305 research outputs found

    Energy Efficient Load Latency Tolerance: Single-Thread Performance for the Multi-Core Era

    Get PDF
    Around 2003, newly activated power constraints caused single-thread performance growth to slow dramatically. The multi-core era was born with an emphasis on explicitly parallel software. Continuing to grow single-thread performance is still important in the multi-core context, but it must be done in an energy efficient way. One significant impediment to performance growth in both out-of-order and in-order processors is the long latency of last-level cache misses. Prior work introduced the idea of load latency tolerance---the ability to dynamically remove miss-dependent instructions from critical execution structures, continue execution under the miss, and re-execute miss-dependent instructions after the miss returns. However, previously proposed designs were unable to improve performance in an energy-efficient way---they introduced too many new large, complex structures and re-executed too many instructions. This dissertation describes a new load latency tolerant design that is both energy-efficient, and applicable to both in-order and out-of-order cores. Key novel features include formulation of slice re-execution as an alternative use of multi-threading support, efficient schemes for register and memory state management, and new pruning mechanisms for drastically reducing load latency tolerance\u27s dynamic execution overheads. Area analysis shows that energy-efficient load latency tolerance increases the footprint of an out-of-order core by a few percent, while cycle-level simulation shows that it significantly improves the performance of memory-bound programs. Energy-efficient load latency tolerance is more energy-efficient than---and synergistic with---existing performance technique like dynamic voltage and frequency scaling (DVFS)

