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This paper focuses on the admissible consensus problem for heterogeneous descriptor multi-agent systems.
Based on algebra, graph and descriptor system theory, the necessary and sufficient conditions are proposed
for heterogeneous descriptor multi-agent systems achieving admissible consensus. The provided conditions
depend on not only the structure properties of each agent dynamics but also the topologies within
descriptor multi-agent systems. Moreover, an algorithm is given to design the novel consensus protocol.
A numerical example demonstrates the effectiveness of the proposed design approach.
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1. Introduction

In recent years, distributed coordination control for multi-agent systems has attracted considerable
attention due to board applications including flocking problem, formation problem, distributed
sensor networks and congestion control in communication networks, and so on (Feng & Hu, 2014;
Guo et al., 2014; Yu et al., 2013; Zhu et al., 2013). Consensus problem is one of the most fundamental
distributed coordination control problems (Pan et al., 2014; Zhang & Tian, 2014; Zheng, 2014).
Consensus means that multiple agents reach an agreement on a common value which might be, for
example, heading direction in flocking behavior, average in distributed computation, or the altitude
in multi-spacecraft alignment (Lin & Jia, 2010; Nguyen & Tran, 2013; Sedziwy, 2014). In addition,
it is worth mentioning that descriptor systems (also referred to as singular systems, semi-state
systems, generalized state-space systems, implicit systems or differential-algebraic systems) have
provided a more natural description of dynamical systems than state space systems (Boughari &
Radhy, 2007; Cong, 2014; Huang, 2014; Su et al., 2013). Descriptor systems, as a form of differential
algebraic equations, are better able to maintain the physical characteristics of systems, especially in
some coupled systems where constraints characterized by algebraic equations indeed exist between
some physical quantities (Hsieh, 2014; Li et al., 2014; Zhang et al., 2014). Meanwhile, many practical
systems can not be described by normal systems but descriptor systems. Descriptor systems have
a more comprehensive background, such as power systems, circuit systems, aerospace engineering,
chemical processes, social economic systems, network analysis, biological systems, and so on.
In summary, the study based on combining multi-agent systems with descriptor systems has

important theory significance and practical application value. Hence this paper puts an intensive
study on admissible consensus problems with multi-agent systems composed of descriptor systems
as the research object. The concept of descriptor multi-agent systems has been introduced in Yang
& Liu (2012). Taking a robot system for example (Duan, 2010), consider a three-link manipulator
shown in Fig. 1 whose task is to clean the region between points A and B. The robot fulfills the
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Figure 1. A three-link planar manipulator (Duan, 2010)

Figure 2. A cleaning mobile manipulator (Duan, 2010)

task with the given time by moving the end-effector of the manipulator from point A to point B
repeatedly with the specified contact force. In fact, this is a simplified model and task description
of the large mobile manipulator cleaning the facade of a large building illustrated in Fig. 2. Assume
that the cleaning flat surface is a rigid body and the third arm is a smooth and rigid plate. By
adding the constraint equations and the corresponding generalized constrained force to the motion
equation of a free robot, the motion of the constrained robots can be easily modeled as a descriptor
system. The specific details of deduction have been shown in Duan (2010). Thus, the descriptor
multi-agent system is made of several or many descriptor systems like three-link manipulators
over networks. In this example, achieving consensus means that state differences between different
manipulators tend to zero, respectively. Roughly speaking, these manipulators move in the very
similar trajectories, but these trajectories do not overlap.
In the last two decades, many results of state space systems have been extended to descriptor

