17 research outputs found

    A low quiescent current low dropout voltage regulator with self-compensation

    Get PDF
    This paper proposed a low quiescent current low-dropout voltage regulator (LDO) with self-compensation loop stability. This LDO is designed for Silicon-on-Chip (SoC) application without off-chip compensation capacitor. Worst case loop stability phenomenon happen when LDO output load current (Iload) is zero. The second pole frequency decreased tremendously towards unity-gain frequency (UGF) and compromise loop stability. To prevent this, additional current is needed to keep the output in low impedance in order to maintain second pole frequency. As Iload slowly increases, the unneeded additional current can be further reduced. This paper presents a circuit which performed self-reduction on this current by sensing the Iload. On top of that, a self-compensation circuit technique is proposed where loop stability is self-attained when Iload reduced below 100μA. In this technique, unity-gain frequency (UGF) will be decreaed and move away from second pole in order to attain loop stability. The decreased of UGF is done by reducing the total gain while maintaining the dominant pole frequency. This technique has also further reduced the total quiescent current and improved the LDO’s efficiency. The proposed LDO exhibits low quiescent current 9.4μA and 17.7μA, at Iload zero and full load 100mA respectively. The supply voltage for this LDO is 1.2V with 200mV drop-out voltage. The design is validated using 0.13μm CMOS process technology

    Near-Threshold Computing: Past, Present, and Future.

    Full text link
    Transistor threshold voltages have stagnated in recent years, deviating from constant-voltage scaling theory and directly limiting supply voltage scaling. To overcome the resulting energy and power dissipation barriers, energy efficiency can be improved through aggressive voltage scaling, and there has been increased interest in operating at near-threshold computing (NTC) supply voltages. In this region sizable energy gains are achieved with moderate performance loss, some of which can be regained through parallelism. This thesis first provides a methodical definition of how near to threshold is "near threshold" and continues with an in-depth examination of NTC across past, present, and future CMOS technologies. By systematically defining near-threshold, the trends and tradeoffs are analyzed, lending insight in how best to design and optimize near-threshold systems. NTC works best for technologies that feature good circuit delay scalability, therefore technologies without strong short-channel effects. Early planar technologies (prior to 90nm or so) featured good circuit scalability (8x energy gains), but lacked area in which to add cores for parallelization. Recent planar nodes (32nm – 20nm) feature more area for cores but suffer from poor delay scalability, and so are not well-suited for NTC (4x energy gains). The switch to FinFET CMOS technology allows for a return to strong voltage scalability (8x gain), reversing trends seen in planar technologies, while dark silicon has created an opportunity to add cores for parallelization. Improved FinFET voltage scalability even allows for latency reduction of a single task, as long as the task is sufficiently parallelizable (< 10% serial code). Finally, we will look at a technique for fast voltage boosting, called Shortstop, in which a core's operating voltage is raised in 10s of cycles. Shortstop can be used to quickly respond to single-threaded performance demands of a near-threshold system by leveraging the innate parasitic inductance of a dedicated dirty supply rail, further improving energy efficiency. The technique is demonstrated in a wirebond implementation and is able to boost a core up to 1.8x faster than a header-based approach, while reducing supply droop by 2-7x. An improved flip-chip architecture is also proposed.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113600/1/npfet_1.pd

