1,066 research outputs found

    A methodology for project portfolio selection under criteria prioritisation, uncertainty and projects interdependency – combination of fuzzy QFD and DEA

    Full text link
    © 2018 Elsevier Ltd Resources of an organisation (people, time, money, equipment, etc) are never endless. As such, a constant and continuous challenge for decision makers is to decide which projects should be given priority in terms of receiving critical resources in a way that the organisation's productivity and profitability is best guaranteed. Previous literature has already developed a plenitude of project portfolio selection methodologies ranging from simple scoring to complex mathematical models. However, most of them too often fail to propose one integrated and seamless method that can simultaneously take into account three important elements: (1) prioritisation of selection criteria over each other, (2) uncertainty in decision-making, and (3) projects interdependencies. This paper aims to fill this gap by proposing an integrated method that can simultaneously address all these three aspects. The proposed method combines Quality Function Development (QFD), fuzzy logic, and Data Envelopment Analysis (DEA) to accounts for prioritisation, uncertainty and interdependency. We then apply this method in a numerical example from a real world case to illustrate the applicability and efficacy of the proposed methodology

    Supplier evaluation and selection in fuzzy environments: a review of MADM approaches

    Get PDF
    In past years, the multi-attribute decision-making (MADM) approaches have been extensively applied by researchers to the supplier evaluation and selection problem. Many of these studies were performed in an uncertain environment described by fuzzy sets. This study provides a review of applications of MADM approaches for evaluation and selection of suppliers in a fuzzy environment. To this aim, a total of 339 publications were examined, including papers in peer-reviewed journals and reputable conferences and also some book chapters over the period of 2001 to 2016. These publications were extracted from many online databases and classified in some categories and subcategories according to the MADM approaches, and then they were analysed based on the frequency of approaches, number of citations, year of publication, country of origin and publishing journals. The results of this study show that the AHP and TOPSIS methods are the most popular approaches. Moreover, China and Taiwan are the top countries in terms of number of publications and number of citations, respectively. The top three journals with highest number of publications were: Expert Systems with Applications, International Journal of Production Research and The International Journal of Advanced Manufacturing Technology

    Multiple Attribute Decision Making Based on Cross-Evaluation with Uncertain Decision Parameters

    Get PDF
    Multiple attribute decision making (MADM) problem is one of the most common and popular research fields in the theory of decision science. A variety of methods have been proposed to deal with such problems. Nevertheless, many of them assumed that attribute weights are determined by different types of additional preference information which will result in subjective decision making. In order to solve such problems, in this paper, we propose a novel MADM approach based on cross-evaluation with uncertain parameters. Specifically, the proposed approach assumes that all attribute weights are uncertain. It can overcome the drawback in prior research that the alternatives’ ranking may be determined by a single attribute with an overestimated weight. In addition, the proposed method can also balance the mean and deviation of each alternative’s cross-evaluation score to guarantee the stability of evaluation. Then, this method is extended to a more generalized situation where the attribute values are also uncertain. Finally, we illustrate the applicability of the proposed method by revisiting two reported studies and by a case study on the selection of community service companies in the city of Hefei in China

    A state-of-art survey on TQM applications using MCDM techniques

    Get PDF
    In today’s competitive economy, quality plays an essential role for the success business units and there are considerable efforts made to control and to improve quality characteristics in order to satisfy customers’ requirements. However, improving quality is normally involved with various criteria and we need to use Multi Criteria Decision Making (MCDM) to handle such cases. In this state-of the-art literature survey, 45 articles focused on solving quality problems by MCDM methods are investigated. These articles were published between 1994 and 2013.Seven areas were selected for categorization: (1) AHP, Fuzzy AHP, ANP and Fuzzy ANP, (2) DEMATEL and Fuzzy DEMATEL, (3) GRA, (4) Vikor and Fuzzy Vikor, (5) TOPSIS, Fuzzy TOPSIS and combination of TOPSIS and AHP, (6) Fuzzy and (7) Less frequent and hybrid procedures. According to our survey, Fuzzy based methods were the most popular technique with about 40% usage among procedures. Also AHP and ANP were almost 20% of functional methods. This survey ends with giving recommendation for future researches

    Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters

    Full text link
    [EN] International trade in food knows no borders, hence the need for prevention systems to avoid the consumption of products that are harmful to health. This paper proposes the use of multicriteria risk prevention tools that consider the socioeconomic and institutional conditions of food exporters. We propose the use of three decision-making methods-Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS), Elimination et Choix Traduisant la Realite (ELECTRE), and Cross-Efficiency (CE)-to establish a ranking of countries that export cereals to the European Union, based on structural criteria related to the detection of potential associated risks (notifications, food quality, corruption, environmental sustainability in agriculture, and logistics). In addition, the analysis examines whether the wealth and institutional capacity of supplier countries influence their position in the ranking. The research was carried out biannually over the period from 2012-2016, allowing an assessment to be made of the possible stability of the markets. The results reveal that suppliers' rankings based exclusively on aspects related to food risk differ from importers' actual choices determined by micro/macroeconomic features (price, production volume, and economic growth). The rankings obtained by the three proposed methods are not the same, but present certain similarities, with the ability to discern countries according to their level of food risk. The proposed methodology can be applied to support sourcing strategies. In the future, food safety considerations could have increased influence in importing decisions, which would involve further difficulties for low-income countries.Ministry of Science and Innovation (Spain) and European Commission-ERDF. Project "Strengthening innovation policy in the agri-food sector" (RTI2018-093791-B-C22).Puertas Medina, RM.; Martí Selva, ML.; García Alvarez-Coque, JM. (2020). Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. International Journal of Environmental research and Public Health. 17(10):1-21. https://doi.org/10.3390/ijerph17103432S1211710Walker, E., & Jones, N. (2002). An assessment of the value of documenting food safety in small and less developed catering businesses. Food Control, 13(4-5), 307-314. doi:10.1016/s0956-7135(02)00036-1Sun, Y.-M., & Ockerman, H. W. (2005). A review of the needs and current applications of hazard analysis and critical control point (HACCP) system in foodservice areas. Food Control, 16(4), 325-332. doi:10.1016/j.foodcont.2004.03.012Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., … Tilman, D. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456. doi:10.1038/s41893-019-0293-3De Jonge, J., van Trijp, J. C. M., van der Lans, I. A., Renes, R. J., & Frewer, L. J. (2008). How trust in institutions and organizations builds general consumer confidence in the safety of food: A decomposition of effects. Appetite, 51(2), 311-317. doi:10.1016/j.appet.2008.03.008Neill, C. L., & Holcomb, R. B. (2019). Does a food safety label matter? Consumer heterogeneity and fresh produce risk perceptions under the Food Safety Modernization Act. Food Policy, 85, 7-14. doi:10.1016/j.foodpol.2019.04.001Wood, V. R., & Robertson, K. R. (2000). Evaluating international markets. International Marketing Review, 17(1), 34-55. doi:10.1108/02651330010314704Jouanjean, M.-A., Maur, J.-C., & Shepherd, B. (2015). Reputation matters: Spillover effects for developing countries in the enforcement of US food safety measures. Food Policy, 55, 81-91. doi:10.1016/j.foodpol.2015.06.001Van Ruth, S. M., Huisman, W., & Luning, P. A. (2017). Food fraud vulnerability and its key factors. Trends in Food Science & Technology, 67, 70-75. doi:10.1016/j.tifs.2017.06.017Baylis, K., Nogueira, L., & Pace, K. (2010). Food Import Refusals: Evidence from the European Union. American Journal of Agricultural Economics, 93(2), 566-572. doi:10.1093/ajae/aaq149Bouzembrak, Y., & Marvin, H. J. P. (2016). Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control, 61, 180-187. doi:10.1016/j.foodcont.2015.09.026Tudela-Marco, L., Garcia-Alvarez-Coque, J. M., & Martí-Selva, L. (2016). Do EU Member States Apply Food Standards Uniformly? A Look at Fruit and Vegetable Safety Notifications. JCMS: Journal of Common Market Studies, 55(2), 387-405. doi:10.1111/jcms.12503Verhaelen, K., Bauer, A., Günther, F., Müller, B., Nist, M., Ülker Celik, B., … Wallner, P. (2018). Anticipation of food safety and fraud issues: ISAR - A new screening tool to monitor food prices and commodity flows. Food Control, 94, 93-101. doi:10.1016/j.foodcont.2018.06.029Garcia‐Alvarez‐Coque, J., Taghouti, I., & Martinez‐Gomez, V. (2020). Changes in Aflatoxin Standards: Implications for EU Border Controls of Nut Imports. Applied Economic Perspectives and Policy, 42(3), 524-541. doi:10.1093/aepp/ppy036Fischer, A. R. H., de Jong, A. E. I., de Jonge, R., Frewer, L. J., & Nauta, M. J. (2005). Improving Food Safety in the Domestic Environment: The Need for a Transdisciplinary Approach. Risk Analysis, 25(3), 503-517. doi:10.1111/j.1539-6924.2005.00618.xHoughton, J. R., Rowe, G., Frewer, L. J., Van Kleef, E., Chryssochoidis, G., Kehagia, O., … Strada, A. (2008). The quality of food risk management in Europe: Perspectives and priorities. Food Policy, 33(1), 13-26. doi:10.1016/j.foodpol.2007.05.001Demortain, D. (2012). Enabling global principle-based regulation: The case of risk analysis in the Codex Alimentarius. Regulation & Governance, 6(2), 207-224. doi:10.1111/j.1748-5991.2012.01144.xFAZIL, A., RAJIC, A., SANCHEZ, J., & MCEWEN, S. (2008). Choices, Choices: The Application of Multi-Criteria Decision Analysis to a Food Safety Decision-Making Problem. Journal of Food Protection, 71(11), 2323-2333. doi:10.4315/0362-028x-71.11.2323Ruzante, J. M., Davidson, V. J., Caswell, J., Fazil, A., Cranfield, J. A. L., Henson, S. J., … Farber, J. M. (2010). A Multifactorial Risk Prioritization Framework for Foodborne Pathogens. Risk Analysis, 30(5), 724-742. doi:10.1111/j.1539-6924.2009.01278.xMazzocchi, M., Ragona, M., & Zanoli, A. (2013). A fuzzy multi-criteria approach for the ex-ante impact assessment of food safety policies. Food Policy, 38, 177-189. doi:10.1016/j.foodpol.2012.11.011Govindan, K., Kadziński, M., & Sivakumar, R. (2017). Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega, 71, 129-145. doi:10.1016/j.omega.2016.10.004Segura, M., Maroto, C., & Segura, B. (2019). Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies. Sustainability, 11(21), 5875. doi:10.3390/su11215875Lau, H., Nakandala, D., & Shum, P. K. (2018). A business process decision model for fresh-food supplier evaluation. Business Process Management Journal, 24(3), 716-744. doi:10.1108/bpmj-01-2016-0015Garcia-Alvarez-Coque, J.-M., Abdullateef, O., Fenollosa, L., Ribal, J., Sanjuan, N., & Soriano, J. M. (2020). Integrating sustainability into the multi-criteria assessment of urban dietary patterns. Renewable Agriculture and Food Systems, 36(1), 69-76. doi:10.1017/s174217051900053xGrant, W. (2012). Economic patriotism in European agriculture. Journal of European Public Policy, 19(3), 420-434. doi:10.1080/13501763.2011.640797Maye, D., & Kirwan, J. (2013). Food security: A fractured consensus. Journal of Rural Studies, 29, 1-6. doi:10.1016/j.jrurstud.2012.12.001Anthony, R. (2011). Taming the Unruly Side of Ethics: Overcoming Challenges of a Bottom-Up Approach to Ethics in the Areas of Food Policy and Climate Change. Journal of Agricultural and Environmental Ethics, 25(6), 813-841. doi:10.1007/s10806-011-9358-7MacMillan, T., & Dowler, E. (2011). Just and Sustainable? Examining the Rhetoric and Potential Realities of UK Food Security. Journal of Agricultural and Environmental Ethics, 25(2), 181-204. doi:10.1007/s10806-011-9304-8Jaud, M., Cadot, O., & Suwa-Eisenmann, A. (2013). Do food scares explain supplier concentration? An analysis of EU agri-food imports. European Review of Agricultural Economics, 40(5), 873-890. doi:10.1093/erae/jbs038Spink, J., Fortin, N. D., Moyer, D. C., Miao, H., & Wu, Y. (2016). Food Fraud Prevention: Policy, Strategy, and Decision-Making – Implementation Steps for a Government Agency or Industry. CHIMIA International Journal for Chemistry, 70(5), 320-328. doi:10.2533/chimia.2016.320Van Ruth, S. M., Luning, P. A., Silvis, I. C. J., Yang, Y., & Huisman, W. (2018). Differences in fraud vulnerability in various food supply chains and their tiers. Food Control, 84, 375-381. doi:10.1016/j.foodcont.2017.08.020Xidonas, P., & Psarras, J. (2009). Equity portfolio management within the MCDM frame: a literature review. International Journal of Banking, Accounting and Finance, 1(3), 285. doi:10.1504/ijbaaf.2009.022717Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401-412. doi:10.1016/j.ejor.2008.05.007Mandic, K., Delibasic, B., Knezevic, S., & Benkovic, S. (2014). Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods. Economic Modelling, 43, 30-37. doi:10.1016/j.econmod.2014.07.036Uygun, Ö., Kaçamak, H., & Kahraman, Ü. A. (2015). An integrated DEMATEL and Fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Computers & Industrial Engineering, 86, 137-146. doi:10.1016/j.cie.2014.09.014Wanke, P., Azad, M. D. A. K., & Barros, C. P. (2016). Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach. Research in International Business and Finance, 36, 485-498. doi:10.1016/j.ribaf.2015.10.002Stojčić, M., Zavadskas, E., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018. Symmetry, 11(3), 350. doi:10.3390/sym11030350Xu, L., Shah, S. A. A., Zameer, H., & Solangi, Y. A. (2019). Evaluating renewable energy sources for implementing the hydrogen economy in Pakistan: a two-stage fuzzy MCDM approach. Environmental Science and Pollution Research, 26(32), 33202-33215. doi:10.1007/s11356-019-06431-0Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of The Total Environment, 409(19), 3578-3594. doi:10.1016/j.scitotenv.2011.06.022Pons, O., de la Fuente, A., & Aguado, A. (2016). The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. Sustainability, 8(5), 460. doi:10.3390/su8050460Shishegaran, A., Shishegaran, A., Mazzulla, G., & Forciniti, C. (2020). A Novel Approach for a Sustainability Evaluation of Developing System Interchange: The Case Study of the Sheikhfazolah-Yadegar Interchange, Tehran, Iran. International Journal of Environmental Research and Public Health, 17(2), 435. doi:10.3390/ijerph17020435Wu, H.-Y., Chen, J.-K., Chen, I.-S., & Zhuo, H.-H. (2012). Ranking universities based on performance evaluation by a hybrid MCDM model. Measurement, 45(5), 856-880. doi:10.1016/j.measurement.2012.02.009Shakouri G., H., & Tavassoli N., Y. (2012). Implementation of a hybrid fuzzy system as a decision support process: A FAHP–FMCDM–FIS composition. Expert Systems with Applications, 39(3), 3682-3691. doi:10.1016/j.eswa.2011.09.063Mavi, R. K., Goh, M., & Mavi, N. K. (2016). Supplier Selection with Shannon Entropy and Fuzzy TOPSIS in the Context of Supply Chain Risk Management. Procedia - Social and Behavioral Sciences, 235, 216-225. doi:10.1016/j.sbspro.2016.11.017Montgomery, B., Dragićević, S., Dujmović, J., & Schmidt, M. (2016). A GIS-based Logic Scoring of Preference method for evaluation of land capability and suitability for agriculture. Computers and Electronics in Agriculture, 124, 340-353. doi:10.1016/j.compag.2016.04.013Debnath, A., Roy, J., Kar, S., Zavadskas, E., & Antucheviciene, J. (2017). A Hybrid MCDM Approach for Strategic Project Portfolio Selection of Agro By-Products. Sustainability, 9(8), 1302. doi:10.3390/su9081302Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178-190. doi:10.1016/j.geoderma.2017.09.012Rostamzadeh, R., Ghorabaee, M. K., Govindan, K., Esmaeili, A., & Nobar, H. B. K. (2018). Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach. Journal of Cleaner Production, 175, 651-669. doi:10.1016/j.jclepro.2017.12.071Raut, R. D., Gardas, B. B., Kharat, M., & Narkhede, B. (2018). Modeling the drivers of post-harvest losses – MCDM approach. Computers and Electronics in Agriculture, 154, 426-433. doi:10.1016/j.compag.2018.09.035Qureshi, M. R. N., Singh, R. K., & Hasan, M. A. (2017). Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM. Environment, Development and Sustainability, 20(2), 641-659. doi:10.1007/s10668-016-9903-7Srinivasa Rao, C., Kareemulla, K., Krishnan, P., Murthy, G. R. K., Ramesh, P., Ananthan, P. S., & Joshi, P. K. (2019). Agro-ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecological Indicators, 105, 621-633. doi:10.1016/j.ecolind.2018.06.038Paul, M., Negahban-Azar, M., Shirmohammadi, A., & Montas, H. (2020). Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis. Agricultural Water Management, 231, 105987. doi:10.1016/j.agwat.2019.105987Balezentis, T., Chen, X., Galnaityte, A., & Namiotko, V. (2020). Optimizing crop mix with respect to economic and environmental constraints: An integrated MCDM approach. Science of The Total Environment, 705, 135896. doi:10.1016/j.scitotenv.2019.135896Jahan, A., & Edwards, K. L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. doi:10.1016/j.matdes.2012.12.072Pourhejazy, P., Kwon, O., Chang, Y.