    Affordable kilo-instruction processors

    Get PDF
    Diversos motius expliquen l'estancament en el que es troba el desenvolupament del processador tradicional dissenyat per maximitzar el rendiment d'un únic fil d'execució. Per una banda, técniques agressives com la supersegmentacó del camí de dades o l'execució fora d'ordre tenen un impacte molt negatiu sobre el consum de potència i la complexitat del disseny. Altrament, l'increment en la freqüència del processador augmenta la discrepància entre la velocitat del processador i el temps d'accés a memòria principal. Tot i que les memòries cau redueixen considerablement el nombre d'accessos a memòria principal, aquests accessos introdueixen latencies prou grans per reduir considerablement el rendiment. Tècniques convencionals com l'execució fora d'ordre, útils per ocultar accessos a les memòries cau de 2on nivell, no estan pensades per ocultar latències tan grans. Caldrien cues amb mides de centenars d'instruccions i milers de registres per tal de no interrompre l'execució en el moment de produir-se un accés a memòria principal. Desafortunadament, la tecnologia disponible no és eficient per implementar aquestes estructures monolíticament, doncs resultaria un temps d'accés molt elevat, un consum de potència igualment elevat i un àrea no menyspreable. En aquesta tesi s'han estudiat tècniques que permeten l'implementació d'un processador amb capacitat per continuar processant instruccions en el cas de que es produeixin accessos a memòria principal. Les condicions per a que aquest processador sigui implementable són que estigui basat en estructures de mida convencional i que tingui una unitat de control senzilla. El repte es troba en conciliar un model de processador distribuït amb un control senzill. El problema del disseny del processador s'ha enfocat observant el comportament d'un processador de recursos infinits. S'ha observat que l'execució segueix uns patrons molt interessants, basats en la localitat d'execució. En aplicacions numèriques s'observa que més del 70% de les instruccions no depenen de accessos a memòria principal. Aixó és molt important doncs mostra que sempre hi ha una porció important d'instruccions executables poc després de la decodificació. Aixó permet proposar un nou tipus de processador amb dues unitats d'execució. La primera unitat (el "Cache Processor") processa a alta velocitat instruccions independents de memòria principal. La segona unitat ("Memory Processor") processa les instruccions dependents de accessos a memòria principal, pero de forma molt més relaxada, cosa que li permet mantenir milers de instruccions en vol. Aquesta proposta rep el nom de Decoupled KILO-Instruction Processor (D-KIP) i té forces avantatges: per un costat permet la construcció d'un kilo-instruction processor basat en estructures convencionals i per l'altre simplifica el disseny ja que minimitza les interaccions entre ambdos unitats d'execució.En aquesta tesi es proposen dos implementacions de processadors desacoblats: el D-KIP original, i el Flexible Heterogeneous MultiCore (FMC). Sobre aquestes propostes s'analitza el rendiment i es compara amb altres tècniques que incrementan el parallelisme de memoria, com el prefetching o l'execució "runahead". D'aquesta avaluació es desprén que el processador FMC té un rendiment similar al de un processador convencional amb una finestra de 1500 instruccions en vol. Posteriorment s'analitza l'integració del FMC en entorns multicore/multiprogrammats. La tesi es completa amb la proposta d'una cua de loads i stores (LSQ) per a aquest tipus de processador.Several motives explain the slowdown of high-performance single-thread processor development. On the one hand, aggressive techniques such as superpipelining or out-of-order execution have a considerable impact on power consumption and design complexity. On the other hand, the increment in processor frequencies has led to a large disparity between processor speed and memory access time. Although cache memories considerably reduce the number of accesses to main memory, the remaining accesses introduce latencies large enough to considerably decrease performance. Conventional techniques such as out-of-order execution, while effective in hiding L2 cache accesses, cannot hide latencies this large. Queues of hundreds of entries and thousands of registers would be necessary in order to prevent execution from stalling in the event of a L2 cache miss. Unfortunately, current technology cannot efficiently implement such structures monolithically, as access latencies would considerably increase, as would power consumption and area consumption.In this thesis we studied techniques that allow the processor to continue processing instructions in the event of main memory accesses. The conditions for such a processor to be implementable are that it should be based on structures of conventional size and that it should feature simple control logic. The challenge lies in being able to design a distributed processor with simple control. The design of this processor has been approached by analyzing the behavior of a processor with infinite resources. We have observed that execution follows a very interesting pattern based on execution locality. In numerical codes we observed that over 70% of all instructions do not depend on memory accesses. This is interesting since it shows that there is always a large portion of instructions that can be executed shortly after decode. This allows us to propose a new kind of processor with two execution units. The first unit, the Cache Processor, processes memory-independent instructions at high speed. The second unit, the Memory Processor, processes instructions that depend on main memory accesses, but using relaxed scheduling logic, which allows it to scale to thousands of in-flight instructions. This proposal, which receives the name of Decoupled KILO-Instruction Processor (D-KIP), has several advantages. On the one hand it allows the construction of a kilo-instruction processor based on conventional structures and, on the other hand, it simplifies the design as the interaction between both execution units is minimal. In this thesis two implementations for this kind of processor are presented: the original D-KIP and the Flexible Heterogeneous MultiCore (FMC). The performance of these proposals is analyzed and compared to other proposals that increase memory-level parallelism, such as prefetching or runahead execution. It is observed that the FMC processor performs at the same level of a conventional processor with a window of around 1500 instructions. Further, the integration of the FMC processor into a multicore/multiprogrammed environment is studied. This thesis concludes with the proposal of a two-level Load/Store Queue for this kind of processor