    Design for Reliability and Low Power in Emerging Technologies

    Get PDF
    Die fortlaufende Verkleinerung von Transistor-Strukturgrößen ist einer der wichtigsten Antreiber für das Wachstum in der Halbleitertechnologiebranche. Seit Jahrzehnten erhöhen sich sowohl Integrationsdichte als auch Komplexität von Schaltkreisen und zeigen damit einen fortlaufenden Trend, der sich über alle modernen Fertigungsgrößen erstreckt. Bislang ging das Verkleinern von Transistoren mit einer Verringerung der Versorgungsspannung einher, was zu einer Reduktion der Leistungsaufnahme führte und damit eine gleichbleibenden Leistungsdichte sicherstellte. Doch mit dem Beginn von Strukturgrößen im Nanometerbreich verlangsamte sich die fortlaufende Skalierung. Viele Schwierigkeiten, sowie das Erreichen von physikalischen Grenzen in der Fertigung und Nicht-Idealitäten beim Skalieren der Versorgungsspannung, führten zu einer Zunahme der Leistungsdichte und, damit einhergehend, zu erschwerten Problemen bei der Sicherstellung der Zuverlässigkeit. Dazu zählen, unter anderem, Alterungseffekte in Transistoren sowie übermäßige Hitzeentwicklung, nicht zuletzt durch stärkeres Auftreten von Selbsterhitzungseffekten innerhalb der Transistoren. Damit solche Probleme die Zuverlässigkeit eines Schaltkreises nicht gefährden, werden die internen Signallaufzeiten üblicherweise sehr pessimistisch kalkuliert. Durch den so entstandenen zeitlichen Sicherheitsabstand wird die korrekte Funktionalität des Schaltkreises sichergestellt, allerdings auf Kosten der Performance. Alternativ kann die Zuverlässigkeit des Schaltkreises auch durch andere Techniken erhöht werden, wie zum Beispiel durch Null-Temperatur-Koeffizienten oder Approximate Computing. Wenngleich diese Techniken einen Großteil des üblichen zeitlichen Sicherheitsabstandes einsparen können, bergen sie dennoch weitere Konsequenzen und Kompromisse. Bleibende Herausforderungen bei der Skalierung von CMOS Technologien führen außerdem zu einem verstärkten Fokus auf vielversprechende Zukunftstechnologien. Ein Beispiel dafür ist der Negative Capacitance Field-Effect Transistor (NCFET), der eine beachtenswerte Leistungssteigerung gegenüber herkömmlichen FinFET Transistoren aufweist und diese in Zukunft ersetzen könnte. Des Weiteren setzen Entwickler von Schaltkreisen vermehrt auf komplexe, parallele Strukturen statt auf höhere Taktfrequenzen. Diese komplexen Modelle benötigen moderne Power-Management Techniken in allen Aspekten des Designs. Mit dem Auftreten von neuartigen Transistortechnologien (wie zum Beispiel NCFET) müssen diese Power-Management Techniken neu bewertet werden, da sich Abhängigkeiten und Verhältnismäßigkeiten ändern. Diese Arbeit präsentiert neue Herangehensweisen, sowohl zur Analyse als auch zur Modellierung der Zuverlässigkeit von Schaltkreisen, um zuvor genannte Herausforderungen auf mehreren Designebenen anzugehen. Diese Herangehensweisen unterteilen sich in konventionelle Techniken ((a), (b), (c) und (d)) und unkonventionelle Techniken ((e) und (f)), wie folgt: (a)\textbf{(a)} Analyse von Leistungszunahmen in Zusammenhang mit der Maximierung von Leistungseffizienz beim Betrieb nahe der Transistor Schwellspannung, insbesondere am optimalen Leistungspunkt. Das genaue Ermitteln eines solchen optimalen Leistungspunkts ist eine besondere Herausforderung bei Multicore Designs, da dieser sich mit den jeweiligen Optimierungszielsetzungen und der Arbeitsbelastung verschiebt. (b)\textbf{(b)} Aufzeigen versteckter Interdependenzen zwischen Alterungseffekten bei Transistoren und Schwankungen in der Versorgungsspannung durch „IR-drops“. Eine neuartige Technik wird vorgestellt, die sowohl Über- als auch Unterschätzungen bei der Ermittlung des zeitlichen Sicherheitsabstands vermeidet und folglich den kleinsten, dennoch ausreichenden Sicherheitsabstand ermittelt. (c)\textbf{(c)} Eindämmung von Alterungseffekten bei Transistoren durch „Graceful Approximation“, eine Technik zur Erhöhung der Taktfrequenz bei Bedarf. Der durch Alterungseffekte bedingte zeitlich Sicherheitsabstand wird durch Approximate Computing Techniken ersetzt. Des Weiteren wird Quantisierung verwendet um ausreichend Genauigkeit bei den Berechnungen zu gewährleisten. (d)\textbf{(d)} Eindämmung von temperaturabhängigen Verschlechterungen der Signallaufzeit durch den Betrieb nahe des Null-Temperatur Koeffizienten (N-ZTC). Der Betrieb bei N-ZTC minimiert temperaturbedingte Abweichungen der Performance und der Leistungsaufnahme. Qualitative und quantitative Vergleiche gegenüber dem traditionellen zeitlichen Sicherheitsabstand werden präsentiert. (e)\textbf{(e)} Modellierung von Power-Management Techniken für NCFET-basierte Prozessoren. Die NCFET Technologie hat einzigartige Eigenschaften, durch die herkömmliche Verfahren zur Spannungs- und Frequenzskalierungen zur Laufzeit (DVS/DVFS) suboptimale Ergebnisse erzielen. Dies erfordert NCFET-spezifische Power-Management Techniken, die in dieser Arbeit vorgestellt werden. (f)\textbf{(f)} Vorstellung eines neuartigen heterogenen Multicore Designs in NCFET Technologie. Das Design beinhaltet identische Kerne; Heterogenität entsteht durch die Anwendung der individuellen, optimalen Konfiguration der Kerne. Amdahls Gesetz wird erweitert, um neue system- und anwendungsspezifische Parameter abzudecken und die Vorzüge des neuen Designs aufzuzeigen. Die Auswertungen der vorgestellten Techniken werden mithilfe von Implementierungen und Simulationen auf Schaltkreisebene (gate-level) durchgeführt. Des Weiteren werden Simulatoren auf Systemebene (system-level) verwendet, um Multicore Designs zu implementieren und zu simulieren. Zur Validierung und Bewertung der Effektivität gegenüber dem Stand der Technik werden analytische, gate-level und system-level Simulationen herangezogen, die sowohl synthetische als auch reale Anwendungen betrachten

