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A B S T R A C T   

This work reviews maintenance optimization from different and complementary points of view. Specifically, we 
systematically analyze the knowledge, information and data that can be exploited for maintenance optimization 
within the Industry 4.0 paradigm. Then, the possible objectives of the optimization are critically discussed, 
together with the maintenance features to be optimized, such as maintenance periods and degradation thresh
olds. The main challenges and trends of maintenance optimization are, then, highlighted and the need is iden
tified for methods that do not require a-priori selection of a predefined maintenance strategy, are able to deal 
with large amounts of heterogeneous data collected from different sources, can properly treat all the un
certainties affecting the behavior of the systems and the environment, and can jointly consider multiple opti
mization objectives, including the emerging ones related to sustainability and resilience.   

1. Introduction 

Modern society relies on highly technological and mechanized in
dustries and services to produce and distribute commodities. The in
dustrial assets are inevitably affected by aging and degradation of their 
components, which strongly impact on production availability and 
product quality. To counteract this, Operation and Maintenance (O&M) 
activities are carefully planned and carried out, at a significant fraction 
of the total business cost. For example, in food-related industries, 
average maintenance costs represent about 15% of the production cost 
[1], in wind farms the O&M cost can reach 20%-25% of the life cycle 
cost [2], in mining industry the maintenance costs often account for over 
30% of the total production cost [3] and in nuclear power plants and 
heavy industries, the O&M cost is about 60%-70% of the total cost of 
production [4]. 

The perception of maintenance and of maintenance management has 
substantially changed through the years. Traditionally, it has been seen 
as “a necessary evil”, i.e., a set of expensive activities to perform only if 
unavoidable, because required or even mandatory, and that cannot 
enhance profitability [5]. With the acquired field experience of the 
negative impacts of failures and accidents, the role of maintenance has 
emerged as a strategic one, for anticipating components failures and 
system degradation of performance, and nowadays production man
agers invest significant resources in the development and implementa
tion of maintenance strategies for improving asset reliability, 

productivity, efficiency and sustainability [6]. On the other hand, 
planning maintenance in practice is far from being a trivial task, as it 
requires to consider the components health state, future profiles of 
system operation and aspects such as spare parts inventory and future 
production demand, with all associated uncertainties [7]. 

The increase interest in academia and demand in practice for 
maintenance optimization is demonstrated by the published works on 
the topic, both theoretical and applied. Fig. 1 shows the evolution, in the 
time period between 2000 and 2020, of the number of published works 
on maintenance optimization. The data have been obtained considering 
the publications indexed in the Scopus database and containing in the 
title, in the abstract or in the keywords, the terms “maintenance opti
mization” and at least one among the following terms: “scheduled”, 
“opportunistic”, “condition-based”, “predictive” and “prescriptive”. The 
increase of the ratio between the number of works related to mainte
nance optimization and the total number of works indexed by Scopus 
(rescaled in the picture by dividing by 1000) confirms the increasing 
interest in maintenance optimization [8–10]. 

Fig. 2 shows the repartition of the number of works on maintenance 
optimization in the various industrial fields reviewed in this work. It is 
evident that maintenance optimization is pervasive in almost all in
dustries, with manufacturing and energy (wind power, oil & gas, power 
generation and distribution) sectors accounting for more than 50% of 
the total number of works considered. 

Since the initial stages of the research on maintenance optimization, 
which date to the 1960s, several issues had been identified as 
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challenging:  

a the difficulty in retrieving data, information and knowledge for the 
development and validation of maintenance optimization models 
and approaches for practical applications. This issue especially af
fects newly designed and safety-critical systems, for which scarce 
information is available related to the degradation and failure pro
cesses of their components [7,10,11];  

b the difficulty of dealing with the complexity of industrial systems, in 
terms of number of components and dependencies among them. 
Multi-unit systems had not been considered in the first surveys on 
maintenance optimization in the 1960s [12,13], and the lack of 
effective methods to treat them emerged in the 1970s [14]. Actually, 
even recent surveys have underlined that, although a lot of efforts 
had been devoted to the development of maintenance optimization 
models for multi-unit systems [7,15,16], the problem is still not fully 
solved. One key challenge is the proper identification and account of 
functional dependencies of different nature, e.g., economic, sto
chastic, structural or logic, among system components, which are 
extremely difficult to handle when they co-exist [7]. Also, the 
different units of a multi-unit system most likely require different 

maintenance strategies, which remarkably increases the complexity 
of the optimization problem; 

c the difficulty of implementing the developed maintenance optimi
zation approaches in real-world applications, which generates a gap 
between theory and practice. According to [11], this is mainly due 
to: i) the difficulty of explaining to maintenance planners the main
tenance optimization models, which are often seen as black-boxes 
providing unintelligible maintenance recommendations, ii) the cost 
of developing maintenance optimization methods, which is not 
a-priori guaranteed to be balanced by the benefit of implementing 
the optimized maintenance policies. 

Nowadays, maintenance practice can benefit from the technological 
developments driving the so called Industry 4.0 revolution. It was firstly 
introduced in Germany in 2011 as a part of the country’s high-tech 
strategy [17] and the topic was quickly adopted globally to lead the 
development and improvement of 21st century industry. In the Industry 
4.0 concept, production systems are built as smart systems in the form of 
Cyber Physical Systems (CPS), which enable real-time communication 
and cooperation between humans and machines [18], and more efficient 
and flexible production to meet more challenging performance and 

Acronyms and symbols 

AHP Analytic Hierarchy Process 
AI Artificial Intelligence 
ANP Analytic Network Process 
BA Bayesian Approach 
BCM Business Centered Maintenance 
CNN Convolutional Neural Network 
CPS Cyber Physical System 
DMG Decision Making Grid 
DP Dynamic Programming 
DSS Decision Support System 
DT Decision Tree 
ELECTRE Elimination Et Choice Translating Reality 
FL Fuzzy Logic 
GA Genetic Algorithm 
IoT Internet of Things 
KID Knowledge, Information and Data 
MA Mathematical Approach 
MCDM Multiple Criteria Decision Making 
MIP Mixed Integer Programming 

ML Machine Learning 
MOGA Multi-Objective Genetic Algorithm 
MOM Maintenance Organization Model 
MSA Metaheuristic Search Algorithm 
NLP Natural Language Processing 
O&M Operation & Maintenance 
RCM Reliability Centered Maintenance 
RL Reinforcement Learning 
RNN Recurrent Neural Network 
RUL Remaining Useful Life 
SM Simulation Model 
SP Stochastic Programming 
TOPSIS Technique for Order Preference by Similarity to Ideal 

Solution 
K Knowledge, information and data 
F Objective function 
f Vector of the optimization criteria 
x Vector of the features to be optimized 
h Constraint function 
b Constraint function bound  

Fig. 1. Number of publications about maintenance optimization and total number of publications (divided by 1000) indexed in the Scopus database from 2000 
to 2020. 
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safety goals. Industry 4.0 is based on the retrieval of large amount of 
data from the systems and the exploitation of the advancements in 
sensors, robotics and new technologies such as Artificial Intelligence 
(AI), Machine Learning (ML), augmented reality, big data analytics, and 
Internet of Things (IoT) [19]. 

With respect to issue a) above, new sources of information on com
plex multi-unit systems have been made available, e.g., real-time data 
and images related to the operation and to the health state of the com
ponents. The effective use of this information for maintenance optimi
zation allows reducing the dependence on the subjective information 
from experts’ knowledge. Indeed, AI algorithms are able to effectively 
exploit such information for detecting anomalies, diagnosing their 
causes and predicting failure times, operating conditions and demands 
[20]. The outcomes of the AI algorithms can be used to adapt mainte
nance plans to the actual and predicted conditions of the components 
and systems. With respect to issue b) above, deep learning algorithms 
can effectively deal with the big data collected from the complex systems 
[21–23], from which they can identify the functional dependencies 
among their components [24]. Finally, with respect to issue c) above, 
methods have been developed to interpret the outcomes of AI and ML 
algorithms [25,26], and offer ways to visualize the maintenance strategy 
for understanding and explaining the maintenance strategies identified 
by the optimization method [27]. 

