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AUVI1AJ1 

This thesis comprises 51 papers and a book. It is divided into three sections: 
on statistical methodology, statistical applications and image analysis. Papers in 
the first section present new methodology on regression with serially correlated 
errors, computer-intensive inference and clustering criteria. The second section 
comprises papers on a range of innovative applications of statistical methods. 
Papers are grouped by application into: combine harvesting, forage conservation, 
the modelling of climate, estimating and characterising soil properties, specifying 
and using the distribution of potato sizes and analysing ion channel data. The 
final section consists of a book and papers on image analysis. Methodology and 
applications in medical imaging, microscopy and electrophoresis are covered. 
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INTRODUCTION 

Papers are grouped into three sections: statistical methodology, statistical appli-
cations and image analysis. 

I. Statistical methodology 

In the first section there are a series of papers which present new developments in 
statistical methodology. They are grouped into papers on regression with serially 
correlated errors, on computer-intensive inference and on clustering criteria. 

Papers 1 - 4 are concerned with the problem of fitting a regression equation 
to data which are serially correlated. Such situations occur when data are col-
lected repeatedly on a single experimental subject. As a consequence, ordinary 
least squares parameters estimators are inefficient and standard errors are bi-
ased. One approach to overcoming the problem is to model the error correlation 
structure and obtain maximum likelihood estimators of the parameters. In pa-
per 1 this is done using a first-order autoregressive process, which is generalised 
in paper 2 to higher-order autoregressive processes. In paper 3, autoregressive 
moving-average (ARMA) processes, stochastic compartment models and stochas-
tic difference equations are used. Paper 4 presents a generalisation of partial au-
tocorrelation statistics which are useful in identifying the order of ARMA model 
required. 

Papers 5 - 8 consider various aspects of computer-intensive inference. The un-
derlying theme is that by making heavy use of the computer some of the assump-
tions commonly made in statistical inference can be relaxed, leading to results 
of more general validity. Paper 5 continues on the topic of regression with cor-
related errors. But, instead of modelling the error structure, standard errors of 
parameter estimators are specified which are relatively unaffected by its misspec-
ification. Paper 6 demonstrates how the widths of confidence intervals obtained 
in analysing quantal dose-response data are sensitive to the assumptions made 
about the tolerance distribution - whether it simply exists, or is unimodal, 
bell-shaped, symmetric or Gaussian. In paper 7, an algorithm is proposed for es-
timating a definite integral in a regression model, subject to the constraint that 
increasing the value of any observation does not decrease the estimated value 
of the integral. The method is applied to estimating cows' milk yield in 100—
day intervals using monthly observations. Finally, paper 8 considers the use of 
non-parametric curves to smooth and summarise lactation data. The curves are 



specified by order constraints which are appropriate to make them unimodal, or 
initially convex and then concave. 

Papers 9 - 11 consider single- and complete-linkage clustering criteria, and present 
a new criterion which is a synthesis of the two. Single-linkage clustering maximises 
the minimum distance between points in different clusters, whereas complete-
linkage clustering minimises the maximum distance between points in the same 
cluster. In paper 9, a new clustering criterion is proposed, which optimises a 
combined function of the single- and complete-linkage criteria. In paper 10, it 
is shown that all such criteria produce partitions which are in the dendogram 
produced by single-linkage clustering. Therefore, implicitly, complete-linkage is 
being used as a multiple stopping rule for single-linkage clustering. Paper 11 re-
views single- and complete-linkage algorithms, and presents a computer program 
for implementing the synthesised method. 

II. Statistical applications 

In the second section there are groups of papers on innovative applications of sta-
tistical methods to combine harvesting and to forage conservation, the modelling 
of climate, measurement of soil properties, specifying and using the distribution of 
potato sizes, the analysis of ion channel data, and finally there is a miscellaneous 
group. 

Papers 12 - 15 are concerned with building stochastic models for various aspects 
of combine harvesting, and applying the results to identify optimal decision strate-
gies. In paper 12, grain threshing losses are minimised by varying the forward 
speed of the combine harvester, using a feedback control system from a grain 
loss monitor. The results are used in paper 13 to place an upper bound on the 
potential benefits of such control systems. In paper 14, survey data are used 
to characterise the weather conditions which permit combine harvesting, and in 
paper 15, the prediction of future working days during the harvest is used to 
determine the optimal combining speed. 

Papers 16 - 18 relate to the analysis of forage conservation data. In paper 16, a 
statistical method is proposed for comparing the drying curves of grass swaths. 
Except for treatment-dependent scaling terms, the curves have a common shape 
which is modelled by a cubic spline. In paper 17, this method is used to compare 
grass conditioning treatments in a series of field trials. A more mechanistic ap-
proach is taken in paper 18: Penman's equation is used as a basis for establishing 
a relationship between drying curves and weather variables. Effects of rainfall 
are also taken into account. 
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Papers 19 - 22 deal with some aspects of the modelling of weather data. Paper 19 
uses a reduced-rank regression model to relate local variations in solar radiation 
to physical characteristics of sites. The other three papers all consider missing 
data, but of three distinct types: either occasional values may be missing, or 
a variate may have been aggregated over too long a time interval, or a variate 
may not have been recorded at all. In paper 20, a spatio-temporal model is used 
to estimate occasional sequences of missing values in multi-site solar radiation 
data. Paper 21 uses conditional simulation from a point process model of rainfall 
to disaggregate daily totals to typical hourly data. In paper 22, a relationship 
is established for estimating solar radiation using other meteorological variables, 
such as cloud cover and sunshine hours, and a model for clear sky radiation. 

Papers 23 - 26 share as a theme the measurement and characterisation of soil 
properties. In paper 23, a model is established for summarising the variations 
in load on a simple soil-working implement as it is drawn through the soil. The 
model, which comprises a Gaussian process plus a marked point process to rep-
resent the effects of stones and other soil inclusions, is applied, in paper 24, to 
compare different soil types. In paper 25, a cone penetrometer is used to esti-
mate soil strength. An algorithm is proposed for imputing missing observations 
produced by the censoring effects of stones. Paper 26 considers the measurement 
of soil gas diffusivity in situ. Fick's diffusion equation is integrated numerically 
for the equipment geometries used, and fitted to the data by generalised least 
squares. 

Papers 27 - 29 specify and use a multivariate distribution of potato tuber sizes. 
In paper 27 it is shown that tuber weight, length, breadth and depth in a large 
data set are multivariate log-normally distributed. Paper 28 uses this distribution 
to compare potato grading methods, such as those based on square-mesh riddle 
sizes, with newly developed methods using optical sizing and weight. In paper 29, 
size-grouped potato yield data are analysed using a bivariate normal distribution 
of tuber size and weight. The result is a more succinct summary of treatment 
differences than that produced by analysing data in each size class separately. 

Papers 30 - 32 are concerned with aspects of the analysis and modelling of ion-
channel records. In paper 30, CUSUM, Q-Q and P-P plots are used to study 
open- and closed-time durations of a single ion-channel. The plots provide checks 
for stationarity and the appropriateness of exponential distributions. In paper 
31, generalisations of the binomial distribution are applied to the numbers of 
open channels in multi-channel data. The sample variance is less than that 
of a binomial distribution, which is explained by either a negative interaction 
between channels or channels having different probabilities of being open. Paper 
32 presents an efficient algorithm for simulating from a mixture of exponential 
distributions when some of the components are negatively weighted, a situation 
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which occurs when using stochastic compartment models to represent the actions 
of ion channels. The distribution is reformulated as a mixture of general Erlang 
distributions. 

The final group of papers (33 - 36) consists of other applications of statistical 
methodology. In paper 33, forms of variation which arise within system models 
are considered, using as an example a model for energy requirements in growing 
cattle. In paper 34, landmark methods are used to study and characterise the 
shapes of different species of fish. Error variance models, after generalised Pro-
crustes analysis, are compared using simulation tests and the power to discrimi-
nate between species is shown to be increased by including non-affine transforma-
tions that correct for fish curvature. Paper 35 presents an analysis of small-core 
permeability measurements obtained from rock cores. The point spread function 
of the sampling probe is inferred. In paper 36 a random walk model is used to 
compare group foraging strategies of animals. 

III. Image analysis 

The third section consists of a book, and groups of papers on image analysis 
methodology, and applications to medical imaging, microscopy and electrophore-
sis. 