    Rapid SoC Design: On Architectures, Methodologies and Frameworks

    Full text link
    Modern applications like machine learning, autonomous vehicles, and 5G networking require an order of magnitude boost in processing capability. For several decades, chip designers have relied on Moore’s Law - the doubling of transistor count every two years to deliver improved performance, higher energy efficiency, and an increase in transistor density. With the end of Dennard’s scaling and a slowdown in Moore’s Law, system architects have developed several techniques to deliver on the traditional performance and power improvements we have come to expect. More recently, chip designers have turned towards heterogeneous systems comprised of more specialized processing units to buttress the traditional processing units. These specialized units improve the overall performance, power, and area (PPA) metrics across a wide variety of workloads and applications. While the GPU serves as a classical example, accelerators for machine learning, approximate computing, graph processing, and database applications have become commonplace. This has led to an exponential growth in the variety (and count) of these compute units found in modern embedded and high-performance computing platforms. The various techniques adopted to combat the slowing of Moore’s Law directly translates to an increase in complexity for modern system-on-chips (SoCs). This increase in complexity in turn leads to an increase in design effort and validation time for hardware and the accompanying software stacks. This is further aggravated by fabrication challenges (photo-lithography, tooling, and yield) faced at advanced technology nodes (below 28nm). The inherent complexity in modern SoCs translates into increased costs and time-to-market delays. This holds true across the spectrum, from mobile/handheld processors to high-performance data-center appliances. This dissertation presents several techniques to address the challenges of rapidly birthing complex SoCs. The first part of this dissertation focuses on foundations and architectures that aid in rapid SoC design. It presents a variety of architectural techniques that were developed and leveraged to rapidly construct complex SoCs at advanced process nodes. The next part of the dissertation focuses on the gap between a completed design model (in RTL form) and its physical manifestation (a GDS file that will be sent to the foundry for fabrication). It presents methodologies and a workflow for rapidly walking a design through to completion at arbitrary technology nodes. It also presents progress on creating tools and a flow that is entirely dependent on open-source tools. The last part presents a framework that not only speeds up the integration of a hardware accelerator into an SoC ecosystem, but emphasizes software adoption and usability.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168119/1/ajayi_1.pd

