236,025 research outputs found

    Shape Registration in the Time of Transformers

    Get PDF
    In this paper, we propose a transformer-based procedure for the efficient registration of non-rigid 3D point clouds. The proposed approach is data-driven and adopts for the first time the transformers architecture in the registration task. Our method is general and applies to different settings. Given a fixed template with some desired properties (e.g. skinning weights or other animation cues), we can register raw acquired data to it, thereby transferring all the template properties to the input geometry. Alternatively, given a pair of shapes, our method can register the first onto the second (or vice-versa), obtaining a high-quality dense correspondence between the two. In both contexts, the quality of our results enables us to target real applications such as texture transfer and shape interpolation. Furthermore, we also show that including an estimation of the underlying density of the surface eases the learning process. By exploiting the potential of this architecture, we can train our model requiring only a sparse set of ground truth correspondences (10∼20% of the total points). The proposed model and the analysis that we perform pave the way for future exploration of transformer-based architectures for registration and matching applications. Qualitative and quantitative evaluations demonstrate that our pipeline outperforms state-of-the-art methods for deformable and unordered 3D data registration on different datasets and scenarios

    Parameter inference and model selection for differential equation models

    Get PDF
    Includes bibliographical references.2015 Summer.Firstly, we consider the problem of estimating parameters of stochastic differential equations with discrete-time observations that are either completely or partially observed. The transition density between two observations is generally unknown. We propose an importance sampling approach with an auxiliary parameter when the transition density is unknown. We embed the auxiliary importance sampler in a penalized maximum likelihood framework which produces more accurate and computationally efficient parameter estimates. Simulation studies in three different models illustrate promising improvements of the new penalized simulated maximum likelihood method. The new procedure is designed for the challenging case when some state variables are unobserved and moreover, observed states are sparse over time, which commonly arises in ecological studies. We apply this new approach to two epidemics of chronic wasting disease in mule deer. Next, we consider the problem of selecting deterministic or stochastic models for a biological, ecological, or environmental dynamical process. In most cases, one prefers either deterministic or stochastic models as candidate models based on experience or subjective judgment. Due to the complex or intractable likelihood in most dynamical models, likelihood-based approaches for model selection are not suitable. We use approximate Bayesian computation for parameter estimation and model selection to gain further understanding of the dynamics of two epidemics of chronic wasting disease in mule deer. The main novel contribution of this work is that under a hierarchical model framework we compare three types of dynamical models: ordinary differential equation, continuous time Markov chain, and stochastic differential equation models. To our knowledge model selection between these types of models has not appeared previously. The practice of incorporating dynamical models into data models is becoming more common, the proposed approach may be useful in a variety of applications. Lastly, we consider estimation of parameters in nonlinear ordinary differential equation models with measurement error where closed-form solutions are not available. We propose a new numerical algorithm, the data driven adaptive mesh method, which is a combination of the Euler and 4th order Runge-Kutta methods with different step sizes based on the observation time points. Our results show that both the accuracy in parameter estimation and computational cost of the new algorithm improve over the most widely used numerical algorithm, the 4th Runge-Kutta method. Moreover, the generalized profiling procedure proposed by Ramsay et al. (2007) doesn't have good performance for sparse data in time as compared to the new approach. We illustrate our approach with both simulation studies and ecological data on intestinal microbiota

    Empirical Bayes conditional density estimation

    Full text link
    The problem of nonparametric estimation of the conditional density of a response, given a vector of explanatory variables, is classical and of prominent importance in many prediction problems since the conditional density provides a more comprehensive description of the association between the response and the predictor than, for instance, does the regression function. The problem has applications across different fields like economy, actuarial sciences and medicine. We investigate empirical Bayes estimation of conditional densities establishing that an automatic data-driven selection of the prior hyper-parameters in infinite mixtures of Gaussian kernels, with predictor-dependent mixing weights, can lead to estimators whose performance is on par with that of frequentist estimators in being minimax-optimal (up to logarithmic factors) rate adaptive over classes of locally H\"older smooth conditional densities and in performing an adaptive dimension reduction if the response is independent of (some of) the explanatory variables which, containing no information about the response, are irrelevant to the purpose of estimating its conditional density

    Arithmetic Brownian motion subordinated by tempered stable and inverse tempered stable processes

    Full text link
    In the last decade the subordinated processes have become popular and found many practical applications. Therefore in this paper we examine two processes related to time-changed (subordinated) classical Brownian motion with drift (called arithmetic Brownian motion). The first one, so called normal tempered stable, is related to the tempered stable subordinator, while the second one - to the inverse tempered stable process. We compare the main properties (such as probability density functions, Laplace transforms, ensemble averaged mean squared displacements) of such two subordinated processes and propose the parameters' estimation procedures. Moreover we calibrate the analyzed systems to real data related to indoor air quality
    • …
    corecore