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ABSTRACT  

 

APPLICATION OF THE VARIATIONAL METHOD FOR CORRECTION OF 

WET ICE ATTENUATION FOR X-BAND DUAL-POLARIZED RADAR 

 

In recent years there has been a huge interest in the development and 

use of dual-polarized radar systems operating at X-band (~10 GHz) region of the 

electromagnetic spectrum. This is due to the fact that these systems are smaller 

and cheaper allowing for a network to be built, for example, for short range 

(typically < 30-40 km) hydrological applications. Such networks allow for higher 

cross-beam spatial resolutions while cheaper pedestals supporting a smaller 

antenna also allows for higher temporal resolution as compared with large S-

band (long range) systems used by the National Weather Service.  

Dual-polarization radar techniques allow for correction of the strong 

attenuation of the electromagnetic radar signal due to rain at X-band and higher 

frequencies. However, practical attempts to develop reliable correction 

algorithms have been cumbered by the need to deal with the rather large 

statistical fluctuations or “noise” in the measured polarization parameters. 

Recently, the variational method was proposed, which overcomes this problem 

by using the forward model for polarization variables, and uses iterative approach 

to minimize the difference between modeled and observed values, in a least 
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squares sense. This approach also allows for detection of hail and determination 

of the fraction of reflectivity due to the hail when the precipitation shaft is 

composed of a mixture of rain and hail. It was shown that this approach works 

well with S-band radar data.  

The purpose of this research is to extend the application of the variational 

method to the X-band dual-polarization radar data. The main objective is to 

correct for attenuation caused by rain mixed with wet ice hydrometeors (e.g., hail) 

in deep convection. The standard dual-polarization method of attenuation-

correction using the differential propagation phase between H and V polarized 

waves cannot account for wet ice hydrometeors along the propagation path. The 

ultimate goal is to develop a feasible and robust variational-based algorithm for 

rain and hail attenuation correction for the Collaborate Adaptive Sensing of the 

Atmosphere (CASA) project. 
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Chapter 1  
 
 

INTRODUCTION 

 

The development of meteorological radars, operating at high frequency 

range (X-band, 8-12 GHz), began in the early 1950’s. Because of high 

attenuation of the electromagnetic energy by liquid hydrometeors, mostly high 

power and long range, lower frequency radars, operating at C- (4-8 GHz) and S-

band (2-4 GHz) were used by National Weather Service for weather observation 

purposes until recent times. With the invention of the dual-polarization technology 

which allows for correction of the strong attenuation of the radar signal due to 

rain at high frequencies, the development of X-band radars became feasible. A 

good example of application of these radars is the Collaborate Adaptive Sensing 

of the Atmosphere (CASA) project. Its goal is to create a distributed network of 

small, cheap, short-range X-band radars to overcome the Earth-curvature 

blockage and to allow for higher cross-beam spatial resolutions in the lower 

troposphere. Also, cheaper pedestals supporting a smaller antenna allows for 

higher temporal resolution as compared with large S-band (long range) systems 

used by the National Weather Service at the present time (McLaughlin et al. 

2005,  Brotzge  et  al. 2005).  

Conventional radars cannot distinguish hail from heavy rain, and the 

measurements are very difficult to correct for attenuation. Dual-polarization 
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radars can overcome these problems via the measurement of differential 

propagation phase (e.g., chapter 7 of Bringi and Chandrasekar, 2001). ) There 

are several well developed methods to correct for rain attenuation using 

polarimetric algorithms (Park et al. (2003a), Liu et al. (2006)). But attenuation due 

to wet ice was ignored in much of the previous studies because of the complexity 

of the problem. Mie theory was used by Battan (1971) and Atlas et al. (1960) to 

calculate the radar attenuation of wet ice spheres for S-, C- and X-bands, and it 

was found that thin water layer surrounding the hail particle can cause a 

significant attenuation, especially at X-band. While methods to correct for rain 

attenuation make use  of  the  close relation between the differential propagation 

phase (Φdp) and path integrated attenuation (or PIA), when wet ice is present 

along the path, differential propagation phase is not affected by the isotropic wet 

hail, but reflectivity is affected. Hail detection is possible due to the fact that when 

hail is present, differential reflectivity (Zdr) and specific differential phase shift (Kdp) 

provide complementary information (Smyth et al 1999). Hailstones are usually 

close to spherical, and they usually tumble during the fall, so their intrinsic Zdr and 

Kdp are close to zero. Besides, hail has considerably lower Zdr, compared to the 

rain of the same reflectivity. Hence the combination of Z, Zdr and Kdp can be used 

to detect hail (e.g., chapter 7 of Bringi and Chandrasekar 2001 and references 

contained therein). Another problem is that there are large statistical fluctuations 

or “noise” in the measured polarization parameters, so practical attempts to 

develop reliable correction algorithms have been cumbered by the need to deal 
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with it. It is necessary to average Kdp and Zdr over several kilometers, which leads 

to  ”over-smoothing”  of the retrieved parameters and loss of resolution. 

Recently, the variational method was proposed  by Hogan (2007) , which 

overcomes these problems by using the forward model for polarization variables, 

and uses iterative approach to minimize the difference between modeled and 

observed values, in a least squares sense. This approach also allows for 

detection of hail and determination of the fraction of reflectivity due to the hail 

when the precipitation shaft is composed of a mixture of rain and hail. It was 

shown that this approach works well with S-band radar data. 

 

Research objectives 
 

The research objectives are focused in two general directions:  

•     Tune the forward model (FM) used in the variational algorithm for better 

performance at X-band, and specifically for CASA radars. It can be 

achieved by fine tuning of the observational errors for CASA radars, and 

fine tuning a priori values of coefficient a in the Zh=aRb relationship. 

Also it might be feasible to add to the set of the input variables in the 

state vector. 

•     Extend the variational method to handle cases with wet ice and hail in 

deep convection with focus on CASA applications (hail attenuation 

correction). It can be achieved by improving the hail detection (by using 

other methods for “initial guess” of hail location and estimation of 



 4 

reflectivity fraction due to hail). This initial data can be supplied to the 

algorithm to improve its convergence to an “optimal” state.            
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Chapter 2  
 
 

THEORETICAL BACKGROUND 

 

2.1 Interaction of electromagnetic wave with hydrom eteors 

The radar is the principal device that is used for weather observation. The 

principle is based on the interaction of the electromagnetic energy emitted by the 

radar with the scatterers (e.g. hydrometeors – rain drops, hail stones, etc). The 

energy reflected back from the scatterer to the receiving antenna depends on the 

backscatter cross section (or radar cross section) σb of the reflecting particle. The 

σb is defined as an apparent area that intercepts a power σSi , which if scattered 

isotropically, produces at the receiver a power density  

24 r

S
S bi

r π
σ=           (2.1) 

equal to that scattered by the actual hydrometeor (Doviak and Zrnic, 1993). For 

the small spherical water drop of diameter D, if D is small compared to 

electromagnetic incident wavelength λ  (Rayleigh’s approximation D< λ/16), 

backscattering cross section can be approximated by 

4

625 ||

λ
πσ DK

b =          (2.2) 
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where 
2

2

)2(

)1(
||

+
−=

r

rK
ε
ε

                             (2.3) 

is a dielectric factor, and εr – complex relative permittivity of the dielectric, or 

complex dielectric constant ( exp(-jωt) time convention is used here): 

''' εεε ir +=  

Real part of εr is the relative permittivity, imaginary part is the loss factor, 

associated with wave attenuation (Sadiku 1985). The dielectric factor K depends 

on the wavelength and temperature. Complex refractive index N is related to εr, 

with rε=N . 

 

Table 2-1 Refractive index of water and ice for radar frequencies 
 
Frequency, GHz Refractive index of 

water at temperature  
0 C 

Refractive index of ice 
at temperature 0 C 

3 9.035 + 1.394i 1.783 + 5.474 * 10-3i 
6 8.227 + 2.341i 1.782 + 3.344 * 10-3i 
10 7.089 + 2.907i 1.781 + 2.325 * 10-3i 

 

The dielectric factor K2 (at 3 GHz and 0 C) for water is ~0.93 and for ice is 

~0.17 (Bringi and Chandrasekar 2001, p. 433), which means that backscatter 

cross section for dry ice hydrometeor (like dry hail) of the same size as liquid or 

water-coated hydrometeor is about 5 times lower. However, numerical 

calculations and experiments confirm that ice spheres can have larger 

backscatter cross section than water spheres of the same diameter (Atlas et 

al.1960), because of the angle (θ,φ) dependence of the radiation pattern of the 

scattered energy (Luneberg lens mechanism). Scattered energy is more directive 
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in the back direction (to the radar antenna) for ice sphere than for water sphere 

of the same diameter. 

 

An electromagnetic wave in air suffers power loss both due to energy 

absorption and scattering. Absorption of the hydrometeor depends on the 

absorption cross section σa, an apparent area that intercepts from the incident 

radiation a power equal to the power dissipated as heat. Scattered energy 

depends on the scattering cross section σs, an apparent area that, when 

multiplied by the incident power density, gives the power equal to that scattered 

by the particle. For small spheres σs = 2σb /3 (Battan 1973). 

Total power loss due absorption and scattering is defined as the extinction 

cross section 

 σe = σa +σs ,          (2.4)   

2
4

65

32

||
3

2

)Im(

K
D

K
D

s

a

λ
πσ

λ
πσ

≈

−≈
                             (2.6) 

For low radar signal frequencies (~3 GHz), attenuation occurs because of 

absorption, as usually σa >> σs . For high frequencies (~ 30 GHz), σa can be less 

than σs. Also, comparing refractive indexes of water and ice, we can see that 

imaginary part of it (loss factor), is much higher for liquid water, so specific 

attenuation caused by liquid hydrometeors is much higher than specific 

attenuation due to dry hydrometeors: 

∫=
D

e kmdBdDDNDA /)()(10*343.4 3 σ       (2.7) 

(2.5) 
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where N(D) is drop size distribution, defines the number of drops per unit volume 

of each diameter within the interval D to D+dD. 