    Design of High-Speed CMOS Interface Circuits for Optical Communications

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 정덕균.The bandwidth requirement of wireline communications has increased ex-ponentially because of the ever-increasing demand for data centers and high-performance computing systems. However, it becomes difficult to satisfy the requirement with legacy electrical links which suffer from frequency-dependent losses due to skin effect, dielectric loss, channel reflections, and crosstalk, resulting in a severe bandwidth limitation. In order to overcome this challenge, it is necessary to introduce optical communication technology, which has been mainly used for long-reach communications, such as long-haul net-works and metropolitan area networks, to the medium- and short-reach com-munication systems. However, there still remain important issues to be resolved to facilitate the adoption of the optical technologies. The most critical challeng-es are the energy efficiency and the cost competitiveness as compared to the legacy copper-based electrical communications. One possible solution is silicon photonics that has long been investigated by a number of research groups. De-spite inherent incompatibility of silicon with the photonic world, silicon pho-tonics is promising and is the only solution that can leverage the mature CMOS technologies. In this thesis, we summarize the current status of silicon photonics and pro-vide the prospect of the optical interconnection. We also present key circuit techniques essential to the implementation of high-speed and low-power optical receivers. And then, we propose optical receiver architectures satisfying the aforementioned requirements with novel circuit techniques.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 6 CHAPTER 2 BACKGROUND OF OPTICAL COMMUNICATION 7 2.1 OVERVIEW OF OPTICAL LINK 7 2.2 SILICON PHOTONICS 11 2.3 HYBRID INTEGRATION 22 2.4 SILICON-BASED PHOTODIODES 28 2.4.1 BASIC TERMINOLOGY 28 2.4.2 SILICON PD 29 2.4.3 GERMANIUM PD 32 2.4.4 INTEGRATION WITH WAVEGUIDE 33 CHAPTER 3 CIRCUIT TECHNIQUES FOR OPTICAL RECEIVER 35 3.1 BASIS OF TRANSIMPEDANCE AMPLIFIER 35 3.2 TOPOLOGY OF TIA 39 3.2.1 RESISTOR-BASED TIA 39 3.2.2 COMMON-GATE-BASED TIA 41 3.2.3 FEEDBACK-BASED TIA 44 3.2.4 INVERTER-BASED TIA 47 3.2.5 INTEGRATING RECEIVER 48 3.3 BANDWIDTH EXTENSION TECHNIQUES 49 3.3.1 INDUCTOR-BASED TECHNIQUE 49 3.3.2 EQUALIZATION 61 3.4 CLOCK AND DATA RECOVERY CIRCUITS 66 3.4.1 CDR BASIC 66 3.4.2 CDR EXAMPLES 68 CHAPTER 4 LOW-POWER OPTICAL RECEIVER FRONT-END 73 4.1 OVERVIEW 73 4.2 INVERTER-BASED TIA WITH RESISTIVE FEEDBACK 74 4.3 INVERTER-BASED TIA WITH RESISTIVE AND INDUCTIVE FEEDBACK 81 4.4 CIRCUIT IMPLEMENTATION 89 4.5 MEASUREMENT RESULTS 93 CHAPTER 5 BANDWIDTH- AND POWER-SCALABLE OPTICAL RECEIVER FRONT-END 96 5.1 OVERVIEW 96 5.2 BANDWIDTH AND POWER SCALABILITY 97 5.3 GM STABILIZATION 98 5.4 OVERALL BLOCK DIAGRAM OF RECEIVER 104 5.5 MEASUREMENT RESULTS 111 CHAPTER 6 CONCLUSION 118 BIBLIOGRAPHY 120 초 록 131Docto