The book (37) and papers 38 - 40 are concerned with general issues pertaining 
to image analysis. The book is an introduction and overview of image analysis 
from a statistical perspective, and with emphasis on applications in the biological 
sciences. Most topics in low-level computer vision are covered, including chap-
ters on image display, filters, segmentation, mathematical morphology and image 
measurement. Paper 38 compares algorithms for selecting a threshold to segment 
an image. The best method is found to be one which fits mixtures of Gaussian 
distributions to the histogram of pixel values. In paper 39, image analysis is 
reviewed from a biometric perspective, with emphasis given to methods for en-
hancement and segmentation. Paper 40 presents a fast algorithm for computing 
moving average filters in octagonal and other polygonal windows. It is shown 
that an octagonal window leads to a filter which is less rotationally variant than 
one based on a square window. 

Papers 41 - 45 are concerned with the use of magnetic resonance imaging (MRI) 
and ultrasound imaging to estimate human, pig and sheep body composition in 
vivo. In paper 41, total and subcutaneous adipose tissue in women is predicted 
from MRI data. Results are shown to correlate closely with estimates based on 
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underwater weighing, skinfold thickness and other methods for assessing fatness 
levels. In papers 42 and 43, adipose tissue in pigs is predicted from MRI data. 
To avoid problems of overfitting in using data from only twelve pigs, an indirect 
approach was taken to fitting, in which fat percentages were related to image 
statistics averaged over all images from each pig, and these were then related 
to individual images. Paper 44 derives the distribution of distances between 
censored intersections between a square lattice and a random smooth path, a 
problem which arose in using Fourier descriptors to estimate a tissue boundary 
from MRI data. Finally, paper 45 presents an algorithm for estimating sheep 
backfat and eye-muscle depth from ultrasound scans. Horizontal and curved 
boundaries between tissues are located using a search method akin to the Hough 
transform. Results are calibrated against those obtained by manual interpretation 
of the images. 

Papers 46 - 49 consider image analysis applications in microscopy. In paper 
46, cross-sections of a soil aggregate are used to identify a three-dimensional 
model for soil pores. The model, in which the soil matrix is simulated as a 
Boolean process of randomly positioned, overlapping spheres with exponentially 
distributed radii, is then used to study pore connectivity. In paper 47, progress is 
made towards the automatic measurement of cashmere fibre diameter by image 
analysis. A correction factor is used to remove bias when fibres are out of focus. 
Paper 48 considers the opportunities for multimodal microscopy offered by digital 
image processing. A matching algorithm is proposed for aligning images obtained 
using different modalities, and the information content of multimodal images is 
explored using principal components analysis. In paper 49, the problem addressed 
is to reverse the degradation which occurs when images are digitised: they are 
blurred, subjected to noise and rounding error, and sampled only at a lattice of 
points. Inference is considered for the fundamental case of binary scenes, binary 
data and isotropic blur. Methods are applied to an electron micrograph of an 
immunogold-labelled section of tulip virus. 

Finally, papers 50 - 52 are concerned with image analysis applications to elec-
trophoresis. In paper 50, an algorithm is presented for unwarping rnuititrack 
electrophoretic gels. A gradient filter is used to estimate band orientations, which 
are then smoothed and interpolated by robust regression and integrated to ob-
tain the unwarping transform. In paper 51, the greyscale response and sampling 
properties are studied of a desktop scanner used for digitising electrophoretic gels. 
In particular, the spatial arrangement of sampled pixels is identified, the blur-
ring function is estimated and recommendations are made for quantitative use 
of the scanner. Paper 52 reviews uses of digital image analysis in electrophore-
sis, concentrating on issues of image unwarping, mathematical morphology and 
deconvolution. 
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A model for growth is proposed which has as the stochastic term a first-order auto-
regressive process. This remedies a deficiency in the literature for non-linear 
regression with correlated residuals (Sprent, 1969, p.  158). In Section 2 a method of 
fitting this model is given and in Section 3 this is applied to animal weight data using 
the generalized logistic curve. The assumptions of the model are examined in Section 4 
and in Section 5 the data are further analysed. Finally, generalizations of the model 
are outlined in Section 6. 

Keywords: NON-LINEAR REGRESSION; FIRST-ORDER AUTOREGRESSIVE PROCESS; GROWTH CURVES; 
GENERALIZED LOGISTIC; LOGISTIC 

1. INTRODUCTION 

MANY methods exist for estimating parameters in linear regression when the residuals are 
correlated (e.g. Durbin, 1960; Sprent, 1969, pp.  79-82). Growth data frequently require 
curves that are non-linear in their parameters. If the residuals were independent and normally 
distributed, estimation by the method of least squares would be appropriate. Approximate 
variances and covariances of the estimates could then be obtained from the Cramdr—Rao 
Lower Bound, which Oliver (1966) found approximately attained in a similar small sample 
application. However, when repeated measurements are made on one organism, the residuals 
may be expected to be correlated, as in Vieira and Hoffman's data (1977) on Holstein cows. 
If no allowance were made for this correlation, the parameter estimates could be poor and 
would almost certainly have misleadingly small variances. This paper presents a method of 
analysis that assumes the residuals to be the realization of a first-order autoregressive process. 

2. METHOD OF FITTING THE MODEL 

We assume that the measurement of interest (or some specified transformation of it), 
, at time I, is the realization of a random variable 1's, where 

Y=j+e, t=1,...,n. 

The growth curve at time t has the value J, a function of the organism's growth parameters 

	

71 
T (For example, for the logistic curve, 71 T = ( 	r) and 

fj  = x/{l +exp(——yt)}). 

The term 81  is normally distributed, with 

E(e) = 0, E(_-, egg) 	p 1. 

(When the time between measurements is not constant, this model has to be generalized as 
outlined in Section 6.) 
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Let e1  be the realization of e, i.e. e = y —j, then 

2' = (n12) in (02)  +{(n— 1)/2} In (I - p2)+{A +(1 + p2)B-2pC}/{2o2(1 - p 2)}, 	(1) 

n-1
1_1 

 
A = e 2 +4, B = e, C=  e, e +1, 

t=2 

where 2' is the negative log likelihood, a function of (m + 2) parameters T = (71 T ,  a2 p). 
The value of 4 which minimises 2' is the maximum likelihood estimate of the parameters in 
the model. 

Ad hoc methods are used to obtain initial parameter estimates (see Section 3) and iterative 
methods then locate the minimizing . If F,0  is the current parameter estimate, then this is 
adjusted to where 

= - H()-1  . ( 2'1 I 
Here, H(E) is a positive definite symmetric matrix given in the Appendix together with 
(2'/ ag 140). Iteration stopped when 

max {I(a2'1aej0)I}< 10—s. 
1im+2 

The complicated procedure for choosing H was found necessary in order to locate the 
minimum of 2', which it did successfully from quite poor initial estimates. 

If the model is found to represent the data adequately, estimates of the variances and 
covariances of the parameter estimates are 

{cov ()} = {E( 2  _Vla4 ag I )}; 
these are obtained as elements of the inverse of the matrix H 2  in the Appendix, evaluated 
at t. 

3. APPLICATION TO ANIMAL BODY WEIGHTS 
The data (Broadbent, 1978) to be analysed are the weights of eight Ayrshire steer calves, 

which were recorded weekly from birth to slaughter at 880 lb (52-71 weeks later, when growth 
rate was starting to decline). The generalized logistic curve (Nelder, 1962) 

= x/{1 + 0exp(-9—yt)} 1'° 

was fitted separately for each animal. The data were also log-transformed to allow for 
increasing variance, and fitted by the log-transformed generalized logisticcurve. The residuals 
of the model are produced by: 

variations in gut fill between weighings; 
seasonal variations and changes in diet; 
illness; 
errors in the measuring procedure; 
choice of wrong parametric form of the curve. 

Of these, factors (b), (c) and (e) result in correlated residuals. The model assumes that the 
sum of all the factors can be adequately approximated by a first-order autoregressive process. 

If U is known, initial estimates of the parameters a, fi and y in the generalized logistic 
curve can be obtained by fitting the curve through the data points Yi' Y+ Y2r+i (where r is 
the integer part of(n— 1)12).  Since there is no easy extension of this method for estimating all 
the parameters from four points, U was fixed, the other parameters were estimated and 2' 
was evaluated. Different non-zero values of U were tried, and a minimum of 2'(0) was located 
within an interval of 001 in the value of 0. 02 and p were then estimated by 

= 	 e2 In Po = (1'e, e,+,) Iffn — 1)a}. 
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The few missing values in the data were replaced by their fitted values, by setting their 
residuals to zero at each iteration. The iterative method of the previous section was used to 
locate the maximum likelihood estimates of the parameters and their estimated variances and 
covariances. The vector of first derivatives off required in the iterative process (as shown in 
the Appendix) is easily evaluated. For example, with the untransformed curve: 

= oD'10, D = 1 +Oexp(—fl—yt), yT 	 0), 

f = f/& = D-110, f = tta,e = aexp(—fl—yt)D'"°, f = fJy = 29 

= afdaO =f[(ln D)/02  —{exp (-fi- yt)}/{0D}]. 