systems (Dong, 2014; Li & Zhang, 2012; Wang et al., 2014; Yang et al., 2010). However, rare
works have been published to deal with admissible consensus of descriptor multi-agent systems.
For homogenous descriptor multi-agent systems with fixed topologies, Yang & Liu (2012) have
provided the necessary and sufficient consensus conditions with respect to a set of admissible
consensus protocols. Xi et al. (2012) have dealt with consensus problem for linear time-invariant
homogenous descriptor swarm system. For singular high-order homogenous multi-agent systems
with switching topologies, guaranteed-cost consensus problems have been investigated in Xi et
al. (2014). And linear matrix inequality conditions have been provided for consensualization and
guaranteed-cost consensus, respectively. Based on the networked predictive control scheme, static
output feedback and observer, Yang & Liu (2014) has proposed protocols to guarantee that the
studied descriptor system achieve consensus, and the protocol also can eliminate the negative effect
of networked delays. It is regrettable that Xi et al. (2012, 2014); Yang & Liu (2012) and Yang &
Liu (2014) do not consider heterogeneous descriptor multi-agent systems. Due to the impact of
external environment, specific task distribution or other factors, the characteristics and dynamic
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models of coupled agents may be different, and these systems are called heterogeneous multi-agent
systems. Comparing the discussion of consensus problems for homogeneous multi-agent systems
with that for heterogeneous ones, it is easy to see that the later one has more significant due to
heterogeneous multi-agent systems have more extensive description in the real world. In this paper,
the admissible consensus problem is studied for heterogeneous descriptor multi-agent systems with
fixed topologies and agents described different dynamics. A novel protocol is proposed to solve
the admissible consensus problem. Furthermore, the consensus algorithm is supplied to design the
consensus protocol. The provided numerical example demonstrates the effectiveness of the proposed
design approach.
The rest of this paper is organized as follows. Some preliminaries on descriptor system theory and

the problem formulation are described in Section 2. In Section 3, admissible consensus analysis for
heterogeneous multi-agent systems is discussed. Meanwhile, the proposed consensus protocol is de-
signed. A numerical example will be presented in Section 4 to verify the feasibility and effectiveness
of the theoretical results obtained in this paper. Section 5 is devoted to conclusions.

2. Preliminaries and problem formulation

2.1 Preliminaries

Throughout the paper, let R, C, C− and In denote the real plane, the complex plane, the open
left-half complex plane and the identity matrix of order n, respectively. Rm×n and Cm×n represent
a set of all real matrices of dimension m×n and a set of all complex matrices of dimension m×n,
respectively. For the given vector x, ‖x‖ stands for the Euclidean norm.

Definition 1: (Ben-Israel & Greville, 1974) Let A ∈ Cm×n. Then the matrix X ∈ Cn×m satisfying
the following four equations (usually called the Penrose conditions)

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA

is called the Moore-Penrose inverse of A, and is denoted by X = A†.

Lemma 1: (Ben-Israel & Greville, 1974) Let A ∈ Cm×n. The generalized inverse X satisfying the
Penrose conditions is existent and unique. Moreover, if rankA = n, then A†A = In; if rankA = m,
then AA† = Im.

Lemma 2: (Horn & Johnson, 1990) For any matrix A = [aij ], B, C and D with appropriate
dimensions, the Kronecker product of matrices A and B is defined as:

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






,

it has the following properties:

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

A⊗B +A⊗ C = A⊗ (B + C).

Definition 2: Let E,A ∈ Rn×n.

(i) (Wu & Zhou, 2007) The pair (E,A) is said to be regular if det(sE −A) is not identically zero
for some s ∈ C, where det(·) represents determinant of a matrix;
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(ii) (Xi et al., 2012) The pair (E,A) is said to be impulse free if (E,A) is regular and deg det(sE−
A) = rankE for ∀s ∈ C, where deg(·) represents degree of a polynomial, respectively;

(iii) (Duan, 2010) The pair (E,A) is said to be stable if σ(E,A) ⊆ C−, where σ(E,A) = {λ|λ ∈
C, λ is finite, det(λE −A) = 0};

(iv) (Duan, 2010) The pair (E,A) is said to be admissible if (E,A) is impulse free and stable.

Remark 1: The regularity of descriptor systems can guarantee the existence and uniqueness of
solutions (Duan, 2010).