    Degradation Models and Optimizations for CMOS Circuits

    Get PDF
    Die Gewährleistung der Zuverlässigkeit von CMOS-Schaltungen ist derzeit eines der größten Herausforderungen beim Chip- und Schaltungsentwurf. Mit dem Ende der Dennard-Skalierung erhöht jede neue Generation der Halbleitertechnologie die elektrischen Felder innerhalb der Transistoren. Dieses stärkere elektrische Feld stimuliert die Degradationsphänomene (Alterung der Transistoren, Selbsterhitzung, Rauschen, usw.), was zu einer immer stärkeren Degradation (Verschlechterung) der Transistoren führt. Daher erleiden die Transistoren in jeder neuen Technologiegeneration immer stärkere Verschlechterungen ihrer elektrischen Parameter. Um die Funktionalität und Zuverlässigkeit der Schaltung zu wahren, wird es daher unerlässlich, die Auswirkungen der geschwächten Transistoren auf die Schaltung präzise zu bestimmen. Die beiden wichtigsten Auswirkungen der Verschlechterungen sind ein verlangsamtes Schalten, sowie eine erhöhte Leistungsaufnahme der Schaltung. Bleiben diese Auswirkungen unberücksichtigt, kann die verlangsamte Schaltgeschwindigkeit zu Timing-Verletzungen führen (d.h. die Schaltung kann die Berechnung nicht rechtzeitig vor Beginn der nächsten Operation abschließen) und die Funktionalität der Schaltung beeinträchtigen (fehlerhafte Ausgabe, verfälschte Daten, usw.). Um diesen Verschlechterungen der Transistorparameter im Laufe der Zeit Rechnung zu tragen, werden Sicherheitstoleranzen eingeführt. So wird beispielsweise die Taktperiode der Schaltung künstlich verlängert, um ein langsameres Schaltverhalten zu tolerieren und somit Fehler zu vermeiden. Dies geht jedoch auf Kosten der Performanz, da eine längere Taktperiode eine niedrigere Taktfrequenz bedeutet. Die Ermittlung der richtigen Sicherheitstoleranz ist entscheidend. Wird die Sicherheitstoleranz zu klein bestimmt, führt dies in der Schaltung zu Fehlern, eine zu große Toleranz führt zu unnötigen Performanzseinbußen. Derzeit verlässt sich die Industrie bei der Zuverlässigkeitsbestimmung auf den schlimmstmöglichen Fall (maximal gealterter Schaltkreis, maximale Betriebstemperatur bei minimaler Spannung, ungünstigste Fertigung, etc.). Diese Annahme des schlimmsten Falls garantiert, dass der Chip (oder integrierte Schaltung) unter allen auftretenden Betriebsbedingungen funktionsfähig bleibt. Darüber hinaus ermöglicht die Betrachtung des schlimmsten Falles viele Vereinfachungen. Zum Beispiel muss die eigentliche Betriebstemperatur nicht bestimmt werden, sondern es kann einfach die schlimmstmögliche (sehr hohe) Betriebstemperatur angenommen werden. Leider lässt sich diese etablierte Praxis der Berücksichtigung des schlimmsten Falls (experimentell oder simulationsbasiert) nicht mehr aufrechterhalten. Diese Berücksichtigung bedingt solch harsche Betriebsbedingungen (maximale Temperatur, etc.) und Anforderungen (z.B. 25 Jahre Betrieb), dass die Transistoren unter den immer stärkeren elektrischen Felder enorme Verschlechterungen erleiden. Denn durch die Kombination an hoher Temperatur, Spannung und den steigenden elektrischen Feldern bei jeder Generation, nehmen die Degradationphänomene stetig zu. Das bedeutet, dass die unter dem schlimmsten Fall bestimmte Sicherheitstoleranz enorm pessimistisch ist und somit deutlich zu hoch ausfällt. Dieses Maß an Pessimismus führt zu erheblichen Performanzseinbußen, die unnötig und demnach vermeidbar sind. Während beispielsweise militärische Schaltungen 25 Jahre lang unter harschen Bedingungen arbeiten müssen, wird Unterhaltungselektronik bei niedrigeren Temperaturen betrieben und muss ihre Funktionalität nur für die Dauer der zweijährigen Garantie aufrechterhalten. Für letzteres können die Sicherheitstoleranzen also deutlich kleiner ausfallen, um die Performanz deutlich zu erhöhen, die zuvor im Namen der Zuverlässigkeit aufgegeben wurde. Diese Arbeit zielt darauf ab, maßgeschneiderte Sicherheitstoleranzen für die einzelnen Anwendungsszenarien einer Schaltung bereitzustellen. Für fordernde Umgebungen wie Weltraumanwendungen (wo eine Reparatur unmöglich ist) ist weiterhin der schlimmstmögliche Fall relevant. In den