67 research outputs found

    Integrasi Discrete Wavelet Transform dan Singular Value Decomposition pada Watermarking Citra untuk Perlindungan Hak Cipta

    Full text link
    Tren masalah watermarking pada sekarang ini adalah bagaimana mengoptimalkan trade-off antara imperceptibility (visibilitas) citra ter-watermark terhadap pengaruh distorsi dan robustness terhadap penyisipan watermark. Masalah menggunakan kekuatan penyisipan berdasarkan Single Scaling Factor (SSF) atau Multiple Scaling Factor (MSF) juga ditemukan. Penelitian ini mengusulkan metode penyisipan watermark untuk perlindungan hak cipta pada citra dan algoritma ekstraksi citra ter-watermark yang dioptimalkan dengan penggabungan Discrete Wavelet Transform (DWT) dan Singular Value Decomposition (SVD). Nilai-nilai singular dari LL3 koefisien sub-band dari citra host dimodifikasi menggunakan nilai tunggal citra watermark biner menggunakan MSFs. Kontribusi utama dari skema yang diusulkan adalah aplikasi DWT-SVD untuk mengidentifikasi beberapa faktor skala yang optimal. Hasil penelitian menunjukkan bahwa skema yang diusulkan menghasilkan nilai Peak Signal to Noise Ratio (PSNR) yang tinggi, yang menunjukkan bahwa kualitas visual gambar yang baik pada masalah citra watermarking telah mengoptimalkan trade-off. Trade-off antara imperceptibility (visibilitas) citra ter-watermark terhadap pengaruh distorsi dan robustness citra ter-watermark terhadap operasi pengolahan citra. Nilai PSNR yang didapat pada citra yang diujikan: baboon=53,184; boat=53,328; cameraman=53,700; lena=53,668; man=53,328; dan pepper sebesar 52,662. Delapan perlakuan khusus pada hasil citra ter-watermark diujikan dan diekstraksi kembali yaitu JPEG 5%, Noise 5%, Gaussian filter 3x3, Sharpening, Histogram Equalization, Scaling 512-256, Gray Quantitation 1bit, dan Cropping 1/8. Hasil dari perlakuan khusus kemudian diukur nilai Normalized Cross-Correlation (NC) yang menghasilkan rata-rata semua citra diperoleh sebesar 0,999 dari satu. Hasil penelitian dari metode yang diusulkan lebih unggul nilai PSNR dan NC dari penelitian sebelumnya. Jadi dapat disimpulkan bahwa penerapan dengan metode DWT-SVD ini mampu menghasilkan citra yang robust namun memiliki tingkat imperceptibility yang cukup tinggi

    Digital Watermarking using Tiny Genetic Algorithm and Discrete Z Transforms

    Get PDF
    Today, multimedia data security plays most important role in internet era. Media elements like images, audios and videos are used to embed the data. As the digital media is tremendously growing over the internet, it is very inevitable to show interest in multimedia copyright protection. The aim to propose such a system is to provide secure algorithm for protecting digital image by using digital watermarking approach and extraction of that watermark from existing image to prove the authentication. Digital watermarking is solution for protecting intellectual property of image. To achieve features like robustness and imperceptibility of the image, concept of Discrete Z-Transform is used and for generation of key, Tiny Genetic Algorithm is used. Robustness and imperceptibility are important in digital watermarking process. We assure that the result will be better to sustain attacks like cropping, rotation, filtering and compression and embedded watermark will not be affected. DOI: 10.17762/ijritcc2321-8169.15031

    Adaptive digital watermarking scheme based on support vector machines and optimized genetic algorithm

    Get PDF
    Digital watermarking is an effective solution to the problem of copyright protection, thus maintaining the security of digital products in the network. An improved scheme to increase the robustness of embedded information on the basis of discrete cosine transform (DCT) domain is proposed in this study. The embedding process consisted of two main procedures. Firstly, the embedding intensity with support vector machines (SVMs) was adaptively strengthened by training 1600 image blocks which are of different texture and luminance. Secondly, the embedding position with the optimized genetic algorithm (GA) was selected. To optimize GA, the best individual in the first place of each generation directly went into the next generation, and the best individual in the second position participated in the crossover and the mutation process. The transparency reaches 40.5 when GA’s generation number is 200. A case study was conducted on a 256 × 256 standard Lena image with the proposed method. After various attacks (such as cropping, JPEG compression, Gaussian low-pass filtering (3, 0. 5), histogram equalization, and contrast increasing (0.5, 0.6)) on the watermarked image, the extracted watermark was compared with the original one. Results demonstrate that the watermark can be effectively recovered after these attacks. Even though the algorithm is weak against rotation attacks, it provides high quality in imperceptibility and robustness and hence it is a successful candidate for implementing novel image watermarking scheme meeting real timelines