The present survey reports and analyzes maintenance optimization 
within the Industry 4.0 paradigm. We firstly review systematically: i) the 
knowledge, information and data available for maintenance optimiza
tion, ii) the optimization criteria typically considered, and iii) the out
comes of the optimization. The objective of the survey is to illustrate the 
advancements already achieved in maintenance optimization and those 
that can be potentially obtained, the challenges to be addressed and the 
most promising trends of methods development. The review considers 
also the recently developed approaches based on Reinforcement 
Learning (RL) and the prescriptive maintenance strategy paradigm that, 
at the best of the authors’ knowledge, have not been considered in 
previous surveys. This work is expected to be useful for maintenance 
management professionals and researchers working on maintenance 
optimization. 

Since the focus is on maintenance optimization, we purposely do not 
consider:  

a the logical processes, such as Reliability-Centered Maintenance 
(RCM) and Business-Centered Maintenance (BCM) [28,29], which 
aim at identifying which components in a system should be 

maintained on a regular schedule basis, monitored and/or are suit
able for a run-to-failure strategy by means of the analysis of the 
failure modes and consequences [30], and according to the company 
objectives [31];  

b the approaches used to support the optimization procedure but not 
directly aimed at the optimization of the maintenance strategy, such 
as Bayesian Approaches (BAs) [10], which are widely applied to 
identify the value of the unknown parameters of failure time distri
butions given some empirical data [32] and to estimate the failure 
probabilities [33,34], Simulation Models (SMs) relying on Petri net 
[35,36], Markov chain [37] or Monte Carlo simulation [38], which 
are used to model the system behavior and to evaluate the goodness 
of different maintenance strategies; 

c the frameworks employed to define an effective maintenance strat
egy, such as Decision Support Systems (DSS), i.e., model-based sets of 
procedures for processing data and judgments to support and 
improve the decision-making [39], and Maintenance Organization 
Models (MOMs), i.e., schemes to be followed during the organization 
of maintenance, which combine administrative, managerial and 
technical activities involved in maintenance strategy planning [40, 
41]. 

The remainder of this review work is organized as follows: mainte
nance strategies are presented in Section 2; Section 3 analyses the 
maintenance optimization problem in terms of the knowledge, infor
mation and data available, optimization criteria and optimization out
comes; Section 4 discusses the optimization approaches; in Section 5, the 
main challenges related to maintenance optimization and the emerging 
trends are presented. Finally, Section 6 concludes the work. 

2. Maintenance strategies 

The concept of asset maintenance includes all actions aimed at 
monitoring, restoring or enhancing the functionality of an asset, or at 
preventing the asset to lose all or part of its functionality [42]. A 
maintenance strategy is the set of rules according to which the different 
maintenance actions are performed on the asset. It includes rules on the 
type of maintenance actions, on the maintenance instances, on the 
components or sub-systems priorities, on the spare parts flow on the 
maintenance technical crew to involve [31,43]. Accordingly, mainte
nance strategies are grouped into [44]: 

Fig. 2. Repartition of maintenance optimization into the different industrial fields of application, in the considered papers.  
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• Corrective maintenance. It restores the functionality of an asset after 
its failure. It involves only repairment or replacement procedures. It 
is suitable for non-safety critical systems for which the maintenance 
interventions can be performed quickly and at low costs, and whose 
failures do not induce severe consequences [45,46].  

• Preventive maintenance. It aims at preventing the asset to lose its 
functionality, by performing maintenance actions before failure oc
curs. Five main types of preventive maintenance strategies are 
typically identified:  

i Scheduled maintenance. It aims at preventing the asset to lose its 
functionality through maintenance actions that are performed at 
scheduled instances, both irregular or periodic. Typically, statis
tical data collected from assets, e.g., failure times and mainte
nance durations [47], are used to define the maintenance plan 
[42]. The schedule optimization task is difficult since degradation 
mechanisms are complex and characterized by large uncertainty 
[48]. Scheduled maintenance is suitable for high-risk systems, e. 
g., systems whose failure may lead to severe safety consequences, 
can cause large production losses or whose maintenance planning 
can provide economic advantages, e.g., because of not easily 
available spare parts, which should be ordered in advance.  

ii Opportunistic maintenance. It aims at performing maintenance on 
more asset elements or sub-systems at the same time. This is done, 
for example, by combining the maintenance activities of compo
nents characterized by similar failure rates and operation condi
tions, or by exploiting a planned shutdown or an undesired 
breakdown as an opportunity to maintain several different com
ponents [49]. This maintenance strategy is suitable for systems 
characterized by similar components or undergoing long, planned 
shutdowns, e.g., nuclear power plants for refueling, and for sys
tems whose maintenance activities require the rental of expensive 
equipment, e.g., a crane or a ship.  

iii Condition-based maintenance. Similarly to scheduled maintenance, 
it aims at preventing the asset to lose its functionality, but the 
planning of the maintenance interventions is based on the elab
oration of data collected from the asset itself to evaluate its con
ditions. The application of condition-based maintenance requires 
the availability of a monitoring system to collect data of physical 
quantities related to degradation of the asset [50]. Then, by 
applying fault detection and diagnostic techniques [51], 
abnormal conditions are detected and diagnosed, calling for 
specific maintenance actions to be performed [52]. 
Condition-based maintenance is suitable for systems in which the 
advantages of avoiding unplanned shutdowns caused by failures 
overcome the costs of the monitoring system and of the devel
opment of the detection and diagnostic tools [53]. 

iv Predictive maintenance. As an extension of condition-based main
tenance, it processes further the monitoring data for prognostics 
[54,55], i.e., to estimate the failure time, thus allowing planning 
the maintenance activities in advance [56]. It requires the 
development of the monitoring system and the prognostic tools. 
The variable and uncertain conditions under which the compo
nents are operating can strongly influence the degradation pro
cesses and failure mechanisms, thus requiring the proper 
treatment of data characterized by several sources of uncertainty. 
Predictive maintenance is suitable for systems which can benefit 
from the same advantages of condition-based maintenance, but 
can also further benefit from planning in advance, e.g., due to not 
easily available spare parts which need to be ordered. 

v Prescriptive maintenance. It goes beyond estimating the compo
nents failure time by exploring hypothetical scenarios generated 
by the O&M management. In fact, starting from the monitoring 
data collected from the asset, prescriptive maintenance provides a 
recommendation of the actions to be taken by anticipating the 
potential scenarios generated by such actions and evaluating their 
effects on the system. In other words, prescriptive maintenance 

exploits failure projections to optimize the operational implica
tions of maintenance tasks [57]. The recommended actions can be 
maintenance actions or operational actions: for example, the 
repair of a pump or its running at a lower than nominal flow rate 
can be prescribed to slow down its degradation process for 
allowing the timely delivery of a new piece of equipment. Pre
scriptive maintenance requires the availability of historical and 
operational data collected in a wide variety of operating condi
tions [58], and advanced models of the considered system, e.g. 
digital mirrors and twins [59–62]. 

Fig. 3 shows the evolution of the number of publications relative to 
the different maintenance strategies mentioned above. Notice that the 
interest in scheduled maintenance has been decreasing, whereas the 
interest in condition-based and predictive maintenance has been 
increasing, coherently with the development of the enabling technology. 
Some works about prescriptive maintenance have been recently pub
lished [63]. This trend is confirmed by the results of the survey in [64], 
according to which 79% of the interviewed professionals (mainly from 
energy, transportation and manufacturing sectors) believe that predic
tive and prescriptive maintenance of equipment will play a fundamental 
role in their companies in the future. Nevertheless, the scheduled 
maintenance strategy is still popular among systems managers and re
searchers, with several works related to its optimization being still 
published in recent years. Also, mixed maintenance strategies have been 
adopted in some industrial applications. For example, a mixed mainte
nance strategy combining corrective, scheduled and opportunistic 
maintenance has been developed to minimize the life cycle cost of 
rolling bearings in [65]. Corrective, condition-based and predictive 
maintenance strategies are mixed to minimize the maintenance cost and 
maximize the reliability of nuclear power plant feeding pipes in [66]. To 
counterbalance the fact that preventive maintenance interventions can 
be imperfect, i.e., they are not able to restore equipment in 
as-good-as-new condition, a mixed maintenance strategy composed of 
preventive actions, e.g., lubrication, cleaning, and adjustment, and 
corrective actions, e.g., replacement, is proposed and optimized in [67]. 
When condition-based or predictive maintenance strategies are adopted, 
it can be useful to perform scheduled inspections to check the asset 
health state during system shutdowns. 

In practice, there is not an automatic way to select the most appro
priate maintenance strategy for a specific system: each maintenance 
strategy has its own particular characteristics and the maintenance en
gineer should take into account several aspects, e.g., company objec
tives, type of system, failure consequences, maintenance costs, 
availability of spare parts, etc. 

