounded DD-SCR and Metal bounded DD-SCR. The devices capacitance shows little 

variation over the frequency range of interest up to 60 GHz. 

The capacitance of all three DD-SCRs is less than 25fF at 100KHz Capacitance versus 

Voltage test. Among them, the STI-bounded DD-SCR has the lowest capacitance and can be the 

most appropriate choice if a low parasitic capacitance is desired. A trade-off between the 
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capacitance and ESD performance exists, since the lower capacitance device also will have a 

higher on-state resistance when subject to stress. 

Figure 3-5 compares the transmission line pulsed (TLP) characterization for the different 

devices. Based on the TLP testing results, the DD-SCRs depict a smaller RON and larger It2 than 

the stacked diodes. The SCR embedded in the structures provides an alternative conduction path 

deeper into the silicon. This enhances the device current handling capability. In addition, among 

the three DD-SCRs, the STI-bounded SCR shows a much larger on-resistance than the metal-

bounded and junction-bounded devices. 

 

Figure 3-5 TLP I-V curves of STI-bounded, metal-bounded, junction-bounded DD-SCRs, 

P+/NW stacked diodes, and N+/PW stacked diodes. TLP pulse width was 100ns and rise time 

was 0.6ns. 

The STI increases the length of the current conduction path, which explains the larger 

RON. For the metal-bounded cell, the distance between the P+ and N+ diffusions in the SCR path 

is shorter, resulting in a larger It2 and smaller RON. 
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 A large RON will negatively impact the ESD protection robustness, since it leads to a 

higher voltage drop across the protection cell when conducting the same level of current. This 

will make the protected pin more vulnerable to the ESD stress. Based on this consideration, the 

metal-bounded cell and junction-bounded cells would be a better choice. 

Generally speaking, the smaller the RON, the larger the It2. This is because a larger RON 

can lead to a larger voltage drop, which increases the power dissipation in the ESD cell and 

causes the protection cell to reach its thermal breakdown at a lower current level. Thus, the 

metal-bounded and junction-bounded cells exhibit higher ESD robustness than the STI-bounded 

cell and stacked diodes. 

Figure 3-6 shows the vfTLP results. The trend of It2 is consistent with that obtained from 

the TLP testing, with the metal-bounded DD-SCR shows the highest ESD robustness and the 

stacked diodes having a lower It2 than the DD-SCRs. Results obtained from the single diode 

subject to the vfTLP stress have also been added. The single diode possesses a slightly lower It2 

and larger RON than the junction bounded DD-SCR and metal bounded DD-SCR.  

The overshoot voltage is a key parameter for evaluating the effectiveness for CDM 

protection. Achieving a low overshoot voltage is highly desired [41, 51, 52]. Overshoot voltages 

of the three DD-SCR and stacked-diode cells, measured using the Barth Electronics TLP system, 

are compared in Figure 3-7. Note that the stacked-diodes and STI-bounded DD-SCR cells have a 

larger overshoot voltage than the metal-bounded and junction-bounded DD-SCR devices. 

Besides, the single diode performs almost the same as the junction bounded DD-SCR and metal 

bounded DD-SCR. 
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Figure 3-6 vfTLP I-V curves of STI-bounded, metal-bounded, junction-bounded DD-SCRs, 

P+/NW stacked diodes, N+/PW stacked diodes and single diode. The vfTLP pulse width is 5ns 

and rise time is 0.1ns. 

To design an ESD device with a low overshoot voltage, an approach is to reduce the 

length of the trigger current path, where STI bounding material shows its drawbacks compared 

with metal bounding material.  Among the proposed DD-SCRs, the STI bounded cell has the 

longer current path due to its deep STIs, thus the higher overshoot voltage. On the other hand, 

the junction-bounded cell lacks the STIs and hence provides the shortest current path among DD-

SCRs and also making its overshoot voltage comparable with single diode. Moreover, in the 

junction-bounded DD-SCR cell, the N+ is overlapping the NW and PW diffusions, making the 

embedded SCR triggers at a lower voltage with a reduced overshoot voltage. 
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Figure 3-7 vfTLP voltage waveforms of STI-bounded, metal-bounded, junction-bounded DD-

SCRs, P+/NW stacked diodes, N+/PW stacked diodes and single diode. The vfTLP pulse width 

is 5ns and rise time is 0.1ns. The overshoot is corresponding to a pulse current level of 1A. 