Definition 3: (Duan, 2010) The regular descriptor system

Eẋ(t) = Ax(t) +Bu(t),

or (E,A,B) is called stabilizable if there exists a state feedback u = Kx+ v such that the resulted
closed-loop system

Eẋ = (A+BK)x+Bv,

is stable, where K ∈ Rr×n, v ∈ Rr is auxiliary input signal.

Lemma 3: (Yang et al., 2004) Descriptor linear system

Eẋ(t) = Ax(t)

is admissible (stable) if and only if the pair (E,A) is admissible (stable).

Lemma 4: (Yang et al., 2004) For E,A ∈ Rn×n, B ∈ Rn×r and C ∈ Rm×n, assume that (E,A)
is impulse free, (E,A,B) is stabilizable, and (E,A,C) is detectable. Then Riccati equation

ATX +XTA−XTBBTX + CTC = 0, (1a)

ETX = XTE ≥ 0 (1b)

has at least one admissible solution X, i.e., (E,A−BBTX) is admissible, where X is the maximum
solution. Furthermore, the admissible solution X is unique in the sense of ETX.

Lemma 5: (Yang & Liu, 2012) If P is an admissible solution of Riccati equation (1) and (E,A,C)
is detectable, then σ

(

E, [A− (a+ bi)BBTP ]
)

⊆ C−(i2 = −1) for ∀a ≥ 1
2 , b ∈ R.

2.2 Problem formulation

Consider a class of heterogeneous descriptor multi-agent systems consisting of N agents indexed
by 1, 2, · · · , N , respectively. The dynamics of the i-th agent is described as:

Eẋi(t) = Aixi(t) +Biui(t), i = 1, 2, · · · N, (2)

where xi(t) ∈ Rn and ui(t) ∈ Rm are the state and control input of the i-th agent, respectively;
E,Ai ∈ Rn×n, Bi ∈ Rn×m; rankE = r ≤ n. Assume that Bi has a full-row rank, i = 1, 2, · · · N .

Remark 2: In the above descriptor multi-agent system, if matrix E is nonsingular, this descrip-
tor multi-agent system becomes a normal multi-agent system. Therefore, from taking account of
the wide rang of elements of matrix E, it is obtained that descriptor multi-agent systems are
generalizations of normal multi-agent systems.
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Regarding the above N agents as vertices, the topology relationship among them can be con-
veniently described by a directed digraph G = (V, E ,A) with a set of nodes V = {1, 2, · · · , N}
denoting the agents, a set of directed edges E ⊆ V × V and a nonnegative weighted adjacency
matrix A = [aij ] ∈ RN×N . In directed graph G, a directed edge eij is denoted by the ordered
pair of nodes (j, i), where node j and node i are called parent and child node, respectively. The
neighbor set of the i-th agent is denoted by Ni = {j ∈ V|eij ∈ E}. The adjacency elements aii = 0,
aij > 0 ⇔ j ∈ Ni associated with eij , otherwise, aij = 0. Moreover, if there exists a node, called
root, such that there is a directed path from this node to any other nodes, the graph is said to
contain a directed spanning tree. The Laplacian matrix LG = [lij ] ∈ RN×N of the digraph G is
defined as:

lij =







−aij , i 6= j,
N
∑

k=1,k 6=i

aik, i = j.
(3)

Clearly, all row-sums of LG are zero, which implies that LG has at least one zero eigenvalue and
corresponding the right eigenvector 1N , where 1N = [1 1 · · · 1]T ∈ RN . Meanwhile, Laplacian
matrix LG has the following property.

Lemma 6: (Ren & Beard, 2005) The Laplacian matrix LG of a directed graph G has at least one
zero eigenvalue and all non-zero eigenvalues are in the open right-half plane. Furthermore, LG has
exactly one zero eigenvalue if and only if G contains a directed spanning tree.