    Audio, Text, Image, and Video Digital Watermarking Techniques for Security of Media Digital

    Get PDF
    The proliferation of multimedia content as digital media assets, encompassing audio, text, images, and video, has led to increased risks of unauthorized usage and copyright infringement. Online piracy serves as a prominent example of such misuse. To address these challenges, watermarking techniques have been developed to protect the copyright of digital media while maintaining the integrity of the underlying content. Key characteristics evaluated in watermarking methods include capability, privacy, toughness, and invisibility, with robustness playing a crucial role. This paper presents a comparative analysis of digital watermarking methods, highlighting the superior security and effective watermark image recovery offered by singular value decomposition. The research community has shown significant interest in watermarking, resulting in the development of various methods in both the spatial and transform domains. Transform domain approaches such as Discrete Cosine Transform, Discrete Wavelet Transform, and Singular Value Decomposition, along with their interconnections, have been explored to enhance the effectiveness of digital watermarking methods

    Secure and Robust Fragile Watermarking Scheme for Medical Images

    Get PDF
    Over the past decade advances in computer-based communication and health services, the need for image security becomes urgent to address the requirements of both safety and non-safety in medical applications. This paper proposes a new fragile watermarking based scheme for image authentication and self-recovery for medical applications. The proposed scheme locates image tampering as well as recovers the original image. A host image is broken into 4×4 blocks and Singular Value Decomposition (SVD) is applied by inserting the traces of block wise SVD into the Least Significant Bit (LSB) of the image pixels to figure out the transformation in the original image. Two authentication bits namely block authentication and self-recovery bits were used to survive the vector quantization attack. The insertion of self-recovery bits is determined with Arnold transformation, which recovers the original image even after a high tampering rate. SVD-based watermarking information improves the image authentication and provides a way to detect different attacked area. The proposed scheme is tested against different types of attacks such are text removal attack, text insertion attack, and copy and paste attack

    A Blind Adaptive Color Image Watermarking Scheme Based on Principal Component Analysis, Singular Value Decomposition and Human Visual System

    Get PDF
    A blind adaptive color image watermarking scheme based on principal component analysis, singular value decomposition, and human visual system is proposed. The use of principal component analysis to decorrelate the three color channels of host image, improves the perceptual quality of watermarked image. Whereas, human visual system and fuzzy inference system helped to improve both imperceptibility and robustness by selecting adaptive scaling factor, so that, areas more prone to noise can be added with more information as compared to less prone areas. To achieve security, location of watermark embedding is kept secret and used as key at the time of watermark extraction, whereas, for capacity both singular values and vectors are involved in watermark embedding process. As a result, four contradictory requirements; imperceptibility, robustness, security and capacity are achieved as suggested by results. Both subjective and objective methods are acquired to examine the performance of proposed schemes. For subjective analysis the watermarked images and watermarks extracted from attacked watermarked images are shown. For objective analysis of proposed scheme in terms of imperceptibility, peak signal to noise ratio, structural similarity index, visual information fidelity and normalized color difference are used. Whereas, for objective analysis in terms of robustness, normalized correlation, bit error rate, normalized hamming distance and global authentication rate are used. Security is checked by using different keys to extract the watermark. The proposed schemes are compared with state-of-the-art watermarking techniques and found better performance as suggested by results

    Review on Lightweight Cryptography Techniques and Steganography Techniques for IOT Environment

    Get PDF
    In the modern world, technology has connected to our day-to-day life in different forms. The Internet of Things (IoT) has become an innovative criterion for mass implementations and a part of daily life. However, this rapid growth leads the huge traffic and security problems. There are several challenges arise while deploying IoT. The most common challenges are privacy and security during data transmission. To address these issues, various lightweight cryptography and steganography techniques were introduced. These techniques are helpful in securing the data over the IoT. The hybrid of cryptography and steganography mechanisms provides enhanced security to confidential messages. Any messages can be secured by cryptography or by embedding the messages into any media files, including text, audio, image, and video, using steganography. Hence, this article has provided a detailed review of efficient, lightweight security solutions based on cryptography and steganography and their function over IoT applications. The objective of the paper is to study and analyze various Light weight cryptography techniques and Steganography techniques for IoT. A few works of literature were reviewed in addition to their merits and limitations. Furthermore, the common problems in the reviewed techniques are explained in the discussion section with their parametric comparison. Finally, the future scope to improve IoT security solutions based on lightweight cryptography and steganography is mentioned in the conclusion part

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks
    corecore