23,857 research outputs found

    Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

    Get PDF
    The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture

    T-CHAT educational framework for teaching cyber-physical system engineering

    Get PDF
    Cyber-physical systems (CPS) are increasingly used in manufacturing, transportation, health, and other industries. To develop these complex interdisciplinary systems, highly qualified CPS engineers are required who possess sound engineering knowledge and excellent transferable skills. Academic institutions offer a range of modules and curricula to teach CPS engineering. However, the literature reports a gap between expectations of industry and competencies of CPS graduates. To close this gap, this paper introduces and describes a holistic educational framework (T-CHAT) for teaching CPS engineering at the module level. To evaluate this framework, two use cases were analysed by conducting self-perception surveys and semi-structured interviews with students. Descriptive statistics and t-tests were calculated for the survey data. Interviews were coded and analysed using a General Inductive Approach. The analysis results were discussed by the comparison of the T-CHAT implementations in these two use cases

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Towards a foundation for holistic power system validation and testing

    Get PDF
    Renewable energy sources and further electrificationof energy consumption are key enablers for decreasing green-house gas emissions, but also introduce increased complexitywithin the electric power system. The increased availability ofautomation, information and communication technology, andintelligent solutions for system operation have transformed thepower system into a smart grid. In order to support thedevelopment process of smart grid solutions on the system level,testing has to be done in a holistic manner, covering the multi-domain aspect of such complex systems. This paper introducesthe concept of holistic power system testing and discuss first stepstowards a corresponding methodology that is being developed inthe European ERIGrid research infrastructure project.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Mechatronics & the cloud

    Get PDF
    Conventionally, the engineering design process has assumed that the design team is able to exercise control over all elements of the design, either directly or indirectly in the case of sub-systems through their specifications. The introduction of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) means that a design team’s ability to have control over all elements of a system is no longer the case, particularly as the actual system configuration may well be being dynamically reconfigured in real-time according to user (and vendor) context and need. Additionally, the integration of the Internet of Things with elements of Big Data means that information becomes a commodity to be autonomously traded by and between systems, again according to context and need, all of which has implications for the privacy of system users. The paper therefore considers the relationship between mechatronics and cloud-basedtechnologies in relation to issues such as the distribution of functionality and user privacy

    Towards a Common Language of Infrastructure Interdependency

    Get PDF
    Infrastructure systems can exist interdependently with one another either by design, necessity or evolution. There is evidence that interdependencies can be the source of emergent benefits and hazards, and therefore there is value in their identification and management. Achieving this requires collaboration and communication between infrastructure stakeholders across all relevant sectors. Recognising, developing and sharing multiple understandings of infrastructure interdependency and dependency will facilitate a wide range of multi-disciplinary and cross-sectorial work and support productive stakeholder dialogues. This paper therefore aims to initiate discussion around the nature of infrastructure interdependency and dependency in order to establish the basis of a useful, coherent and complete conceptual taxonomy. It sets out an approach for locating this taxonomy and language within a framework of commonplace stakeholder viewpoints. The paper looks at the potential structural arrangements of infrastructure interdependencies before exploring the qualitative ways in which the relationships can be characterised. This builds on the existing body of knowledge as well as experience through case studies in developing an Interdependency Planning and Management Framework for Infrastructure
    corecore