1,378 research outputs found

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Semi-Structured Decision Processes: A Conceptual Framework for Understanding Human-Automation Decision Systems

    Get PDF
    The purpose of this work is to improve understanding of existing and proposed decision systems, ideally to improve the design of future systems. A "decision system" is defined as a collection of information-processing components -- often involving humans and automation (e.g., computers) -- that interact towards a common set of objectives. Since a key issue in the design of decision systems is the division of work between humans and machines (a task known as "function allocation"), this report is primarily intended to help designers incorporate automation more appropriately within these systems. This report does not provide a design methodology, but introduces a way to qualitatively analyze potential designs early in the system design process. A novel analytical framework is presented, based on the concept of "semi-Structured" decision processes. It is believed that many decisions involve both well-defined "Structured" parts (e.g., formal procedures, traditional algorithms) and ill-defined "Unstructured" parts (e.g., intuition, judgement, neural networks) that interact in a known manner. While Structured processes are often desired because they fully prescribe how a future decision (during "operation") will be made, they are limited by what is explicitly understood prior to operation. A system designer who incorporates Unstructured processes into a decision system understands which parts are not understood sufficiently, and relinquishes control by deferring decision-making from design to operation. Among other things, this design choice tends to add flexibility and robustness. The value of the semi-Structured framework is that it forces people to consider system design concepts as operational decision processes in which both well-defined and ill-defined components are made explicit. This may provide more insight into decision systems, and improve understanding of the implications of design choices. The first part of this report defines the semi-Structured process and introduces a diagrammatic notation for decision process models. In the second part, the semi-Structured framework is used to understand and explain highly evolved decision system designs (these are assumed to be representative of "good" designs) whose components include feedback controllers, alerts, decision aids, and displays. Lastly, the semi-Structured framework is applied to a decision system design for a mobile robot.Charles Stark Draper Laboratory, Inc., under IR&D effort 101

    Botbeans

    Get PDF
    Programming can be a daunting task from a beginner’s perspective. Since earlier times of computer programming, tools have been designed and developed in order to make programming friendlier to beginners. However the majority of these tools target beginners that are already motivated and have an idea of what computer programming is. This allows these tools to skip the initial requirements for learning how to program since these beginners will compensate with their motivation and effort. This thesis describes a learning tool called Botbeans. By using a new hybrid visual programming language with a tangible interface, Botbeans creates a highly motivating and collaboration friendly environment to present what is programming to a user that never had previously contact with it. The design and implementation of Botbeans are described and the results of some initial experiments with students are analysis.Aprender a programar pode ser uma tarefa difícil e assustadora do ponto de vista de um iniciante. Desde dos tempos iniciais da programação diversas ferramentas foram desenvolvidas com o intuito de tornar a aprendizagem da programação mais amigável a iniciantes. Algumas destas ferramentas têm como publico alvo iniciantes já altamente motivados para a programação e já com uma ideia do que esta é e para que serve. Isto permite a estas ferramentas saltar alguns dos pré-requisitos necessários para começar a aprender a programar, visto que este tipo de iniciante irá compensar com a sua motivação e empenho. Esta tese descreve uma ferramenta de aprendizagem chamada Botbeans que utilizando uma linguagem gráfica híbrida e uma interface tangível cria um ambiente altamente motivante para demonstrar o que é a programação e para que serve a um utilizador que nunca teve contacto com esta. O design e desenvolvimento do Botbeans são descritos ao longo da tese assim como os testes inicias já efectuados

    The virtual playground: an educational virtual reality environment for evaluating interactivity and conceptual learning

    Get PDF
    The research presented in this paper aims at investigating user interaction in immersive virtual learning environments (VLEs), focusing on the role and the effect of interactivity on conceptual learning. The goal has been to examine if the learning of young users improves through interacting in (i.e. exploring, reacting to, and acting upon) an immersive virtual environment (VE) compared to non interactive or non-immersive environments. Empirical work was carried out with more than 55 primary school students between the ages of 8 and 12, in different between-group experiments: an exploratory study, a pilot study, and a large-scale experiment. The latter was conducted in a virtual environment designed to simulate a playground. In this ‘Virtual Playground’, each participant was asked to complete a set of tasks designed to address arithmetical ‘fractions’ problems. Three different conditions, two experimental virtual reality (VR) conditions and a non-VR condition, that varied the levels of activity and interactivity, were designed to evaluate how children accomplish the various tasks. Pre-tests, post-tests, interviews, video, audio, and log files were collected for each participant, and analyzed both quantitatively and qualitatively. This paper presents a selection of case studies extracted from the qualitative analysis, which illustrate the variety of approaches taken by children in the VEs in response to visual cues and system feedback. Results suggest that the fully interactive VE aided children in problem solving but did not provide as strong evidence of conceptual change as expected; rather, it was the passive VR environment, where activity was guided by a virtual robot, that seemed to support student reflection and recall, leading to indications of conceptual change

    Introducing a Pictographic Language for Envisioning a Rich Variety of Enactive Systems with Different Degrees of Complexity

    Get PDF
    Notwithstanding the considerable amount of progress that has been made in recent years, the parallel fields of cognitive science and cognitive systems lack a unifying methodology for describing, understanding, simulating and implementing advanced cognitive behaviours. Growing interest in ’enactivism’ - as pioneered by the Chilean biologists Humberto Maturana and Francisco Varela - may lead to new perspectives in these areas, but a common framework for expressing many of the key concepts is still missing. This paper attempts to lay a tentative foundation in that direction by extending Maturana and Varela’s pictographic depictions of autopoietic unities to create a rich visual language for envisioning a wide range of enactive systems - natural or artificial - with different degrees of complexity. It is shown how such a diagrammatic taxonomy can help in the comprehension of important relationships between a variety of complex concepts from a pan-theoretic perspective. In conclusion, it is claimed that visual language is not only valuable for teaching and learning, but also offers important insights into the design and implementation of future advanced robotic systems