    Adaptable register file organization for vector processors

    Get PDF
    Today there are two main vector processors design trends. On the one hand, we have vector processors designed for long vectors lengths such as the SX-Aurora TSUBASA which implements vector lengths of 256 elements (16384-bits). On the other hand, we have vector processors designed for short vectors such as the Fujitsu A64FX that implements vector lengths of 8 elements (512-bit) ARM SVE. However, short vector designs are the most widely adopted in modern chips. This is because, to achieve high-performance with a very high-efficiency, applications executed on long vector designs must feature abundant DLP, then limiting the range of applications. On the contrary, short vector designs are compatible with a larger range of applications. In fact, in the beginnings, long vector length implementations were focused on the HPC market, while short vector length implementations were conceived to improve performance in multimedia tasks. However, those short vector length extensions have evolved to better fit the needs of modern applications. In that sense, we believe that this compatibility with a large range of applications featuring high, medium and low DLP is one of the main reasons behind the trend of building parallel machines with short vectors. Short vector designs are area efficient and are "compatible" with applications having long vectors; however, these short vector architectures are not as efficient as longer vector designs when executing high DLP code. In this thesis, we propose a novel vector architecture that combines the area and resource efficiency characterizing short vector processors with the ability to handle large DLP applications, as allowed in long vector architectures. In this context, we present AVA, an Adaptable Vector Architecture designed for short vectors (MVL = 16 elements), capable of reconfiguring the MVL when executing applications with abundant DLP, achieving performance comparable to designs for long vectors. The design is based on three complementary concepts. First, a two-stage renaming unit based on a new type of registers termed as Virtual Vector Registers (VVRs), which are an intermediate mapping between the conventional logical and the physical and memory registers. In the first stage, logical registers are renamed to VVRs, while in the second stage, VVRs are renamed to physical registers. Second, a two-level VRF, that supports 64 VVRs whose MVL can be configured from 16 to 128 elements. The first level corresponds to the VVRs mapped in the physical registers held in the 8KB Physical Vector Register File (P-VRF), while the second level represents the VVRs mapped in memory registers held in the Memory Vector Register File (M-VRF). While the baseline configuration (MVL=16 elements) holds all the VVRs in the P-VRF, larger MVL configurations hold a subset of the total VVRs in the P-VRF, and map the remaining part in the M-VRF. Third, we propose a novel two-stage vector issue unit. In the first stage, the second level of mapping between the VVRs and physical registers is performed, while issuing to execute is managed in the second stage. This thesis also presents a set of tools for designing and evaluating vector architectures. First, a parameterizable vector architecture model implemented on the gem5 simulator to evaluate novel ideas on vector architectures. Second, a Vector Architecture model implemented on the McPAT framework to evaluate power and area metrics. Finally, the RiVEC benchmark suite, a collection of ten vectorized applications from different domains focusing on benchmarking vector microarchitectures.Hoy en día existen dos tendencias principales en el diseño de procesadores vectoriales. Por un lado, tenemos procesadores vectoriales basados en vectores largos como el SX-Aurora TSUBASA que implementa vectores con 256 elementos (16384-bits) de longitud. Por otro lado, tenemos procesadores vectoriales basados en vectores cortos como el Fujitsu A64FX que implementa vectores de 8 elementos (512-bits) de longitud ARM SVE. Sin embargo, los diseños de vectores cortos son los más adoptados en los chips modernos. Esto es porque, para lograr alto rendimiento con muy alta eficiencia, las aplicaciones ejecutadas en diseños de vectores largos deben presentar abundante paralelismo a nivel de datos (DLP), lo que limita el rango de aplicaciones. Por el contrario, los diseños de vectores cortos son compatibles con un rango más amplio de aplicaciones. En sus orígenes, implementaciones basadas en vectores largos estaban enfocadas al HPC, mientras que las implementaciones basadas en vectores cortos estaban enfocadas en tareas de multimedia. Sin embargo, esas extensiones basadas en vectores cortos han evolucionado para adaptarse mejor a las necesidades de las aplicaciones modernas. Creemos que esta compatibilidad con un mayor rango de aplicaciones es una de las principales razones de construir máquinas paralelas basadas en vectores cortos. Los diseños de vectores cortos son eficientes en área y son compatibles con aplicaciones que soportan vectores largos; sin embargo, estos diseños de vectores cortos no son tan eficientes como los diseños de vectores largos cuando se ejecuta un código con alto DLP. En esta tesis, proponemos una novedosa arquitectura vectorial que combina la eficiencia de área y recursos que caracteriza a los procesadores vectoriales basados en vectores cortos, con la capacidad de mejorar en rendimiento cuando se presentan aplicaciones con alto DLP, como lo permiten las arquitecturas vectoriales basadas en vectores largos. En este contexto, presentamos AVA, una Arquitectura Vectorial Adaptable basada en vectores cortos (MVL = 16 elementos), capaz de reconfigurar el MVL al ejecutar aplicaciones con abundante DLP, logrando un rendimiento comparable a diseños basados en vectores largos. El diseño se basa en tres conceptos. Primero, una unidad de renombrado de dos etapas basada en un nuevo tipo de registros denominados registros vectoriales virtuales (VVR), que son un mapeo intermedio entre los registros lógicos y físicos y de memoria. En la primera etapa, los registros lógicos se renombran a VVR, mientras que, en la segunda etapa, los VVR se renombran a registros físicos. En segundo lugar, un VRF de dos niveles, que admite 64 VVR cuyo MVL se puede configurar de 16 a 128 elementos. El primer nivel corresponde a los VVR mapeados en los registros físicos contenidos en el banco de registros vectoriales físico (P-VRF) de 8 KB, mientras que el segundo nivel representa los VVR mapeados en los registros de memoria contenidos en el banco de registros vectoriales de memoria (M-VRF). Mientras que la configuración de referencia (MVL=16 elementos) contiene todos los VVR en el P-VRF, las configuraciones de MVL más largos contienen un subconjunto del total de VVR en el P-VRF y mapean la parte restante en el M-VRF. En tercer lugar, proponemos una novedosa unidad de colas de emisión de dos etapas. En la primera etapa se realiza el segundo nivel de mapeo entre los VVR y los registros físicos, mientras que en la segunda etapa se gestiona la emisión de instrucciones a ejecutar. Esta tesis también presenta un conjunto de herramientas para diseñar y evaluar arquitecturas vectoriales. Primero, un modelo de arquitectura vectorial parametrizable implementado en el simulador gem5 para evaluar novedosas ideas. Segundo, un modelo de arquitectura vectorial implementado en McPAT para evaluar las métricas de potencia y área. Finalmente, presentamos RiVEC, una colección de diez aplicaciones vectorizadas enfocadas en evaluar arquitecturas vectorialesPostprint (published version