Age (weeks) 

FIG. 1. Animal 4 data together with the generalized logistic curve estimated after a log-transformation. 

TABLE 1 

Animal 4 log-transformed and fitted by the log-transformed 
generalized logistic curve 

& 9 f O 52 P 
2698 —114 0019 —0072 00018 0610 

Approximate variances and covariances of the parameter estimates with correlation coefficients 
bracketed below the diagonal 

5•3 x 10 9500 —385 —8570 0.0 00 
p (0950) 0187 —00071 —0164 00 00 

(-0.994) (-0978) 000028 00063 00 00 
(-0976) (-0995) (0994) 0144 00 00 

62  (00) (00) (00) (00) 24 x 10 37 x 10 
(00) (00) (00) (00) (0730) 00108 

Fig. 1 shows the data for animal 4, together with the curve fitted after the log-
transformation. Table 1 gives the corresponding parameter estimates and variances. For the 
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data being fitted, the generalized logistic curve is over-parameterized as shown by the high 
correlations and the large variances of the parameter estimates. It can also be seen that the 
correlation coefficient p is significantly positive. These conclusions are supported by the fits 
for all eight animals. 

In order to assess whether a log-transformation is necessary on the data, the value of 2, 
the negative log likelihood, can be used as a criterion. The lower the value of 2 the better 
the fit. If the data have been transformed by y1  = g(w) (where (we) is the untransformed data), 
then Box and Cox (1964) showed that 2 should be modified to 

In {I (øg/aw I w)}. 

That is, the logarithm of the Jacobian of the transformation evaluated at the data is 
subtracted. Therefore for a log-transformation y j  = in wg, 

2mod 

TABLE 2 

Negative log likelihood modified to allow for transformation 

Animal: 	1 	2 	3 	4 	5 	6 	7 	8 
n: 52 	54 	71 	58 	69 	60 	58 	58 

Untransformed 	12014 	14343 	19955 	17487 	18254 	15782 	16608 	17348 
Log-transformed 11446 	14622 	20695 	15282 	18470 	17071 	16471 	17317 

Table 2 gives the modified negative log likelihood for the untransformed and log-
transformed fits on all the animals. Comparisons between animals cannot be made because 
the numbers of observations per animal differ. The evidence for a log-transformation is 
inconclusive. 

4. EXAMINATION OF THE FIT OF THE MODEL 

The departures from the model are (vg), where 

Ill = e1 V(l—p2), 	v = Sj —pS j_1, t = 2, ...,n. 

These are independent and normally distributed, with zero mean and constant variance. 
Therefore in order to examine the data for lack of fit, the realization of (vi) can be estimated 
and a check made for approximate independence and constancy of variance. Let 

I 	A = e1 (1—p), 	v = e,—pe j_j, t = 2, ...,n. 

The estimated autocorrelation coefficient of lag j is R where 

= 

(n 	 ,2)(n)} 

Box and Pierce (1970) showed that the correlation of lag] for the estimated residual from 
a first-order autoregressive process has zero mean, and that approximately 

var (R5) = (1 - p22+ p2i)/n. 

Since () are the departures after both regression and removal of a first-order autoregressive 
process, this result is not directly applicable. However, for lack of anything better it has been 
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used as an indication of whether autocorrelations are significantly large. An integer] between 
1 and 4 in Table 3 indicates that 

I R,. I >2 J{(1 - p252 + 2i)/n} .  

In order to examine the constancy of variance a non-parametric method was used (Hajek, 
1969, pp.  93-94). Let ri  denote the rank of libi l in the series (I I) with 1 denoting the largest, 
etc., and define 

T = 

Then if () were independently identically distributed 

E(T) = n(n + 1)2/4 and var (fl = n 2  (n—i) (ii + 1)2/144. 

As was the case with the autocorrelations, this result is not directly applicable. However, 
it was used as an indication of monotonically increasing or decreasing variance. A letter D 
in Table 3 denotes that T exceeds E(T) by more than two standard deviations and indicates 
that the variance of the departures is decreasing. A letter U indicates an increasing variance. 

TABLE 3 

Indicators of lack offit of the model 

Animal: 1 

Untransformed U 	U 	4 	1 U 3 
Log-transformed 2D 2D D D D 2 	3D D 

Notes 
Integer j suggests a significantly large autocorrelation of lag J 

in the departures from the model. 
D suggests a significantly decreasing variance in the departures. 
U suggests a significantly increasing variance in the departures. 

The first-order autocorrelation in the model seems to account for most of the correlation 
in the residuals from the generalized logistic curve. There is some suggestion from the 
untransformed fit that the variance increases, but log-transforming appears to over correct 
for this. As an intermediate formulation, a square root transformation may be more 
appropriate. 

5. FURTHER ANALYSIS 
The square roots of the weights were fitted by square-root transformed, generalized 

logistic curves. Table 4 summarizes the results, where now 

1 
2mod £° — nln()+ 	In (w). 

The modified negative log-likelihoods are lower than those of Table 2 for all except animal 
4, which confirms that the square-root transformation is more appropriate than no trans-
formation or the log transformation. Of the 40 tests of fit, three are significant at 5 per cent, 
which is not significantly greater than the expected number of two. Table 4 also gives the 
estimates of parameter 0 and their standard errors. It can be seen that 0 = 05 lies within 
two standard errors of all the estimates, which suggests that fitting an untransformed logistic 
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TABLE 4 

The square-root transformed fit by the generalized logistic curve 

Animal: 	1 2 3 	- 	4 	5 6 7 8 
'moe: 	10888 13953 19494 	16104 	17752 15512 15972 16795 

Indicators: 4 3 D 

O 	069 060 131 	—010 	0i3 0•94 135 077 
s.e. 	020 033 066 	041 	031 032 073 039 

curve (ft  = o/(l +exp(—fl—yt)}) to the square roots of the animal weights would be a 
satisfactory way of reducing the number of parameters. 

Table 5 summarizes the results of this fit and also those obtained when autocorrelation is 
neglected. In an uncorrelated regression, var(R,) = 1/n approximately and an integer j 
indicates that I Rj > 214n. Table 6 gives the parameter estimates and variances for one animal. 

TABLE 5 

The square-root transformed fit by the logistic curve 

Animal: 1 	2 	3 	4 	5 	6 7 8 
2'mo 10939 	13961 	19655 	161-78 	17820 	15625 16106 16801 

Indicators: 4 3D D 
7(s.e.): 065 (010) 080 (008) 090 (005) 067 (010) 087 (006) 066 (010) 095 (003) 0-60 (0-10) 

The result of fitting with no correlation coefficient 

	

2'moa: 	12138 	16243 	24078 	17804 	22551 	16946 	19803 	17931 

	

Indicators: 	12 	123 	1234D 	12 	1234U 	1234D 	1234D 	12D 

TABLE 6 

Animal 4 square-root transformed and fitted by the logistic curve 

& 	P 	 62 

3858 	—1-18 	0042 	018 	0669 

Approximate variances and covariances of the parameter estimates with 
correlation coefficients below the diagonal 

6 302 —0074 —00038 00 00 
(-0.899) 00023 82x 10 00 00 
(-0957) (0.755) 52x10 00 00 

62  00) (00) (00) 00027 00039 
(00) (00) (00) (0.780) 00094 

The result of fitting with no correlation coefficient 

& 
400 —119 0040 017 

Approximate variances and covariances of the parameter estimates with 
correlation coefficients below the diagonal 

& 140 —0028 —00016 00 
(-0861) 000076 28x10 2  00 
(-0958) (0.692) 21 x 10 00 

62  00) (00) (00) 0.0010 
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Animal 4 was chosen, even though it was better fitted by the log transformation, because it 
had been plotted in Fig. 1. It can be seen that although the failure to allow for serial correlation 
in this application has little effect on the estimates, it results in variances which are too small 
because they assume that there is more information in the sample than there really is. 

In summary, this set of data requires a square-root transformation in order to stabilize 
the variance. Each animal is then adequately fitted by a logistic curve with a first-order auto-
regressive error model. 

6. GENERALIZATIONS OF THE MODEL 
So far we have only considered situations where the time between data points is constant. 

More generally, let t7  be the time of the ith data point and let x• = 4, 1  - be the time between 
the ith and (i+ l)st data points. Then 

n—i 
2'=ln (1_ pEx)+(nJ2)lno2 

i=1 

I 	 n—I 
+ I 	- pEXi) + e/(l - p2X_i) + : e(l - pIXi_ i pExl)/{( l - pEXi_) (1 - pIX)} 

L 	 i=2 

- 	2e e_1  joxl_uI(l - pIxf_ a)] /(2cr2). 