Besides, the more effective the parasitic SCR in a cell, the smaller the overshoot voltage. 

We have found that, under the ESD stress, the parasitic SCR in the STI DD-SCR is more 

prominent than that in the P+/NW stacked diodes. Hence the STI DD-SCR has a smaller 

overshoot than the P+/NW stacked diodes. On the other hand, since the parasitic SCR of N+/PW 

stacked diodes is also quite effective, its overshoot is almost the same as that of the STI DD-SCR. 

In the absence of ESD event, the leakage current of ESD device should be kept as low as 

possible, both at room and at elevated temperatures. Figure 3-8 depicts the DC I-V curves 

measured at 25℃ and 125℃ of the three DD-SCR cells.  The leakage currents of all the 

structures are below 10nA at a voltage of -3V even when the temperature reaches 125℃. This 

indicates that the new structures have excellent leakage performance and temperature stability. 
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Figure 3-8 DC I-V curves measured at (a) 25℃ and (b) 125℃ of STI-bounded, metal-bounded, 

junction-bounded DD-SCRs and P+/NW stacked diodes. 
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Table 3-1 Measurement Results of Tested Devices. 

0V 100KHZ VFTLP 100ps 5ns VHBM/C C×Ron

Device C (fF) Overshoot(V)@ 3A TriggerV (V) It2(A) Ron(Ω) V/fF fF*Ω

STI DD-SCR 12.1 7.0 1.88 1.19 2.97 147.5 35.9

Metal DD-SCR 22.2 6.5 1.81 1.42 1.12 95.9 24.8

Junction DD-SCR (D=0.09) 20.6 6.6 1.92 1.38 1.55 100.5 31.9

Junction DD-SCR (D=0.2) 17.4 6.3 1.89 1.40 1.28 120.7 22.3

Junction DD-SCR (D=0.4) 19.8 6.5 1.89 1.42 1.37 107.6 27.1

Stacked Diode (P+/Nwell) 14.3 7.3 1.70 1.24 3.16 130.1 45.2

Single Diode (P+/Nwell) 40.0 5.2 0.99 1.11 1.83 41.6 73.2

TLP 600ps 100ns

 

3.4 Conclusion 

Key ESD parameters including capacitance, overshoot voltage, TLP, vfTLP and DC 

leakage characteristics have been summarized in Table 3-1. Two figures of merit (FOM) are also 

included, namely VHBM/C and C×RON. The first FOM is used to assess the overall performance 

of a cell, the larger the better. The latter FOM is used to assess the overall impact to the internal 

circuit, the smaller the better.  

Measured data of the conventional dual-diode, single diode, and junction-bounded cells 

with D of 0.09µm, 0.2µm and 0.4µm is listed for comparisons. Based on the VHBM/C data, the 

STI-bounded DD-SCR shows the best overall HBM ESD robustness and capacitance.  On the 

other hand, when considering the C×RON FOM, which reveals the relationship between the 

capacitance and the possible voltage stress on the internal circuit, the junction-bounded DD-SCR 

with a D of 0.2µm gives the best performance. The junction-bounded DD-SCR, exhibits a larger 

capacitance compared with STI-bounded cell, but its overshoot voltage and failure current 

characteristics are better.  

In conclusion, three novel structures, consisting of dual-diode and SCR (DD-SCR) 

devices, were designed and implemented in an advanced 28nm CMOS process. The results 

suggested that the STI-bounded DD-SCR has the lowest capacitance among the three proposed 
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structures, and the metal-bounded and junction-bounded DD-SCRs show robust ESD 

performance with a low on-resistance, RON, high failure current It2 and low overshoot voltage. In 

real circuit applications, if the capacitance is of primary concern, then the STI-bounded DD-SCR 

would be a good choice. On the other hand, if an improved ESD robustness is required and some 

extra capacitance can be tolerated, then the junction-bounded DD-SCR should be considered. 
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CHAPTER 4 A DISTRIBUTED SHUNT π–NETWORK FOR RF I/O 

ESD PROTECTION  

4.1 Introduction 

With the popularity of the high frequency IC technologies, electrostatic discharge (ESD) 

issues in these technologies are significant [21, 38, 40, 54-60]. Challenges for ESD - RF design 

and trade-offs between RF performance and ESD robustness are expected: The RF signal 

integrity will be impacted by the ESD cells capacitance load, while robust ESD cells require 

larger parasitic capacitance [21].  