Adopting state feedback is not only simple and feasible in terms of design, but can also improve
the performance of systems effectively. Hence the state feedback is considered to solve all kinds
of comprehensive problem firstly. Therefore, the consensus protocol with state feedback form is
adopted:

ui(t) = B
†
i (As −Ai)xi(t) +Ki

N
∑

j=1

aij [xj(t)− xi(t)], t ≥ 0, i ∈ V , (4)

where B
†
i is Moore-Penrose inverse of Bi, As and Ki, i ∈ V will be designed as follows.

Definition 4: For descriptor multi-agent system (2) with the fixed topology G = (V, E ,A), pro-
tocol (4) is said to solve the admissible consensus problem (or system (2) achieves admissible
consensus via protocol (4)) if the following conditions hold:

(i) The resultant closed-loop system via protocol (4) is impulse free;
(ii) lim

t→∞
‖xj(t)− xi(t)‖ = 0, ∀i, j ∈ V .

Remark 3: Comparing with the consensus definition for normal multi-agent system (i.e. E = In
in system (2)), the admissible consensus definition adds the condition that the resultant closed-loop
system via protocol (4) is impulse free. The main reasons for this are given as follows: On the one
hand, the normal linear systems have always a unique solution, but for descriptor systems, the
problem becomes complicated. Descriptor systems maybe have no solution, or have more than one
solution. Investigation of the condition for existence and uniqueness of the solution to descriptor
systems results in the concept of regularity. Since it can guarantee the existence and uniqueness
of a solution to descriptor systems, regularity is a very important property for descriptor systems.
On the other hand, different from that of normal linear systems, the response of descriptor systems
may contain impulse terms. These impulse terms which may cause saturation of control and may
even destroy the system are usually not expected to exist in most practical applications. Therefore,
eliminating the impulsive behavior of descriptor systems via certain feedback control is an impor-
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tant fundamental problem in descriptor systems theory (Duan, 2010). According Definition 2, it
can be obtained that a system is impulse free under the precondition which this system is regular.
Based on the above reasons, Definition 4 adds the condition that the resultant closed-loop system
via protocol (4) is impulse free.

The aim of this paper is to solve the following problem.

Problem 1: For descriptor multi-agent system (2) with the directed topology G = (V, E ,A),
design protocol (4) to solve the admissible consensus problem.

3. Analysis of admissible consensus for heterogeneous descriptor multi-agent
system

Theorem 1: For descriptor multi-agent system (2) with the directed topology G = (V, E ,A), pro-
tocol (4) solves the admissible consensus problem of system (2) if and only if there exist s ∈ V and
Ki ∈ Rm×n, i ∈ V satisfy that the following condition hold.

(i) The matrix pair [IN ⊗ E, IN ⊗ As − B̃(LG ⊗ In)] is impulse free, where B̃ =
diag{B1K1, B2K2 · · · , BNKN}.

(ii) The matrix pair [IN−1 ⊗E, IN−1 ⊗As − B̄(L22 ⊗ In) + (1N−1L12)⊗ (B1K1)] is stable, where
1N−1 = [1 1 · · · 1]T ∈ RN−1, B̄ = diag{B2K2, B3K3 · · · , BNKN}, L12 ∈ RN−1 and

L22 ∈ R(N−1)×(N−1) are defined by LG =

[

l11 L12

L21 L22

]

.

Proof. Denote

x(k) = [xT1 (k) x
T
2 (k) · · · xN (k)T ]T ,

δi(k) = xi(k)− x1(k), i ∈ V \ {1},

δ(k) = [ δT2 (k) δ
T
3 (k) · · · δ

T
N (k) ]T .