meisten Anwendungen, herrschen weniger harsche Betriebssbedingungen (z.B. sorgen Kühlsysteme für niedrigere Temperaturen). Hier können Sicherheitstoleranzen maßgeschneidert und anwendungsspezifisch bestimmt werden, sodass Verschlechterungen exakt toleriert werden können und somit die Zuverlässigkeit zu minimalen Kosten (Performanz, etc.) gewahrt wird. Leider sind die derzeitigen Standardentwurfswerkzeuge für diese anwendungsspezifische Bestimmung der Sicherheitstoleranz nicht gut gerüstet. Diese Arbeit zielt darauf ab, Standardentwurfswerkzeuge in die Lage zu versetzen, diesen Bedarf an Zuverlässigkeitsbestimmungen für beliebige Schaltungen unter beliebigen Betriebsbedingungen zu erfüllen. Zu diesem Zweck stellen wir unsere Forschungsbeiträge als vier Schritte auf dem Weg zu anwendungsspezifischen Sicherheitstoleranzen vor: Schritt 1 verbessert die Modellierung der Degradationsphänomene (Transistor-Alterung, -Selbsterhitzung, -Rauschen, etc.). Das Ziel von Schritt 1 ist es, ein umfassendes, einheitliches Modell für die Degradationsphänomene zu erstellen. Durch die Verwendung von materialwissenschaftlichen Defektmodellierungen werden die zugrundeliegenden physikalischen Prozesse der Degradationsphänomena modelliert, um ihre Wechselwirkungen zu berücksichtigen (z.B. Phänomen A kann Phänomen B beschleunigen) und ein einheitliches Modell für die simultane Modellierung verschiedener Phänomene zu erzeugen. Weiterhin werden die jüngst entdeckten Phänomene ebenfalls modelliert und berücksichtigt. In Summe, erlaubt dies eine genaue Degradationsmodellierung von Transistoren unter gleichzeitiger Berücksichtigung aller essenziellen Phänomene. Schritt 2 beschleunigt diese Degradationsmodelle von mehreren Minuten pro Transistor (Modelle der Physiker zielen auf Genauigkeit statt Performanz) auf wenige Millisekunden pro Transistor. Die Forschungsbeiträge dieser Dissertation beschleunigen die Modelle um ein Vielfaches, indem sie zuerst die Berechnungen so weit wie möglich vereinfachen (z.B. sind nur die Spitzenwerte der Degradation erforderlich und nicht alle Werte über einem zeitlichen Verlauf) und anschließend die Parallelität heutiger Computerhardware nutzen. Beide Ansätze erhöhen die Auswertungsgeschwindigkeit, ohne die Genauigkeit der Berechnung zu beeinflussen. In Schritt 3 werden diese beschleunigte Degradationsmodelle in die Standardwerkzeuge integriert. Die Standardwerkzeuge berücksichtigen derzeit nur die bestmöglichen, typischen und schlechtestmöglichen Standardzellen (digital) oder Transistoren (analog). Diese drei Typen von Zellen/Transistoren werden von der Foundry (Halbleiterhersteller) aufwendig experimentell bestimmt. Da nur diese drei Typen bestimmt werden, nehmen die Werkzeuge keine Zuverlässigkeitsbestimmung für eine spezifische Anwendung (Temperatur, Spannung, Aktivität) vor. Simulationen mit Degradationsmodellen ermöglichen eine Bestimmung für spezifische Anwendungen, jedoch muss diese Fähigkeit erst integriert werden. Diese Integration ist eines der Beiträge dieser Dissertation. Schritt 4 beschleunigt die Standardwerkzeuge. Digitale Schaltungsentwürfe, die nicht auf Standardzellen basieren, sowie komplexe analoge Schaltungen können derzeit nicht mit analogen Schaltungssimulatoren ausgewertet werden. Ihre Performanz reicht für solch umfangreiche Simulationen nicht aus. Diese Dissertation stellt Techniken vor, um diese Werkzeuge zu beschleunigen und somit diese umfangreichen Schaltungen simulieren zu können. Diese Forschungsbeiträge, die sich jeweils über mehrere Veröffentlichungen erstrecken, ermöglichen es Standardwerkzeugen, die Sicherheitstoleranz für kundenspezifische Anwendungsszenarien zu bestimmen. Für eine gegebene Schaltungslebensdauer, Temperatur, Spannung und Aktivität (Schaltverhalten durch Software-Applikationen) können die Auswirkungen der Transistordegradation ausgewertet werden und somit die erforderliche (weder unter- noch überschätzte) Sicherheitstoleranz bestimmt werden. Diese anwendungsspezifische Sicherheitstoleranz, garantiert die Zuverlässigkeit und Funktionalität der Schaltung für genau diese Anwendung bei minimalen Performanzeinbußen