This model can be fitted and tested using methods analogous to (but more complicated than) 
those of Sections 2 and 4. 

Another refinement to the model is 

E(e1  e) =ff _2 p'" 

which is introduced to cope with inhomogeneous variances. For small variances this approach 
can be shown to be almost identical to using the following transformations: 

when 	y=w 	and E(e1  Et) =(l_çt)2 a2 pt'"I, 

when 	= 1, y = in w and E(sj  e) = a2  p1 . 

If ç is fixed, this second approach of transforming data is simpler because of the functional 
form of the generalized logistic curve. If the first approach is used, equation (I) and its 
derivatives are made more complicated. However, if ç is taken to be another parameter, over 
which we wish to minimize Sf, the form of 2' in the first approach is simpler than in the 
second. (In the second approach the Box and Cox constant (see Section 3) has to be added to 
2'.) Neither approach is particularly easy. To locate the minimun of S1, and so to obtain a 
good estimate of 0 from data, will be difficult unless there is a well-defined trend in the 
magnitude of the departures from a smooth curve. 
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APPENDIX 

H is defined to be H 1  if this matrix is positive definite and (a + &,2)  >0 and J Po + °j < 1. 
Otherwise, H is defined to be Ht2  if this matrix is positive definite and (a + & 2)>0 and 
I Po + 3p I <1. If neither matrix meets these requirements H is set to c0  I for some small positive 
value of c0  chosen by trial and error. 

In this definition, HM is the symmetric matrix whose elements are: 

= flfki+Jnfkfl+(l +p2) f:f, - p (Jf1+J ~1 f)}  /{a2(1 p2)}, HJk 1  ( 
	

' 

1=1 

for j,k = 1, ...,m, where fjj = 

Ht1  = - (ô2/& q5)/cr2, 

Ht11 - 5,m+2 - - 2p(e1f51  + ef) + 4p ef - (1+ p2) (eJj +1  + ei+1Jt)}  /{,2(l 
 - 

( 

	 n-i 	 n-i 

t=2 

Ht1
m+1

1
,m+1 = -nf(2o4)+{A+(l +p2)B-2pC}/{cr°(l -p 2)}, 

Hii,m+2 = { - pA - 2pB + (1+ p2) C}/{a4(1 
- 

H,2 m±2 = 
{ - (n —  1)02(1 _ p2) (1 + p2)  + (A + 2B) (1 + 3p2) - 2Cp(3 + p2)}/{a2(l 

- 

Ht11 is approximately the matrix of second derivatives of 2' and so is approximately the 
Newton-Raphson method. 

The elements of the symmetric matrix Ht21  are 

H( 	 n+i 2)=Hw' Htj,2 =HJ,2) rn+2 =0.  for j, k = 1, ..., m, 5k 	5k  

17(2) 	=n/(2a') Ht21 	-- 
"m+l,m+i 	 ' 	 m+1,m+2 - p(n - 1)/ta2( 1  - 

H 2  m+2,m+2 = (n-1)(1+p2)/(1-p2)2. 

Ht2 1 is the matrix of expected second derivatives of 2' and so is a generalization of Gauss's 
method. Ht21  was chosen for the following reasons: 

it was easily evaluated from HM; 

it is also needed, at g , to give the variances of the parameter estimates; 

it happened to be positive definite for a wider range of values of g near g than H'1 , and 
so initial estimates could be cruder. 

However, Ht2  produced slower convergence than HM and so was used only when HM did 
not meet the above requirements; similarly c0  I (the method of steepest descent) was used 
only when H 2> did not meet those same requirements. Since H is always positive definite 
84 will always be in a direction of decreasing Y. 
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The first derivatives of 2' are 

(a2'/ 	- 	 +eJ+(1 +p2) ef51 —p (eJ+i+ei+ifit){a2(1 —p2)}, 91) 	(elfjl 
 

t=1 

for j = 1, ..., m, 

(ace'/aa2) = n/(2a2) - {A + (1 + p2) B— 2pC}/{2ø(1 - p2)}, 

= {—(n— 1) pc72(l - p 2)+ pA + 2pB—(l + p2) C}/{cr2(l - p2)2}. 

These equations have been put into a. computer program which calls two subroutines; 
one to supply initial parameter estimates, and the other to supplyj and (J, ,f,,,) for each t. 
In order to fit different growth curves, only these subroutines needed to be replaced. 
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SUMMARY 

Asymptotically efficient estimators are derived for nonlinear regression parameters when the errors 
have arisen from an autoregressive series with unknown parameters. An example is given for which 
this model is applicable, and parameters are estimated. 

Introduction 

In the statistical analysis of data, when regressing one variable on others, it is usually 
assumed that the error component in each observation is independent of the errors in the 
other observations. If, therefore, on fitting a particular function the residuals are markedly 
correlated it is concluded that the function is inappropriate. However, in some situations 
the errors may reasonably be expected to be correlated. For example, if a calf is weighed 
weekly the measurements may be positively correlated about any smooth fitted function 
(Glasbey, 1979). More generally, when recordings are taken from a continuous process, 
correlation is almost inevitable. In these situations, correlation between the residuals need 
not imply lack of fit of the regression function. When errors are correlated, estimation of 
the regression parameters by minimizing the sum of squares of the residuals is inefficient, 
and if the correlation is positive the estimates of their variances based on the assumed 
independence will be too small. It is therefore desirable to take account of the correlation 
in the estimation procedure. 

If n observations are correlated, generally there are n(n - 1) correlation parameters. 
This is far too large a number to estimate from a single series of observations. Even with 
replicated series either n would need to be small or there would have to be extensive data. 
Provided that the data have been collected at regular fixed intervals of time, a reduction in 
parameters is achieved by assuming that the correlation between errors depends only on 
the time separation between them. Representation of the errors by an autoregressive 
series provides a means of reducing the number of parameters still further while 
remaining sufficiently flexible to model many series. Durbin (1960) proposed a two-step, 
asymptotically efficient method of estimation for the situation when the regression 
function is linear in its parameters and the error series arise from an autoregressive 
series. Many regression functions arising in science are nonlinear in their parameters, and 
this paper presents an iterative, asymptotically efficient method of estimation for such 
functions. 

Estimation 

The observations Yi, Yz,• . ., y,, on the dependent variate are assumed to have arisen 
from the model 

y=f1 +e, 	i=l,2,...,n, 

Key words: Partial autocorrelations. 
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where fj  is the expected value of the regression equation at the ith value of the dependent 
variate, a function of the regression parameters a 1 , a2,. . . , am . The error terms e, are 
generated by a pth order stationary autoregressive series: 

ei = 4 1 e_ 1  +4,2e_ 2 + . + 4,e1 -,+a,, 	i =. . . -1,0,1,..., n, 

where the terms aj  are independent normal deviates with zero mean and constant 
variance 0r2  

The log likelihood of y is derived in Box and Jenkins (1976, pp.  274-276) as 

Y = -in a2+lnIMI—S/o-2. 

The term IMI is a function of 4) alone, which arises because of end effects in the error 
series; and 

S =  D11 -24,Td+4)TC4), 

where d is a p-dimensional vector with d1  = 	C is a p x .p matrix with C0  = D. 1 ,1±1  
and 

D 1  = e1 e, + e 1 e, 1  + 	+ e,,_1 _1e,, 1 _ 1 , 	i, j = 1, 2,. . . , p + 1. 

The values of a, 0.2  and 4,  which maximize are the maximum likelihood estimates 
which are known to be asymptotically efficient. Unfortunately .E becomes progressively 
more complicated as p increases and it is desirable to simplify the method of estimation. 
One approach is to drop the term in IMI from Y (Box and Jenkins, 1976, p.  277) but I 
found that this sometimes resulted in nonstationary autoregressive estimators. Box and 
Jenkins suggest a method (p.  278) which gives approximate maximum likelihood es-
timators. is approximately maximized with respect to 0,2  and 4, for fixed a by a.2  and 
4), with &2=  S(&/n, 4) = (C*)_ld*, where C, = nC 1/(n - i — j) and d = nd1/(n - i), i, I = 1, 

Therefore f can be approximately maximized iteratively with respect to a by updating 
&2 and 4) after each step. From a current estimate a 0 , a.2  and 4) can be estimated as above, 
and a0  replaced by a0 +a, where &a= -W 1g. The term g is an rn-dimensional vector 
with gk = aS/aak . The term H is an m X m matrix with 

Hkl = a2S/aak 3al  - (terms involving 82f1/3akaal;  i = 1, 2,. .., n). 