3. Maintenance optimization 

In general, an optimization problem involves a vector of features of 
the system to be optimized, x = [x1,…,xn], an objective function to be 
minimized (maximized), F(x) : Rn→ R, which may involve q different 
criteria, f(x) = [f1(x), …, fq(x)], and possibly m constraint functions, 
hi(x) : Rn→R, i = 1,…,m, with associated bounds, bi, which limit the 
choices on x because of physical, economic, environmental or other 
reasons. Then, the optimization problem can be mathematically framed 
in terms of the identification of the vector x which satisfies [68]: 

argminx(argmaxx) F(x)
subject to hi(x) ≤ bi, i = 1,…,m (1) 

Specifically, in maintenance optimization, the features in the vector, 
x, to be optimized relate to aspects of the maintenance planning, such as 
the interval between consecutive instances of maintenance intervention, 
the degradation threshold for detection, the type of maintenance actions 
to be performed, etc. The objective function, F(x), quantitatively de
scribes objectives such as profit, reliability, safety and sustainability. 
The constraint functions, hi(x), and associated bounds, bi, are set 
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according to specific physical limits of design and operation, e.g., the 
maximum power that can be produced by a system, and regulations, 
such as the maximum allowed interval of time between two consecutive 
instances of inspection, or the minimum reliability accepted or 
maximum cost allowed. 

In practice, the definition of x, F(x), hi(x), bi depends on the avail
able knowledge, information and data, K, about the behavior of the 
system and its environment. 

The remaining part of this section will discuss the elements of the 
optimization problem defined above, that are: i) knowledge, informa
tion and data available, K, (Section 3.1), ii) optimization criteria, f(x), 
(Section 0), iii) optimization features, x, (Section 3.3). 

3.1. Knowledge, information and data 

In practice, different sources of Knowledge, Information and Data 
(KID) [69], K, concur to the definition of the optimization problem in 
Eq. (1), depending on availability and on the input required by the 
specific optimization method employed. They can be organized with 
respect to: i) the type of KID, which is here classified as “expert 
knowledge”, “mathematical models” and “data”, where the latter can be 
in the form of numbers, texts and images, and ii) the topic, i.e., what the 
KID represent. With respect to the latter, the KID typically involved in 
maintenance optimization represent characteristics of the maintenance 
intervention, of the system and components reliability, availability and 
safety, of the degradation processes and health states of the system and 
components, e.g., the normal/abnormal condition outcome of an 
anomaly detection module, the classification of the type of abnormal 
condition, i.e., the outcome of a fault diagnostic module, and the pre
diction of the component Remaining Useful Life (RUL), i.e., the outcome 
of a fault prognostic module, of the system operating conditions and 
other information needed for the definition of the objective function. 

Table 1 reports the classification of some works about maintenance 
optimization in terms of type and topic of K. Expert knowledge is 
fundamental when new technologies, for which limited data are avail
able, are considered. It is mainly used for the definition of the objective 
function [44], the set of feasible maintenance strategies [70] and the 
setting of the values of model parameters and constraints [71]. It has 
been used in different sectors, such as in chemical [72], manufacturing 
[70] and oil & gas [73] industries. Mathematical models are typically 
used for describing component degradation processes [74,75] and the 
effects of maintenance activities [76], and for monitoring the system 
health state [77]. Stochastic models are typically exploited to deal with 
the uncertainty inherent in stochastic processes such as degradation or 
the evolution of operating and environmental conditions. They have 

been used in the context of maintenance optimization to model com
ponents degradation in nuclear [74] and manufacturing industries [78], 
availability and revenues in wind power industry [79] and maintenance 
costs in nuclear industry [80]. Numerical data, such as failure times and 
maintenance costs, are typically used to set the model parameters [48], 
to properly represent uncertainty [81,82] and the system health state 
[83]. In the context of Industry 4.0, signal measurements input to 
models for fault detection, diagnostics and prognostics, in support to 
condition-based, predictive and prescriptive maintenance approaches. 
For example, the potential of using data for maintenance optimization 
was shown in a manufacturing plant [84], in a wind farm [85], in 
aeronautical systems [86] and in infrastructures [87]. Table 2 reports 
the classification of the considered works in terms of type of KID and 
industrial field of application. It can be seen that independently from the 
industrial field, models and data are the main sources of KID. 

Fig. 4 represents the maintenance strategies considering the KID 
typically used for their identification and development. It shows that 
each maintenance strategy requires different sources of KID to be 
properly developed. Reliability and availability models are used for 
developing scheduled [88] and opportunistic [89] maintenance strate
gies. Degradation models and real time data about components health 
states are fundamental for the development of condition-based [83] and 
predictive [90] maintenance strategies. Data and models of the oper
ating conditions are employed to develop prescriptive maintenance 
strategies, which require considering their influence on components 
degradation and failure [85]. 

Even if some works have considered textual data for the development 
of reliability, availability and maintainability models [91], and images 
have been used for the development of diagnostics models [92], these 
two types of data have not yet been used for maintenance optimization 
purposes. This is because text and image processing typically relies on 
ML methodologies, such as Natural Language Processing (NLP) tech
niques and Convolutional Neural Networks (CNN), which are difficult to 
integrate within an optimization problem and whose functioning and 
results are difficult to understand and interpret by maintenance plan
ners. We expect that with the advancement of concepts of Industry 4.0 
and Internet of Things (IoT) [93], the capability of ML methodologies in 
dealing with large amounts of heterogeneous data and the development 
of techniques for the interpretation of AI algorithm outcomes, textual 
data and images, will become more and more relevant to the field of 
maintenance optimization. 

3.2. Optimization criteria 

The objective function F(x), which drives the maintenance strategy 

Fig. 3. Relative number of publications related to the optimization of different maintenance strategies from 2000 to 2020 [www.scopus.com].  
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optimization, is often defined considering several different optimization 
criteria, f(x), [182]. In this respect, it is possible to distinguish between 
approaches that consider a single criterion and approaches that consider 
multiple criteria. 

The works which optimize a single criterion employ performance 
metrics related to:  

1 the economic benefit provided by the maintenance strategy, e.g., 
maintenance cost [71,103], life-cycle cost [157], profit [81,83,121], 
production loss and unmet demand [110,144];  

2 system safety and reliability, considering failure occurrences and 
mitigation of failure consequences; availability [183], reliability [88, 

109], safety / risk [150,184] and resilience [154] are typical quan
titative metrics used. 

The works which optimize multiple criteria jointly consider metrics 
quantifying:  

1 the effectiveness of personnel management and logistics; for 
example, the quality of the shift schedule for the workers [185,186] 
and of the management of the spare parts inventory [111,129] have 
been considered; 

Table 1 
Classification of the knowledge, information and data involved in maintenance optimization, with respect to type and topic.  

KID topic 
KID type 

Maintenance Reliability, 
availability and 
safety 

Degradation 
process 

Health state Operating 
conditions 

Objective 
function Detection Diagnostics Prognostics 

Expert knowledge  • Set of 
possible 
maintenance 
alternative 
strategies 
[94];  

• Set of 
possible 
O&M actions 
[95].  

• Parameter 
values, e.g., 
failure rate 
[96] and 
reliability 
threshold 
[71]. 

Parameter 
values, e.g., 
degradation and 
failure 
thresholds [97].    

Parameters of the 
models for 
simulating the 
operating 
conditions [85].  

• Weights to be 
associated to 
the different 
maintenance 
criteria [44];  

• Fitness of 
alternatives 
with respect 
to the criteria 
[98]. 

Models Models of the 
duration [99], 
effect [76] and 
cost [81] of the 
maintenance 
interventions.  

• Models of 
system 
reliability, 
availability 
and safety, e. 
g., Bayesian 
networks 
[100], 
Markov 
models [101], 
Petri nets 
[36], Monte 
Carlo 
simulation 
models [83].  

• Models of 
system 
degradation 
[74]. 

Models for the 
detection of 
system 
abnormal 
conditions, 
based on data- 
driven 
statistics and 
AI approaches  
[102]. 

Models for 
fault 
diagnostics of 
the system 
components 
based on data- 
driven AI 
approaches  
[77]. 

Models for the 
prediction of 
the Remaining 
Useful Life 
(RUL) of the 
system 
components, 
based on 
model-based 
and data- 
driven 
approaches  
[77]. 

Models for the 
predictions of the 
operating 
environment 
based on present 
and past time 
measurements, e. 
g., wind speed, 
energy demand  
[89].  

