1,337 research outputs found

    Zonotopic fault detection observer design for Takagi–Sugeno fuzzy systems

    Get PDF
    This paper considers zonotopic fault detection observer design in the finite-frequency domain for discrete-time Takagi–Sugeno fuzzy systems with unknown but bounded disturbances and measurement noise. We present a novel fault detection observer structure, which is more general than the commonly used Luenberger form. To make the generated residual sensitive to faults and robust against disturbances, we develop a finite-frequency fault detection observer based on generalised Kalman–Yakubovich–Popov lemma and P-radius criterion. The design conditions are expressed in terms of linear matrix inequalities. The major merit of the proposed method is that residual evaluation can be easily implemented via zonotopic approach. Numerical examples are conducted to demonstrate the proposed methodPeer ReviewedPostprint (author's final draft

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Zonotopic fault estimation filter design for discrete-time descriptor systems

    Get PDF
    This paper considers actuator-fault estimation for discrete-time descriptor systems with unknown but bounded system disturbance and measurement noise. A zonotopic fault estimation filter is designed based on the analysis of fault detectability indexes. To ensure estimation accuracy, the filter gain in the zonotopic fault estimation filter is optimized through the zonotope minimization. The designed zonotopic filter not only can estimate fault magnitudes, but it also provides fault estimation results in an interval, i.e. the upper and lower bounds of fault magnitudes. Moreover, the proposed fault estimation filter has a non-singular structure and hence is easy to implement. Finally, simulation results are provided to illustrate the effectiveness of the proposed method.Postprint (published version

    Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    Get PDF
    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented

    Zonotopic set-membership state estimation for discrete-time descriptor LPV systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This technical note proposes a novel set-membership state estimation approach based on zonotopes for discrete-time descriptor linear parameter-varying systems. The consistency test between the system model and measured outputs is implemented to construct a parameterized intersection zonotope with respect to a correction matrix. With a defined zonotope minimization criterion, we propose a novel offline optimization problem to obtain the optimal correction matrix. In addition, with the proposed approach, an adaptive bound of the radius of the intersection zonotope is also provided. Finally, a case study with a truck-trailer system is shown to illustrate the proposed approach.Peer ReviewedPostprint (author's final draft
    corecore