 

The radar reflectivity (η) (Bringi and Chandrasekar, 2001) can be defined 

as: ∫=
D

b dDDND
K

)()(
|| 25

4

σ
π

λη        (2.8) 

where σb is the back scatter cross-section. 

 

2.2 Radar parameters of liquid and dry hydrometeors  

The discrimination of liquid and dry hydrometeors is based on the size,  

shape, orientation and dielectric factor properties. Liquid drops are oblate 

spheroids, with a nearly vertical orientation of their symmetry axes. Drop size 

distribution in exponential form can be expressed as: 

31

0
0 );67.3exp()( −−−= mmm

D

D
NDN       (2.9) 

 

where N0 is the intercept parameter. There are several models describing 

relationship between rain drop shape and size. In general drops can be 

approximated as a sphere for small D, and it becomes an oblate spheroid with 

increasing diameter D. 

Hailstones are characterized by wide variability of their size and, even 

though assumed to be spherical, they can be oblate and tumbling or their 
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surfaces can have large protuberances.   Their size distribution in exponential 

form can be expressed as (Cheng and English, 1983): 

3163.3
0 );exp(115)exp()( −−Λ−Λ=Λ−= mmmDDNDN     (2.10) 

 

but this relationship is not valid for all cases. There is no well-defined relationship 

between hail shape and size so far. There are documented hailstones of non-

spherical shape (Knight 1986), but most commonly observed shapes for large 

hailstones are oblate spheroids (longest dimensions ~ 20 mm) or even conical 

(longest dimensions ~ 20-30 mm). Hailstones tumble as they fall and melt as 

they fall below the 0 C level. The melt water often forms an oblate shell around 

the ice core, which greatly improves orientational stability (typically for sizes<10 

mm or so; see figure 7.45 of Bring and Chandrasekar 2001). To the radar such 

melting hailstones will appear as a “giant raindrops” and most frequently so at C-

band due to strong resonant scattering. 

These change in size, form and electrical properties of the particles lead to 

changes in polarization properties of the reflected radar signal. For oblate and 

prolate spheroids there is a difference in backscattering cross sections for 

horizontally and vertically polarized electromagnetic waves, and hence there is a 

difference in the radar measured vertical and horizontal reflectivities ηv and ηh: 

dDDNDvhvh )()(,, ∫= ση         (2.11) 

 

The differential reflectivity is defined as: 

Zdr = 10 log (ηh/ηv)          (2.12) 
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In addition, there is a difference in the propagation constants for 

horizontally and vertically polarized waves, which creates a phase shift, or 

differential propagation phase Φdp: 

vvhhdp Φ−Φ=Φ          (2.13) 

 

Specific differential phase Kdp  is defined for a homogeneous path as: 

)(2

)()(

12

12

rr

rr
K

dpdp

dp −
Φ−Φ

=         (2.14) 

 

where r1,r2 are two different distances along the beam path (r2>r1).  Kdp is, by 

convention, defined to be positive for horizontally oriented oblate particles and 

negative for vertically oriented prolates. 

In general, liquid hydrometeors as oblate oriented particles will have large 

Zdr values for large drops, and low Zdr values for small nearly spherical drops. Kdp 

and Φdp are sensitive only to the oriented oblate raindrops, so randomly oriented 

hailstones does not change Kdp and Φdp parameters. The reflectivity factor Z itself 

increases many times because of the water phase change. It worth noting that 

Zdr due to mixture of oblate raindrops and spherical hailstones will be ~ 0 dB, 

because larger hailstones with axis ratio close to 1 will dominate and bias the 

total Zdr value (Bringi and Chandrasekar 2001, p.390). A good signature of the 

hailshaft below the melting layer is a vertical region of reduced Zdr values (<1 dB), 
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the so-called “Zdr-hole”, collocated or located very close to the region of high 

reflectivity values. 

 

2.3 Discrimination between liquid and dry ice hydro meteors 

To better understand the principles of the storm and precipitation 

development and quantitative parameter estimation (like rain rate), one needs to 

have reliable methods for classification of the hydrometeors. Two polarimetric 

variables are important for these purposes: Zdr and Φdp, and reflectivity at 

horizontal polarization Zh. Aydin et al.(1986) have introduced the concept of Hdr, 

defined as 

Hdr=Zh-f(Zdr)           (2.15) 

 

where Zh is  the measured reflectivity, and f(Zdr) defines a straight line on Zh vs 

Zdr plot, 
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)(       (2.16) 

 

For 3 GHz frequency and equilibrium rain drop shape model give values 

a=16.5, b=2 dB.  

This method allows for discrimination between pure rain and hail, it is 

simple and works well for altitudes below the melting level. Above approximately 

the -5 C level, frozen hydrometeors usually have Zdr~0 dB and Hdr becomes 
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strictly proportional to Zh. The magnitude of the Hdr itself can not be used to 

estimate the damage potential of the hailstorm, but there is some correlation with 

the maximum hail diameter (Depue et al. 2007; Bringi and Chandrasekar 2001, p 

455). In particular for hailstorms in NE Colorado, Depeu et al. (2007) found that 

Hdr>20 dB was a reasonable threshold for detecting damaging hail (size>20 mm 

or so). This method does not work in case when hailstones fall in a mode which 

yields positive Zdr in the same range as observed for oblate raindrops (Smyth et 

al. 1999). 

For mixed-phase precipitation (where hail and rain coexist) another method was 

proposed by Golestani et al. (1989). The concept of Zdp was introduced, defined 

as 

Zdp=10 log10(Zh- Zv) ,   Zh> Zv , mm6 m-3      (2.17) 

 

Zdp is used to estimate the fraction of rain in the mixed precipitation, and 

works for the case when hail is nearly spherical in shape. The Zdp here is due 

solely to rain, so there will be a straight line for pure rain on Zdp vs Zh plot. Given 

Zh, Zdp and the rain line, this method allows estimating contribution of rain ZR to 

the total reflectivity Z, and so the fraction f is: 

f= ZR/( ZR+ ZH)          (2.18) 

 

and the ratio of hail to rain reflectivity is 

ZH / ZR=(1-f)/f          (2.19) 

ZH/Z= fhail=1-f = 1 –10-0.1(∆Z)        (2.20) 
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where ∆Z is horizontal deviation from the rain line in dB. 

 

There is another simple method for estimation of fraction of ice in a 

rain/hail mixture, which uses reflectivity Z and specific differential phase Kdp. The 

Kdp is affected only by anisotropic rain drops, but not by isotropic hailstones. 

The empirical relationship which distinguishes the boundary between pure rain 

from mixed phase and hail is given by (Doviak and Zrnic 1993, p. 261): 

Z=8 log10( 2Kdp ) + 49        (2.21) 

 

For a given Z, the lower the measured Kdp from that calculated in (2.21), 

the higher the probability that precipitation contains hail (Doviak and Zrnic 1993). 

The fraction of reflectivity factor which is due to hail, 

 fhail = ZH/( ZR+ ZH) = (Z - ZR )/ Z        (2.22) 

 

and ZR can be obtained from ZR – Kdp relationship. For 3 GHz radar, for example 

the mean relationship is given by (Doviak and Zrnic 1993, p. 262): 

ZhR=65800(Kdp)
1.386 , mm6 m-3       (2.23) 

 

There are limitations of this method as the above relationship depends on 

the rain DSD. Also, the Kdp can only be obtained as a path average whereas the 

reflectivity is measured at each range gate. Balakrishnan and Zrnic (1990) 

provide a good overview.  
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There are also several more complicated methods for discrimination between 

liquid and dry ice hydrometeors, which are based on fuzzy logic, neural networks, 

and their combinations, and also dual-wavelength methods (see Chapter 7 of 

Bringi and Chandrasekar 2001). 
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Chapter 3  
 
 

METHODOLOGY 

 
In Hogan (2007), a method was described, which applies the variational 

approach to rainfall rate retrieval from the polarization radar variables Z, Zdr and 

Φdp. This methodology, also known as “optimal estimation theory”, was used 

mostly in satellite retrievals, but has only recently been applied to radar 

applications (e.g., Austin and Stephens 2001; Löhnert et al. 2004). This method 

was shown to successfully overcome problems with other techniques, which 

appear due to inherent measurement fluctuations or “noise” in radar variables 

(Zdr and Κdp). The Κdp, as the range derivative of an already noisy Φdp, can 

become negative, which is physically impossible in rain. The Zdr and Κdp have to 

be averaged over some distance, so some sharp changes appear in the final 

field between averaged regions. Furthermore, it is difficult to design conventional 

algorithms to make use of Zdr and Φdp simultaneously in all rain/hail regimes, so 

the most appropriate one usually has to be chosen (Hogan 2007). 

The variational method overcomes these regime transitions by explicit 

treatment of the errors, includes attenuation correction to the forward modeling of 

Z and Zdr, and allows for hail detection as well as retrieves the fraction of the 

reflectivity that is due to hail. It is designed to work for the following regimes: 
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• Very light rain: Rain drops are spherical, Zdr, Kdp are ~0. Use a priori values of 

a and b in Zh=aRb to estimate rain rate 

• Light to moderate rain:  Zdr>0 dB, Kdp close to 0 deg/km. Zdr provides 

information on a. 

• Heavier rain: Kdp>0 deg/km, and so Kdp also has information on a. Method 

uses the known errors in Zdr and Φdp to use both variables by weighting the 

information from both appropriately. 

• Significant attenuation: Use Φdp for attenuation correction. 

• Strong attenuation: It can result in differential attenuation, when Zh is 

attenuated more than Zv, and Zdr, becomes negative at the far side of a region 

of heavy rain. 