  

Figure 4-1 ESD protection cell connected in RF I/O. 

ESD designs for high frequency I/Os are emerging to handle these challenges. For 

example, T-coil [54] and stack diode with embedded silicon controlled rectifier (SCR) [21, 55] 

for under 10 GHz applications, inductor-to-ground for 17.5 to 26 GHz applications [56], diode 

and SCR combination structure for 24 GHz applications [57] and inductor-triggered SCR [58] 

and inductor-assisted SCR [59] for 60 GHz applications have been proposed. Besides, generic 
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ESD solutions such as transmission lines embedded with distributed ESD component have been 

reported in the literature [40, 60], covering applications from 0 up to 100 GHz. 

In this paper, design methodology of a shunt π-network is proposed as a flexible, robust 

and lower capacitance solution for multi-GHz RF I/Os. The network structure is shown in Figure 

4-1, embedded with inductors and distributed active ESD clamps. The design methodology is 

demonstrated through simulation and measurement for reference designs.  

4.2 Network Structure 

The structure and mechanism of the proposed distributed network is shown in Figure 4-2.  

This network can have multiple stages (Figure 4-2 (b)) and in each stage, an ESD component is 

connected between RF I/O and ground. Inductors are embedded between the ESD devices. 

 

(a) 

 

(b) 

Figure 4-2 Proposed distributed network and its mechanism. 
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The proposed network is similar to a low pass π filter, reflecting high frequency RF 

signals and transmitting low frequency ESD pulses. At high frequencies (usually above 10 GHz), 

the embedded inductors will present a high impedance, preventing signal loss through the 

network. Thus the RF signal only sees the parasitic capacitance of the ESD cell in the first stage, 

as shown in Figure 4-2 (a). On the other hand, during an ESD event (usually below 2GHz), the 

whole network will turn on to sink the ESD current, as shown in Figure 4-2 (b). Therefore, the 

ESD robustness is enhanced by the cumulative ESD handling capability of each stage in the 

network without compromising performance at high frequency. 

The design of the network is flexible and can be adapted considering the combination of 

inductors design and low capacitance protection devices design. Different ESD cells (diode, BJT, 

GGMOS and SCR, etc.) and inductors with diverse values can be used in the network. Stages of 

networks can also vary. An example network is presented in this paper (shown in Figure 4-3), 

using optimized SiGe ESD diodes and SCRs. These devices and networks are fabricated in SiGe 

BiCMOS process. 

 

Figure 4-3 A proposed network structure with dev I in the first stage and dev II in the following 

stages. 
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The proposed network is for a conventional 5V differential circuit, frequently used in RF 

I/O (shown in Figure 4-4). Potential ESD damage exists after ESD cells trigger if sum of the 

holding voltage of the two ESD cells is larger than the sum of breakdown voltage of the two 

BJTs. In this case, an undesirable path, shown as red dashed line in Figure 4-4, will discharge the 

ESD current and cause damage to the circuit. The forward breakdown voltage of BJT1 is 

approximately 0.7V and the reverse breakdown voltage of BJT2 is approximately 4V in the SiGe 

BiCMOS process in this example. Therefore, in order to protect the circuit successfully, voltage 

across two ESD cells after trigger should be less than 4.7V, indicating that holding voltage of 

each ESD cell should be less than 2.35V.  The failure current should be larger than 1A for this 

I/O. 

 

Figure 4-4 Protected circuit that needs low holding voltage protection cell. 
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 Figure 4-5 Cross section view of Dev I (view in path A direction).  

 

Figure 4-6 Cross section view of Dev II (view in path A direction). 