    Linear Predistortion-less MIMO Transmitters

    Get PDF

    Design techniques for safe, reliable, and trustworthy analog circuits

    Get PDF
    Rapid developments in communication, automation, and smart technologies continue to drive the trend of increasingly large-scale integration of electronics. The number of ICs embedded in various systems continues to rise to realize more sophisticated functions and capabilities, and as a result we rely more and more on the smooth, safe, and secure operation of ICs. Quality assurance of ICs is of paramount importance in critical missions because faults can incur heavy consequences. To ensure reliability, IC designs undergo a thorough verification process prior to fabrication and comprehensive testing and measurements before distribution. These steps provide confidence in parts shortly after their deployment into operation. Many critical ICs also embed functions to detect abnormal or faulty behavior in the field and add another layer of safety to the operation. The methodology for creating these built-in self-tests (BISTs) for digital circuits is fairly mature, yet analog and mixed signal (AMS) circuits still present a significant challenge for verification and testing. The development of in-field tests for AMS circuits is relatively new. Part of the difficulty is the many constraints that define satisfactory function. Complicated signal generators and observers are usually required to stimulate the circuit and measure its response in order to accurately determine if it meets specifications. These are available in a production test environment in the form of external equipment, but the amount of hardware, power, and other resources required for these tests make it impractical for in-field operation. To address this issue, some simple, low-resource test circuits have been developed to test some fundamental AMS blocks. The test results allow one to infer faulty behavior of circuit rather than explicitly confirming specifications are not met, which makes the design of test inputs and observers significantly easier. These test circuits use simple analog-digital interfaces which aid the integration of the designs into existing digital test architectures. The AMS test circuits were implemented on a PCB to demonstrate their feasibility. For ICs targeting high reliability, the parts are designed such that the probability of a fault occurring is extremely low, at least for a time. BISTs for in-field testing are intended to detect faults originating from a single source because of a defect or some other unpredictable event. But every IC will reach a time when devices start to fail independently of each other because of normal wear from use. The physical mechanisms causing transistor degradation, called transistor aging, have a predictable trend for a given history of use. On-chip monitors that track device aging over the life of a part can provide warnings before widespread failure occurs and allow confident operation of IC right up to its effective end of life (EOL). A bias and temperature instability (BTI) monitor was designed to estimate the evolving probability of BTI degradation in a device or devices during its operation. In addition to the chance of random failures in critical ICs, designers and customers must also concern themselves with intentionally induced failures. The important role these parts play in their respective systems makes them potential targets of attack by third parties whose goal is contrary to the parts’ primary missions. One potential class of threats is the hardware Trojan horse, a hidden and malicious function physically embedded in the design. These are high- risk/high-reward attacks because insertion of the Trojan is generally considered difficult but successful activation is potentially devastating. Much research and resources have been dedicated to developing threat models, identifying potential means of insertion and operation, and detection of Trojans during production tests. However, these efforts are almost entirely focused on the security of digital circuits while threats to AMS circuits have been ignored. One of the main reasons for this is the inherent sensitivity of AMS circuits, which leads to the assumption that any tampering would be obvious. This assumption falls short when a well- known problem in AMS circuit design is considered: multi-stable operation. A definitive taxonomy of this sub-class of hardware Trojans was constructed to complement existing definitions and efforts on Trojan classification. An example of an AMS circuit with such a Trojan is provided to validate the threat this class of Trojans poses
    corecore