Data Numerical  • Maintenance 
cost [103];  

• Information 
about 
previous 
inspections, 
e.g., time 
since last 
maintenance 
[104] or type 
of 
maintenance 
intervention.  

• Failure times;  
• Databases of 

component 
failure rates, 
e.g., OREDA 
[105];  

• Availability 
and 
Reliability of 
the 
components 
[106];  

• Transition 
probabilities/ 
rates in 
Markov 
models of 
system 
reliability and 
availability.  

• Simulation 
parameters, e. 
g., transition 
probabilities 
among 
degradation 
states [107];  

• Parameters of 
the 
degradation 
models [48];  

• Information 
related to 
measurement 
uncertainty, 
e.g., 
measurement 
noise [81].  

• Result of 
inspections, 
e.g., non- 
destructive 
test and 
degradation 
indicator 
values 
[108];  

• Real time 
signal values 
[83].  

• Results of 
inspections, 
e.g., non- 
destructive 
test and 
degradation 
indicators 
[108];  

• Real time 
signal values 
[83].  

• Real time 
signal 
values 
[109];  

• Remaining 
Useful Life 
estimations 
[81].  

• Information 
related to 
system 
quantities, e.g., 
production 
level [110], 
buffer or spare 
parts inventory 
levels [111];  

• Meteorological 
data [89].  

Textual Maintenance 
reports and 
work orders.  

• Maintenance 
reports and 
work orders;  

• Accident 
investigation 
reports. 

Maintenance 
reports and 
work orders.      

Images     • Televisual 
inspections;  

• Thermal 
images;  

• X-rays 
images.  

• Televisual 
inspections;  

• Thermal 
images;  

• X-rays 
images.  

• Televisual 
inspections;  

• Thermal 
images;  

• X-rays 
images.    

L. Pinciroli et al.                                                                                                                                                                                                                                



Reliability Engineering and System Safety 234 (2023) 109204

7

2 the effects of maintenance on the asset performance from the point of 
view of sustainability, environmental impact [158,174,187] and 
production quality [44,166];  

3 the time loss, e.g., the effects of time delays caused by maintenance 
on other activities [96] and on the total maintenance time [128];  

4 the feasibility of performing the maintenance interventions [70,98] 
and the accessibility of the components [167]. 

Table 3 reports the classification of the considered works in terms of 
optimization criteria and industrial field of application. Regardless of 

the field of application, the most used criteria are economic and safety- 
related [182], with the economic criteria mostly used in non-safety 
critical applications. Differently from what was pointed out in [182], 
it can be noticed that the trend is shifting towards multi-objective 
optimization problems, in which several application-related criteria 
are jointly considered. This is due to the increasing complexity of in
dustrial systems, which are expected to simultaneously satisfy multiple 
objectives. For example, in production plants, it is desirable to minimize 
the maintenance cost while maximizing the machines availability and 
the production output [120]. Furthermore, in recent years, maintenance 
has become a key factor for sustainable operation and production, 
leading to an increase in the number of research papers on sustainable 
maintenance management. The objectives are typically related to the 
efficient management of resources and energy, the reduction of wastes 
produced by maintenance and of storage material [188], the reduction 
of the maintenance environmental impact, including hazardous emis
sions caused by system malfunctioning [189], and the increase of 
workers and public safety [190]. However, it has been pointed out that 
research in maintenance optimization is still limited and mainly focused 
on conventional performance criteria [191]. Another criterion that has 
recently emerged for critical systems and infrastructures is resilience, 
which is defined as the ability of a system to withstand potentially 
high-impact disruptions, by mitigating impacts and quickly recovering 
normal conditions [192]. Resilience is considered to be fundamental in 
the context of Industry 4.0, since nowadays systems can be affected by 
several potential disruptive events, such as natural events, pandemics, 
cyber-attacks [193], and their ability to quickly recover their function
alities is of utmost importance. Then, it is reasonable to think that in the 
next years more and more researchers and practitioners will consider 
environmental impact, sustainability and resilience as criteria of main
tenance optimization. 

3.3. Optimization outcomes 

Maintenance optimization concerns different types of features (x in 
Eq. (1)) and considers them in different ways. They include the 
following, in relation to the optimization outcome: 

Table 2 
Classification of the considered works in terms of type of KID and industrial field 
of application.  

KID type 
Industrial field 

Expert 
knowledge 

Mathematical 
models 

Data 

Manufacturing 
industry 

[70,110, 
112–120] 

[78,84,110,111, 
114–118,120–128] 

[78,84,110–114, 
116–120, 
123–129] 

Wind power 
industry 

[81,85,100, 
130–133] 

[79,81,85,89,100, 
131–144] 

[79,81,85,89,100, 
131–144] 

Power production 
industry 

[145–148] [74,145–151] [74,145–151] 

Power distribution 
industry 

[152,153] [101,107,152–156] [101,107, 
152–156] 

Infrastructures [87] [87,96,104, 
157–160] 

[87,96,104, 
157–160] 

Aeronautical 
industry 

[86,161,162] [86,90,163–165] [86,90,162–165] 

Oil & Gas industry [44,73, 
166–168] 

[73,168,169] [44,73,167–169] 

Transportation 
industry 

[170–173] [171–174] [171–174] 

Chemical industry [72,175] [108,176] [72,108,175,176] 
Automation 

systems  
[177] [177] 

Semiconductor 
industry 

[178]   

Mining industry  [88,179] [88,179] 
Military industry [94] [180] [180] 
Water distribution 

industry 
[181]  [181] 

Data storage 
systems 

[71] [71] [71]  

Fig. 4. Representation of the maintenance strategies in relation to the type of required information.  
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• optimal maintenance strategy among several a-priori predefined al
ternatives [44,108]; some works produce also a ranking of the al
ternatives with respect to the optimization criteria;  

• optimized parameters values defining a single maintenance strategy 
selected a-priori [76,88], e.g., the maintenance period or age 
threshold for scheduled maintenance, the degradation threshold for 
condition-based maintenance, or the type of action performed, e.g., 
repairment, replacement;  

• optimal maintenance action to be performed for given data, such as 
monitoring signals or operating conditions [104,133]; in this case, 
the a-priori selection of the maintenance strategy is not needed since 
the outcome is directly the action to be performed, e.g., repair, 
replace, order the spare parts, or decrease the production level to 
reduce the degradation rate;  

• optimized grouping of components for opportunistic maintenance 
[194,195]; the outcome consists in the optimal set of components to 

be maintained at the same time, assuming an a-priori maintenance 
strategy, e.g., scheduled;  

• optimized inventory management strategy [129,147]; the outcome 
consists in the optimized spare parts flow or the optimized spare 
parts or product inventory management strategy. 

Table 4 reports the classification of the considered works with 
respect to the topic of the KID and the optimization outcome. Notice that 
the information provided by the anomaly detection, fault diagnostics 
and prognostics, is not considered in the majority of the works on 
maintenance optimization. This is mainly due to the fact that researchers 
have been mainly focused on the development of detection, diagnostics 
and prognostics methods for individual components of different types, 
and only recently the interest has shifted towards the exploitation of the 
outcomes of these methods for maintenance optimization. The challenge 
is that diagnostics and prognostics methods typically consider single 
components, whereas maintenance optimization requires to take 

Table 3 
Classification of the considered works in terms of optimization criteria and industrial field of application.  

Optimization criteria 
Industrial field 

Economic Criteria Safety criteria Management 
criteria 

Performance 
criteria 

Temporal 
criteria 

Practicality 
criteria 

Manufacturing industry [70,84,110,111,116–123,125, 
126,129] 

[70,113–118,120,124, 
126,127] 

[129] [113,115,120] [120] [70] 

Wind power industry [79,81,85,89,100,130–132, 
134–144] 

[130–132] [130] [130]   

Power production 
industry 

[74,145–151] [145,150,151]     

Power distribution 
industry 

[101,107,152,153,155,156] [107,154]     

Oil & Gas industry [44,73,166–169] [44,73,166–168]  [44,166]  [44,167] 
Infrastructures [87,96,157–160] [104,159]  [158] [96]  
Aeronautical industry [86,161,164,165] [90,109,162,164,165] [86]    
Transportation industry [171,172,174] [170,172,173] [172] [174] [172]  
Mining industry [88,179] [88]     
Military industry [94] [180]     
Automation systems [177]      
Semiconductor industry  [178]  [178]   
Water distribution 

industry 
[181]   [181]   

Chemical industry [72,108,175,176] [72,175]  [108]   
Data storage systems [71]       

Table 4 
Classification of the considered works in terms of required knowledge, information and data, topic and outcome.  