In this circuit, bidirectional ESD protection cells are needed between RF I/O and GND, 

thus bi-directional ESD protection is implemented in the proposed network. As shown in Figure 

4-3, Dev I and Dev II are both bidirectional, thus the network can discharge positive ESD pulses 

in path A and negative ESD pulses in path B.  

Cross section views of the device I (Dev I) and device II (Dev II) in the network are 

shown in Figure 4-5 and Figure 4-6 separately. Figure 4-5 gives the cross section view of Dev I 

(view in path A direction). In Dev I, an upper diode, an NPN triggered SCR and a lower diode 

are connected in series. The complementary diode structure is used: upper diode connects RF I/O 

and lower diode connects Vss, to eliminate substrate capacitance. Besides, due to the intrinsic 
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region, the diodes work like PIN diodes, thus the junction capacitance has been further 

minimized. In the NPN triggered SCR, NPN with low trigger voltage and resistance R (= 250Ω) 

are used to help the SCR triggering at a low voltage. 

Dev II is simply an NPN triggered SCR. Figure 4-6 depicts its cross section view (view 

in path A direction). This SCR has the same structure as the SCR used in Dev I, but the trigger 

element is different: the trigger voltage of this NPN is higher than that in the SCR of Dev I.  

 

Figure 4-7 CV measurement of Dev I and Dev II when frequency at 100 KHz. 

Dev I is used in the first stage and Dev IIs are used in the following stages in the 

proposed network. The devices arranged in this way for two reasons. First, Dev I is less 

capacitive, thus placing it in the first stage will minimize the signal loss. As the CV measurement 

result shown in Figure 4-7, the parasitic capacitance of Dev I is 15.2 fF at 0V compared with 

122.9 fF of Dev II. Second, Dev II has smaller holding voltage (1.3V) as compared with 3.6V in 

Dev I, as shown in Figure 4-8. Therefore, the total holding voltage can be reduced below the 



62 

 

design target (2.35V) of the RF I/O in Figure 4-4. The trigger voltages of Dev I and Dev II are 

intentionally designed close to the 5V operation voltage. Moreover, adding more stages can 

improve the failure current of the network. 

 

Figure 4-8 Positive TLP 100-ns-wide 10-ns rise-time measurements of Dev I and Dev II.  

S-parameters are important characteristics to evaluate RF circuit performance. The return 

loss parameter S11, is a measure of the ratio of the signal reflected back from a RF circuit. A less 

than -10 dB value for S11 is the typical criterion for RF I/O matching [40, 60, 61], which means 

the ratio of the reflected signal to the incident one is less than 10%. A smaller S11 means less 

signal is reflecting back, thus better RF performance. Figure 4-9 depicts the measurement and 

simulation S11 results of Dev I and Dev II. Simulation Program with Integrated Circuit 

Emphasis (SPICE) simulation is used as a guidance during the design. Figure 4-9 indicates that 

the simulation results matches well with the measurement results. Besides, due to its lower 
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parasitic capacitance, Dev I shows a less than -10 dB return loss (S11) in the range from 0 to 80 

GHz, demonstrating that Dev I itself is well optimized. 

 

Figure 4-9 Test and simulation S11 results of Dev I and Dev II.  

Besides the ESD cell design mentioned above, inductor is another critical consideration, 

whose value determines what frequencies can pass through the π-network. The inductors used in 

the example network are square inductors. In this paper, the inductor is built to demonstrate the 

mechanism network and inductor layout optimization will be presented in future work. Layout 

top view of a 0.5 nH inductor is shown in Figure 4-10 (a).  Simulation has been done after layout 

to verify the value and the quality factor of the inductor.  Figure 4-10 (b) shows the simulated 

inductance as a function of frequency of three designed inductors, indicating that the inductors 

are with good quality. 
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                       (a)                                                                        (b) 

Figure 4-10 (a) Layout of 0.5 nH inductor; (b) inductance simulation results. 