If H is non-positive definite the diagonal coefficients are replaced by Hkk + A JHkk I for 
some positive value of A large enough to make the matrix positive definite. This is 
Marquardt's modification of the Newton-Raphson method (Bard, 1974, pp. 94-96). 
Iteration continues until kak I <iO for all k = 1, 2,..., m. 

These estimators approximate maximum likelihood estimators to order n and are 
therefore asymptotically efficient. Therefore 

var (&) - 2&2H 	and 	var (&2) _ 2&4  /n. 

The approximate variance of 4) is given in the Appendix. 
The departures a of the data from the fitted model can be evaluated (see Appendix). 

The model assumes the ar 's are independent, and this assumption can be checked by 
calculating the partial autocorrelations of the departures using the formulae in Box and 
Jenkins (p.  497). Partial autocorrelations exceeding 2RJn in magnitude (approximately 
two standard errors) indicate that a higher order autoregressive series should be fitted. 
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Table 1 
Least squares parameter estimates and standard errors 

a 1  (nA) 	e12 (ms) 	63 (nA) 	6 4  (nA/ms) 	62 

72.2± 0.4 6.15 ± 0.09 	—81.3:t: 0.6 	—0.25 ± 0.02 	0. 161 ± 0.020 

—20 

—90 

I 	 I 	 I 	 I 

0 	 5 	10 	15 	20 	25 	30 

Figure 1. Data and least squares estimated exponential curve plus a straight line. Vertical axis: current 
(nA). Horizontal axis: time (ms). 



138 	 Biometrics, March 1980 

3. Example 

The data to be analysed are the relaxation (following a voltage jump) of the current 
flowing through the end plate membrane of a muscle fibre under the influence of a drug 
which opens ion-permeable channels in the membrane (Colquhoun, 1978). A recording 
was made every 0.25 milliseconds but the first millisecond was omitted from the analysis 
because of electrical transients. The regression equation to be fitted is an exponential 
curve plus a straight line: 

f, = a 1  exp (-t/a2)+a3 +a4 t. 

Estimation by the method of least squares (or equivalently the method in §2 with p = 0 
and e, = a) gave the estimates and standard errors in Table 1. 

Figure 1 shows the data together with the fitted curve. The estimated partial autocorre-
lations of the departures are given in Table 2. Partial autocorrelations of lags 1 and 2 
exceed 0.180 (two standard errors) which suggests fitting a model with p = 2. However, the 
third partial autocorrelation is quite large as well. So, because they are only giving an 
approximate indication, it is better to take p = 3 initially. 

Table 2 
Partial autocorrelations of the departures a for least squares 

lag 	1 	2 	3 	4 	5 

0.417 	0.262 	0.155 	0.085 	0.011 

Starting from the least squares estimates gave iteration steps shown in Table 3 for p = 3. 
The final estimates and standard errors are given in Table 4. There has been a significant 
increase in the log likelihood, from 51.252 to 70.539, which confirms the necessity of 
fitting a model with p>0. Also fr3 is significantly nonzero, which shows that it was 
necessary to take p = 3. The estimated partial autocorrelations of the departures are given 
in Table 5. These are all small, so we have satisfactorily accounted for the correlation 
between the errors in our model. 

Table 3 
Iterative parameter estimation for p = 3 

step a 3  a4  4) 3  

1 72.4791 6.1161 -81.2527 -0.2497 0.1183 0.2719 0.2264 0.1702 
2 72.6032 6.0952 -81.2329 -0.2493 0.1176 0.2686 0.2290 0.1755 
3 72.5902 6.0868 -81.1895 -0.2506 0.1175 0.2690 0.2318 0.1792 
4 72.5821 6.0846 -81.1753 -0.2511 0.1174 0.2691 0.2323 0.1798 
5 72.5817 6.0844 -81.1742 -0.2511 0.1174 0.2691 0.2324 0.1799 
6 72.5817 6.0844 -81.1741 -0.2511 0.1174 0.2691 0.2324 0.1799 

Table 4 
Parameter estimates and standard errors for p = 3 

(nA) e 2 (ms) 6 3  (nA) â, (nA/ms) 6.2  4) 

72.6±1.0 6.08±0.18 -81.2±1.2 -0.25±0.04 0.117±0.015 0.27±0.09 0.23±0.09 0.18±0.09 
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Table 5 
Partial autocorrelations of the departures a when p = 3 

lag 	1 	2 	3 	4 	5 

—0.015 	—0.029 	0.024 0.066 0.008 

By comparing Tables 1 and 4 it can be seen that the parameter estimates are very close, 
but the assumption of independence gave standard errors less than half what they should 
have been. 
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RÉSUMÉ 

On trouve des esimateurs asymptotiquement efficaces pour les paramètres de regression non 
linéaire, lorque les erreurs émanent d'un processus autorégressif de paramètres inconnus. On doniiè 
un exemple pour lequel ce modèle est applicable, et on estime les paramètres. 
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APPENDIX 

The variance—covariance matrix of the error series is Z, where eTZ_le = So'. Each term aj  depends 
only on e1 , e1 _ 1 ..... therefore a = Le, where L is an n X n lower triangular matrix. 

We have var (a) = u 21. Therefore LTL = a21-1 This is the Cholesky triangular decomposition of 
V which uniquely defines L. 

Define 4 = — 1 and 4, =0 for all i > p. For i = n down to p +1, and for I = i down to 1, 
L=-4. For i = p down to 1, and for j = i — 1 down to 1, 

i-I 	p+i 	1/2 

f-I 	 p+i 

L11  = L( 	ki-j+k - 	LULII). 

Therefore a can be evaluated from the residuals ê by replacing 4 by  4 in L. 



Appendix 

The variance covariance matrix of the error series is E , where 

T-1 = 

Each term a 1  depends only on e 1 ,e 	.. , therefore 

a = Le 

where L is an nxn lower triangular matrix. 

We have 

var(a) = 

Therefore 

T 	21 
LL=U 

This Is the Cholesky triangular decomposition of E 	which uniquely defines 

Define 	00  = -i 

and 	 = 0 for all 1> p 

For 	t = n down to (p+ 1) 

For 	j = i down to 	1 

L.. = 

For i = p down to 	1 

For j = 1-1 down to 	1 

2 	u 	L2  -. 	= 	 . 

ii 
 Ji_l 	

p+i 

k=O k 
	f=i+1 

1 	
j-1 	 p.4- i 

ii 	4'k i-j+k - 
	

ELf1 t'tj 

Therefore a can be evaluated from the residuals e by replacing 0 by 

In L. 

Because the estimates are asymptotically efficient 

var() = (o 2 /n) E 1 , 
- 	 -p 

where E 	is a px  p  matrix of the first p rows and columns of E 



Therefore 

2 var( 1 ) 	(1/n) E 	L. 	for I = 1,2,..., p 

Also 

2n 	l 	2n 	-1 	T 	 2 
Ml 	= 	ll - 	IE 	I = 	ILLI 	ILl 

n 	 p 
IIl 	Ii 	L 	= 	II 

i=1 	1=1 

Therefore 
p 

tnlMI= 	E 	n L11  
i=1 

Therefore we can evaluate the exact value of £ for the value of the 

final estimates and use this in likelihood ratio tests between modole. 
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Examples of regression with serially correlated errors 

C. A. GLASBEY 

Scottish Agricultural Statistics Service, University of Edinburgh, King's Buildings, 
Edinburgh EH9 3JZ, U.K 

Abstract. Three data sets are analysed to illustrate methods of modelling regression errors which are 
serially correlated. An autoregressive-moving average error process is used in fitting a regression 
equation to the energy demands of a mechanical model of a suckler cow. Drug-induced currents in ion-
channels are represented by a realisation of a stochastic compartment system. First-order linear 
stochastic difference equations are used to model milk yield of cows. It is concluded that error models 
should be used with caution. 

1 Introduction 

When data exhibit systematic departures from a fitted regression line, either the 
regression function is inappropriate, or the errors are correlated, or both. In most 
situations it is assumed that the function is deficient, and it is changed. But there are 
cases where the assumption of independent errors is not wholly plausible. For 
example, some sources of error will persist over several observations when repeated 
measurements are made on a single experimental unit. Systematic departures may 
then be modelled either by another regression function, or by correlated errors. The 
modelling objective determines the choice: for a simple summary it may be preferable 
for the regression function to explain all systematic variabifity, whereas a correlated 
stochastic component may be of more assistance in understanding the data generating 
mechanism. A succinct summary of data is often achieved by using the regression 
function to describe the long-term trends and the correlations the short-term fluctua-
tions. 