Optimization 
outcome 
KID topic 

Best maintenance strategy 
among several alternatives 

Optimized parameters for the a-priori 
selected maintenance strategy 

Optimal maintenance 
strategy 

Optimal grouping 
of components for 
maintenance 

Optimized 
inventory 
management 
strategy 

Maintenance [44,70,72,94,98,100, 
112–117,130,131,145,157, 
161,162,166,167,170,173, 
175,178,181] 

[48,67,71,74,78–80,83,84,88–90,97,99, 
101,106–111,118,119,121–126,128,129, 
132,134–144,149,150,154–156,158–160, 
164,165,169,174,176,177,179,180,185, 
151,196–202] 

[73,81,85–87,95,104, 
127,133,146–148,152, 
153,168,171,172,203] 

[96,194,195] [99,111,129,147] 

System reliability, 
availability and safety 

[72,113,157,167] [67,71,74,76,78–80,83,84,88,89,99,101, 
106,107,109,119,124–126,132,134, 
136–141,143,149,150,154–156,165,169, 
177,185,197–200,202] 

[87,95,146,148,171, 
172,203] 

[80,194,195] [99] 

Degradation process [113,157,178] [48,67,74,78–80,83,88,89,97,101,106–110, 
118,119,122–126,137,140,141,143,149, 
156,164,165,169,174,176,177,179,180, 
185,151,196–201] 

[73,81,85–87,95,104, 
127,133,146–148,152, 
153,168,171,172,203] 

[80,194,195] [111,147] 

System 
health 
state 

Detection [100,157,178] [80,83,118,125,134,140,149,198] [87,171,172] [80]  
Diagnostics  [83,125,144,149,198] [172]   
Prognostics  [84,90,109,134,144,176,177] [81,85,86,95,133,147, 

148]  
[147] 

Operating condition [114,116] [89,90,99,110,111,118,119,121–125,128, 
129,134,137–140,144,155,159,164,165, 
176,177,198–200] 

[73,81,85,86,95,127, 
133,148,152,153,168, 
172] 

[96,195] [99,111,129] 

Objective function [44,70,72,94,98,112–114, 
130,161,166,167,170,173, 
175,181]   

[194]   
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decisions considering the whole system. Furthermore, it can be noticed 
that only few works, which try to achieve predictive or prescriptive 
maintenance, use input data and information from most of the cate
gories listed above. This is due to the fact that, as already commented in 
Section 2, these maintenance strategies require a large amount of data to 
be properly implemented and deployed. 

The most popular outcomes of maintenance optimization are i) 
ranking of different maintenance alternatives and ii) optimized parameters 
values for the a-priori given maintenance strategy: the two share the need of 
a-priori selecting the maintenance strategy. This way, the obtained 
maintenance strategy is optimal with respect to a limited set of options. 
Actually, in the context of Industry 4.0, it can be expected that pre
scriptive maintenance will become more and more popular [64] and, 
therefore, approaches are expected to be developed, which give as 
outcome the optimal maintenance action considering the present state of 
the system. They are expected to be advantageous since they do not 
require assuming a predetermined maintenance strategy. 

4. Optimization approaches 

The optimization approaches are here presented considering the 
features, x, to be optimized. Section 4.1 will be dedicated to Multiple 
Criteria Decision Making, Decision Making Grid and Decision Tree, 
which have been mainly applied to the identification of the best among 
several alternatives of maintenance strategy. Section 4.2 will present 
Mathematical Approaches, Mixed Integer Programming, Dynamic Pro
gramming and Metaheuristic Search Algorithms, which have been 
mainly used for optimizing the parameters of a predefined maintenance 
strategy. Section 4.3 will introduce Reinforcement Learning to select the 
optimal maintenance actions to be performed. Table 5 reports the works 
in which the described optimization approaches have been applied to 
obtain the different outcomes. 

4.1. Approaches for the identification of the best maintenance strategy 
among a predefined set of alternatives 

The following algorithms have been mainly applied to select the best 
maintenance strategy among a predefined set of alternatives. They use 
experts’ knowledge as one of the main sources of input, which allow 
considering both quantitative and qualitative aspects of maintenance:  

• Multiple Criteria Decision Making (MCDM): A commonly applied 
MCDM method for O&M optimization is the Analytic Hierarchy 
Process (AHP), which hierarchically structures the decision process 
into a series of pairwise comparisons and allows considering both 
qualitative and quantitative aspects [204]. It was applied to the 

optimization of the maintenance strategy of an oil refinery [44] and a 
wind farm [130]. The integration of MCDM with Fuzzy Logic (FL) 
was extensively studied to cope with the uncertainty and the 
subjectivity of the decision making process [112,166,205]. A 
generalized version of AHP, i.e., Analytic Network Process (ANP), 
has been applied to the selection of the best maintenance strategy for 
a chemical plant [175]. The main advantage of ANP is that the de
cision process is structured as a network instead of a hierarchy and 
this makes it suitable to deal with the interdependencies among the 
criteria [206]. Other popular MCDM algorithms are the Technique 
for Order Preference by Similarity to Ideal Solution (TOPSIS) and the 
Elimination Et Choice Translating Reality (ELECTRE). TOPSIS is a 
decision-making algorithm in which the best solution among the 
possible alternatives is chosen by selecting the one which minimizes 
the Euclidean distance from the ideal optimal option and maximizes 
the Euclidean distance from the worst possible option [207]. It was 
applied to select the optimal maintenance plan for military equip
ment [94], manufacturing plants [70] and aeronautical systems 
[161]. In [113] and [72], a FL/TOPSIS-based approach was proposed 
to deal with the selection of the most suitable maintenance strategy. 
ELECTRE is based on the concept of outranking relations between 
alternatives [208]. It was used to select the best set of elements to be 
replaced at each scheduled maintenance in a multi-unit system [194] 
and it was applied to the selection of the optimal maintenance 
strategy of compressors in the chemical industry, and in water dis
tribution networks [98,181]. The simplicity of these algorithms and 
the high interpretability of their outcomes contributed to their 
popularity for maintenance optimization, even if inter-dependence 
between alternatives and objectives can lead to inaccurate results 
[209].  

• Decision making grid (DMG): DMG is a graphical support tool used 
to help the decision makers in selecting the most effective mainte
nance strategy by considering multiple criteria, such as downtime, 
failure frequency and failure cost. The main drawback is that it 
strongly relies on the user’s experience and can provide biased re
sults. DMG was applied to automotive industry [170] and aero
nautical systems [162]. A fuzzy logic DMG was also proposed to 
consider equipment reliability and criticality [114]. DMG are useful 
when the available KID, K, is limited to expert knowledge.  

• Decision Tree (DT): DT is a decision-making support tool whose 
outcomes are easy to interpret and which allows comparing the 
performance of different alternatives in obtaining an established 
goal, while considering random events, possible decisions and their 
consequences [210]. DTs are generally not suitable to deal with 
complex problems and for long time-horizons [100]. DTs were 
structured to identify the optimal maintenance strategy of gas [145] 

Table 5 
Classification of the considered works in terms of optimization approach and outcome.  

Optimization 
outcome 
Optimization 
approach 

Best maintenance strategy 
among several 
alternatives 

Optimized parameters for the a-priori 
selected maintenance strategy 

Optimal maintenance 
strategy 

Optimal grouping of 
components for 
maintenance 

Optimized inventory 
management strategy 

MCDM [44,70,72,94,98,112,113, 
130,161,166,167,175, 
181]   

[194]  

DMG [114,162] [170]    
DT [100,115,145,178]     
MA [121] [48,99,122,123,143,177,197] [171]  [99] 
MIP  [84,89,90,124,134–136,149,154,155,165, 

176,202] 
[172]   

DP  [107,160,164,179,201] [104] [96] [111] 
MSA [94,120,156,169–171] [65,78–80,83,101,106,116–119,123,125, 

128,131,132,137–139,141,142,151, 
156–159,173,195,199,200,219,227]  

[195,200]  

RL  [180,198] [81,85–87,95,110,127, 
146,148,152,153,168, 
169,203]  

[147]  
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and wind turbines [100], and in the semiconductor [178] and 
manufacturing [115] industries. 