 

4.3 Experimental Result 

In this section, the example protection network introduced in section II are compared in 

details. Figure 4-11 and Figure 4-12 show the TLP and vfTLP results of two-stage, three-stage 

and four-stage network. These three networks have the same structure as the example network in 

Figure 4-3. The holding voltages of the network have all been controlled to ~1.3V. Results show 

that RON doesn’t vary a lot with the number of stages. RONs of the three networks are all close to 

4.4Ω. This because that the resistance of the inductors will compensate the RON reduction 

resulting from adding more stages. Besides, adding more ESD cells into the network indeed 

increases It2, while not linearly. It2 of two-stage network is 4.5A, less than the sum of  It2 of Dev I 

and Dev II which is 5.6 A. The It2s of three-stage and four-stage network are both 5.9A, also 

missing the linearity. This can be explained by the non-uniform turn-on and the metal line or 
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inductor burn-out of the π-network, reminding that having a deep network (> 4 stages) is not an 

efficient way to enhance ESD robustness. Besides, more stages bring more design complexities, 

thus limiting the stage number to be less than three is suggested. 

 

Figure 4-11 Positive TLP 100-ns-wide 10-ns rise-time measurements of two-stage, three-stage 

and four-stage network. 

 

Figure 4-12 Positive vfTLP 5-ns-wide 0.3-ns rise-time measurements of two-stage, three-stage 

and four-stage network. 
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Figure 4-13 Positive vfTLP 5-ns-wide 0.3-ns rise-time measurements of three-stage network 

with L2 = 0.1 nH and L1 variation. 

 

Figure 4-14 Waveform under positive vfTLP 5-ns-wide 0.3-ns rise-time measurements of three-

stage network with L2 = 0.1 nH and L1 variation. Current level = 1A. 
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Inductor values can affect turn on resistance (RON). Figure 4-13 and Figure 4-14 shows 

the vfTLP results of the three-stage network with L1 equals to 0 nH, 0.5 nH, 1 nH and 3nH 

separately. It2 doesn’t change a lot with inductor value variation, while RON is larger when larger 

inductor embedded in the network. RON increase to 5.3 Ω at L1 = 3 nH, compared to 4.4 Ω at L1 

= 0.5 nH. Detailed RON and It2 from TLP test results are summarized in Table 4-1. Besides, 

larger inductor values also contribute to larger turn on time and larger holding voltage, as shown 

in Figure 4-14. 

 

 

Figure 4-15 Simulation S11 versus L1 variation of three-stage network, with L2 fixed at 0.1nH.  
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Figure 4-16 Test S11 versus L1 variation of three-stage network, with L2 fixed at 0.1nH. 

Simulation and test results of S11 versus inductor variation of three-stage network are 

shown in Figure 4-15 to Figure 4-18. To compared L1 variations are compared in Figure 4-15 

and Figure 4-16 with L2 fixed as 0.1 nH. Figure 4-15 is circuit simulation results and Figure 

4-16 is test results. Although simulation and test curves can’t perfectly overlap with each other, 

simulation results is a good indicator of test results.  

Results reveal that S11 curves have troughs at certain frequency and inductor values 

affect the position of the trough. For example, when L1 equals to 0.6 nH and L2 equals to 0.1 nH, 

network has the minimum S11 = -19 dB at 27 GHz, indicating that this network can be used in 

27 GHz narrowband applications. Network with larger L1 has deeper trough in S11 curve and 

the trough shifts to lower frequency. For example, when L1 equals to 5 nH, trough of S11 is -29 

dB at 7.5 GHz, comparing with -19 dB at 27 GHz of a L1 = 0.6 nH network. Besides, S11 curve 
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of Dev I (dark red dash line) limits the troughs of S11 curves of networks. This demonstrates the 

mechanism of the network mentioned in Figure 4-2. In the network, the first ESD cell always 

contributes signal loss, thus it limits the network’s S11 performance. Therefore, minimizing the 

capacitance of the first ESD cell is critical. 

Figure 4-17 depicts the S11 versus L2 variation of a three-stage network and L1 fixes to 

0.5 nH. S11 curves are very similar when L2 equals to 0 nH and 0.1 nH, while troughs of S11 

curves become shallower when L2 increased from 0.1 nH to 0.5 nH. Conclusion can be made 

that L2 can be set as a small value, such as 0 nH and 0.1 nH, which can save area and give the 

better return loss.  