• Hail is present: Zdr and Kdp of hail ~0. Combination of Z, Zdr, Kdp is used to 

identify hail regions, and retrieve the fraction of the reflectivity that is due to 

hail. When there is a mixture of rain and hail, the rain rate can be estimated 

from Kdp alone, and fraction of the reflectivity that is due to hail can be 

estimated. 

 

In general, for this algorithm to work, measurements have to be “cleaned” of 

noise and pixels below melting layer selected for the input, which is organized 

ray-by-ray. The forward model H(x), which is the essence of the variational 

method, will use the first guess of state vector x to predict the observations at 

each gate (vector y). The difference between predicted and observed variables is 

used to change state vector x for better fit with the observations y in a least 
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squares sense. This process would be repeated until convergence is reached. In 

state vector x we need to put variable that describes the rain rate, which in 

Hogan’s (2007) formulation is the coefficient a between reflectivity and the 

rainrate R: 

Zh=aRb ,          (3.1) 

 

b usually equals to 1.5 (for normalized gamma DSDs). 

To guarantee the smooth variation in range and avoid “noise” problems, 

the coefficient a is represented by a set of n basis functions. Typically  

n ∼ m/10,           (3.2) 

 

where m is number of the input gates in the beam. 

By using ln(a) instead of just a, unphysical negative a values can be 

avoided; also more rapid convergence is realized, so the state vector for the 

single ray is given by: 
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It can be assumed that the error in Zh is much less than the errors in Zdr and 

Φdp, so Zh can be omitted from the observation vector y: 

 

           (3.4) 
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One caveat is that the absolute calibration of the radar is accurate to 

within an uncertainty of 1 dB while the Zdr is calibrated to within an uncertainty 

0.2 dB. 

 

Hogan (2007) has defined the cost function J as: 
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where first summation represents the deviation of the observations Zdr and Φdp 

from the values predicted by the forward model Z’dr and Φ'dp, and the second 

summation represents the deviation of the elements of the state vector from 

some a priori estimate xa (a priori a=200 mm6m-3(mm h-1)-1.5). The terms σZdr and 

σΦdp are the root-mean-square observational errors, and σx
a is the error in the a 

priori estimate. 

)()(2 11 aTaT xxBxxyRyJ −−+= −− δδ       (3.6) 

 

where δy = y – H(x), R and B are the error covariance matrices of the 

observations and the a priori. Hogan (2007) used the Gauss-Newton method to 

iteratively minimize the cost function. At iteration k an estimate of the state vector 

xk and the corresponding forward-model estimate of the observations H(xk) are 
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obtained. The forward-model operator H(x) is nonlinear. The linearized cost 

function JL is obtained by replacing H(x) in (3.6) by  

H(xk) + H × (x - x k),          (3.7) 

 

where H is the Jacobian, a matrix containing the partial derivative of each 

observation with respect to each element of the state vector. In this case it is a  

2m - by - n matrix given by 
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The state vector at the minimum of JL is  

xk+1=xk+A-1[HTR-1δy – B-1(xk-x
a)]        (3.9) 

 

Here A is Hessian: 

A=HTR-1H + B-1         (3.10) 

 

The forward model and H are recalculated for each iteration step until 

convergence (usually there are around 4 iterations). 

The correction for attenuation is achieved within the forward model by 

using lna and Zh at a particular gate to estimate the associated attenuation, and 

then using it to correct Zh at all subsequent gates. The possible instability due to 
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accumulation of small errors (scattering model errors or radar calibration errors) 

is fixed by the iterative nature of the method. If the first guess of lna is too low 

then it will lead to an overestimate of the attenuation for a given measured Zh, 

and hence the correction applied to Zh will be increasingly overestimated at the 

gates after current. This will lead to the forward model overestimating both Zdr 

and Φdp at these gates. When compared with the observed values, the scheme 

will know that it needs to increase lna at the earlier gates to get a better fit to the 

observations, and the subsequent iterations will converge on a retrieval of lna 

that is consistent with them. 

If there is a hail segment in the ray, this scheme cannot find a solution for 

lna that, when used in the forward model, can closely predict both Zdr and Φdp, so 

it is done in 2 passes. The first pass is used for detection of the gates with the 

hail, and second is used for estimation of the fraction of the measured reflectivity 

due to hail. 

At the first pass the σZdr is increased (10 times), to make the solution to be 

consistent with the measured Φdp only. If hail is present in the gate it will appear 

as an overestimate of the Zdr predicted by the forward model, so this gate will be 

marked as the one with hail. 

The ad hoc criteria for the hail detection is that after correction for 

attenuation (and when Zh > 35 dB) the Zdr is overestimated by 1.5 dB (comparing 

measured and modeled values). At the second pass the σZdr is returned to its 

original value and state vector is changed, to include the fraction f  (in range 0 - 1) 

of the reflectivity factor that is due to hail for each gate marked as having hail. In 
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this way the scheme is able to find a combination of lna and f that enable both Zdr 

and Φdp to match the observed values. If the hail flag is triggered incorrectly than 

the second pass should retrieve low values of hail fraction f. The rainrate R is 

calculated from the rain part of the reflectivity: 

           (3.11) 

 

where Ah is the total 2-way attenuation at horizontal polarization in dB.  

 

The flowchart of the variational scheme is shown next: 

b
h

A aZfR h /11.0 ]/10)1[( −=
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Figure 3-1 . Flowchart of the variational scheme. Adapted from  Hogan (2007). 
 

3.1 Forward model 

The forward model (FM) should predict values of Z’dr and Φ'dp, and the 

elements of the state vector lna, having correct observed Zh values. For this the 

scattering properties of oblate raindrops have been calculated using the T-matrix 

method (Waterman 1969) for equivalent-volume drop diameters between 0.1 and 
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10 mm. The Andsager et al. (1999) relationship for drop axial ratio as a function 

of diameter has been used. However, above 4.5 mm this relationship is not 

constrained by observations and predicts unrealistically low axial ratios, and 

therefore the axis ratio is seamlessly adjusted to the Goddard et al. (1995) 

shapes. Also, the temperature-dependent refractive index of liquid water is 

needed, which is calculated following Liebe et al. (1989) (Hogan 2007). 

Lookup tables (LUT) for rain are constructed to relate Zdr and Kdp/Zh to the 

ratio Zh/R. They are calculated from gamma DSD with a range of D0 (median 

volume diameter), using T-matrix method. These LUT are shown in figure 3-2. 

 

  

Figure 3-2. (a) Differential reflectivity Z dr vs the ratio of reflectivity factor to rain 
rate Z h/R for two values of temperature and two gamma-dist ribution shape 
parameters µµµµ. The corresponding median volumetric diameter D0 f or µµµµ= 5 is 
shown on the upper axis.  
(b) The ratio of one-way specific differential phas e shift to reflectivity factor (K dp/Zh) 
vs Z h/R. The calculations have been performed at S band (3 GHz) using the T-
matrix method. (Adapted from (Hogan 2007)). 
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Then Zh and lna are used to calculate ln(Zh/R) (from eq.3.1), and use 

ln(Zh/R) to obtain Zdr and Kdp/Zh at each gate, and then calculate Φ’
dp by 

multiplying Kdp/Zh by Zh and integrating Kdp in range. 

To calculate the attenuation, the estimate of the one-way specific 

attenuations for horizontal and vertical polarizations αh, αv (dB/km) are needed. 

This is done by using another set of lookup tables, which relate the ratio αh/Zh 

and (αh-αv)/ Zh to the ratio Zh/R (figure 3-2). In the figure, (αh, αv) are referred to 

as (ah,av), respectively. Attenuation depends on the imaginary part of the 

refractive index which strongly depends on the temperature, whereas Zdr and Kdp 

depend on the real part, which does not depend on the temperature that much, 

so the LUT in figure 3-3 shows greater dependence on the temperature. 

  

Figure 3-3. (a) The ratio of one-way specific atten uation at horizontal polarization 
to reflectivity factor ( ah /Zh)  vs Z h/R for two values of temperature and two gamma-
distribution shape parameters µµµµ. 
(b) The ratio of one-way specific differential atte nuation to reflectivity factor  ( ( ( (ah-
av)/Zh vs Z h/R. The calculations have been performed at S band (3 GHz) using the 
T-matrix method. (Adapted from (Hogan 2007)). 
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The forward model considers each range gate of the input radar beam in 

turn. At each gate i , the values of  Zh,i, ln(ai), fi, and total 2-way attenuations Ah,i, 

Av,i (dB) from LUT are available. The unattenuated reflectivity factors for rain and 

hail are calculated as: 

 

           (3.12) 

 

Then Zh,i
rain, ln(ai) are used to calculate ln(Zh,i

rain/R), and LUT (figure 3-2.a) 

are used to obtain Zdr,i
rain. The measured differential reflectivity is affected by hail, 

which is assigned an intrinsic differential reflectivity Zdr,i
hail=0 dB, and differential 

attenuation, which is estimated  as: 

            (3.13) 

where unattenuated differential reflectivity of the rain-hail mixture  

           (3.14) 

 

The LUTs are used to calculate Kdp/Zh, αh/Zh, αv/Zh from ln(Zh,i
rain/Ri), then 

recover Kdp,i
rain , αh,i

rain, αv,i
rain. Then forward model (FM) estimates the phase shift 

and total 2-way attenuations (V, H polarizations) in next gate i+1 by accounting 

for contributions from rain and hail from the current gate: 

           (3.15) 

           (3.16)  

           (3.17) 
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where ∆r is range-gate spacing. The intrinsic attenuation of the hail αh,i
hail , αv,i

hail 

are assumed to be small relative to rain attenuation. 

Since the total attenuation and differential phase at the current gate are 

known, the algorithm proceeds to the next gate and repeats the procedure, thus 

obtaining Zdr, Φdp at each gate of the beam. 