4.2. Approaches to optimize the parameters of an a-priori selected 
maintenance strategy 

With respect to the setting of the optimal parameters of an a-priori 
predefined maintenance strategy, the following approaches have been 
used: 

• Mathematical Approaches (MAs): MAs comprise all the ap
proaches in which the optimization problem is formulated by means 
of mathematical equations, which are then solved by means of dif
ferential calculus to identify the optimal parameters of the mainte
nance strategy. In [121], a MA was used for optimizing maintenance 
profitability. In [122], a MA based on the Riccati equation was used 
to identify a sub-optimal production and maintenance plan which 
maximizes the total profit of a manufacturing system. In [99], a MA 
was proposed to optimize the inventory management and the 
scheduled maintenance strategy of a single unit. In [44] and [127] a 
MA was used for scheduling maintenance considering uncertainty. In 
[143] a MA is developed to define the optimal imperfect preventive 
maintenance plan. Finally, a MA was used to optimize the prescrip
tive maintenance strategy of locomotive wheels in the railway in
dustry [171]. The use of MAs for maintenance optimization is mainly 
limited to simple systems for which the optimization problem can be 
solved analytically or numerically, but it is unfeasible for complex 
systems unless simplifications of the system behavior are introduced.  

• Mixed integer programming (MIP): MIP is the area of optimization 
that addresses optimization problems with continuous and integer 
variables in the objective or in the constraints. The problems can be 
linear (MILP) or present non-linearities (MINLP) [211]. The appli
cation of MIP to maintenance optimization requires using integer 
variables to represent the possible maintenance optima. MIP was 
applied to the optimization of the maintenance schedule of a wind 
farm [89,134–136] and a power distribution system [154,155] and 
to the optimization of the condition-based maintenance strategy of a 
gas turbine considering the value of information [149]. The joint 
optimization of the flight and maintenance plans of aircrafts was 
performed using MIP in [90]. In [124], a practical integrated pro
duction and scheduled maintenance planning was addressed devel
oping a MIP model, which considers the system’s manufacturing 
capacity and its reliability. When some of the variables need to be 
modeled by means of random variables, to deal with uncertainty, 
Stochastic Programming (SP) is implemented [212]. SP was used to 
define the optimal maintenance schedule for a multi-unit system 
[165,202] and for the joint production and predictive maintenance 
optimization of a chemical plant [176]. Although its popularity, the 
main drawback of MIP is that the computation time tends to rapidly 
increase with the complexity of the systems [213].  

• Dynamic Programming (DP): DP is a method for solving multi- 
stage decision problems [214]. It is based on the concept of 
breaking down complex problems into simpler sub-problems. For 
example, for problems which involve long time horizons, DP con
structs a sub-problem to be solved recursively, at each time step. DP 
was used to determine the optimal maintenance strategy of road 
networks considering budget constraints [96]. It was also applied to 
the optimization of the scheduled maintenance plans considering 
spare parts inventory management [111] and of the replacement 
strategy under uncertainty for assets in the mining industry [179]. In 
[164], a DP-based methodology for the optimization of the mainte
nance check schedules in the aeronautical industry was presented. 
DP was also proposed to determine the optimal maintenance strategy 
for power cables, considering the stochastic nature of cable failures 
[107], and used to deal with the optimization of lifetime-extending 
maintenance decisions for aging infrastructures [160] and 

equipment under parameters uncertainty [201]. The main issues 
with DP are the curse of dimensionality and the need of explicitly 
defining the transition probabilities among all the possible system 
states, which makes it unsuitable for complex systems [215].  

• Metaheuristic Search algorithms (MSAs): Metaheuristics are 
computational procedures used to approximate the solution of an 
optimization problem by iteratively improving the candidate solu
tions [216,217]. Genetic algorithms (GAs) are one of the most pop
ular MSAs. They are based on the principles of genetics and natural 
selection [218]. GAs were applied to set the degradation threshold 
for condition-based maintenance [83], to choose the best mainte
nance plan for a network of infrastructure facilities [157], to 
schedule preventive maintenance interventions in the manufacturing 
and railway industries [106,173]. In [137,142], GAs were used to 
optimize the scheduled maintenance strategy of a wind farm 
considering the stochasticity of wind power production. GAs were 
applied to identify the opportunistic maintenance strategy for in
dustrial components [195,200] and the condition-based mainte
nance strategy of degrading nozzles of gas turbines [151]. Also, GAs 
were used to optimize the scheduled maintenance strategy of a 
multi-unit system [199], the inspection and maintenance planning of 
pressure vessels [108], the opportunistic maintenance plan of an 
onshore wind farm considering the dependencies among the com
ponents [138] and the deterioration thresholds for condition-based 
maintenance [125]. Multi-Objective GAs (MOGAs) were adopted 
for the optimization of the preventive maintenance plan [120] and 
the inspection policy of a safety system [219], simultaneously 
considering several optimization criteria. Finally, in [118], a 
GA-based framework was developed to analyze the advantages of 
optimizing the scheduled maintenance plan starting from different 
initial guesses of the maintenance policy in manufacturing industry. 

Other MSAs used for maintenance optimization are: Grid search, 
Nelder-Mead algorithm [220], Harmony Search algorithm [221], 
Differential Evolution [222], Particle Swarm Optimization algorithm 
[223], Simulated Annealing [224], Artificial Colony Optimization 
algorithms, e.g., ant colony optimization [225] and artificial bee 
colony [226]. Grid search was used to set the optimal scheduled 
maintenance interval in the power distribution industry [101], to 
optimize the mixed maintenance strategy of battery packs [156], to 
compare several production, setup and maintenance policies of a 
manufacturing system [116], and in the wind power industry [131, 
141]. Nelder-Mead algorithm was used to develop a simulation and 
optimization platform to analyze the performance of several main
tenance policies in manufacturing industry [117]. Harmony Search 
algorithm was used to find the best maintenance strategy for bridges 
infrastructures [158]. Particle Swarm Optimization algorithm was 
applied to optimize the predictive maintenance interval of a 
manufacturing system [119] and the opportunistic maintenance 
strategy for a wind farm [139]. Simulated Annealing [224] was 
applied to find the optimal scheduled maintenance plan of bridge 
networks [159] and of multi-unit systems [126]. Ant Colony Opti
mization was used to optimize the maintenance scheduling of 
multi-unit systems [128] and offshore wind turbines [132], whereas 
an Artificial Bee Colony was applied to the optimization of the 
opportunistic maintenance strategy of a wind farm [227]. MSAs are 
simple to understand and easily adaptable to different optimization 
problems. On the other hand, they are slow to converge and do not 
guarantee convergence towards the global optimum. 

4.3. Approaches for the selection of the optimal maintenance actions 

The most applied approach for the direct selection of the optimal 
actions to be performed is reinforcement learning: 
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• Reinforcement Learning (RL): RL is a branch of machine learning, 
based on DP, in which the learning agent learns the optimal set of 
actions to maximize a properly defined reward function by inter
acting, in a trial and error manner, with the environment [215]. 
Differently from DP, model-free RL does not require the definition of 
the transition probabilities among the system states, which makes it 
suitable for dealing with maintenance optimization of complex sys
tems. When an artificial neural network is employed as learning 
agent, all the available sources of information, including predictions 
about the future evolution of components health state and operating 
conditions, can be exploited as input. This can help the development 
of condition-based and predictive maintenance strategies, which 
receive data from the systems in real time. Also, the output can be the 
best action to be performed at every time step, resulting in a pre
scriptive maintenance strategy, without the need of a-priori selecting 
a maintenance strategy [81,110]. RL was used to select the best time 
to perform maintenance, assuming a condition-based maintenance 
framework [198] and to optimize the time between consecutive 
maintenance interventions assuming a scheduled maintenance 
strategy [180]. In [147], gas turbine parts flow was optimized by 
means of RL, and tabular [152] and neural network-based [153] RL 
were applied to the O&M optimization of power grids. RL was 
applied to find the optimal maintenance strategy for a deteriorating 
pumping system equipped with health monitoring capabilities [95] 
and to optimize the opportunistic maintenance strategy for a 
manufacturing plant in [127]. Also, it was applied to the optimiza
tion of the maintenance strategy considering multi-state systems 
[73], a wind farm [81,85], aeronautical systems [86], a steel 
manufacturing line [110], infrastructures [87] and a generic 
multi-component system using ML. Finally, RL was applied to oil & 
gas pipeline networks [168] and to nuclear power plants prescriptive 
maintenance optimization [146,148]. Despite its advantages, RL 
applications are limited by the large computation cost and by the 
non-guaranteed convergence of the solution to the optimal one 
[215].  

