15,044 research outputs found

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    A Novel Long-term, Multi-Channel and Non-invasive Electrophysiology Platform for Zebrafish.

    Get PDF
    Zebrafish are a popular vertebrate model for human neurological disorders and drug discovery. Although fecundity, breeding convenience, genetic homology and optical transparency have been key advantages, laborious and invasive procedures are required for electrophysiological studies. Using an electrode-integrated microfluidic system, here we demonstrate a novel multichannel electrophysiology unit to record multiple zebrafish. This platform allows spontaneous alignment of zebrafish and maintains, over days, close contact between head and multiple surface electrodes, enabling non-invasive long-term electroencephalographic recording. First, we demonstrate that electrographic seizure events, induced by pentylenetetrazole, can be reliably distinguished from eye or tail movement artifacts, and quantifiably identified with our unique algorithm. Second, we show long-term monitoring during epileptogenic progression in a scn1lab mutant recapitulating human Dravet syndrome. Third, we provide an example of cross-over pharmacology antiepileptic drug testing. Such promising features of this integrated microfluidic platform will greatly facilitate high-throughput drug screening and electrophysiological characterization of epileptic zebrafish

    Improved Detection of Gold Nanoparticle Labels for Paper-based Analytics

    Get PDF
    Point-of-care diagnostic devices are well-suited, and typically designed, for remote and/or resource-limited environments. The obvious application is for healthcare in the developing world; however, other additional important uses exist, including for security (biothreat agent detection) and human health and research during future manned deep space exploration missions. The objective of this thesis was to develop, and experimentally validate, techniques for improved quantified detection of labels used in lateral flow assays. Limits of detection were characterized for: (a) optical approaches, i.e., unaided eye, mobile electronic device camera images and microscope images with image analysis software developed through this thesis, and (b) a conductance based approach with direct measurement of electrical impedance in the detection region using hardware and software that were developed. Analysis of camera images from mobile electronic devices enables simultaneous detection of many targets on a multiplexed assay. Additionally, a peripheral device was designed which was intended to provide conductimetric analysis capabilities to mobile electronic devices. The detection limit of gold nanoparticles for the unaided eye was determined at a concentration of (3.98 ± 0.40)×10-11 M; mobile electronic device image analysis, microscope image analysis, and the conductance based approach showed improvements by approximately a half to a third, an order of magnitude, and three orders of magnitude, respectively

    Internet of Things (IoT) - Ecosystem and Indoor Climate Dashboard for Visualization in Domestic Homes

    Get PDF
    Internet of Things (IoT) has become a ubiquitous ”thing” that we are not aware of. It fits right into daily life as we do our chores, making it simpler without us knowing it in the background. IoT is a ”thing” that digitalizes everyday objects and generates a huge amount of data at our disposal. If the data are not handled with analytics or visualization to give meaningful insights it can be wasted. Design theory is a cornerstone in the process of designing a good dashboard. This thesis aims to validate the current design theory by applying it to a dashboard using an IoT ecosystem as its data source. This was done through iterative prototyping and user testing. The results show that some design theory elements are prevalent, while others are not so important. Having the human-in-the-loop approach and design theory combined is a necessity for creating good design. The final prototype reflects the results of the user testing and can be seen as an indicator of good design

    Adaptative ECT System Based on Reconfigurable Electronics

    Get PDF
    In this work we present a novel scheme for the design of electrical capacitance tomography systems that is based on the use of reconfigurable electronics. The objective of this strategy is to generate an adaptable and portable prototype for the processing electronics, i.e., an instrument suitable to be easily transported and applied to different ECT sensors and scenarios with no need of hardware redesign. In order to show the benefits of this approach, a prototype of the processing electronics for the readings of the inter-electrode capacitance values has been implemented using a Programmable System on Chip (PSoC) that allows configuring both analog and digital blocks included in the design. The result is a compact and portable instrument that can work with any ECT sensor up to 8 electrodes. The measurements are sent through a wireless Bluetooth link to an external smart-device such as smartphone, where the permittivity distribution is reconstructed using a custom-developed Android application.Junta de Andalucía (University Professor and Researcher Training Program – FPDI grant)EI BIOTiC under project MPTIC1
    • 

    corecore