According to rankBi = n, one has B†
iBi = In. The closed-loop system which is made of system (2)

and protocol (4) is as follows:

Eẋi(t) = Asxi(t) +BiKi

N
∑

j=1

aij [xj(t)− xi(t)], i ∈ V . (5)

Using the definition of the element lij of Laplacian matrix LG , system (5) can be written as

Eẋi(t) = Asxi(t)−BiKi

N
∑

j=1

lijδj(t), i ∈ V ,

then it follows that the compact form of the closed-loop system is obtained:

(IN ⊗ E)ẋ(t) = [IN ⊗As − B̃(LG ⊗ In)]x(t). (6)

So it is easy to see that system (6) is impulse free if and only if the matrix pair [IN ⊗ E, IN ⊗
As − B̃(LG ⊗ In)] is impulse free.
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The state difference system of agent i and agent 1 is as follows:

Eδ̇i(t) = Asδi(t)−BiKi

N
∑

j=2

lijδj(t) +B1K1

N
∑

j=2

l1jδj(t). (7)

Thus, the compact form of system (7) can be described as

(IN−1 ⊗ E)δ̇(t) = [IN−1 ⊗As − B̄(L22 ⊗ In) + (1N−1L12)⊗ (B1K1)]δ(t). (8)

It can be concluded that system (2) via protocol (4) achieves lim
t→∞

‖xj(t)− xi(t)‖ = 0, ∀i, j ∈ V if

and only if lim
t→∞

‖δ(t)‖ = 0 holds, that it is system (8) achieve asymptotically stable, which implies

that the matrix pair [IN−1⊗E, IN−1⊗As−B̄(L22⊗In)+(1N−1L12)⊗(B1K1)] is stable. Therefore,
protocol (4) solves the admissible consensus problem if and only if the condition (i) and (ii) hold,
simultaneously. The proof is completed.

Corollary 1: For descriptor multi-agent system (2) with the directed topology G = (V , E ,A),
protocol (4) solves the admissible consensus problem of system (2) if the topology G contains a
directed spanning tree, and there exists s ∈ V such that (E, As) is impulse free, and (E, As, Bs)
is stabilizable.

Proof. Using the preconditions which (E, As) is impulse free and (E, As, Bs) is stabilizable , it
can be concluded from Lemma 4 that descriptor Ricatti equation

AT
s X +XTAs −XTBsB

T
s X + In = 0, (9a)

ETX = XTE ≥ 0 (9b)

has the unique admissible solution P in the sense of ETX, then it follows that (E,As − BsB
T
s P )

is admissible.
Since the topology G contains a directed spanning tree, it is obtained that LG has only one

zero eigenvalue. Let λ1 = 0, λi, i ∈ V \ {1} be all eigenvalues of LG , θ = min
2≤i≤N

{Re(λi)} and

Ks = max{1
2 ,

1
θ
}BT

s P . It can be concluded from Lemma 5 that (E, As − λiBsKs) is admissible

for ∀i ∈ V\{1}. Choose Ki = B
†
iBsKs. Using rankBi = n, one obtains from Lemma 1 that

BiKi = BsKs holds for ∀i ∈ V . Then it follows that

B̃ = diag{B1K1, B2K2 · · · , BNKN} = IN ⊗ (BsKs),

B̄ = diag{B2K2, B3K3 · · · , BNKN} = IN−1 ⊗ (BsKs).

Thus,

IN ⊗As − B̃(LG ⊗ In) = IN ⊗As − LG ⊗ (BsKs),

IN−1 ⊗As − B̄(L22 ⊗ In) + (1N−1L12)⊗ (B1K1)

=IN−1 ⊗As − (L22 − 1N−1L12)⊗ (BsKs),

where 1N−1 = [1 1 · · · 1]T ∈ RN−1, L12 and L22 are defined as in Theorem 1.
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Denote H =

(

1 0
1N−1 IN−1

)

. Using the definition of Laplacian LG gives

H−1LGH =

(

0 L12

0 L22 − 1N−1L12

)

. (10)

It can be obtained from the above equation that

σ(L22 − 1N−1L12) = {λ2, λ3 · · · , λN}.