• Other approaches, already commented in Sections 4.1 and 4.2, have 
been applied for the selection of the optimal action to be performed. 
For example, MIP was applied to the optimization of the prescriptive 
maintenance strategy of railway infrastructures [172] and DP was 
used to determine the optimal maintenance strategy for bridge decks 
[104]. 

5. Findings 

In this Section the challenges related to maintenance optimization in 
Industry 4.0 are analyzed (Section 5.1) and the emerging trends in the 
methods to address them are discussed (Section 5.2). 

5.1. Challenges in maintenance optimization 

The following practical challenges of maintenance optimization in 
Industry 4.0 emerge from the previous sections: (1) complexity of the 
industrial systems, (2) data acquisition and processing, (3) new opti
mization criteria and (4) prescriptive maintenance. 

Challenge 1) calls for the development of methods able to deal with: 
1.a) multipurpose systems for which multiple criteria should be 
jointly optimized; 
1.b) the uncertainty of the complex system behavior and the sto
chasticity of the environment in which the system operates; 
1.c) unknown dependences and inter-dependencies among compo
nents, subsystems, systems and even systems of systems [228,229]. 

These issues require to move away from static maintenance strate
gies, which are not suitable to deal with unexpected events, and develop 
dynamic maintenance strategies for adapting to the context changing in 

real-time [230]. Also, the extensive use of data-driven approaches in 
Industry 4.0 requires to properly represent and treat model and data 
uncertainty since its wrong quantification can lead to sub-optimal or 
even erroneous decisions [230]. 

With respect to challenge 2), Industry 4.0 makes data acquisition and 
processing technologies easily accessible. However, the tradeoff be
tween the opportunities of exploiting new KID for maintenance opti
mization and the capital investments required to purchase the sensors 
and software necessary to perform ad hoc analyses and to properly train 
the operators to use the outcomes for their decisions on operation, 
control and maintenance [93], should be carefully evaluated [231]. For 
safety critical systems, e.g., nuclear power plants, aeronautical systems, 
or for systems in which maintenance cannot be easily performed, e.g., 
offshore wind farms, the advantages of using new sources of KID have 
been intensively studied [232] and several approaches have been pro
posed. Notice that the approaches should, on the one hand, properly 
manage the increasing KID becoming available during the system life 
cycle and, on the other hand, they should deal with the fact that the KID 
for new technologies and production processes may be, initially, not 
sufficient for the implementation of advanced maintenance strategies, 
such as predictive or prescriptive ones. 

For what concerns challenge 3), Industry 4.0 comes in a historical 
time in which new challenges related to environment and modern so
ciety are receiving an ever-increasing attention. The concepts of sus
tainability and resilience are getting more and more critical and need to 
be considered by the companies, together with safety and economics- 
related objectives. Despite their importance, their consideration is not 
widespread among practitioners and it is typically limited to qualitative 
aspects due to the lack of formal metrics for their evaluation [191]. 

Finally, with respect to challenge 4), Industry 4.0 is changing the 
perception of maintenance: from monitoring the degradation state of the 
components and anticipating their failures to prescribing the most 
suitable action to optimally manage the whole system considering the 
dynamic production environment in which it is embedded [19]. This 
requires the development of an optimization framework suitable to 
process all sources of information available, with the associated un
certainties, and manage the large number of system states and possible 
maintenance actions. 

5.2. Trends in maintenance optimization methods 

In response to the challenges presented in the previous subsection, 
the emerging trends of maintenance optimization methods are here 
analyzed. Table 6 reports the main trends and their impacts on the 
definition of the optimization problem in terms of KID, K, optimization 
criteria, f(x), and outcomes, x. 

5.2.1. Complexity of the industrial systems 
With respect to the joint optimization of multiple criteria (challenge 

1.a) in Section 5.1), MCDM and MSAs are expected to gain attention for 
application in the next years. The value of MCDM approaches lies in the 
fact that they are suitable to deal also with qualitative aspects, that they 
provide easily interpretable solutions and that they do not require any 
particular expertise in information technology. As pointed out in [233], 
MCDM approaches, especially AHP, have been applied to solve problems 
of maintenance strategy selection in which the best maintenance strat
egy among several alternatives is to be selected considering re
quirements at the organizational level and company goals. Given the 
subjectivity of the results, which is due to the qualitative nature of the 
criteria and the use of expert’s knowledge for the evaluation, it is ex
pected that the research in this area will move towards the combination 
of MCDM with methods to manage uncertainty, such as FL [234], and 
the use of big data to extract more objective information. 

MSAs have been shown to provide optimal maintenance solutions for 
complex systems characterized by significant uncertainty in their 
behavior. They are adaptable to many different problem formulations 
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and can be used also with non-differentiable objective functions. Despite 
their popularity, GAs require the empirical setting of some hyper
parameters, such as population size, crossover and mutation probabili
ties, whose setting can affect both the goodness of the solution and the 
convergence speed. In this context, Self-Organizing GAs, which auto
matically adapt the hyperparameters to the characteristics of the specific 
problem, are a promising research direction [235]. Limitations of MSAs 
are that they do not guarantee convergence to the global optimum and 
the computation of the fitness value of the candidate solutions can be 
very demanding. This latter problem can be tackled by developing fast 
surrogate AI-based models for the computation of the fitness. 

With respect to the management of the uncertainty induced by the 
increased complexity of the systems in a stochastic environment (chal
lenge 1.b) in Section 5.1), new ML approaches, such as RL, are expected 
to further rise in popularity. In RL, the learning agent learns how to deal 
with the stochasticity of the environment and the variability of the ef
fects of the performed actions by directly interacting with the environ
ment [236]. Another major advantage of RL is that it tackles the problem 
of maintenance management dynamically, i.e., considering the effects of 
the O&M actions on the future system behavior and degradation evo
lution, which allows identifying the actions to be performed at every 
decision time [54]. Despite these potentialities, the application of RL to 
maintenance optimization of complex systems is still limited by the 
following issues: i) the large computational effort, which is due to the 
low convergence speed of RL and ii) the difficulty of explaining the 
rationale behind the selection of the maintenance actions, which, in 
some cases, may appear counterintuitive and, therefore, obstacles its 
practical application. To overcome the latter limitation, studies are 
being devoted to the development of explainable RL [237], with the 
objective of justifying the actions suggested by the RL agent. Finally, the 
implementation of the most promising RL approaches, which are based 
on deep learning, require a great amount of data and the development of 
an accurate and realistic model of the environment the learning agent 

has to interact with. Indeed, despite the learning agent can discover the 
optimal maintenance policy by means of direct interactions with the 
real-world system, this turns out to be unfeasible for economic, safety 
and time issues [215]. Specifically, due to the trial-and-error nature of 
the learning process, the agent would need to perform several times the 
actions suggested by the algorithm to explore their outcomes, leading to 
economically inconvenient and unsafe system management in the early 
stages of the learning process, when the actions selected are not yet 
optimal. To improve this issue, the learning agent should be trained 
using a white-box model of the system representative of the real-world 
environment. 

Other approaches, such as MCDM and MIP, have been shown to be 
suitable to deal with uncertainty when combined with FL and SP, 
respectively, whereas some other approaches, such as MSAs and DP, 
have already been successfully applied to maintenance optimization 
considering uncertainty [142,201,202,205]. 

With respect to the management of unknown dependencies and 
inter-dependencies among components and subsystems (challenge 1.c) 
in Section 5.1), AI and ML algorithms have been used to identify de
pendencies among components from the information collected from the 
system. For example, alarms signals have been used to identify de
pendencies in complex technical infrastructures, allowing the reduction 
of the computational burden of classical association rule mining ap
proaches [238]. In the context of Industry 4.0, these approaches are 
expected to attract the interest of the researchers dealing with complex 
systems of systems, since they can discover previously unknown de
pendencies. Furthermore, being these methods able to identify de
pendencies among the components of different nature, they can be 
extremely useful when opportunistic maintenance is adopted, since they 
help grouping different components to be maintained during the same 
maintenance opportunity [239]. 

Table 6 
Findings of the present review.  

Trends in Industry Consequences on the maintenance optimization problem Trends in optimization approaches 
K f x 

Complexity of the industrial systems:  
• Multipurpose systems;  
• Large uncertainty in the system 

behavior and stochasticity of the 
environment;  

• Unknown dependences and inter- 
dependencies among components 
and subsystems.  