-T., & Park, H. (2017). Evaluating Resiliency of Supply Chain Network: A Data Envelopment Analysis Approach. Sustainability, 9(2), 255. doi:10.3390/su9020255Stewart, T. J. (1996). Relationships between Data Envelopment Analysis and Multicriteria Decision Analysis. Journal of the Operational Research Society, 47(5), 654-665. doi:10.1057/jors.1996.77Li, X.-B., & Reeves, G. R. (1999). A multiple criteria approach to data envelopment analysis. European Journal of Operational Research, 115(3), 507-517. doi:10.1016/s0377-2217(98)00130-1Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). STATE OF ART SURVEYS OF OVERVIEWS ON MCDM/MADM METHODS. Technological and Economic Development of Economy, 20(1), 165-179. doi:10.3846/20294913.2014.892037Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2017). A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials & Design, 121, 237-253. doi:10.1016/j.matdes.2017.02.041Bouyssou, D. (1999). Using DEA as a tool for MCDM: some remarks. Journal of the Operational Research Society, 50(9), 974-978. doi:10.1057/palgrave.jors.2600800Özcan, T., Çelebi, N., & Esnaf, Ş. (2011). Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Systems with Applications, 38(8), 9773-9779. doi:10.1016/j.eswa.2011.02.022LOKEN, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. doi:10.1016/j.rser.2005.11.005Darji, V. P., & Rao, R. V. (2014). Intelligent Multi Criteria Decision Making Methods for Material Selection in Sugar Industry. Procedia Materials Science, 5, 2585-2594. doi:10.1016/j.mspro.2014.07.519Ceballos, B., Lamata, M. T., & Pelta, D. A. (2016). A comparative analysis of multi-criteria decision-making methods. Progress in Artificial Intelligence, 5(4), 315-322. doi:10.1007/s13748-016-0093-1Sen, B., Bhattacharjee, P., & Mandal, U. K. (2016). A comparative study of some prominent multi criteria decision making methods for connecting rod material selection. Perspectives in Science, 8, 547-549. doi:10.1016/j.pisc.2016.06.016Wu, D. (2006). A note on DEA efficiency assessment using ideal point: An improvement of Wang and Luo’s model. Applied Mathematics and Computation, 183(2), 819-830. doi:10.1016/j.amc.2006.06.030Kou, G., Peng, Y., & Wang, G. (2014). Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Information Sciences, 275, 1-12. doi:10.1016/j.ins.2014.02.137Roy, B. (1991). The outranking approach and the foundations of electre methods. Theory and Decision, 31(1), 49-73. doi:10.1007/bf00134132YOON, K., & HWANG, C.-L. (1985). Manufacturing plant location analysis by multiple attribute decision making: part I—single-plant strategy. International Journal of Production Research, 23(2), 345-359. doi:10.1080/00207548508904712Doyle, J., & Green, R. (1994). Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society, 45(5), 567-578. doi:10.1057/jors.1994.84Martí, L., Martín, J. C., & Puertas, R. (2017). A Dea-Logistics Performance Index. Journal of Applied Economics, 20(1), 169-192. doi:10.1016/s1514-0326(17)30008-9Canadá y la UE: Si Quierohttps://www.Euroganadería.euKARABIYIK, C., & KUTLU KARABIYIK, B. (2018). Benchmarking International Trade Performance of OECD Countries: TOPSIS and AHP Approaches. Gaziantep University Journal of Social Sciences. doi:10.21547/jss.267381Lin, M.-C., Wang, C.-C., Chen, M.-S., & Chang, C. A. (2008). Using AHP and TOPSIS approaches in customer-driven product design process. Computers in Industry, 59(1), 17-31. doi:10.1016/j.compind.2007.05.013Lourenzutti, R., & Krohling, R. A. (2016). A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. Information Sciences, 330, 1-18. doi:10.1016/j.ins.2015.10.005Roy, B. (1968). Classement et choix en présence de points de vue multiples. Revue française d’informatique et de recherche opérationnelle, 2(8), 57-75. doi:10.1051/ro/196802v100571Jaini, N., & Utyuzhnikov, S. (2016). Trade-off ranking method for multi-criteria decision analysis. Journal of Multi-Criteria Decision Analysis, 24(3-4), e1600. doi:10.1002/mcda.1600Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253. doi:10.2307/2343100Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078Angulo-Meza, L., & Lins, M. P. E. (2002). Annals of Operations Research, 116(1/4), 225-242. doi:10.1023/a:1021340616758Falagario, M., Sciancalepore, F., Costantino, N., & Pietroforte, R. (2012). Using a DEA-cross efficiency approach in public procurement tenders. European Journal of Operational Research, 218(2), 523-529. doi:10.1016/j.ejor.2011.10.031Puertas, R., & Marti, L. (2019). Sustainability in Universities: DEA-GreenMetric. Sustainability, 11(14), 3766. doi:10.3390/su1114376