 The elements of the Jacobian matrix (3.7) are partial derivatives with 

respect to each element of the state vector: 
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Chapter 4  
 
 

DATA SOURCES 
 

To review this variational method, to see how well it works for different 

weather conditions, and find its advantages and drawbacks, it was applied to 

datasets from different radars, operating at S- and X-bands. These data sources 

are briefly described here: 

 

CP2 radar  

This is a dual-wavelength system, working at S-band (with polarimetric 

capabilities) and an X-band radar whose main beam is matched with the S-band 

beam (S and X-band antennas are mounted on the same pedestal). The CP2 

radar is located at Redbank Plains (coordinates: Latitude 27°40.0’ S, Longitude 

152°51.5’ E, altitude 15 m asl) near Brisbane, Aust ralia, in a subtropical 

environment on the coastal zone of eastern Australia. 
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Table 4-1 Some technical details of the CP2 radar at Brisbane , Australia. 
 

Characteristic of the CP2 radar
  

CP2 S-Band  CP2 X-band 

Wavelength (cm) 10.7  3.2 
Peak Power (kW) 1000  200 
Beamwidth (degrees) 0.93  0.94 
Polarizations radiated LIN H, LINV  LIN H 
Doppler Capability Y  N 
Number of Range Gates 1024  1024 
Range Resolution (m) > 30 typically 150 > 30 typically 150 
Polarization Quantities measured Z, ZDR, Φdp, ρHV  Z, LDR 

 
 

IHOP (International H2O Project)  

This data comes from year 2002 summer (13 May–25 June) field 

campaign of the International H2O Project (IHOP2002), which was based in 

Oklahoma, northern Texas, and southern Kansas. The operations center was set 

in Norman, OK. This experiment involved six aircraft, 9 radars (2 fixed, 5 mobile, 

and 2 airborne), and a number of other weather instruments. 

 

 CASA KCYR  

This data set was obtained from the CASA X-band radar network, operating 

in Oklahoma. There are four radar nodes operational now, located at Chickasha 

(KSAO; 35.0314o lat., -97.9561o lon., 355 m alt.), Rush Springs (KRSP; 34.8128o, 

-97.9306o, 436), Cyril (KCYR; 34.8740o, -98.2512o, 445), and Lawton (KLWE; 

34.6239o, -98.2708o, 396) 

. 
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Chapter 5  
 
 

CASE STUDIES 

 
 

The results of application of this variational algorithm to datasets from the 

aforementioned radars will be described now. 

 

5.1 CP2 data 

This S-band dataset was obtained from CP2 radar on March 26, 2008, 

053922 UTC. It includes 16 PPI sweeps at different elevation angles. The 0.4 

degree elevation angle sweep was analyzed first since no hail was detected. 

Hence, the variational method of Hogan (2007) which has been “tuned” for S-

band is expected to work well in this situation. Figure.5-1 shows the PPI of input 

variables: 
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Figure 5-1. CP2 radar dataset, the 0.438 deg elevat ion angle. The input data to the 
variational algorithm: Z h, Zdr , ΦΦΦΦdp. 
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The output of the variational algorithm is shown on the Figure 5-2: 

 

Figure 5-2. CP2 radar dataset, the 0.438 deg elevat ion angle. The output of the variational 
algorithm: rainrate R, 1-sigma error in natural log  of R, coefficient a (from the Z h=aRb 
relationship), 1-sigma error in natural log of a, total 2-way attenuation in vertical and 
horizontal polarizations, forward-modeled Z dr, forward-modeled 2-way ΦΦΦΦdp. 
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We now compare forward modeled variables with the input variables gate-by-

gate for several beams: 

 

Figure 5-3. CP2 radar dataset, the 0.438 deg elevat ion angle. Gate-by-gate variables 
comparison for beams #56, #63. 
 

The coefficient α is the multiplicative coefficient of the  power-law of the 

form:  

Ah=α Kdp
b            (5.1) 

On average the coefficient α is near 0.017 and the exponent b is 0.84 at 

S-band (Bringi and Chandrasekar 2001). Here we see that Zh from FM is very 
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close to Zh observed, and Zdr, Φdp values predicted by FM are in good agreement 

with observed values. It can be seen also by the histograms of the differences 

between observed and FM modeled values for the whole sweep (Figure 5-4): 

 

Figure 5-4. CP2 radar dataset, the 0.438 deg elevat ion angle. Histogram of the difference 
between observed and FM-modeled values for Z dr , dB. 
 

Another set of data from the CP2 radar from the same day but higher 

elevation angle of 4.6 deg is now considered since there was substantial areas 

where Hdr>5 dB indicative of hail. The PPI of the input variables is shown on the 

next figure: 
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Figure 5-5. CP2 radar dataset, the 4.593 deg elevat ion angle. The input data to the 
variational algorithm: Z h, Zdr , ΦΦΦΦdp.  Also, approximate temperature variation is shown  in the 
last panel. 
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The calculated Hdr values show gates where there is a high probability of hail: 

 

Figure 5-6. CP2 radar dataset, the 4.6 deg elevatio n angle.  High values of H dr (> 5 dB) 
indicate high probability of hail.  
 
 

The next figure shows the output of the variational algorithm: 
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Figure 5-7. CP2 radar dataset, the 4.6 deg elevatio n angle. The output of the variational 
algorithm: rainrate R, 1-sigma error in natural log  of R, coefficient a (from the Z h=aRb 
relationship), 1-sigma error in natural log of a, total 2-way attenuation in vertical and 
horizontal polarizations, forward-modeled Z dr, forward-modeled 2-way ΦΦΦΦdp, fraction of 
unattenuated radar reflectivity due to ice f, 1-sigma error in hail reflectivity fraction. 
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We can compare forward modeled variable with the input variables gate-

by-gate for several beams for this elevation angle. Here the algorithm takes 2 

passes to find hail and estimate the fraction of reflectivity due to hail f. The next 

figure shows also Hdr values, calculated from S-band data: 

 

Figure 5-8. CP2 radar dataset, the 4.6 deg elevatio n angle. Gate-by-gate variables 
comparison for beams #55, #60. 

Zh=35 dBz 

 

Zh=35 dBz 
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The coefficient α in power-law relationship (5.1) is for this case α= 0.018 

(recall that the average value is close to 0.017 according to Bringi and 

Chandrasekar 2001). It can be seen how ad hoc criteria for detection of gates 

with hail is working (marked areas). Hail is detected where Zh > 35 dB and Zdr at 

first pass is overestimated by 1.5 dB. We can see that Zdr, Φdp values predicted 

by FM are in good agreement with observed values. It can be seen also on the 

histograms of the differences between observed and FM modeled values for the 

whole sweep: 

 

Figure 5-9. CP2 radar dataset, the 4.6 deg elevatio n angle. Histogram of the difference 
between observed and FM-modeled values for Z dr , dB, for rain (left panel) and hail (right 
panel) regions. 
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5.2 IHOP 2002 data 

Data from IHOP 2002 experiment are available for both S- and X-bands. 

The SPOL radar is the S-band dual-polarized radar. A separate dual-polarized X-

band radar was located next to SPOL. While the beam widths of the two 

antennas are 1 deg, they are on different pedestals and so it is more difficult to 

match the beams as the radars scan in either azimuth or elevation. Also, some 

radar variables were corrected by other methods (dual-frequency method), so we 

can compare with the variational method. The data from IHOP experiment 

appears to be noisier than CP2 radar data, so it has to be carefully “cleaned” and 

calibrated before entering into the variational method. The Φdp values have to 

begin from ~0 degrees at the beginning of the beam, so we need to eliminate 

radar system phase offset. Zdr values for low rain rate (Zh < 10 dBz) have to be 

around 0 dB, as drops are small and approximately spherical. 

The next figure shows the PPI of input variables for S-band, for 2 degrees 

elevation: 
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Figure 5-10. IHOP dataset, the 2 deg elevation angl e. The input data to the variational 
algorithm: Z h, Zdr, ΦΦΦΦdp, temperature. 
 

The output of the variational algorithm is shown on the next figure: 
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Figure 5-11. IHOP dataset, the 2 deg elevation angl e, S-band. The output of the variational 
algorithm: rain rate R, 1-sigma error in natural lo g of R, coefficient a (from the Z h=aRb 
relationship), 1-sigma error in natural log of a, total 2-way attenuation in vertical and 
horizontal polarizations, forward-modeled Z dr, forward-modeled 2-way ΦΦΦΦdp, fraction of 
unattenuated radar reflectivity due to ice f, 1-sigma error in hail reflectivity fraction. 
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The first image of figure 5-11 shows the modeled rain rate R, mm/hr. In 

some parts of the storm (range around 20 km and az around 300°) values of rain 

rate are high, around 100 mm/hr. It must be noted that values of the coefficient a 

(shown on the image 3) near the high rain rate core are having low values, 

around 30-40, and they reach much higher values (around 300-1000) for the 

zones where rain rate is lower. It appears that the a values in the high R regions 

are much lower (by a factor of 3) than expected for the mid-latitudes whereas at 

low rain rates the a values are much more reasonable and representative of 

stratiform rain. The second image shows the 1-sigma retrieval error in ln(R), this 

error is low (0.1-0.2) where signal-to-noise ratio is high (at the storm core) and 

grows higher when signal-to-noise ratio becomes lower. The fourth image shows 

the 1-sigma retrieval error in ln(a), which includes random errors in the 

measurements of Zdr and Φdp but not forward model errors. This error is low for 

high signal-to-noise ratio areas. The image ten of the figure shows that FM 

detected hail in the core of the storm, which well correlates to the areas of high 

rain rate values.  

At S-band attenuation is low, so we can use it to calculate Hdr and thereby 

locate gates where there is a high probability of hail (and then use these results 

to compare to the output of the X-band version of the algorithm, to see if the hail 

will be found on the same regions). 
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Figure 5-12. IHOP dataset, the 2 deg elevation angl e, S-band. High values of Hdr (> 5 dB) 
indicate high probability of hail. 
 