On the other hand, during simulation, good return loss is detected when setting L2 equal 

or greater than 1nH as shown in Figure 4-18. With L2 fixes to 1 nH and L1 changes from 0.2 nH 

to 0.4 nH, troughs of S11 curves appear at frequency larger than 40 GHz, compensating the 

shortage of designs that can cover > 40 GHz range as in Figure 4-16. 

Two-stage network’s S11 versus inductance variation is also explored, shown in Figure 

4-19. Two-stage networks give similar S11 results compared with three-stage networks with the 

same L1 value, however they can provide with deeper S11 troughs at 40 GHz to 80 GHz range 

when L1 is less than 0.5 nH. For example, when L1 equals to 0.15 nH, the trough of S11 equals 

to -14 dB at 62 GHz. 
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Figure 4-17 Test S11 versus L2 variation of three-stage network, with L1 fixed at 0.5nH. 

 

Figure 4-18 Test S11 versus L1 variation of three-stage network, with L2 fixed at 1nH. 
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Figure 4-19 Test S11 versus L1 variation of two-stage network. 

Table 4-1 gives a summary of the turn-on resistance RON, TLP failure current It2, S11’s 

trough value after 7 GHz and corresponding trough frequency of two/three stage networks. Table 

4-1 can demonstrate the design methodology of this filter like ESD network. Given proper 

inductor value, networks are successfully implemented as robust ESD solutions for high 

frequency applications within 7.5 GHz to 62 GHz frequency range.  Guidelines of designing this 

network can be summarized as: 1) Parasitic capacitance of first ESD cell is critical, which can 

limit the overall S11 performance, thus it should be properly designed to minimize the parasitic 

capacitance. 2) ESD robustness can be improved by adding more ESD cells, while two or three 

stage is recommended, since it is simple to design and can enhance ESD robustness efficiently. 3) 

Larger inductor gives deeper S11 trough at lower frequency range, while also larger RON. 
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Table 4-1 Summarizations of the TLP (100-ns-wide 10-ns rise-time) and S11 test result of 

example networks. 

Num 

of 

Stage 

L1 

(nH) 

L2 

(nH) RON(Ω)  

TLP 

It2 (A) 

Trough 

Frequency 

(Ghz) 

Trough 

S11 

(dB) 

2 0.15 -- 3.5 4.3 62 -14 

2 0.2 -- 3.5 4.3 52 -14 

2 0.25 -- 3.6 4.3 49 -15 

2 0.3 -- 3.6 4.3 46 -15 

2 0.35 -- 3.7 4.4 42 -15 

2 0.4 -- 3.7 4.4 40 -16 

2 0.5 -- 3.6 4.5 37 -16 

3 0.2 1 4.1 5.9 51 -15 

3 0.25 1 4.1 5.9 46 -15 

3 0.3 1 4.5 5.9 44 -15 

3 0.4 1 4.4 5.9 37 -16 

3 0.2 0.1 3.8 5.8 40 -14 

3 0.3 0.1 4.3 5.9 37 -16 

3 0.4 0.1 4.4 5.9 33 -17 

3 0.5 0.1 4.4 5.9 30 -18 

3 0.6 0.1 4.4 5.9 27 -19 

3 0.7 0.1 4.4 5.8 25 -20 

3 0.8 0.1 4.4 5.9 23 -20 

3 0.9 0.1 4.4 5.9 22 -21 

3 1 0.1 4.4 5.9 21 -21 

3 1.5 0.1 4.7 5.9 16 -23 

3 2 0.1 5.2 5.9 13 -25 

3 3 0.1 5.3 5.9 10 -27 

3 5 0.1 5.7 5.4 7.5 -29 

 

4.4 Conclusion 

An inductor embedded, filter like ESD network and its design methodology was 

proposed and discussed in details. Example designs were given and the results of their S11, TLP 

and vfTLP test were compared. Concluding from the data, the proposed ESD networks work 
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well for high frequency I/O protection within 7.5 GHz to 62 GHz frequency range. Guidelines 

were provided for further design and optimization. 
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CHAPTER 5 HIGH HOLDING VOLTAGE HETEROGENEOUS 