    Wrong-Path-Aware Entangling Instruction Prefetcher

    Get PDF
    © 2023.IEEE. This document is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by /4.0/ This document is the Accepted version of a Published Work that appeared in final form in IEEE Transactions on Computers. To access the final edited and published work see DOI 10.1109/TC.2023.3337308Instruction prefetching is instrumental for guaranteeing a high flow of instructions through the processor front end for applications whose working set does not fit in the lowerlevel caches. Examples of such applications are server workloads, whose instruction footprints are constantly growing. There are two main techniques to mitigate this problem: fetch directed prefetching (or decoupled front end) and instruction cache (L1I) prefetching. This work extends the state-of-the-art Entangling prefetcher to avoid training during wrong-path execution. Our Entangling wrong-path-aware prefetcher is equipped with microarchitectural techniques that eliminate more than 99% of wrong-path pollution, thus reaching 98.9% of the performance of an ideal wrongpath-aware solution. Next, we propose two microarchitectural optimizations able to further increase performance benefits by 1.8%, on average. All this is achieved with just 304 bytes. Finally, we study the interplay between the L1I prefetcher and a decoupled front end. Our analysis shows that due to pollution caused by wrong-path instructions, the degree of decoupling cannot be increased unlimitedly without negative effects on the energy-delay product (EDP). Furthermore, the closer to ideal is the L1I prefetcher, the less decoupling is required. For example, our Entangling prefetcher reaches an optimal EDP with a decoupling degree of 64 instructions

    A Sequentially Consistent Multiprocessor Architecture for Out-of-Order Retirement of Instructions

    Full text link
    Out-of-order retirement of instructions has been shown to be an effective technique to increase the number of in-flight instructions. This form of runtime scheduling can reduce pipeline stalls caused by head-of-line blocking effects in the reorder buffer (ROB). Expanding the width of the instruction window can be highly beneficial to multiprocessors that implement a strict memory model, especially when both loads and stores encounter long latencies due to cache misses, and whose stalls must be overlapped with instruction execution to overcome the memory latencies. Based on the Validation Buffer (VB) architecture (a previously proposed out- of-order retirement, checkpoint-free architecture for single processors), this paper proposes a cost-effective, scalable, out-of-order retirement multiprocessor, capable of enforcing sequential consistency without impacting the design of the memory hierarchy or interconnect. Our simulation results indicate that utilizing a VB can speed up both relaxed and sequentially consistent in-order retirement in future multiprocessor systems by between 3 and 20 percent, depending on the ROB size.Ubal Tena, R.; Sahuquillo Borrás, J.; Petit Martí, SV.; López Rodríguez, PJ.; Kaeli, D. (2012). A Sequentially Consistent Multiprocessor Architecture for Out-of-Order Retirement of Instructions. IEEE Transactions on Parallel and Distributed Systems. 23(8):1361-1368. doi:10.1109/TPDS.2011.255S1361136823
    • …
    corecore