The gate-by-gate comparison for S-band is shown on the next figure: 
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Figure 5-13. IHOP dataset, the 2 deg elevation angl e, S-band. Gate-by-gate variables 
comparison for beams #50, #60. 
 

The coefficient α in power-law in relationship (eq. 5.1) is for this case α= 

0.02 (0.017 according to Bringi 2001). For this case some tuning of the input to 

the variational method was needed to achieve reasonable outputs. Hail is 

detected where Zh > 35 dB and Zdr at first pass is overestimated by 0.5 dB 
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(instead of 1.5 dB). There is good agreement between gates with high HDR 

values and gates marked as having hail by FM, although at some gates even 

with tuning is not sensitive enough to locate hail as robustly as HDR. 

We can see that Zdr values predicted by FM are in good agreement with 

observed values. The Φdp values can be followed by FM too; FM expects it to 

start from about 0 degree, that is why at the beginning of the beam #50 there is a 

difference.  

 For X-band, the output of the algorithm is shown in the next Figure 5-14. 

Comparing S-band and X-band outputs, we see that the variational method is still 

able to find hail at the same position. But it is lower, in terms of area covered by 

hail, and in terms of fraction of reflectivity due to hail. 

 



 46 

  

Figure 5-14. IHOP dataset, the 2 deg elevation angl e, X-band. The output of the variational 
algorithm: rainrate R, 1-sigma error in natural log  of R, coefficient a (from the Z h=aRb 
relationship), 1-sigma error in natural log of a, total 2-way attenuation in vertical and 
horizontal polarizations, forward-modeled Z dr, forward-modeled 2-way ΦΦΦΦdp, fraction of 
unattenuated radar reflectivity due to ice f, 1-sigma error in hail reflectivity fraction. 



 47 

If we compare forward modeled variable with the input variables gate-by-

gate for several beams (as shown on Figure 5-15), we can see that for X-band 

this model does not work well. The Φdp values predicted by FM are different from 

observed and the 2-way total attenuation is different too. The other (dual-

frequency) method also cannot find hail at the positions predicted by high Hdr 

values, for example (beam #50). It is interesting to note that “something” actually 

was detected by the algorithm at the areas where there are high Hdr values, but 

iterations converged to some very small values of hail fraction f (gates 150-200 

beam #50, #60). Definitely this model has to be tuned for X-band data for this 

particular radar. 
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Figure 5-15. IHOP dataset, the 2 deg elevation angl e, X-band. Gate-by-gate variables 
comparison for beams #50, #60.  
 

 

 



 49 

5.3 CASA data from 10 June 2007  

The data from CASA radar KCYR from storm event of June 10, 2007 

(22:15:47), 2 degrees elevation, was used to test the performance of the 

algorithm. This data is noisy hence it was extensively “cleaned” and calibrated 

before variational method was applied. To eliminate the system offset Φdp values 

were shifted up to 60 degrees. As the maximum altitude of the beam at the 

distance of 30 km is about 1 km, so one can hypothesize that hail is unlikely (i.e. 

full melted) and run the algorithm with hail detection turned off. 
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Figure 5-16. CASA KCYR 20070610 dataset, the 2 deg elevation angle. The input data to the 
variational algorithm: Z h, Zdr , ΦΦΦΦdp. 
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Figure 5-17. CASA KCYR 20070610 dataset, the 2 deg elevation angle. The output of the 
variational algorithm: rainrate R, 1-sigma error in  natural log of R, coefficient a (from the 
Zh=aRb relationship), 1-sigma error in natural log of a, forward-modeled Z dr , forward-
modeled 2-way ΦΦΦΦdp. 
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If we compare forward modeled variables with the input variables gate-by-

gate for several beams, we can see that for CASA radars this model still needs 

some improvements. The Φdp values predicted by FM are different from that 

observed in some cases and 2-way total attenuation values are too low. The Zdr 

values are predicted very well though, at least for positive Zdr. Coefficient α in 

power-law relationship (eq. 5.1) is for this case α= 0.15 (beam #258), α= 0.19 

(beam #278)    (mean value is around 0.233 at X-band according to Bringi and 

Chandrasekar 2001): 
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Figure 5-18. CASA KCYR 20070610 dataset, the 2 deg elevation angle. Gate-by-gate 
variables comparison for beams #258, #278.
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Chapter 6  
 
 

VARIABLE OBSERVATIONAL ERRORS IN THE COST FUNCTION 

 
To achieve better performance of the optimal estimation scheme (OES) for 

the X-band CASA data, one need adjust the default errors assigned to Φdp and 

Zdr values, which are used as an input data into FM. 

As it was stated (Hogan, 2007), “the retrieval in low-rain-rate regions has 

been found to be very sensitive to the calibration of Zdr. A simple solution would 

be to manipulate the elements of the observational error covariance matrix R,  by 

simply increasing the error assigned to the Zdr measurements at low values of Z.” 

For CASA radars the root-mean-square observational error for Zdr data, 

i.e., σZdr has a default value of 0.5 dB. For low rain rate areas (drizzle) the values 

of Zh are less expected to be less than 20 dBz, and there the observational error 

should be higher then this default value.  

After radar data examination and some numerical experiments it was 

found that value of σZdr in first approximation could be changed according to the 

empirical formula 
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
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where 0.5 dB is the default value of the observational error. The next figure 

shows the dependency σZdr(Zh). 
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Figure 6-1. Empirically based dependency of σσσσZdr  on Zh 
 

We note that from theory σZdr should be dependent on the intrinsic copolar 

correlation coefficient and the SNR according to eq (6.115) of Bringi and 

Chandrasekar (2001). The empirical equation in (6.1) only approximates the 

dependence on SNR.  

From (Hogan, 2007), “…in intense convection it would be desirable to 

increase the error in Φdp due to possibility of backscatter differential phase”.  

The default value of root-mean-square observational error (σΦdp) for Φdp 

for CASA data is 3 deg. This default value should be increased for the gates 

where signal-to-noise ratio is lower. These gates normally have lower values of 

the copolar correlation coefficient between horizontally polarized weather signals 

and vertically polarized weather signals ρhv, which changes in the range 0-1. 

After examination of radar data and some numerical experiments it was 

found that value of σΦdp in first approximation could be changed according to the 

formula 
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where 3 deg is the default value of the observational error for Φdp CASA data. 

The next figure shows the dependency σΦdp(ρhv): 
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Figure 6-2. Empirically based dependency of  
 σσσσΦΦΦΦdp on the copolar correlation coefficient, ρρρρhv. 
 

We note that from theory σΦdp should be dependent on the intrinsic 

copolar correlation coefficient and the SNR according to eq (6.143) of Bringi and 

Chandrasekar (2001). The empirical equation in (6.2) only approximates the 

dependence on ρhv.  

For the CASA data file KCYR_20070610-221257.netcdf these 

observational errors, changed according to the Zh and ρhv values are depicted in 

Figs. 6-3. 
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Figure 6-3. Observational errors σσσσZdr and σσσσΦΦΦΦdp changed according to the Zh and ρρρρhv values, 
for CASA KCYR 20070610-221257 dataset. 
 

For reference the GateFlags variable from the same CASA data file is 

shown on the next figure. This variable was used for the discrimination between 

“good gates” with useful weather information and noisy gates. It is to show that 

even for “good gates” these observational errors change in pretty wide range. 
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Figure 6-4. GateFlags variable used for data cleani ng as a “good gates” mask, for CASA 
KCYR 20070610-221257 dataset. 
 

The next figure shows the values of CrossPolCorrelation (which is ρhv) 

variable of the same CASA data file. It shows that even for “good gates” ρhv 

changes significally, so σΦdp changes too, and in this way changes the weight of 

the components of the minimization function of the FM described earlier (see eq. 

3.5): 
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Figure 6-5. CrossPolCorrelation variable ( ρρρρhv), for CASA KCYR 20070610-221257 dataset. 
 

 

As the result of the above procedure of changing the default values of 

observational errors σZdr, σΦdp leads to the re-balancing the influence of that 

corresponding variable on the cost function. The overall effect is that 

corresponding forward-modeled range profile (Z’dr or Φ’dp) tends to be close to 

the input variable, as in case when only one variable (Zdr or Φdp) was used in the 

input to the program (these variables can be used as an input to the modeling 

together or switched off if not available in the radar data). 

This is illustrated in the following figures (6-6. 6-7), which show the gate-

by-gate comparison of the CASA KCYR 20070610 dataset used above, data 

from the 2 deg elevation angle sweep, the beam #258 and #318 which were 

generated using constant observational errors (left panel) and variable 

observational errors (right panel). 
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Figure 6-6. CASA KCYR 20070610 dataset, the 2 deg e levation angle. Gate-by-gate 
variables comparison for beams #258 generated using  constant observational errors (left 
pane) and variable observational errors (right pane ). Note how ΦΦΦΦdp goes closer to the 
observed data, and attenuation Ah has more reasonab le values. 

 

The coefficient α in power-law in relationship (eq. 5.1) is for this case for 

constant errors α= 0.17 and for variable errors α= 0.14.  
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Figure 6-7.CASA KCYR 20070610 dataset, the 2 deg el evation angle. Gate-by-gate 
variables comparison for beams #318 generated using  constant observational errors (left 
pane) and variable observational errors (right pane ). Note how ΦΦΦΦdp goes closer to the 
observed data, and attenuation Ah has more reasonab le values.
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The coefficient α in power-law in relationship (eq. 5.1) in this case for both 

constant and variable errors is α= 0.15. In both figures (6-6, 6-7), the 

improvement from variable observational errors mainly comes from the forward 

modeled Φdp being closer to the measured Φdp. 
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Chapter 7  
 

ESTIMATION OF REFLECTIVITY-WEIGHTED FRACTION OF ICE  IN A RAIN-
HAIL MIXTURE 

 
The forward model in the present state, when applied to the CASA X-band 

data, does not produce the good results when it comes to wet ice and hail 

detection. With the purpose to improve the output of the program, one can “help” 

the algorithm by detecting the gates with wet ice and hail and supply them to the 

program instead of just letting it to find these gates by itself, with ad hoc criteria 

described before. This new information should be used together with wet ice/hail 

found automatically by the algorithm. 