STACKING SCR 

5.1 Introduction 

Silicon controlled rectifier (SCR) is widely used in electrostatic discharge (ESD) 

protection, for its high robustness and less silicon consumption [25, 62]. However, the holding 

voltage of SCR device is low, only several volts in most widely used processes, contributing to 

deep snapback. As a result, SCR is prone to latch up [25, 63, 64]. To increase the holding voltage, 

there are two major approaches, the first is targeting for reducing the minority carrier injection 

efficiency of parasitic BJT in single SCR, like adjusting the dimension of doping area between P-

well and N-well in SCR [65], enlarging the space between anode to cathode [66]. Another 

approach is stacking the SCR [67], while conventional stacking method usually introducing 

affections to triggering performance: increase the trigger voltage along with the holding voltage. 

Hence, the depth of snapback has not been optimized in conventional stacking method. To solve 

this issue, new stacking methodology is proposed in [68] and successfully reduce the depth of 

snapback. While heterogeneous stacking optimization still involves important design tradeoffs. 

In this paper, we proposed a heterogeneous stacking structure for latch-up free design, which can 

increase the holding voltage and also keep the trigger voltage nearly as same as single SCR 

device. DC and TLP characterizations are used to demonstrate the results. 
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5.2 Device Structure  

Figure 5-2 show the cross section views of conventional stacking SCR-SCR (CS SCR-

SCR) and proposed stacking SCR-LVTSCR (PS SCR-LVTSCR). The triggering mechanism is 

compared in Figure 5-3. In conventional stacking method, SCRs in the first and second stage are 

connected in series, therefore the holding and triggering voltages of the structure will be equal to 

the sum of holding and triggering voltages in each stage.  

 

Figure 5-1 Cross section view of tradition stacking SCR-SCR (CS SCR-SCR). 

 

Figure 5-2 Cross section view of proposed stacking SCR-LVTSCR (PS SCR-LVTSCR). 
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Figure 5-3 Triggering methodology of conventional and proposed structure. 

By contrast, proposed structures add a “resistor by pass” in parallel to second stage, 

helping to trigger the entire structure. ESD pulse firstly triggers SCR in first stage, generating a 

current on resistor by pass. When the current reach to a certain level, usually 0.1A, the overall 

voltage on the resistor (60Ω in our case) will be large enough to trigger the second stage 

LVTSCR. This turn on condition can be kept if voltage over anode to cathode are larger than 

VHolding-first-stage + VTriggering-second-stage.  

To be mentioned, a LVTSCR is used in the second stage in this heterogeneous stacking 

structure can be trigger easier than stacking structures using identical SCRs in each stage, since 

less effort will be taken to trigger the second stage LVTSCR. 
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5.3 Experimental Results 

DC, TLP characterizations are conducted to demonstrate the effectiveness of the 

proposed stacking structure. Results are shown in Figure 5-4 to Figure 5-6, separately.  

 

Figure 5-4 DC results of single SCR, CS SCR-SCR and PS SCR-LVTSCR. 

DC performance of single SCR, CS SCR-SCR and PS SCR-LVTSCR are compared in 

Figure 5-4. The results show that the breakdown voltage of CS SCR-SCR increases to 58.1V, 

while for PS SCR-LVTSCR (28.4V), the breakdown voltage is nearly as same as single SCR, 

whose breakdown voltage is 27.8V.   
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Figure 5-5 TLP results of single SCR, CS SCR-SCR and PS SCR-LVTSCR. Test pulse is 100ns 

width, and rise time is 2ns. 

Figure 5-5 compares TLP testing results of single SCR, CS SCR-SCR and PS SCR-

LVTSCR, giving information of holding voltage, triggering voltage and It2. For the holding 

voltage, CS SCR-SCR structure increase to 10.1V, while for PS SCR-LVTSCR increase to 8.8V, 

compared with single SCR with a 5.5V holding voltage. For triggering voltage, PS SCR-

LVTSCR is 30.4V, nearly the same with single SCR (28.7V), showing a shallower snapback. 