Hence there exists a nonsingular matrix F such that

F−1(L22 − 1N−1L12)F = J = diag(J1, · · · , Js),

where Jk, k = 1, 2, · · · , s are upper triangular Jordan blocks, whose principal elements consist of
λi, i ∈ V \ {1}, it follows that

(F ⊗ In)
−1(IN−1 ⊗ E)(F ⊗ In) = IN−1 ⊗ E,

(F ⊗ In)
−1[IN−1 ⊗As − (L22 − 1N−1L12)⊗ (BsKs)](F ⊗ In)

=IN−1 ⊗As − J ⊗ (BsKs).

So one has

σ[IN−1 ⊗ E, IN−1 ⊗As − (L22 − 1N−1L12)⊗ (BsKs)]

=

N
⋃

i=2

σ(E, As − λiBsKs).

Then one obtains [IN ⊗ E, IN ⊗ As − B̃(LG ⊗ In)] is impulse free if and only if (E, As) and
(E, As − λiBsKs), i ∈ V \ {1} are impulse free, and [IN−1 ⊗ E, IN−1 ⊗ As − B̄(L22 ⊗ In) +
(1N−1L12)⊗ (B1K1)] is stable if and only if (E, As−λiBsKs), i ∈ V \{1} are stable. Therefore, it
can be concluded from Theorem 1 that system (2) achieves admissible consensus via protocol (4)
if and only if (E, As) is impulse free and (E, As −λiBsKs), i ∈ V \ {1} are admissible. The proof
is completed.

Based on Corollary 1, the following algorithm is provided to design protocol (4), which implies
that Problem 1 will be solved under preconditions of Corollary 1.

Algorithm 1: Input: the matrices E, Ai ∈ Rn×n, Bi ∈ Rn×m and A = [aij ] ∈ RN×N ;
Output: the gain matrices K and Ki, i ∈ V.

(a) Choose s ∈ V such that (E, As) is impulse free and (E, As, Bs) is stabilizable;
(b) Solve descriptor Racatti equation (9), and the admissible solution is denoted by P ;
(c) Compute Laplacian matrix LG and the non-zero eigenvalues λi, i ∈ V \ {1}. Denote θ ,

min
2≤i≤N

{Re(λi)}. Set Ks = max{1
2 ,

1
θ
}BT

s P ;

(d) Compute B
†
i , and let Ki = B

†
iBsKs, i ∈ V ;

(e) Output the gain matrices As and Ki, i ∈ V.

Remark 4: The details on solving Equation (9) is given in our previous work (Yang & Liu, 2014).

Remark 5: If θ obtained in step (c) is very small, the elements of the matrix K in step (d)
will correspondingly become very large. In this case, the computed high-gain K is not usually
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acceptable in practical applications.

Remark 6: When B1 = B2 · · · = BN = B and rankB = n in system (2), protocol (4) is simplified
as:

ui(t) = B†(As −Ai)xi(t) +K

N
∑

j=1

aij [xj(t)− xi(t)], t ≥ 0, i ∈ V , (11)

where B† is Moore-Penrose inverse of B, As and K will be designed as follows. Corresponding to
Theorem 1 and Corollary 1, the following corollaries are given. The proof is omitted.

Corollary 2: For descriptor multi-agent system (2) with the directed topology G = (V , E ,A),
protocol (11) solves the admissible consensus problem of system (2) if and only if there exist s ∈ V
and K ∈ Rn×n satisfy that the following condition hold.

(i) The matrix pair [IN ⊗ E, IN ⊗As − (LG)⊗ (BK)] is impulse free;
(ii) The matrix pair [IN−1 ⊗ E, IN−1 ⊗ As − (L22 + 1N−1L12) ⊗ (BK)] is stable, where 1N−1 =

[1 1 · · · 1]T ∈ RN−1, L12 and L22 are defined as in Theorem 1.