 To find the gates where the probability to find hail is high, one can use the 

Hdr (eq. 2.15) concept described by Aydin et al, (1986) and explained before in 

chapter 2. 

To find the parameters of the f(Zdr) for the X-band, the variables Zh and Zdr 

were simulated based on the one minute distribution data from pure rain from 2D 

video disdrometer installed near CP2 radar (Brisbane, Australia). These variables 

were simulated for pure rain event assuming the latest information on drop axis 

ratios and canting angles. One can make a plot similar to the one described in 

Aydin et al, (1986) paper, but this time for X-band, with the purpose to find the 

curve which is the rain-hail boundary. This simulated data together with the 

boundary line is shown on the next figure: 
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Figure 7-1. Zh vs Z dr scatterplot representing simulated data for rain-o nly case at X-band, 
and rain-hail boundary line designed for X-band. 
 

 Even though the data used to create this curve was collected in 

subtropical coastal environment different from the continental environment of 

Oklahoma where CASA radars are installed, the boundary line separating rain 

from the rain-hail mixture should be fairly robust.  

For X-band the f(Zdr) is found to be the following: 
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where a=35.56 , b=7.23, c=39.74, e=0.45 dB, g=2.8 dB. 
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When this boundary line is applied to the pure rain case discussed earlier 

(CASA data KCYR_20070610-221547), the result looks as shown on the next 

figure: 

 

 

Figure 7-2. New rain-hail boundary applied to CASA KCYR_20070610-221547 “pure rain” 
case. 
 

The CASA data file includes Zh and Zdr variables corrected for attenuation 

(by other algorithms) to find Hdr parameter. The values of Hdr found in this 

manner demonstrate spiky behavior, so one might need to apply FIR filter (in this 

case FIR filter of order 20 was used) before supplying these values into the OES. 

The following figure demonstrates Hdr data calculated for CASA 
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KCYR_20070610-221547 “pure rain” case before and after smoothing by FIR 

filter: 

 

Figure 7-3. H dr data calculated using corrected for attenuation Zh , Zdr variables for CASA 
KCYR_20070610-221547 “pure rain” case. The gates wi th high probability of hail 
correspond to the H DR values more than 3-5 dB. 
 

This figure illustrates that “pure rain” case most probably still has some 

hail in the 2 deg elevation scan, but not significant amount. 

 The FM algorithm was modified to accept the Hdr data as an input, i.e. 

gates with high Hdr values (where Hdr>3 dB) were marked as having hail, and so 



 67 

on the second pass FM is trying to calculate the hail fraction f for these gates, as 

it was described before in chapter 3.  

After some experiments it was found that this method of selecting gates 

with high probability of hail and supplying this information to the FM does not 

produces sufficiently good results. The hail fraction f calculated by the program 

still demonstrates spiky, not smooth behavior.   

With the purpose of farther improving the algorithm in part of recognizing 

gates with hail, one can use the difference reflectivity factor Zdp as it was 

described in chapter 2, to estimate the fraction of reflectivity due to hail in the 

mixed rain and hail precipitation zone. The simulated (based on the data from 2D 

video disdrometer) variables Zh and Zv for pure rain case at X-band were used to 

find a “rain line” in Zh vs Zdp space: 

 

Figure 7-4. Z h vs Z dp, and found by data fitting the so-called “rain lin e”. 
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The equation for the “rain line” which relates Zh and Zdp is 

19.82-1.327Z=Z hdp          (7.2) 

One can use the corrected for attenuation by other algorithms variables Zh, 

Zv from CASA data files to calculate Zdp and fraction of reflectivity due to hail fice . 

For example, for the described earlier “pure rain” case of June 10, 2007 

(22:15:47), 2 degrees elevation (KCYR_20070610-221547.netcdf) Zdp vs Zh 

looks as follows: 

 

Figure 7-5. Z dp vs Zh for “pure rain” case of June 10, 2007 (22:15:47), 2 degrees elevation 
(KCYR_20070610-221547.netcdf) compared to the simul ated data and “rain line”. It shows 
that there are some gates with hail (false detectio n of hail). 
 

The next image shows the “mixed precipitation” case of April 24, 2007 

(KSAO_20070424-172558.netcdf) together with the “rain line”: 
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Figure 7-6. Z dp vs Zh for “mixed precipitation” case of April 24, 2007 (KSAO_20070424-
172558.netcdf), 2 degrees elevation compared to the  “rain line”. Many points here are 
below and to the right of the “rain line”. It shows  that there are much more gates with high 
f ice compared to the “pure rain” case mainly for Z h>45 dBZ 
 

Even though the scatter plot of CASA variables Zdr vs Zh is not very tight 

and spreads more than the scatter plot based on the 2D video disdrometer 

simulated data, so there would be errors in fice values, it still can be used as the 

source of the “first guess” of fraction of ice for the OES algorithm. The algorithm 

then re-adjusts the final values of fraction of ice by minimizing the cost function. 

One can build the fice map for the “mixed precipitation” case, and compare 

it to the calculated and smoothed Hdr values for the same case. 
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Figure 7-7.Fraction of ice f ice for “mixed precipitation” case of April 24, 2007 
(KSAO_20070424-172558.netcdf), 2 degrees elevation compared to the smoothed by FIR-
filter H dr>3 dB values for the same case. Note that high valu es of Hdr do not always 
correspond to the high values of f ice . 
 

One can note that high values of Hdr do not always correspond to the high 

values of fice . The map of fice looks scattered, for the purposes of achieving better 



 71 

“first guess” it is desirable to use spatial averaging of the fice data, by using 5x5 

smoothing window. The same matrix might be applied to the Hdr data: 

 

Figure 7-8. Fraction of ice f ice for “mixed precipitation” case of April 24, 2007 
(KSAO_20070424-172558.netcdf), 2 degrees elevation,  before and after spatial smoothing 
by 5x5 averaging matrix, compared to the H dr  values before and after spatial smoothing by 
5x5 averaging matrix. 
 

This and previous figures show that spatially smoothed Hdr values are 

better correlated with the spatially smoothed fice values than simply FIR-filtered 

HDR values. But still, high fice values can be seen at gates where Hdr values are 

low and would not pass the threshold limitation of the FM algorithm. It is shown 

on the next figure, where a few beams of the mixed precipitation case data are 

compared: 
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Figure 7-9. Beams #200 and #220 of the “mixed preci pitation” case of April 24, 2007 
(KSAO_20070424-172558.netcdf), 2 degrees elevation.  Compared are spatially smoothed 
fraction of ice f ice  (values were multiplied by 10 for better visibility ) and Hdr  values after 
spatial smoothing by 5x5 averaging matrix and simpl e FIR-filtering. Red gates are the H dr 
FIR-filtered ones that would pass the FM algorithm Hdr>3 db threshold and so would be 
marked as gates with hail. The spatially smoothed H dr values (dotted line) are a little bit 
better, but still not good enough.  
  

Based on this, the decision was made to supply FM algorithm with 

smoothed fraction of ice fice values as a “first guess”, and for the gates where fice 

values exist simply assign the Hdr=6 dB values , with the purpose to pass Hdr>3 

dB threshold of the FM algorithm. It should be noted that not all gates considered 

to be “good” based on the filtering techniques described before would have valid 

fice values, but this number is much larger than it was based on simply large Hdr 

values. It can significantly slow down the OES algorithm. 
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Chapter 8  
 
 

SENSITIVITY OF THE VARIATIONAL SCHEME TO THE CASA 
REFLECTIVITY Zh INPUT VARIABLE 

 
The CASA SOCC website has a case study event of April 24, 2007 (p.m.) 

(http://socc.caps.ou.edu/cases_07.html), with the following description: 

“A Tornado Watch was issued in anticipation of a significant severe wx outbreak. 

Instead, a severe squall line developed just west of IP1, and moved through the 

test bed from 17-20UTC. Large hail was prevalent along the line. Data were 

collected at three sites (KSAO, KCYR, and KLWE) in DCAS mode using the 

20+40-sec heartbeat. Complete 360deg scans were collected at 2.0deg, and 

sector scans were collected at 1, 3, 5, 7, 9, 11, and 14 deg. “ 

One can use the radar data collected during this event to test the 

sensitivity of the FM model to the input Zh data. It was stated at (Hogan 2007) 

that, “…We are effectively assuming that, in relative terms, the error in Zh is much 

less than the errors in Zdr and Φdp so that the retrieval should be forced to be 

exactly consistent with Zh…” but the program might be sensitive to the absolute 

accuracy (absolute calibration) of the input variable Zh. For this purpose the data 

from KSAO radar collected at April 24, 2007 at 17:25:58 (KSAO_20070424-

172558.netcdf file) was selected. It was used as an input to the OES three times: 
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original variable representing reflectivity values and modified (increased by 3 dB 

and decreased by 3dB) values were used. 

The next Figure 8-1 shows the original (not modified) input data: 
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Figure 8-1. CASA April 24, 2007 case of mixed preci pitation KSAO_20070424-172558, 2 deg 
scan. Data used as an input to FM algorithm. 
 
The next Figure 8-2 shows the output of the OES algorithm: 
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Figure 8-2. FM output for CASA April 24, 2007 case of mixed precipitation 
KSAO_20070424-172558, 2 deg scan. One can see the a reas of the scan where output gets 
saturated (R, ΦΦΦΦdp, Ah, Av values). 
 

