4,350 research outputs found

    Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation

    Get PDF
    To enable the benets of a truly condition-based maintenance philosophy to be realised, robust, accurate and reliable algorithms, which provide maintenance personnel with the necessary information to make informed maintenance decisions, will be key. This thesis focuses on the development of such algorithms, with a focus on semiconductor manufacturing and wind turbines. An introduction to condition-based maintenance is presented which reviews dierent types of maintenance philosophies and describes the potential benets which a condition- based maintenance philosophy will deliver to operators of critical plant and machinery. The issues and challenges involved in developing condition-based maintenance solutions are discussed and a review of previous approaches and techniques in fault diagnostics and prognostics is presented. The development of a condition monitoring system for dry vacuum pumps used in semi- conductor manufacturing is presented. A notable feature is that upstream process mea- surements from the wafer processing chamber were incorporated in the development of a solution. In general, semiconductor manufacturers do not make such information avail- able and this study identies the benets of information sharing in the development of condition monitoring solutions, within the semiconductor manufacturing domain. The developed solution provides maintenance personnel with the ability to identify, quantify, track and predict the remaining useful life of pumps suering from degradation caused by pumping large volumes of corrosive uorine gas. A comprehensive condition monitoring solution for thermal abatement systems is also presented. As part of this work, a multiple model particle ltering algorithm for prog- nostics is developed and tested. The capabilities of the proposed prognostic solution for addressing the uncertainty challenges in predicting the remaining useful life of abatement systems, subject to uncertain future operating loads and conditions, is demonstrated. Finally, a condition monitoring algorithm for the main bearing on large utility scale wind turbines is developed. The developed solution exploits data collected by onboard supervisory control and data acquisition (SCADA) systems in wind turbines. As a result, the developed solution can be integrated into existing monitoring systems, at no additional cost. The potential for the application of multiple model particle ltering algorithm to wind turbine prognostics is also demonstrated

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    Maintenance optimization in industry 4.0

    Get PDF
    This work reviews maintenance optimization from different and complementary points of view. Specifically, we systematically analyze the knowledge, information and data that can be exploited for maintenance optimization within the Industry 4.0 paradigm. Then, the possible objectives of the optimization are critically discussed, together with the maintenance features to be optimized, such as maintenance periods and degradation thresholds. The main challenges and trends of maintenance optimization are, then, highlighted and the need is identified for methods that do not require a-priori selection of a predefined maintenance strategy, are able to deal with large amounts of heterogeneous data collected from different sources, can properly treat all the uncertainties affecting the behavior of the systems and the environment, and can jointly consider multiple optimization objectives, including the emerging ones related to sustainability and resilience

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector

    Get PDF
    The increasing availability of data, gathered by sensors and intelligent machines, is chang-ing the way decisions are made in the manufacturing sector. In particular, based on predictive approach and facilitated by the nowadays growing capabilities of hardware, cloud-based solutions, and new learning approaches, maintenance can be scheduled—over cell engagement and resource monitoring—when required, for minimizing (or managing) unexpected equipment failures, improving uptime through less aggressive maintenance schedules, shortening unplanned downtime, reducing excess (direct and indirect) cost, reducing long-term damage to machines and processes, and improve safety plans. With access to increased levels of data (and over learning mechanisms), companies have the capability to conduct statistical tests using machine learning algorithms, in order to uncover root causes of problems previously unknown. This study analyses the maturity level and contributions of machine learning methods for predictive maintenance. An upward trend in publications for predictive maintenance using machine learning techniques was identified with the USA and China leading. A mapping study—steady set until early 2019 data—was employed as a formal and well-structured method to synthesize material and to report on pervasive areas of research. Type of equipment, sensors, and data are mapped to properly assist new researchers in positioning new research activities in the domain of smart maintenance. Hence, in this paper, we focus on data-driven methods for predictive maintenance (PdM) with a comprehensive survey on applications and methods until, for the sake of commenting on stable proposal, 2019 (early included). An equal repartition between evaluation and validation studies was identified, this being a symptom of an immature but growing research area. In addition, the type of contribution is mainly in the form of models and methodologies. Vibrational signal was marked as the most used data set for diagnosis in manufacturing machinery monitoring; furthermore, supervised learning is reported as the most used predictive approach (ensemble learning is growing fast). Neural networks, followed by random forests and support vector machines, were identified as the most applied methods encompassing 40% of publications, of which 67% related to deep neural network with long short-term memory predominance. Notwithstanding, there is no robust approach (no one reported optimal performance over different case tests) that works best for every problem. We finally conclude the research in this area is moving fast to gather a separate focused analysis over the last two years (whenever stable implementations will appear)

    Predictive Maintenance in Industry 4.0

    Get PDF
    In the context of Industry 4.0, the manufacturing-related processes have shifted from conventional processes within one organization to collaborative processes cross different organizations, for example, product design processes, manufacturing processes, and maintenance processes across different factories and enterprises. The development and application of the Internet of things, i.e. smart devices and sensors increases the availability and collection of diverse data. With new technologies, such as advanced data analytics and cloud computing provide new opportunities for flexible collaborations as well as effective optimizing manufacturing-related processes, e.g. predictive maintenance. Predictive maintenance provides a detailed examination of the detection, location and diagnosis of faults in related machinery using various analyses. RAMI4.0 is a framework for thinking about the various efforts that constitute Industry 4.0. It spans the entire product life cycle & value stream axis, hierarchical structure axis and functional classification axis. The Industrial Data Space (now International Data Space) is a virtual data space using standards and common governance models to facilitate the secure exchange and easy linkage of data in business ecosystems. It thereby provides a basis for creating and using smart services and innovative business processes, while at the same time ensuring digital sovereignty of data owners. This paper looks at how to support predictive maintenance in the context of Industry 4.0. Especially, applying RAMI4.0 architecture supports the predictive maintenance using the FIWARE framework, which leads to deal with data exchanging among different organizations with different security requirements as well as modularizing of related functions

    Predictive Maintenance in Industry 4.0

    Get PDF
    In the context of Industry 4.0, the manufacturing-related processes have shifted from conventional processes within one organization to collaborative processes cross different organizations, for example, product design processes, manufacturing processes, and maintenance processes across different factories and enterprises. The development and application of the Internet of things, i.e. smart devices and sensors increases the availability and collection of diverse data. With new technologies, such as advanced data analytics and cloud computing provide new opportunities for flexible collaborations as well as effective optimizing manufacturing-related processes, e.g. predictive maintenance. Predictive maintenance provides a detailed examination of the detection, location and diagnosis of faults in related machinery using various analyses. RAMI4.0 is a framework for thinking about the various efforts that constitute Industry 4.0. It spans the entire product life cycle & value stream axis, hierarchical structure axis and functional classification axis. The Industrial Data Space (now International Data Space) is a virtual data space using standards and common governance models to facilitate the secure exchange and easy linkage of data in business ecosystems. It thereby provides a basis for creating and using smart services and innovative business processes, while at the same time ensuring digital sovereignty of data owners. This paper looks at how to support predictive maintenance in the context of Industry 4.0. Especially, applying RAMI4.0 architecture supports the predictive maintenance using the FIWARE framework, which leads to deal with data exchanging among different organizations with different security requirements as well as modularizing of related functions

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions
    corecore