In the presence of correlated errors, ordinary least squares regression parameter 
estimators may be inefficient and the conventional estimators of the variances of these 
estimators are usually biased. The simplest way round these problems is to discard the 
biased standard errors; the argument being that least-squares estimation is often not 
very inefficient, and is intuitively appealing because of its simplicity. This approach is 
most useful when no estimate of precision is required, for example when data are 
available from independent units and within-unit variability is of little importance. 
(See, for example, Rowell & Walters, 1976.) Alternatively, if it can be assumed that 
the errors arose from a particular stochastic model, any parameters can be estimated 
jointly with the regression ones by maximising the likelihood. 

Empirical and mechanistic approaches to modelling errors will be considered in the 
following two sections. In essence, the mechanistic approach requires knowledge of the 
processes by which the data were generated, whereas the empirical method is purely 
data-based (Thornley, 1976, pp.  4-6). 

2 Empirical error models 

There are too many forms of correlation for one to be identified by a single set of 
observations if no other information is available. Therefore gross assumptions have to 
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be made to restrict the choice. For serially-structured data it may be reasonable to 
make the assumption that the error process is stationary, in which case the correla-
tions between errors depend solely on the time separation between them. Further, for 
suitable small values of p and q it may be possible to assume that the errors (e) are a 
sample record from an autoregressive-moving average (ARMA) process of order (p, q), 

. .. — Oj.ii_ for i=l,..., n 

(Box & Jenkins, 1976). Here 0 and 0 are vectors of parameters and a is a white noise 
process. This family of models has proved to be very flexible in modelling time series 
data. The autocorrelations of the least squares residuals (e), of which the coefficient at 
lag / is 

Oj )for 1= 1, 2,..., 

can be used to identify appropriate values for p and q. See for example, Gooijer et al. 
(1985) for a review of methods. 

Various simple procedures have been suggested for the estimation of regression 
parameters with time series error models, but Spitzer (1979), among others, has 
preferred maximum likelihood estimation in spite of its greater computational burden. 
Developments in computers have removed the need for approximations to maximum 
likelihood estimation and restrictions to linear regression with autoregressive error 
models: Pierce (1971) and Harvey & Phillips (1979) used autoregressive-moving 
average error models; Gallant & Goebel (1976) and Glasbey (1980) handled non-linear 
regression functions. Tsay (1984) identified and fitted nonstationary ARMA error 
models. 

If the wrong form of error model is assumed then estimators may not be an 
improvement on least squares methods. For example, Engle (1974) showed that if 
errors arise from an AR(2) process but are assumed to be from an AR(1) process, then 
ordinary least squares regression parameter estimators can be more efficient than the 
supposed maximum likelihood estimators. However, provided that a reasonable 
approximation to the true error process is used, maximum likelihood estimators of 
regression parameters will be nearly efficient. Resilient estimates of standard errors 
may then be obtained, as illustrated in the following example. 

2.1 Example of energy demands of a mechanical model of a suck/er cow 

In order to measure the integrated energy demand of a suckler cow in exposed 
environments, a mechanical model was built (Burnett & Bruce, 1978). Whilst the 
model was standing outside, the energy required to maintain it at 39°C was recorded 
daily, together with four climatic variables: air temperature (W 1  °C), net radiation (W2  
Watts rn -2), wind speed (W3  rn s'), and precipitation (W4  mm hour- '). By relating 
energy demand to climatic variables it was hoped that the energy demand of a suckler 
cow could be predicted in similar, observed climatic environments. 

The rates of energy demand were log-transformed to standardise the variances 
because there was a greater scatter to the data at the higher energy levels. The physics 
of energy balance and fluid flow supported a function 

39—W,—/J, W 2/(5.3+7 W 6) 

f=ln 	 (1) 
0203+92f 1 —min(#3  W4  /34)}+ 11(5.3 + 7 W 6) 

(Bruce, 1980) with four unknown parameters (/1). The equation was fitted to 200 days 
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of data (y1,..., Y200)  by least squares using a numerical optimisation routine. The 
residuals, plotted in Fig. 1, exhibit serial correlation. The Durbin-Watson (1950) test 
statistic took the value 1.3, which is sufficiently small to confirm that the errors are 
either correlated or do not have zero expectations. 

V 
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E 
5) 
V 
> 
0, 

a 
C 
w 
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Time (days) 

Fig. 1. Log-transformed rates of energy demand for the mechanical cow, with the least squares 
regression fit subtracted, plotted against time. Data (x), fitted regression when the errors are assumed 
to be an ARMA(l,l) process (. . . .), and predicted fit when earlier observations are taken into account 

ordinate: In-energy demand (W/m 2) 
abscissa: time (days) 

There are many reasons why the rate of energy demand of the mechanical cow 
departs from (1); contributing factors include unrecorded weather variables such as 
wind direction and humidity, and mathematical approximations used in deriving the 
equation. Alternative regression equations could be sought, but we will concentrate on 
the error correlations. The situation is too complex for prior information on the error 
model to be usable, so an empirical approach must be used. 

The sample autocorrelation coefficients of the least squares residuals at lags 1 to 10 
are 35, 25, 28, 32, 31, 20, 10, 12, 3 and 6%. They are typical of the sample values 
obtained from an ARMA( 1,1) process, in which the theoretical autocorrelations 
decline exponentially after an initial step change between lags zero and one. If the 
errors are assumed to be a sample record from a stationary Gaussian process then an 
ARMA(l,l) process appears to be a reasonable choice. The variance matrix has 
diagonal elements a 2  and off-diagonal elements 

Vij  a 2(1 

(1+02 _200) 

where 0, 0 and a 2  are parameters to be estimated (Box & Jenkins, 1976, pp.  76-77). 



280 	C. A. Glasbey 

The regression equation (1) and the error model were fitted to the data by 
maximising the likelihood 

_1nhJ1_(y_J)T V'(y—f) 

using a numerical optimisation routine. The computations can be simplified by using 
various algorithms, one of which is given in the Appendix. 

The increase in the value of the log-likelihood, from 642 for independent errors to 
898 for ARMA(l,l) errors, is substantial. The regression parameter estimates are 
given in row 5 of Table 1. An approximation to the variance matrix of the estimators, 
if asymptotic results are applicable, can be obtained by inverting the observed 
information matrix, that is the matrix of second derivatives of the negative log-
likelihood with respect to the parameters. Standard errors derived in this way are 
given in row 6 of the table. The corresponding least squares estimated parameters and 
standard errors are given in the first two rows. The estimates of 0 and 0 are 091 and 
065, with standard errors of 005 and 008 respectively. 

Table 1. Parameter estimates (and standard errors) for regression equation fitted to 
data from mechanical cow 

Row 	 p2 	p3 	p4 

1 Least squares estimates 075 0.068 16 057 
with associated standard errors 

2 from information matrix 
on the assumption of 
independent errors (0.05) (0-001) (0.2) (005) 

3 based on 100 simulations 
using an ARMA(1,1) error 
model (0.13) (0003) (0.3) (008) 

4 resilient estimates (0.19) (0.005)  (0.09) 

5 Maximum likelihood estimates 
using an ARMA (1,1) error model 0•61 0067 13 048 
with associated standard errors 

6 (1) 	from information matrix (0.08) (0003) (0.1) (0.04) 
7 (2) 	based on 100 simulations (008) (0.003) (0.2) (0.05) 
8 (3) 	resilient estimates (0.09) (0.006) (0.2) (0.05) 

Fig. 1 shows a plot, after the least squares fit has been subtracted, of the data (x), 
the fitted regression when the errors are assumed to be an ARMA( 1,1) process (... 
and predicted values given earlier observations (—). The ith predicted value is the 
expected value of y, conditional upon both (y r ,..., y,_) and the model parameters 
estimated from the full data set. It can be calculated quite simply using the generalised 
ARMA property in the Appendix. The predicted values provide a better indicator of 
goodness-of-fit than does the fitted regression because they take account of the error 
correlations in the model. The figure shows the difference between the regressions 
obtained using least squares and maximum likelihood estimation, and the improve-
ment in fit, shown by the predicted values, when correlation is taken into account. 