• Need to manage uncertainty in 
data and models;  

• Need to extract information 
about components dependencies 
from data. 

Need to jointly optimize 
multiple criteria.  

• Interest in multi-objective optimiza
tion, e.g., MCDM, MSAs;  

• Interest in AI and ML techniques to 
manage the inter-dependencies 
among the components, e.g., MSA, 
RL;  

• Interest in AI and ML techniques 
intrinsically able to treat uncertainty, 
e.g., MSA, RL;  

• Enhancement of MCDM with FL and 
use of SP 

Advancements in sensors and sensor 
technology 

Need to deal with:  
• Large amount of data;  
• Heterogeneous data (numerical 

signals, images and texts).    

• AI and ML techniques to manage big 
data and extract information from 
them;  

• Reduced dependence on experts’ 
knowledge. 

Availability of AI algorithms for data 
mining 

Possibility of exploiting:  
• Real time estimations of the 

present and future health states 
of system components;  

• Estimation of present and future 
operating conditions.   

Integration of AI and ML techniques, e. 
g., NLP, CNN, within the optimization 
approach. 

New and more challenging 
performance and safety goals  

New criteria:  
• sustainability/ 

environmental 
impact;  

• resilience.   

• Multi-objective optimization;  
• Methods to consider quantitative and 

qualitative criteria, e.g., MCDM. 

Operation and maintenance 
considered as two sides of the 
same coin (prescriptive 
maintenance) 

Possibility of exploiting:  
• Detection, diagnostic and 

prognostics information;  
• Estimation of present and future 

operating conditions.  

Need to identify optimal 
operation and maintenance 
actions to be performed. 

Increasing interest in new optimization 
approaches, i.e., RL  
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5.2.2. Data acquisition and processing 
The second trend highlighted in Table 6 is related to the advance

ments of Industry 4.0 in sensors and sensor technology, which makes 
available a large amount of heterogenous data containing valuable in
formation on the system state, the degradation of the components and 
the environment. Specifically, the use of historical data, such as signal 
values, images and maintenance reports, and of real time information 
collected from the system is expected to reduce the dependence of the 
maintenance optimization on the subjectivity of experts’ knowledge 
and, therefore, contributing to reduce the uncertainty and leading to a 
more unbiased decision-making process. In this regard, one of the main 
challenges of maintenance optimization methods is to fully exploit all 
the available KID. To this aim, MAs and MCDM approaches are expected 
to be replaced by MIP, MSAs and RL, which have been shown to be able 
to manage large amounts of data in optimization problems [240]. In 
particular, RL can be trained including feedbacks from on-field opera
tors, allowing the learning agent to learn how they would act in a spe
cific situation [241]. 

The integration of new AI algorithms (third trend in Table 6) in 
maintenance optimization approaches is a necessary research direction 
to take into high consideration, especially considering the demand for 
predictive and prescriptive maintenance. Also, that data-driven ap
proaches are capable of dealing with uncertainty [242]. Yet, although 
applications of autoencoders to detect anomalies [243,244], DNN to 
real-time estimate the present and future health states of components 
[245], Recurrent Neural Networks (RNN) to catch the dynamic evolu
tion of the signals [246,247], CNN to classify images [248] and NLP to 
extract information from texts [249,250] have been proposed, the 
effective integration of these algorithms into the methods for mainte
nance optimization is still in its infancy. The challenge is to pass from the 
capability of performing fault detection, diagnostics and prognostics on 
a single component to optimize the maintenance of a complex system 
composed by interacting and dependent components using the infor
mation provided in real time by fault detection, diagnostics and prog
nostics algorithms [58]. 

5.2.3. New optimization criteria 
Although Industry 4.0 includes some objectives in terms of energy 

efficiency and environmental impact [251], its original concept focuses 
on enhancing performance, efficiency and safety of industry by means of 
the possibilities provided by the technological advancements in AI, 
cyber-physical systems, internet of things and robotics. In the last few 
years, the interest of modern society has broadened to new challenges 
related to resilience and sustainability. Industry 5.0, which has been 
proposed as an extension of Industry 4.0, focuses on the role of research 
and innovation to support industry in a long-term service to humanity 
[251,252], taking into account the worldwide spread challenges that 
affect the society the most. Consequently, maintenance optimization 
will definitely evolve to consider new criteria together with those 
related to performance and safety. This requires the definition of 
measurable quantities to evaluate the performance of a specific main
tenance strategy with respect of system resilience and sustainability. For 
example, a metric to quantify resilience has been defined in [253], 
whereas a new metric based on return on investment was introduced to 
consider at the same time safety, sustainability, reliability, and resil
ience [254]. It can be expected that many researchers will focus on 
defining new ad-hoc metrics to integrate new criteria of interest in 
existing maintenance optimization approaches. 

5.2.4. Prescriptive maintenance 
The last trend highlighted in Table 6 is prescriptive maintenance, 

which is rapidly gaining popularity among researchers, even if the 
literature works related to its optimization are still very limited [56, 
255]. This is due to the fact that it is common to think that complex 
maintenance strategies are always the best solutions and that corrective 
maintenance should always be avoided [93,256], which is not always 

true, given that the most suitable maintenance strategy should be 
selected according to the characteristics of each component, e.g., func
tionality, costs, criticality, environmental legislations, and the company 
objectives. Therefore, a dynamic and flexible maintenance strategy, 
adaptable to the specific conditions of the system and its environment 
should be preferred. For this reason, we expect the developments of 
methodologies that require maintenance engineers to list the possible 
operation and maintenance actions, without a-priori selecting a main
tenance strategy for all components in all conditions. According to our 
analysis, MIP, DP and RL emerge as possible ways to tackle this issue, but 
it is expected that other approaches will be proposed to optimize pre
scriptive maintenance in the near future. 

5.2.5. Further comments 
Table 7 reports the classification of the considered papers according 

to the adopted optimization approaches and the industrial field 
considered. It can be noticed that most of Industry 4.0 applications focus 
on the use of MIP, MSAs and RL in manufacturing, energy and aero
nautical industries. Also, few works consider real-world case studies, 
whereas many works focus on generic multi-unit systems. This high
lights that the gap between maintenance theory and practice is still 
present and needs to be narrowed by means of capital investments by the 
companies and more realistic case studies by the researchers. Also, 
noticed that, although many industrial fields were not explored, the 
developed methods are general and can be easily transferred to other 
field where the same sources of KID are available. 

Finally, as already pointed out in several surveys on maintenance 
optimization, it is important to mention the lack of benchmarks for the 
evaluation of maintenance strategies on well-defined case studies. In 
[257], a benchmark has been proposed to compare the performance of 
different algorithms for the optimization of scheduled maintenance in a 
power plant. Although it limits the problem to the optimization of the 
maintenance schedule, it can be considered a starting point for bench
marking in maintenance optimization. 

6. Conclusions 

In this work we have presented a survey on maintenance optimiza
tion. The analysis has been focused on the identification of the knowl
edge, information and data available in the context of Industry 4.0, the 
optimization criteria of interest and the possible outcomes of the opti
mization. Maintenance management professionals and researchers 
working on maintenance optimization can find in the present review 
reference case studies and a guideline to select the maintenance opti
mization approach given the characteristics of the industrial system and 
the objectives. It emerges that the complexity of the modern systems 
calls for the development of maintenance optimization methods able to 
jointly optimize several objectives and to properly treat the large un
certainty affecting the system behaviors and the environment in which 
they operate. Also, the advancements in sensors and sensor technology 
and the availability of new AI and ML algorithms offer the possibility to 
mine very useful information on the present and future health states of 
system components, which need to be properly considered for mainte
nance optimization at the system level. The analysis of the optimization 
criteria has shown that several industrial sectors are demanding to 
consider new metrics related to the concepts of sustainability and 
resilience within maintenance optimization. Also, there is an increasing 
interest towards prescriptive maintenance, which considers operation 
and maintenance as two sides of the same coin, and overcomes the need 
of a-priori selecting a maintenance strategy to be applied to the system 
during the time horizon of the optimization. 

The capability of the different optimization methods to deal with the 
identified challenges has been reviewed. Although at the present state of 
the art there is not a single approach able to satisfactory tackle all the 
open issues, the analysis performed in this work allows concluding that 
multi-objective MSAs and RL-based approaches are among the most 
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promising maintenance optimization approaches, given their capability 
of dealing with the joint optimization of several criteria and with the 
uncertainty of the system behavior and of the environment. 
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