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Categories, Quantum Computing, and Swarm Robotics: A Case Study

    Get PDF
    The swarms of robots are examples of artificial collective intelligence, with simple individual autonomous behavior and emerging swarm effect to accomplish even complex tasks. Modeling approaches for robotic swarm development is one of the main challenges in this field of research. Here, we present a robot-instantiated theoretical framework and a quantitative worked-out example. Aiming to build up a general model, we first sketch a diagrammatic classification of swarms relating ideal swarms to existing implementations, inspired by category theory. Then, we propose a matrix representation to relate local and global behaviors in a swarm, with diagonal sub-matrices describing individual features and off-diagonal sub-matrices as pairwise interaction terms. Thus, we attempt to shape the structure of such an interaction term, using language and tools of quantum computing for a quantitative simulation of a toy model. We choose quantum computing because of its computational efficiency. This case study can shed light on potentialities of quantum computing in the realm of swarm robotics, leaving room for progressive enrichment and refinement

    Semi-structured decision processes : a conceptual framework for understanding human-automation systems

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1999.Includes bibliographical references (p. 191-199).The purpose of this work is to improve understanding of existing and proposed decision systems, ideally to improve the design of future systems. A "decision system" is defined as a collection of information-processing components-often involving humans and automation (e.g., computers)-that interact towards a common set of objectives. Since a key issue in the design of decision systems is the division of work between humans and machines (a task known as "function allocation"), this thesis is primarily intended to help designers incorporate automation more appropriately within these systems. This thesis does not provide a design methodology, but introduces a way to qualitatively analyze potential designs early in the system design process. A novel analytical framework is presented, based on the concept of "semi-Structured" decision processes. It is believed that many decisions involve both well-defined "Structured" parts (e.g., formal procedures, traditional algorithms) and ill-defined "Unstructured" parts (e.g., intuition, judgment, neural networks) that interact in a known manner. While Structured processes are often desired because they fully prescribe how a future decision (during "operation") will be made, they are limited by what is explicitly understood prior to operation. A system designer who incorporates Unstructured processes into a decision system understands which parts are not understood sufficiently, and relinquishes control by deferring decision-making from design to operation. Among other things, this design choice tends to add flexibility and robustness. The value of the semi-Structured framework is that it forces people to consider system design concepts as operational decision processes in which both well-defined and ill-defined components are made explicit. This may provide more insight into decision systems, and improve understanding of the implications of design choices. The first part of this thesis defines the semi-Structured process and introduces a diagrammatic notation for decision process models. In the second part, the semi-Structured framework is used to understand and explain highly evolved decision system designs (these are assumed to be representative of "good" designs) whose components include feedback controllers, alerts, decision aids, and displays. Lastly, the semi-Structured framework is applied to a decision system design for a mobile robot.by William N. Kaliardos.Ph.D

    A review and comparison of ontology-based approaches to robot autonomy

    Get PDF
    Within the next decades, robots will need to be able to execute a large variety of tasks autonomously in a large variety of environments. To relax the resulting programming effort, a knowledge-enabled approach to robot programming can be adopted to organize information in re-usable knowledge pieces. However, for the ease of reuse, there needs to be an agreement on the meaning of terms. A common approach is to represent these terms using ontology languages that conceptualize the respective domain. In this work, we will review projects that use ontologies to support robot autonomy. We will systematically search for projects that fulfill a set of inclusion criteria and compare them with each other with respect to the scope of their ontology, what types of cognitive capabilities are supported by the use of ontologies, and which is their application domain.Peer ReviewedPostprint (author's final draft

    User modelling for robotic companions using stochastic context-free grammars

    Get PDF
    Creating models about others is a sophisticated human ability that robotic companions need to develop in order to have successful interactions. This thesis proposes user modelling frameworks to personalise the interaction between a robot and its user and devises novel scenarios where robotic companions may apply these user modelling techniques. We tackle the creation of user models in a hierarchical manner, using a streamlined version of the Hierarchical Attentive Multiple-Models for Execution and Recognition (HAMMER) architecture to detect low-level user actions and taking advantage of Stochastic Context-Free Grammars (SCFGs) to instantiate higher-level models which recognise uncertain and recursive sequences of low-level actions. We discuss a couple of distinct scenarios for robotic companions: a humanoid sidekick for power-wheelchair users and a companion of hospital patients. Next, we address the limitations of the previous scenarios by applying our user modelling techniques and designing two further scenarios that fully take advantage of the user model. These scenarios are: a wheelchair driving tutor which models the user abilities, and the musical collaborator which learns the preferences of its users. The methodology produced interesting results in all scenarios: users preferred the actual robot over a simulator as a wheelchair sidekick. Hospital patients rated positively their interactions with the companion independently of their age. Moreover, most users agreed that the music collaborator had become a better accompanist with our framework. Finally, we observed that users' driving performance improved when the robotic tutor instructed them to repeat a task. As our workforce ages and the care requirements in our society grow, robots will need to play a role in helping us lead better lives. This thesis shows that, through the use of SCFGs, adaptive user models may be generated which then can be used by robots to assist their users.Open Acces
    corecore