For the case where we increase the reflectivity values in the input data by 

3 dB, the output looks as follows (Figure 8-3): 
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Figure 8-3. FM output for CASA April 24, 2007 case of mixed precipitation 
KSAO_20070424-172558, 2 deg scan. Zh input values w ere increased by 3dB. One can see 
the areas of the scan where output gets saturated ( R, ΦΦΦΦdp, Ah, Av values), even more than 
for original case of not-changed reflectivity. 
 

The next Figure 8-4 shows the output for the reflectivity data decreased by 3dB: 
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Figure 8-4. FM output for CASA April 24, 2007 case of mixed precipitation 
KSAO_20070424-172558, 2 deg scan. Zh input values w ere decreased by 3dB. One can see 
that there are no areas of the scan where output va riables get saturated. 
 

One can compare the maximum values of the Φdp and Ah variables for 

these 3 sets of data for each beam of the scan (at end of the beam).   
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Figure 8-5. Maximum values of predicted by FM value s of ΦΦΦΦdp and Ah for 3 input data sets.  
 

It can be seen from Figure 8-5  that for data sets where Zh was increased 

by 3dB or even left at the original level, the values of Φdp and Ah tend to saturate 

for some beams, especially for ones that go through the core of the storm 

(beams around #230-250). For the dataset where reflectivity values were 

decreased by 3 dB there are no saturated Φdp and Ah data. It has to be noted that 

experiments were done for reflectivity decreased by 1 and 2 dB, and there were 

areas of saturated data in the FM output, so -3 dB seems to be the minimum for 



 80 

decrease in input  reflectivity to avoid spuriously large Φdp values (at least for this 

dataset).  

One can compare these data sets beam-by-beam: 

 

Figure 8-6. Three data sets. Beams #236 and #241 fr om the FM output for CASA April 24, 
2007 case of mixed precipitation KSAO_20070424-1725 58, 2 deg scan. Shown are forward-
modeled ΦΦΦΦdp, Ah, Zdr , Zh and f ice variables, compared to the input variables. 
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Figure 8-7. Three data sets. Beams #246 and #251 fr om the FM output for CASA April 24, 
2007 case of mixed precipitation KSAO_20070424-1725 58, 2 deg scan. Shown are forward-
modeled ΦΦΦΦdp, Ah, Zdr , Zh and f ice variables, compared to the input variables. 
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Figure 8-8. Shown are beams selected for beam-by-be am comparison, on ΦΦΦΦdp and fraction 
of ice maps (for reference). 
 

These selected beams go through the core area of the storm. One can 

see that this is the “difficult area“for the FM algorithm. From three datasets only 

one where reflectivity values were decreased by 3 dB (red line) can follow the 

input data (black line) with sufficient accuracy.  

 In FM, Z-R relation is used to compute rain rate, and Kdp is calculated and 

used to compute Φdp values for each gate. So if the input variable Zh, which is 

assumed to be measured by CASA radars (to within an uncertainty of 1 dB) is in 

error (i.e., too “hot” by 3 dB) all calculated variables (like Φdp, attenuation Ah, Av) 

achieve unrealistically high values, and FM cannot correct for this. 
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Chapter 9  
 
 

CONTINUITY IN VERTICAL PROFILE 

 

With the purpose to check the consistency of the results of FM in space, 

one can create the 3-dimensional dataset consisting of forward-modeled 

variables. For this one should select a sequence of sector scans of the different 

elevation angles from the same radar, separated by minimal available time 

interval. 

 The data of the storm event of 24th of April, 2007 at a time around 17:31 

UTC from the KSAO radar located at Chickasha, OC was selected for this test. 

The six data files representing sector scans at elevation 1, 2, 3, 5, 7, and 9 

degrees are: 

Table 9-1. Data files of the storm event of 24th of  April, 2007 used for vertical continuity 
test. 
Scan elevation, deg CASA data file name 
1 KSAO_20070424-173114.netcdf  
2 KSAO_20070424-173119.netcdf 
3 KSAO_20070424-173138.netcdf 
5 KSAO_20070424-173142.netcdf 
7 KSAO_20070424-173147.netcdf 
9 KSAO_20070424-173152.netcdf 
 

 These sector scans were made during less than one minute, and scan at 

elevation of 2 deg was a full 360 deg scan. The next figure represents the 

reflectivity variable of these data files: 
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Figure 9-1. CASA data files of 24th of April, 2007,  at elevations 1, 2, 3, 5, 7, 9 degrees. 
Shown is CorrectedReflectivity variable. 
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 These sector scans overlap each other at the azimuth sector of 255-315 

degrees. The data was collected in clockwise and counter-clockwise direction, as 

it can be seen from the next figure: 

 

Figure 9-2. CASA data files of 24th of April, 2007,  at elevations 1, 2, 3, 5, 7, 9 degrees. 
Shown are azimuths of the radar beams. It can be se en that azimuth intervals are not 
constant (3 deg elevation for example). 
 

 The azimuth intervals in the scans were not constant, so number of beams 

in the overlapping area changes from 40 to 60+ beams. So to create the fair 3-D 

dataset of the forward modeled variables, output data of the FM algorithm needs 

to be interpolated, as shown on the next figure: 
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Figure 9-3. FM output for Zh variable for CASA data  files of 24th of April, 2007, at 
elevations 1,2,3,5,7,9 degrees after interpolation.  
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Figure 9-4. FM output for f ice variable for CASA data files of 24th of April, 200 7, at 
elevations 1,2,3,5,7,9 degrees after interpolation.  
 

 These scans can be combined into three-dimensional dataset which 

covers the overlapping area at azimuth 255-315 deg: 
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Figure 9-5. 3-D volume of the FM output data from d ifferent camera angles for Zh variable, 
for CASA data files of 24th of April, 2007. 6 layer s correspond to scan elevations of 
1,2,3,5,7,9 degrees. Shown are areas where forwarde d reflectivity is equal to 20,40,50,60 
dBz. 
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Figure 9-6. 3-D volume of the FM output data from d ifferent angles for f ice variable, for 
CASA data files of 24th of April, 2007. 6 layers co rrespond to scan elevations of 1,2,3,5,7,9 
degrees. Shown are areas where forwarded reflectivi ty f ice is 0.7 and 0.9. 
  

These figures show that the FM produces some systematic trend (not just 

random errors), there is correlation and continuity in vertical direction in all the 

data variables selected for inspection. 
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Chapter 10  
 
 

COMPARISON OF THE RAIN RATE STATISTICS FROM FM AND 
TRADITIONAL METHODS 

 

 With the purpose to get some statistics on the OES output values, and to 

compare FM results to results achieved by other well known methods of radar 

data processing, one can collect the FM output for some significant amount of 

time (here 1 hour). For this the CASA data from the radar placed in Chikasha, 

collected at 10th of June 2007, from 22:12:57 to 23:19:00 was selected. This 

dataset consists of 27 files, each representing the full 360 degrees scan from 

CASA KCYR radar at 2 degrees elevation, with time intervals between scans 

around 3 min: 

 

Table 10-1. CASA Chikasha radar files selected for the dataset 
 
KCYR_20070610-221257.netcdf KCYR_20070610-224127.netcdf 

KCYR_20070610-221547.netcdf KCYR_20070610-224418.netcdf 

KCYR_20070610-221840.netcdf KCYR_20070610-224724.netcdf 

KCYR_20070610-222136.netcdf KCYR_20070610-225015.netcdf 

KCYR_20070610-222136.netcdf KCYR_20070610-225306.netcdf 

KCYR_20070610-222420.netcdf KCYR_20070610-225556.netcdf 

KCYR_20070610-222712.netcdf KCYR_20070610-225840.netcdf 

KCYR_20070610-222712.netcdf KCYR_20070610-230135.netcdf 

KCYR_20070610-223008.netcdf KCYR_20070610-230424.netcdf 

KCYR_20070610-223254.netcdf KCYR_20070610-230715.netcdf 
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KCYR_20070610-223545.netcdf KCYR_20070610-231021.netcdf 

KCYR_20070610-223836.netcdf KCYR_20070610-231311.netcdf 

KCYR_20070610-223836.netcdf KCYR_20070610-231558.netcdf 

 KCYR_20070610-231900.netcdf 

 

Figure10-1 shows the first and last of the dataset files: 

 

 

Figure 10-1.CASA dataset, first (KCYR_20070610-2212 57) and last (KCYR_20070610-
231900) files. Shown are Zh_corr, Zdr_corr, and R ( calculated using Z-R relation) for “good 
gates”. 
  

Rainrate values obtained from OES algorithm can be compared to values 

calculated using Z-R relation used in NEXRAD radars,  

R_zr=(Z/300)1/1.4 , mm/hr,        (10.1) 

where Z is reflectivity (in mm6/m3), 

and to values R_kdp calculated using CASA specific differential phase (Kdp): 

R_kdp=18.15*Kdp
0.791 ,        (10.2) 



 92 

where this equation was developed for X-band using frequency scaling and 

presented in (Wang and Chandrasekar 2010). As Kdp is a noisy variable and can 

have positive and negative (not physical) values, R_kdp was calculated 

R_kdp=sign(Kdp)*18.15*(abs(Kdp))
0.791 ,      (10.3) 

 

to avoid non-physical complex values. Here R_kdp can have positive and 

negative values, but after summation and selection only positive values were 

used. 

The comparison is done for the two intervals of Zh, based on the value of 

corrected reflectivity of the CASA data. These two intervals are: 

Zh_corrected > 0 dBZ         (10.4) 

36 dBZ < Zh_corrected < 40 dBZ,  

where the second interval is the interval of “the most frequent” high values of 

Zh_corrected, which correspond to the core of the storm, as shown on the next figure: 

 

Figure 10-2. Histogram of high values of CASA corre cted reflectivity variable Zh_corrected. 
“The most frequent” high values of Zh_corrected are  in the interval 36-40 dBz. 
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 Other limitations for the choice of the gates to compare are: 

- gate has to be “good” , which means the CASA data file has 

“GateFlags”=1 for this gate; 

- rain rate R has to be higher than 1 mm/hr for all three methods of 

calculation. 