    Impact of Lean and Sustainability Oriented Innovation on Sustainability Performance of Small and Medium Sized Enterprises: A Data Envelopment Analysis-based framework

    Get PDF
    Lean and Sustainability Oriented Innovation both enhance competitiveness of small and medium enterprises (SMEs) in a sustainable way. Lean is efficiency focused, whereas Sustainability Oriented Innovation emphasizes on responsiveness. Although lean and sustainability oriented innovation have been separately researched, there is a gap in knowledge on the combined effect of lean and sustainability oriented innovation (SOI) on SMEs Supply Chain sustainability. SMEs have limited resources and face numerous competition. Therefore, their supply chain sustainability can only be achieved through most appropriate trade-off between economic, environment and social aspects of business. The purpose of this paper is to understand the combined effect of sustainability oriented innovation and lean practices, on supply chain sustainability performance of SMEs. The study uses a Data Envelopment Analysis (DEA) based framework and applies this to a group of SMEs within the Eastern part of India. Lean and sustainability oriented innovation are considered as input criteria, and economic, operational, environmental and social aspects are considered as output criteria of the proposed framework. DEA segregates inefficient SMEs and suggests at least a SME to benchmark. Subsequently, the study undertakes qualitative approach to suggest improvement measures for the inefficient SMEs. The results reveal that combined lean and SOI helps achieve SMEs' supply chain sustainability. The findings are useful for policy makers and Individual SMEs' owners and managers to undertake measures for improving sustainability. Theoretically this research contributes a DEA-based framework to study the effect of combined lean and SOI on sustainability that helps improving SMEs’ sustainability performance

    An Integrated Fuzzy Clustering Cooperative Game Data Envelopment Analysis Model with application in Hospital Efficiency

    Get PDF
    Hospitals are the main sub-section of health care systems and evaluation of hospitals is one of the most important issue for health policy makers. Data Envelopment Analysis (DEA) is a nonparametric method that has recently been used for measuring efficiency and productivity of Decision Making Units (DMUs) and commonly applied for comparison of hospitals. However, one of the important assumption in DEA is that DMUs must be homogenous. The crucial issue in hospital efficiency is that hospitals are providing different services and so may not be comparable. In this paper, we propose an integrated fuzzy clustering cooperative game DEA approach. In fact, due to the lack of homogeneity among DMUs, we first propose to use a fuzzy C-means technique to cluster the DMUs. Then we apply DEA combined with the game theory where each DMU is considered as a player, using Core and Shapley value approaches within each cluster. The procedure has successfully been applied for performances measurement of 288 hospitals in 31 provinces of Iran. Finally, since the classical DEA model is not capable to distinguish between efficient DMUs, efficient hospitals within each cluster, are ranked using combined DEA model and cooperative game approach. The results show that the Core and Shapley values are suitable for fully ranking of efficient hospitals in the healthcare systems

    Green supplier selection problems with data scaling and production frontier estimations in a DEA model

    Get PDF
    Considering ecological issues in supplier evaluation and management alongside business considerations is getting more recognition among firms. Data envelopment analysis (DEA) is one of those methods, which is frequently suggested by the literature to support management decisions. However, the data requirements of the method should be an important consideration. The literature often addresses the issue of desirable outputs and undesirable input as an important data related problem in case of the ecological use of DEA. This paper will present a new solution to manage these data problems along with connecting the evaluation of management criteria, environmental criteria and total cost aspects. The proposed environmental supplier selection problem is an extension of a former paper. The new model examines the effect of inventory related costs, such as EOQ costs of inventory holding or ordering costs on the selected supplier, extended with newly introduced scaled values of input and output indicators. The usage of scaled values is motivated by the problem of invariance to data alteration. In addition to the uncertainty of the data, the paper looks for a functional relationship between the input and output criterion values and the efficiency that can be assigned to them using DEA
    corecore