238 research outputs found

    Onset of an outline map to get a hold on the wildwood of clustering methods

    Full text link
    The domain of cluster analysis is a meeting point for a very rich multidisciplinary encounter, with cluster-analytic methods being studied and developed in discrete mathematics, numerical analysis, statistics, data analysis and data science, and computer science (including machine learning, data mining, and knowledge discovery), to name but a few. The other side of the coin, however, is that the domain suffers from a major accessibility problem as well as from the fact that it is rife with division across many pretty isolated islands. As a way out, the present paper offers an outline map for the clustering domain as a whole, which takes the form of an overarching conceptual framework and a common language. With this framework we wish to contribute to structuring the domain, to characterizing methods that have often been developed and studied in quite different contexts, to identifying links between them, and to introducing a frame of reference for optimally setting up cluster analyses in data-analytic practice.Comment: 33 pages, 4 figure

    CLADAG 2021 BOOK OF ABSTRACTS AND SHORT PAPERS

    Get PDF
    The book collects the short papers presented at the 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). The meeting has been organized by the Department of Statistics, Computer Science and Applications of the University of Florence, under the auspices of the Italian Statistical Society and the International Federation of Classification Societies (IFCS). CLADAG is a member of the IFCS, a federation of national, regional, and linguistically-based classification societies. It is a non-profit, non-political scientific organization, whose aims are to further classification research

    Archives of Data Science, Series A. Vol. 1,1: Special Issue: Selected Papers of the 3rd German-Polish Symposium on Data Analysis and Applications

    Get PDF
    The first volume of Archives of Data Science, Series A is a special issue of a selection of contributions which have been originally presented at the {\em 3rd Bilateral German-Polish Symposium on Data Analysis and Its Applications} (GPSDAA 2013). All selected papers fit into the emerging field of data science consisting of the mathematical sciences (computer science, mathematics, operations research, and statistics) and an application domain (e.g. marketing, biology, economics, engineering)

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    Innovative Algorithms and Evaluation Methods for Biological Motif Finding

    Get PDF
    Biological motifs are defined as overly recurring sub-patterns in biological systems. Sequence motifs and network motifs are the examples of biological motifs. Due to the wide range of applications, many algorithms and computational tools have been developed for efficient search for biological motifs. Therefore, there are more computationally derived motifs than experimentally validated motifs, and how to validate the biological significance of the ‘candidate motifs’ becomes an important question. Some of sequence motifs are verified by their structural similarities or their functional roles in DNA or protein sequences, and stored in databases. However, biological role of network motifs is still invalidated and currently no databases exist for this purpose. In this thesis, we focus not only on the computational efficiency but also on the biological meanings of the motifs. We provide an efficient way to incorporate biological information with clustering analysis methods: For example, a sparse nonnegative matrix factorization (SNMF) method is used with Chou-Fasman parameters for the protein motif finding. Biological network motifs are searched by various clustering algorithms with Gene ontology (GO) information. Experimental results show that the algorithms perform better than existing algorithms by producing a larger number of high-quality of biological motifs. In addition, we apply biological network motifs for the discovery of essential proteins. Essential proteins are defined as a minimum set of proteins which are vital for development to a fertile adult and in a cellular life in an organism. We design a new centrality algorithm with biological network motifs, named MCGO, and score proteins in a protein-protein interaction (PPI) network to find essential proteins. MCGO is also combined with other centrality measures to predict essential proteins using machine learning techniques. We have three contributions to the study of biological motifs through this thesis; 1) Clustering analysis is efficiently used in this work and biological information is easily integrated with the analysis; 2) We focus more on the biological meanings of motifs by adding biological knowledge in the algorithms and by suggesting biologically related evaluation methods. 3) Biological network motifs are successfully applied to a practical application of prediction of essential proteins

    Fundamental Study of Photoluminescence-Shape Relationship of Fluorescent Nanodiamonds using Machine Learning Assisted Correlative Transmission Electron Microscopy and Photoluminescence Microscopy Method

    Full text link
    Luminescent nanoparticles have shown wide applications ranging from lighting, display, sensors, and biomedical diagnostics and imaging. Among these, fluorescent nanodiamonds (FNDs) containing nitrogen-vacancy (NV) color centers are posed as emerging materials particularly in biomedical and biological imaging applications due to their room-temperature emission, excellent photo- and chemical- stability, high bio-compatibility, and versatile functionalization potentials. The shape variation of nanoparticles has a decisive influence on their fluorescence. However, current relative studies are limited by the lack of reliable statistical analysis of nanoparticle shape and the difficulty of achieving a precise correlation between shape/structure and optical measurements of large numbers of individual nanoparticles. Therefore, new methods are urgently needed to overcome these challenges to assist in nanoparticle synthesis control and fluorescence performance optimization. In this thesis a new correlative TEM and photoluminescence (PL) microscopy (TEMPL) method has been developed that combines the measurements of the optical properties and the materials structure at the exact same particle and sample area, so that accurate correlation can be established to statistically study the FND morphology/structure and PL properties, at the single nanoparticle level. Moreover, machine learning based methods have been developed for categorizing the 2D and 3D shapes of a large number of nanoparticles generated in TEMPL method. This ML-assisted TEMPL method has been applied to understand the PL correlation with the size and shape of FNDs at the single particle level. In this thesis, a strong correlation between particle morphology and NV fluorescence in FND particles has been revealed: thin, flake-like particles produce enhanced fluorescence. The robustness of this trend is proven in FND with different surface oxidation treatments. This finding offers guidance for fluorescence-optimized sensing applications of FND, by controlling the shape of the particles in fabrication. Overall the TEMPL methodology developed in the thesis provides a versatile and general way to study the shape and fluorescence relationship of various nanoparticles and opens up the possibility of correlation methods between other characterisation techniques

    Statistical and image analysis methods and applications

    Get PDF
    corecore