For each of $, 103 and P4  the differences between the two estimates is about two 
standard errors. To check whether these differences are consistent with sampling 
variability, 100 data sets were simulated from the regression model with an 
ARMA(l,l) error process, using as parameter values those estimated from the data. 
The regression equation was then fitted to each simulated data set by least squares, 
and by maximum likelihood with an ARMA( 1,1) error process whose parameters were 
also estimated. The distribution of estimated values showed no bias in the regression 
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parameter estimators. However the standard deviations among the 100 independent 
maximum likelihood estimators were slightly larger than the estimated standard 
errors. Thus it appears that asymptotic properties, upon which the standard errors 
were based, are not quite appropriate, possibly because of the form of nonlinearity in 
the regression equation. The standard deviations provide simulation-based standard 
errors, and these are given in rows 3 and 7 of Table 1. The least squares standard 
errors based on the false assumption of independence of errors are shown to have 
substantial downward bias. The greater efficiency of maximum likelihood estimators 
over least squares estimators is reflected in their having smaller simulation-based 
standard errors. The difference in value between the two sets of regression parameter 
estimates is consistent with sampling variability: the Mahalanobis D 2  between them is 
5•0, which is well within the sampling range of a X 41 random variable. 

The simulations revealed downward bias in the maximum likelihood estimators of 0 
and 0. The mean values of the estimates were 0.87 and 060 and standard deviations 
were 0•09 and 0• 11 respectively. As a consequence the simulation-based standard 
errors of the regression parameter estimates will tend to be too small because the 
simulations were based on estimated values of 0 and 8 which were also downward 
biased. Experience in other situations suggests that the use of an alternative estimation 
procedure, maximising the residual log-likelihood 

— 11n(IVI IXTV'XI lX TXI)__D T  V' (y- 
2 	 2 

(Cooper & Thompson, 1977), largely overcomes the downward bias inherent in 
maximum likelihood estimation. Here, X is a 200 by 4 matrix with X=c9f1ô9. Using 
this procedure the parameters in V are estimated only in the subspace of the data 
orthogonal to the regression model. Unfortunately, the computations are greatly 
increased in this application. 

To test the assumption of stationarity, the off-diagonal elements in the error 
variance matrix were modified so that 

V=9 2(,c+2i1n)Ø'i 	for i>j. 

This form of non-stationarity was chosen because it is both a generalised ARMA( 1,1) 
process (see the Appendix) and a simple extension of the ARMA( 1,1) process already 
considered. The maximum likelihood estimate of A was —043 with a standard error 
of 0 17 obtained from the information matrix as before. As it is unwise to assume that 
asymptotic results apply in this non-stationary situation, the sampling variability was 
assessed by fitting the model to the 100 simulated data sets. The distribution of A 
appeared normal, with zero mean and a standard deviation of 026. The estimated 
value from. the data is in the extreme 10% of the distribution of values from a 
stationary process, and thus provides some evidence for non-stationarity. 

Weather variables not in the regression model will not exhibit stationary behaviour 
for as long as 200 days in Scotland! Therefore, perhaps it is not surprising that the 
error process is non-stationary. The parametric modelling approach thus grinds to a 
halt because there is no possibility that the data can be of use in identifying an error 
process which is non-stationary in an unknown way. However, the ARMA( 1,1) model 
is probably a reasonable approximation to the true error process in spite of non-
stationarity. Therefore, the maximum likelihood estimator of /I will be nearly efficient, 
but the standard errors obtained assuming an ARMA( 1,1) error model, either from the 
information matrix or by simulation, will be biased to some extent. 

A method for obtaining resilient standard errors is given by Glasbey (1988). In this 
application, with errors serially correlated, V1 , can be estimated by 
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with subscripts out of bounds set to their respective limit values of 1 and n. For 
maximum likelihood, standard errors obtained for each of the four regression para-
meter estimates are given in the final row of Table 1. Sampling variability is reduced 
by averaging over 11 terms, with the result that the four standard errors are all 
approximately x 2  distributed with 9 degrees of freedom. The procedure was also 
applied to the least squares estimates, and standard errors are given in row 4 of Table 

In conclusion, for the mechanical cow data it appears best to estimate the regression 
parameters by maximum likelihood, using an ARMA(l,l) error model. The method of 
resilient estimates can then be used to provide valid standard errors. 

3 Mechanistic error models 

The mechanisms by which errors are correlated are sometimes known precisely; for 
instance, when data are obtained by applying algebraic operations such as summing, 
averaging or differencing to independent observations. On other occasions the covari-
ances are known except for a few parameters. 

Matis & Wehrly (1979) considered forms of stochasticity which can arise with 
compartment models. Deterministic compartment models have been in use for a long 
time; stochastic versions are a more recent development reviewed by Purdue (1979). A 
simple form of stochasticity, when 'particles' switch between compartments in a 
random manner, gives rise to Markov processes on discrete state-spaces in continuous 
time. Matis & Wehrly (1979) termed these models P1 and fitted by generalised least-
squares, the full likelihood expressions being too complicated. 

Many growth curves are derived as, and sometimes justified by being, the solutions 
of deterministic difference or differential equations. However, Sandland & McGil-
christ (1979) commented that: "deterministic differential equations do not seem fully 
appropriate here. Growth is embedded in a stochastically fluctuating environment and 
it would be attractive to attempt to incorporate this environmental randomness into 
the class of growth models, rather than, as an afterthought, tacking a residual onto the 
expected value". They proceeded to use stochastic differential equations to model 
growth data. 

Dhanoa & Le Du (1982) proposed a lactation model in which milk yield of a cow is 
assumed to be a realisation of a first-order linear stochastic difference equation. In 
effect, estimated yield is adjusted to take account of past yield. Garcia (1983) fitted a 
stochastic version of the differential equation underlying Richards model to data on 
heights of forest stands. 

The above examples can be set in a common framework. Many non-linear regres-
sion equations have some, at least heuristic, justification in terms of underlying 
deterministic models. By making the models stochastic, regression functions and error 
processes can be generated with shared parameters. If a stochastic model is appropri-
ate then, in fitting it to data, the most efficient parameter estimators are obtained, 
because the regression curve is fitted efficiently, and also because extra information on 
the parameter values is recovered from the error covariances. 
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3.1 Example of ion-channel currents 

In studying the mechanisms of drug action, the relaxations of drug-induced currents in 
end-plate membranes of muscle fibres after voltage jumps are recorded (see for 
example Coiquhoun & Hawkes, 1977). The data to be analysed consist of 124 
measurements of current made at intervals of 025 ms, commencing 1.25 ms after a 
voltage jump (Colquhoun, 1978). In Fig. 2, the residuals plotted against time, after a 
single exponential regression (given by equation (2) yet to be presented) has been fitted 
by least squares; show strong evidence for correlation. 
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Fig. 2. Ion-channel currents, with the least squares regression fit subtracted, plotted against time. Data 
(x), expected values from compartment model (----) and the predicted fit given by the compartment 
model when earlier observations are taken into account (—). 
ordinate: current (nAmps) 
abscissa: time (ms) 

A mechanistic model can be built for this case. The current in the membrane is the 
sum of the currents through many ion-channels, and at any instant each channel 
occupies one of several molecular states, which have different conductances. The 
situation may be represented as a stochastic compartment system because transitions 
of ion-channels between molecular states are known, from chemical physics, to be well 
approximated by a Markov process. 

In the simplest model there is only one conducting state, with conductance 12 

expected to lie between 00032 and 00064 nAmps, and most channels are in a single 
non-conducting state. A channel which is open at time t is closed at time t+Ot (Ot>O) 
with probability a Ot+o((5t) independent of earlier times and other channels, where 
o((5t) denotes terms of order less than 01. The number of ion-channels opening in a 
time interval otis Poisson distributed with expectation fl 01. The number of channels 
in a conducting state at time zero is assumed to be Poisson distributed with expecta- 
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tion y. (This ensures that the number of channels in a conducting state is Poisson 
distributed for all later times.) The recorded current is subject to electrical noise from 
the monitoring equipment, a further source of variability which is here assumed to be 
white noise with variance i 2 . 

Standard methods exist for deriving properties of the above model, see for example 
Chiang (1980, pp.  479-485). The vector of observed currents at times I has expecta-
tion f and variance matrix V, where 

f — i 2 [ft/a+(y —fl/a)e"i] for i= 1, . . ., 

	 (2) 

and 

Vii = — t 2 e ('iY ) +a2  ô, for i~!j. 

The negative sign in the expression for fi  arises because the current was measured in 
the direction opposite to the flow. By the definition in the Appendix, we have a 
generalised ARMA( 1,1) process. 

The parameters were estimated from the data by maximising the Gaussian likeli-
hood (Whittle, 1961). This is a natural extension, when variance parameters are also 
to be estimated, of the generalized least squares procedure used by Matis & Wehrly 
(1979). Chiang (1956) showed that regression parameter estimators approach asymp-
totic efficiency as the number of particles increases. Therefore, standard errors can be 
obtained using the Gaussian information matrix, provided that y and 8/a are large. 
For variance parameter estimators they are only approximations because their vari-
ances include fourth-derivative terms. 