Figure 10-3 shows the histograms of the rain rate values obtained from FM 

algorithm: 

 

Figure 10-3. Histograms of the rainrate values for one hour CASA data from the KCYR 
radar, event of June 10, 2007, calculated using FM algorithm, for two selected intervals of 
corrected reflectivity.  
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Figure 10-4. Histograms of the values of coefficien t “ a”  for one hour CASA data from the 
KCYR radar, event of June 10, 2007, calculated usin g FM algorithm, for two selected 
intervals of corrected reflectivity. 

  

  Figure 10-4 shows that the values of coefficient “a” calculated using FM 

are generally higher than a priori value (200). Figure10-5 shows the normalized 

histograms of all three sets of rain rates: 

 

Figure 10-5. Normalized histograms of the rainrate values for one hour CASA data from the 
KCYR radar, event of June 10, 2007, calculated usin g FM algorithm, Z-R relation, and Kdp, 
for two selected intervals of corrected reflectivit y.  

  

This figure shows that there is a difference in PDFs of the rain rates 

calculated using different methods. Generally, the PDF of rain rate should be 
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similar for the FM and NEXRAD Z-R based methods (since FM is based on the 

Z-R relation with variable coefficient “a”). When the Z interval is fixed between 

36-40 dBZ, the mode (the value that occurs most frequently in a data set) from 

the NEXRAD R is higher than for the FM method (implying that the “a” coefficient 

might be too high relative to 300). The PDF of R(Kdp) is very different for either 

case of Z>0 dBZ or for 36<Z<40 dBZ. The shape does not conform to what might 

be observed by a rain gauge or disdrometer, for example. This is most likely 

because of spatial smoothing of the derived rain rate from Kdp especially within 

narrow cores of precipitation < 3 km in scale. The peak R is reduced within the 

core, and moreover the profile of R is “stretched” on either side of the peak 

because of the filtering technique used to derive Kdp. This tends to distort the 

PDF of R (normally it is exponential or log-normal in shape). However, it does not 

mean that R(Kdp) cannot be used to estimate the rain rate (especially the 

moderate-to-intense rates that contribute most to the rain accumulations). As 

shown by Wang and Chandrasekar (2010), the R(Kdp) performs very well when 

hourly accumulations are compared against a large rain gage network in central 

Oklahoma.   

A different manner of interpreting the PDF is to compute the exceedance 

probability which is defined as 1-CDF (where CDF is the cumulative distribution 

function). It is widely used in the radio wave propagation community. Figure 10-6 

compares the exceedance probability that R > “abscissa value” for the three 

algorithms. We show the results which uses all data with Z>0 dBZ. If one 

considers a moderate R value of 10 mm h-1, then the exceedance probability is 
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highest for R(Kdp), next is the NEXRAD Z-R and then the FM. This trend occurs 

at all rain rates and the differences are significant. It shows that the “a” coefficient 

in the FM method is frequently estimated as too “high” relative to the NEXRAD 

fixed coefficient of 300 giving lower R for the same reflectivity value. At this point 

without comparing the R from the FM method against a rain gage network (for 

example, using the same dataset as used by Wang and Chandrasekar 2010), the 

quantitative advantage of using the FM scheme is not clear, for rain rate 

estimation at  X-band using the CASA radars.   

 
Figure 10-6. Exceedance probability curves of the r ain rate values for one hour of CASA 
data from the KCYR radar, event of June 10, 2007, c alculated using FM algorithm, Z-R 
relation, and Kdp, for Z>0 dBZ. Shown are the curve s in linear (left) and log-log scale 
(right).  
 
 The histograms of the differences between rain rate values obtained from 

FM algorithm and values calculated using R(Kdp) and the NEXRAD Z-R methods 

are shown in Figure 10-7. 
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Figure 10-7. The histograms of the differences betw een rainrate values for one hour CASA 
data from the KCYR radar, event of June 10, 2007, c alculated using FM algorithm and Z-R 
relation, FM algorithm and Kdp, for 36<Z<40 dBZ.  

  

  The histogram of the rain rate differences (R_rh - R_zr) (shown as (R_rh – 

R_casa_zr) on the Figure 10-7) and (R_rh - R_ kdp) (shown as (R_rh – 

R_casa_kdp) on the Figure 10-7) are both skewed and the mode is much more 

negative for (R_rh-R_kdp) relative to (R_rh - R_zr). Also, the standard deviation 
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of   (R_rh - R_kdp) is much larger (22 mm h-1) than for (R_rh - R_zr) (7 mm h-1). 

The histogram of (R_rh - R_kdp) will appear to be more symmetric if the bias is 

removed which is not the case for (R_rh - R_zr). The implication of this feature is 

not clear at the moment.   

Table 10-2 shows the normalized bias (NB) and fractional standard 

deviation (or coefficient of variation, CV) assuming that R_zr is the “truth”. The 

definitions of NB and CV are given below:  

CV= std(X)/mean(R_zr),         (10.5) 

here X = difference of two rain rates, (R_rh - R_zr) or (R_kdp - R_zr).  

 NB=mean(X)/mean(R_zr)        (10.6) 

Table 10-2. Coefficients of variation and normalize d bias data for the “most frequent” 
Zcorrected interval 
 
R_kdp – R_zr case  R_rh – R_zr case  

NB for “most frequent” Zh 1.97 NB for “most frequent” Zh -0.3 

CV for “most frequent” Zh 2.57 CV for “most frequent” Zh 0.8 

 

From Table 10-2 it is clear that NB is very high for R_kdp (overestimate by 

factor of 2), whereas for R_rh it is more modest but in opposite direction 

(underestimate by 30%). The CV is very large for R_kdp implying very low 

correlation between R_kdp versus R_zr. Even the CV for R_rh is still quite high 

(0.8) but not unreasonably so.  
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One can divide R_zr range into 4 intervals:  

Interval 1:            R_zr in range 0-10 mm h-1  

Interval 2:            R_zr in range 10-20 

Interval 3:            R_zr in range 20-30,  

Interval 4:            R_zr in range >30 

and calculate mean values of the differences (R_rh-R_zr) (i.e., the bias) and 

corresponding standard deviations (σ), for these intervals, as shown in  

figure 10-8: 

 

Figure 10-8. Mean values of the difference R_rh-R_z r with corresponding standard 
deviation values, for 4 intervals of R_zr 
 

Figure10-8 is another way of showing the underestimation of R_rh relative 

to the R_zr (the latter is considered as “truth” as mentioned earlier). Clearly, the 

underestimation becomes more as the interval of R_zr increases and so does the 

standard deviation. At the lower rain rate intervals (<interval #3), the 

underestimate is not so significant suggesting that the coefficient “a” in the FM is 

not so different from the NEXRAD coefficient of 300 (recall a priori “a” value is 
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200). But at interval #4 (R_zr>30 mm h-1), the underestimate becomes much 

larger and the standard deviation is also much larger. This suggests that the a 

priori “a” values are being changed according to the FM in general being too 

large (>200).  

For the other difference, R_rh-R_kdp, and 4 intervals, these calculations 

are shown in Figure 10-9. In this case, for all intervals the underestimate of R_rh 

relative to R_kdp is quite large but only increasing slowly with rain rate interval 

(as compared with Figure 10-8).However, there is no real increase in the 

standard deviation which is different from Figure 10-8.   

 

Figure 10-9. Mean values of the difference R_rh-R_k dp with corresponding standard 
deviation values, for 4 intervals of R_zr 
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Chapter 11  
 

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE WOR K 

 
 

The variational algorithm (also forward model or FM) was tested for three 

different dual-polarization radars, with measurements under different 

meteorological conditions at S- and X-bands. It was shown that this method is 

able to use information from Φdp and Zdr variables in an optimal way, to correct 

for rain and mixed phase attenuation, and to locate areas where hail is present 

using the combination of Z, Zdr, Kdp. It is able to estimate the fraction of the 

observed reflectivity which is due to hail. It is shown that this method is not only 

sensitive to the calibration of input variables but also on the pre-processing steps 

“tuned” for each radar system.   

The performance of the original method for X-band CASA data was improved 

in several ways. The observational errors in the cost function were changed 

according to empirically established equations to re-balance the effect of 

corresponding variables, which improves the quality of the algorithm output. The 

ability of the FM to work in case of mixed phase, wet ice and hail precipitation 

was also improved, by supplying the “first guess” of the hail location and fraction 

of reflectivity due to hail at these locations into the algorithm, which then uses 

this data to automatically converge to the optimal state and makes final decision 
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about hail location and attenuation. It was shown that FM is able to produce 

some systematic trend, continuity of the variables values in vertical direction, 

which makes it possible to show the core of the storm and hail area in 3D. 

After modifications, the attenuation correction of Zh using the FM method 

works well even in the presence of the hail and mixed rain-hail precipitation, 

provided that absolute calibration of the input variable Zh is accurate. For case of 

pure rain the attenuation correction results of FM method are comparable to 

other methods (based on differential propagation phase).  

We have evaluated the estimation of rain rate by the FM and compared with 

the NEXRAD Z-R relations as well as with a R-Kdp relation. This evaluation is 

done in several different ways including histograms of rain rate differences, 

exceedance probabilities and statistics within different rain rate intervals.  In 

general, the rain rates estimated by FM are lower than estimated by the two 

other selected methods. The reason for this underestimation is likely related to 

the absolute calibration state of the CASA radar used, in effect the measured 

reflectivity being too “cold” by several dB.  

Future work is to use OES algorithms for the same cases described in 

(Wang and Chandrasekar 2010) and compare the results to the data from gauge 

networks (and disdrometer networks as they become more widely deployed). It is 

important to improve the data quality (using newer fuzzy logic schemes to 

classify echoes from non-precipitation targets) and to improve absolute 

calibration of reflectivity via external instruments (such as disdrometer networks).  
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