Corollary 3: For descriptor multi-agent system (2) with the directed topology G = (V , E ,A),
protocol (11) solves the admissible consensus problem of system (2) if the topology G contains a
directed spanning tree, and there exists s ∈ V such that (E, As) is impulse free, and (E, As, B)
is stabilizable.

4. Numerical example

Example 1: Consider heterogeneous descriptor multi-agent system (2) consisting of N = 3 agents
with

E =





1 0 0
0 1 0
0 0 0



 , A1 =





1 4 2
−1 5 1
−2 1 3



 , A2 =





3 7 2
−1 5 −1
−2 1 3



 , A3 =





4 1 2
1 5 −1
2 3 1



 ,

B1 =





0.1 2 −1 1
3 −1 0.6 −3
2 −1 0.5 −1



 , B2 =





1 2 −1 1
0 −1 2 −3
0.5 3 1 −1



 , B3 =





−0.1 2 −1 1
5 −1 0.5 −1.5
1 3 1 −1



 ,

and the topology G = (V , E ,A), where V = {1, 2, 3}, E = {(2, 1), (2, 3), (3, 2)} and A =





0 1 0
0 0 1
0 2 0



 .

Figs. 3 shows its communication topology. Obviously, the topology G has a spanning tree.
According to the steps in Algorithm 1, the following can be obtained:

(a) As =





2.7 4.3 3.4
4.3 10.3 5.7
3.4 5.7 5.1



 and s = 2;

(b) P =





1 1 0
1 2 0
0 0 1



;
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Figure 4. Trajectories of state xi1 and xi2, i = 1, 2, 3.

(c) LG =





1 −1 0
0 1 −1
0 −2 2



, λ2 = 1, λ3 = 3, θ = 1 and Ks = K2 =









1 1 0.5
3 4 3
1 3 1
−2 −5 −1









;

(d) B
†
1 =









0.3 −0.1 0.7
0.4 0.3 −0.5
0 0 0
0.1 −0.6 0.8









, B
†
3 =









0.1 0.2 0
0.2 0 0.2
−0.6 −0.1 0.4
0 0 0









,

K1 =









8.3 11 8
−0.9 −1.7 −1
0 0 0
4.9 3.3 5.6









, K3 =









2.6 5.2 2.1
2.8 3.4 2.8
1.4 5.2 0.8
0 0 0









.

Choose the initial states as follows:

x1(0) =





−1
2
3.9



 , x2(0) =





1
2
9.6



 , x3(0) =





−2
−4
−19



 .

The simulation results are presented in Figs. 4 to 7, respectively. Figs. 4 and 5 show state
trajectories of heterogeneous descriptor multi-agent system (2) which indicates that system (2)
achieves admissible consensus via protocol (4). Figs. 6 and 7 present trajectories of state differences
of system (2) all tend to zero, which implies that system (2) achieves admissible consensus again
by using Definition 4.
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Figure 5. Trajectories of state xi1 and xi3, i = 1, 2, 3.
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Figure 6. Trajectories of state difference x2 − x1
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Figure 7. Trajectories of state difference x3 − x1
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5. Conclusions

For heterogeneous descriptor multi-agent systems with directed topologies, this paper has solved the
admissible consensus problem via the novel protocols. The consensus algorithm has been provided
to design the distributed protocol. The given simulation results have successfully demonstrated the
effectiveness of the given design approach. However, it is worth noticing that the study of admissible
consensus for heterogeneous descriptor multi-agent systems without communication delays is a
basic problem, which only serves as a stepping stone to investigate heterogeneous descriptor multi-
agent systems with networked communication delays or more complicated topologies. The future
research will study descriptor multi-agent systems with time-varying networked delays, stochastic
or switching topologies, and agents described by switching systems (Zhang et al., 2011), hybrid
systems (Xia et al., 2009; Xia, 2008) or Markovian jump systems (Li et al., 2014, 2015; Zhang et
al., 2014), and so on.
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