While CS SCR-SCR on the other hand, triggers at 59.4V, doubles the triggering voltage of single 

SCR, the depth of snapback increase to approximately 49V.  

The It2 of these three devices are similar, approximately 2.8A (width of device is 40µm), 

indicating that stacking methods have no obvious affection to ESD robustness.   
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Figure 5-6 TLP results of PS SCR-LVTSCR with 2, 3 and 4 stacking devices. Test pulse is 

100ns width, and rise time is 2ns. 

The proposed stacking strategy can be used to stack more devices, as shown in Figure 5-6. 

Holding voltage of a 3-stage PS SCR-2LVTSCRs is around 12.7V, and 16.8V of a 4-stage PS 

SCR-3LVTSCRs. The holding voltage keep increasing linearly by adding one more LVTSCR in 

stacking structure until 3 LVTSCR are added. If stacking more device, the results shows that, 

both the holding voltage and triggering voltage will increase. 

5.4 Conclusion 

A heterogeneous stacking structure for SCR design is proposed and implemented. 

Proposed SCR-LVTSCR stacking structure combination provides the advantage to increase the 

total holding voltage and keep the triggering voltage insensitive to stacking. The depth of 

snapback can be reduced to 17V when stacking 4 devices (triggers at 34V and hold at 16.8V). 
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CHAPTER 6 SUMMARY AND CONCLUSION 

ESD related failure is always a major concern for IC reliability and this is particularly 

true in advanced silicon technologies. Besides the concerns of ESD robustness, low parasitic 

capacitance requirement is critical to ESD design of high-speed and RF I/Os. This dissertation 

starts with the fundamentals of ESD phenomena and existing ESD stress models. Capacitance of 

basic ESD devices is also investigated. The major contributions of this dissertation are analyzing 

the ESD design window in advanced technologies also introduced multiple efficient ESD 

solutions for advanced high-speed and RF I/Os. 

ESD design window parameters across 350nm bulk technology to 7nm FinFET 

technology were discussed in chapter 2. It is a good reference for ESD design in 14nm/7nm 

FinFET technologies. This research indicated that ESD design window based on Vt1 and Vgox is 

shrinking drastically with technology scaling down. It shown that the potential of extending ESD 

design window by adding series resistance degraded significantly in advanced technology nodes, 

since victim FETs can barely handle any ESD current in FinFET technologies. Besides, to meet 

CDM protection level for digital design, secondary protection for drivers in 7nm and beyond is 

needed as Vgox drops significantly. Moreover, for high-speed designs, one needs to consider 

lowering the HBM and CDM level further for FinFET technologies as ESD device capacitance 

loading becomes significantly higher while no improvement observed in Vt1 or It2 for FETs. 

DD-SCR was proposed in this dissertation in chapter 3 as a solution for optimizing the 

capacitance in advanced technologies. The designs have been implemented under 28nm CMOS 

technology. By combining the advantages of stacked-diode and SCR, DD-SCR shown 

outstanding characteristics, such as low parasitic capacitance, high failure current, low overshoot 
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voltage and small RON. These characteristics make DD-SCR an efficient solution for high speed 

I/O protection.  

An inductor embedded, filter like ESD network was proposed as a solution for RF I/O 

protection in chapter 4. Its design methodology were demonstrated through TLP, vfTLP and S11 

test in this dissertation. Given proper inductor value, networks were successfully implemented as 

robust ESD solutions for high frequency I/O protection within 7.5 GHz to 62 GHz frequency 

range.   

A heterogeneous stacking methodology for SCR design was introduced and implemented 

in this dissertation in chapter 5. This design provided new views for latch-up free SCR design. 

Bypass resister was used in the design to help the triggering of the second and following stages 

of the stacking structure.  Results demonstrated that proposed design can successfully increase 

the total holding voltage and also keep the triggering voltage insensitive to stacking. The depth 

of snapback can be reduced to 17V when stacking four devices.  

As a summary, a few research works on design and characterization of low capacitance 

and robust ESD protection devices in advanced semiconductor technologies were introduced in 

this dissertation. This dissertation could be a good reference for future ESD protection design. 
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