551 research outputs found

    Computationally efficient modeling and simulation of large scale systems

    Get PDF
    A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P

    Modeling multi-layer via structure using PEEC method

    Get PDF
    In this dissertation, a new integral equation formulation for via structures is developed for the capacitance extraction between vias and planes. The proposed method can be used to calculate the shared-antipad via structure which is widely used in highspeed differential signal interconnects. In addition, we use the image theory to handle inhomogeneous media. Further, a new technique is given to reduce computational resources for via-to-plane structures based on properties of the matrix coefficient. The extracted capacitance is also incorporated into the physics-based circuit model to characterize the overall performance of the via transition. In the second paper, a rigorous modeling of the shared-antipad via structure is developed using surface partial element equivalent circuit (PEEC). The cavity Green\u27s function is used to evaluate the equivalent circuit elements, thereby requiring fewer cells for numerical computation. The non-orthogonal, quadrilateral cell is used in the mesh to better accommodate the non-rectangular shape of the via and the antipad. A novel wave port excitation method is applied to the equivalent circuit to obtain the network parameters of the via transition. The Z-parameters of the via structure are calculated using the proposed method, and the results are validated with the finite element solution obtained from commercial software. In the third paper, an effective methodology is proposed to estimate the RF interference received by an antenna due to near-field coupling using divide-and-conquer based on reciprocity. The proposed methodology fits well with engineering practice, and is particularly suitable for pre-layout wireless system design and planning --Abstract, page iv

    A divide-and-conquer method for 3D capacitance extraction

    Get PDF
    This thesis describes a divide-and-conquer algorithm to improve the 3D boundary element method (BEM) for capacitance extraction. We divide large interconnect structures into small sections, set new boundary conditions using the borderfor each section, solve each section, and then combine the results to derive the capacitance. The target application is critical nets where 3D accuracy is required. The new algorithm is a significant improvement over the traditional BEMs and their enhancements, such as the "window" method where conductors far away are dropped, and the "shield" method where conductors hidden behind other conductors are dropped. Experimental results show that our algorithm is 25 times faster than the traditional BEM and 5 times faster than the window+shield method, for medium to large structures. The error of the capacitance computed by the new algorithm is within 2% for self capacitance and 7% for coupling capacitance, compared with the results obtained by solving the entire system using BEM. Furthermore, our algorithms gives accurate distributed RC, where none of the previous 3D BEM algorithms and their enhancements can

    Computationally Efficient Modeling and Simulation of Large Scale Systems

    Get PDF
    A system for simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof, including a processor, and a memory, the processor configured to perform obtaining a matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure, the element values for each matrix including inductance L and inverse capacitance P, obtaining an adjacency matrix A associated with the interconnect structure, storing the matrices X, Y, and A in the memory, and performing numerical integration to solve first and second equations

    System level power integrity transient analysis using a physics-based approach

    Get PDF
    With decreasing supply voltage level and massive demanding current on system chipset, power integrity design becomes more and more critical for system stability. The ultimate goal of well-designed power delivery network (PDN) is to deliver desired voltage level from the source to destination, in other words, to minimize voltage noise delivered to digital devices. The thesis is composed of three parts. The first part focuses on-die level power models including simplified chip power model (CPM) for system level analysis and the worst scenario current profile. The second part of this work introduces the physics-based equivalent circuit model to simplify the passive PDN model to RLC circuit netlist, to be compatible with any spice simulators and tremendously boost simulation speed. Then a novel system/chip level end-to-end transient model is proposed, including the die model and passive PDN model discussed in previous two chapters as well as a SIMPLIS based small signal VRM model. In the last part of the thesis, how to model voltage regulator module (VRM) is explicitly discussed. Different linear approximated VRM modeling approaches have been compared with the SIMPLIS small signal VRM model in both frequency domain and time domain. The comparison provides PI engineers a guideline to choose specific VRM model under specific circumstances. Finally yet importantly, a PDN optimization example was given. Other than previous PDN optimization approaches, a novel hybrid target impedance concept was proposed in this thesis, in order to improve system level PDN optimization process --Abstract, page iv

    Study Of The Relationship Between Delta Delay And Adjacent Parallel Wire Length In 45 Nanometer Process Technology

    Get PDF
    Hierarchical design spans the complete framework of a design flow from Register Transfer Level (RTL), synthesis, place and route, timing closure and various other analyses before sign-off. Finer geometries and increasing interconnect density however have resulted signal integrity becoming the key issue for Deep Sub-Micron design. Post silicon bug due to noise and signal integrity can be prevented and fixed at early stage of the IC design cycle. The purpose of this research is to establish a preventive measurement for adjacent wire that can travel in parallel for 45nm technology. The intention is to ensure that a complex design can be delivered to the market with accurate, fast and trusted analysis and provide sign-off solution. Main approach is to conduct the relationship study between delta delay and adjacent parallel wire in 45 nanometer (nm) process technology and provide a preventive measurement to limit the adjacent wire can travel in parallel. The design is explored thoroughly to study the relationship between delay noise and adjacent parallel wire. The correlation is translated into an equation to estimate the delay noise produced with a certain length of adjacent parallel wire

    Macro-model of through silicon vias (tsvs) arrays

    Get PDF
    As continued scaling down of transistors becomes increasingly difficult due to physical and technical issues like the increase of leakage power and total power consumption, overall, 3D integration is now considered a viable solution to get a higher bandwidth and power efficiency. Use of Through-silicon-vias (TSVs), which connects stacked structures die-to-die, is expected to be one of the most important techniques enabling 3D integration. As the number of through silicon Vias (TSVs) exists in the same chip is increasing, an algorithm to build a macro-model is needed to find inter-relationship between TSVs. There are different coupling parameters that exist between TSVs like: capacitive, inductive and resistive coupling. This work provides an algorithm to build a macro-model of an array of TSVs where only capacitive coupling is considered, as it is expected to be the dominating parameter.Using a simulation based technique, where characterization for bundles of TSVs were done and a scaling equation that can give the variationsoccur to capacitance value with scaling the physical dimensions of the TSV (pitch, radius, length and dielectric thickness (tox)) is proposed. The considered ranges for the physical parameters are: radius (from 1um to 10um), tox (from 0.1um to 0.5 um), length (from 10um to 100um) and pitch (from 10um to 95um). Using theproposed algorithm, a macro model can be built in a negligible time, which provides lots of time saving compared to hours required by other tools such as EM simulators or device simulators. The average error range 3% to 6%and a maximum cumulative error of algorithm and usage of scaling equation is 18.2% that occurs at very few dimensions and in very few capacitances from the extracted capacitance values, for both self and coupling capacitance
    corecore