6,115 research outputs found

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada

    Application of the variational method for correction of wet ice attenuation for X-band dual-polarized radar

    Get PDF
    2011 Fall.Includes bibliographical references.In recent years there has been a huge interest in the development and use of dual-polarized radar systems operating at X-band (~10 GHz) region of the electromagnetic spectrum. This is due to the fact that these systems are smaller and cheaper allowing for a network to be built, for example, for short range (typically < 30-40 km) hydrological applications. Such networks allow for higher cross-beam spatial resolutions while cheaper pedestals supporting a smaller antenna also allows for higher temporal resolution as compared with large S-band (long range) systems used by the National Weather Service. Dual-polarization radar techniques allow for correction of the strong attenuation of the electromagnetic radar signal due to rain at X-band and higher frequencies. However, practical attempts to develop reliable correction algorithms have been cumbered by the need to deal with the rather large statistical fluctuations or "noise" in the measured polarization parameters. Recently, the variational method was proposed, which overcomes this problem by using the forward model for polarization variables, and uses iterative approach to minimize the difference between modeled and observed values, in a least squares sense. This approach also allows for detection of hail and determination of the fraction of reflectivity due to the hail when the precipitation shaft is composed of a mixture of rain and hail. It was shown that this approach works well with S-band radar data. The purpose of this research is to extend the application of the variational method to the X-band dual-polarization radar data. The main objective is to correct for attenuation caused by rain mixed with wet ice hydrometeors (e.g., hail) in deep convection. The standard dual-polarization method of attenuation-correction using the differential propagation phase between H and V polarized waves cannot account for wet ice hydrometeors along the propagation path. The ultimate goal is to develop a feasible and robust variational-based algorithm for rain and hail attenuation correction for the Collaborate Adaptive Sensing of the Atmosphere (CASA) project

    Planning assistance for the 30/20 GHz program, volume 1

    Get PDF
    Functional requirements for the 30/20 GHz communication system, planning assistance for the 30/20 GHz program, and a review of specified conceptual designs and recommendations are provided

    The 30/20 GHz communications system functional requirements

    Get PDF
    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Use of Dual Polarization Radar in Validation of Satellite Precipitation Measurements: Rationale and Opportunities

    Get PDF
    Dual-polarization weather radars have evolved significantly in the last three decades culminating in the operational deployment by the National Weather Service. In addition to operational applications in the weather service, dual-polarization radars have shown significant potential in contributing to the research fields of ground based remote sensing of rainfall microphysics, study of precipitation evolution and hydrometeor classification. Furthermore the dual-polarization radars have also raised the awareness of radar system aspects such as calibration. Microphysical characterization of precipitation and quantitative precipitation estimation are important applications that are critical in the validation of satellite borne precipitation measurements and also serves as a valuable tool in algorithm development. This paper presents the important role played by dual-polarization radar in validating space borne precipitation measurements. Starting from a historical evolution, the various configurations of dual-polarization radar are presented. Examples of raindrop size distribution retrievals and hydrometeor type classification are discussed. The quantitative precipitation estimation is a product of direct relevance to space borne observations. During the TRMM program substantial advancement was made with ground based polarization radars specially collecting unique observations in the tropics which are noted. The scientific accomplishments of relevance to space borne measurements of precipitation are summarized. The potential of dual-polarization radars and opportunities in the era of global precipitation measurement mission is also discussed

    Radar multi-sensor (RAMS) quantitative precipitation estimation (QPE)

    Get PDF
    Includes bibliographical references.2015 Summer.Quantitative precipitation estimation (QPE) continues to be one of the principal objectives for weather researchers and forecasters. The ability of radar to measure over broad spatial areas in short temporal successions encourages its application in the pursuit of accurate rainfall estimation, where radar reflectivity-rainfall (Z-R) relations have been traditionally used to derive quantitative precipitation estimation. The purpose of this research is to present the development of a regional dual polarization QPE process known as the RAdar Multi-Sensor QPE (RAMS QPE). This scheme applies the dual polarization radar rain rate estimation algorithms developed at Colorado State University into an adaptable QPE system. The methodologies used to combine individual radar scans, and then merge them into a mosaic are described. The implementation and evaluation is performed over a domain that occurs over a complex terrain environment, such that local radar coverage is compromised by blockage. This area of interest is concentrated around the Pigeon River Basin near Asheville, NC. In this mountainous locale, beam blockage, beam overshooting, orographic enhancement, and the unique climactic conditions complicate the development of reliable QPE's from radar. The QPE precipitation fields evaluated in this analysis will stem from the dual polarization radar data obtained from the local NWS WSR-88DP radars as well as the NASA NPOL research radar

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Effects of spatial resolution on radar-based precipitation estimation using sub-kilometer X-band radar measurements

    Get PDF
    Known for the ability to observe precipitation at spatial resolution higher than rain gauge networks and satellite products, weather radars allow us to measure precipitation at spatial resolutions of 1 kilometer (typical resolution for operational radars) and a few hundred meters (often used in research activities). In principle, we can operate a weather radar at resolution higher than 100m and the expectation is that radar data at higher spatial resolution can provide more information. However, there is no systematic research about whether the additional information is noise or useful data contributing to the quantitative precipitation estimation. In order to quantitatively investigate the changes, as either benefits or drawbacks, caused by increasing the spatial resolution of radar measurements, we set up an X-band radar field experiment from May to October in 2017 in the Stuttgart metropolitan region. The scan strategy consists of two quasi-simultaneous scans with a 75-m and a 250-m radial resolution respectively. They are named as the fine scan and the coarse scan, respectively. Both scans are compared to each other in terms of the radar data quality and their radar-based precipitation estimates. The primary results from these comparisons between the radar data of these two scans show that, in contrast to the coarse scan, the fine scan data are characterized with losses of weak echoes, are more subjected to external signals and second-trip echoes (drawback), are more effective in removing non-meteorological echoes (benefit), are more skillful in delineating convective storms (benefit), and show a better agreement with the external reference data (benefit)
    corecore