The estimated values of the parameters (and standard errors) are: /3=3100(1100) 
ms', 5'=2100(800), 6=0.147(0.003) ms" f 2 =0.0042(0.0015) nAmps and 
62 =0.08(0.01) nAmps 2, of which 6% is a result of rounding error in the data. The 
estimators of 8, y and r2  are highly correlated, and as a result the standard errors are 
large. More stable parameter combinations are /3 r2 , the conductance of the average 
number of channels opening in one ms, estimated as 13.0(0.3) nAmps ms', and y r 2 , 
the negative of the current at time zero, which is estimated to be 9.0(0.6) nAmps. 

Fig. 2 is a plot, after the least squares fit of (2) has been subtracted, of the data (x), 
the expected values from the compartment model (- - - -) and predicted values given 
earlier observations (-). The predicted values are much closer than the expected 
values to the data, so most of the residual variability has been accounted for by 
covariances in the model. However, the least squares fitted values are in closer 
agreement with the data than are the expected values from the compartment model. 

An important assumption in the model is that the same parameter a appears in both 
f and V and therefore describes both the rate at which the expectation function 
approaches its asymptote and the rate of decay of the covariances. The assumption 
can be tested by introducing a separate parameter, a*,  into the variance matrix. 
Therefore 

V 1 = — t 2 f e (410+6 2  ö, for i~:j 	 (3) 

The parameters were again estimated by maximising the Gaussian log-likelihood, 
which increased from 650 to 653. On the basis of the asymptotic properties of the 
likelihood ratio test for the addition of one extra parameter, the increase is not large 
enough to reject the hypothesis that a*  is equal to a. The parameter estimates are 
6=0-150 (0.005) ms' and â*=0.058  (0.109) ms'. The large standard error for & 
shows that hardly any information on a common parameter a is obtained from the 
covariance structure, but otherwise makes little sense as a*  cannot take negative 
values and is significantly different from zero. 

Although the single-compartment model fits the data closely, systematic departures 
from the predicted values are evident in Fig. 2. These may be a result of electrical 
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noise, about which no information is available. Alternatively, a model with more 
compartments provides a significantly better fit, but problems are encountered because 
of the large number of parameters to be estimated. 

If an empirical approach had been adopted then the single-compartment results 
would have been almost the same. The sample autocorrelation coefficients of the least 
squares residuals are 070, 064, 060, 053, and 0.47 respectively at lags 1 to 5. On the 
assumption that the error process is stationary and Gaussian, an ARMA( 1,1) process 
appears to be an appropriate model. The error variance matrix may be parameterised 
almost identically with (3) as 

V=t 2  e_u*(ui_Y)+a2 cä for i~:j 

and parameters estimates are little changed. However, in the empirical approach there 
is no explanation for the correlations in the errors being so persistent, with & 
estimated as 0.097. Therefore, it would probably be concluded that the regression 
function was inadequate. 

The fitting of a stochastic compartment model is valuable because it synthesises the 
two conventional approaches (Colquhoun & Hawkes, 1977) to analysing ion-channel 
data: (i) fit an exponential to the decay curve by least squares, and (ii) analyse the 
stationary time series after the current has reached a steady state. 

3.2 Example of milk yields 

As part of an experiment on the relationships between feed intake, milk output and 
body condition in high-yielding dairy cows, milk yields were recorded approximately 
once a week for up to 45 weeks (Neilson et al., 1983). Data from 23 animals will be 
analysed. 

In the weeks immediately following calving, milk yield rises rapidly from zero to a 
maximum and then slowly decreases (Fig. 3). Parametric curves are fitted separately to 
the data from each animal in order to summarise them and to predict future yield 
when part-way through the lactation. The dashed line in Fig. 3 shows the least squares 
fit of Cobby and Le Du's (1978) curve, a(l Ø1)flt, a three parameter function with 
the time origin on the day of calving. There is evidence for the residuals being serially 
correlated. 

We will consider the use of Dhanoa & Le Du's (1982) model, henceforth denoted by 
DLD, to explain the residual correlation. In truth, this model is primarily empirical, 
but it is placed in Section 3 because the error model is more mechanistic than those 
used in analysing data from the mechanical cow. France & Thornley (1984, pp. 
220-232) discussed other empirical models for lactation, and one mechanistic model 
far too complicated to fit to milk yield data from a single lactation. 

The equation proposed by Dhanoa & Le Du may, after reparameterisation, be 
expressed as 

Y=0Y_1+(a — a0 — fl0) — IJt(l - 0)+e€ for t>-1, 

where )' denotes the yield (kg/day) in week t, t denotes time in weeks since calving, a, 
fi and  0 are parameters, Y0  is set at zero and e, for t~: 1 is a series of independent 
normally distributed random variables with zero mean and variance (1 Ø 2)a 2 . The 
model may be extended to incorporate observation times t 1 ,..., t which are unequally 
spaced. Observed yields are multivariate normally distributed with mean f given by 
Cobby & Le Du's equation (1978) and variance matrix V where 

f=a(l-0'i)—flt 1  fori=l .... ,n, 

and 
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V..=a2Ø("_'J) (1 _Ø2j)  for i~j. 

Therefore Y is a generalised ARMA(l,O) process. 
DLD was fitted independently to the data from each cow by maximum likelihood 

estimation using a numerical optimisation technique. The mean and standard devia-
tion of the estimated values for each parameter are given in rows 1 and 4 of Table 2. 

Table 2. Averages and standard deviations of parameter estimates, and root-mean-square standard 
errors, for each model fitted to 23 sets of milk yields 

a fi 0 a 2  

Mean of estimates 
DLD (Dhanoa & Le Du's model) 387 066 031 7.3 
DLD* (DLD modified for 0*) 387 066 032 029 73 
Least squares fit 388 066 033 71 

Standard deviations of estimates 
DLD (Dhanoa & Le Du's model) 71 023 012 78 
DLD* (DLD modified for 0*) 75 024 013 023 78 
Least squares fit 7.3 024 012 7.7 

Root-mean-square standard errors 
DLD (Dhanoa & Le Du's model) 14 006 006 28 
DLD* (DLD modified for 0*) 17 008 008 013 30 
Least squares fit 14 007 009 27 

The root-mean-square standard errors are the square roots of the averages, over all cows, of the 
variances of the estimators of each parameter. 

For the data from each cow, standard errors of parameter estimators were derived 
from the observed information matrix, as before. These standard errors have asympto-
tic validity because the error process is stationary after a brief start-up effect. The 
root-mean-square standard error of each parameter, given in row 7 of Table 2, is the 
square root of the average, over all cows, of the variances. Because the root-mean-
square standard errors are substantially less than the standard deviations, which 
include both estimation errors and differences between cows, it is evident that the 
parameters do not share common values for all 23 cows. 

To check the fit of DLD the regression function was refitted: 
By maximum likelihood estimation, using the variance structure proposed by 

Dhanoa & Le Du but with a non-negative correlation parameter 0*, separate from 0 in 
f Therefore 

Vii =a2 Ø*(tjtj)  (l_0 *2hi) for j>j 

This model is denoted by DLD*. 
By least squares, or equivalently by maximum likelihood estimation on the 

assumption that observations are independently distributed with equal variances 'r 2 . 
The log-likelihood, to within a constant, summed over the 23 sets of data, was 390 

for DLD. For DLD*  the summed log-likelihood was 722, an improvement of 332 for 
the addition of 23 parameters. This increase is sufficiently large to lead us to reject 
DLD. Least squares fits less well with a summed log-likelihood of 4. 1, so errors cannot 
be assumed to be independent with equal variances. 

The summary statistics, given in Table 2 for the new models, show remarkably little 
difference from those obtained with DLD. Although DLD was rejected by the 
likelihood ratio test, in DLD*  the mean values of 0 and 0* are very similar, being 032 
and 029 respectively. However, there is poor association for individual cows, the 
sample correlation coefficient between 0 and  0" is —02. This is illustrated in Fig. 4 
where the circles represent a plot of 0 against 0* The changes in 0 when it is assumed 
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Fig. 3. Milk yield plotted against time for data from one cow. Data (x), least squares regression fit 
( ---- ), expected values for the first 5 weeks (—) for DLD*  (Dhanoa & Le Du's model modified to 
have a separate correlation parameter 0*), and subsequently the predicted yields conditional upon 
earlier yields for DLD (Dhanoa & Le Du's model) ( ..... ) and DLD* 
ordinate: milk yield (kg/day) 
abscissa: time (weeks) 

that 0 and  0"' take common values, as in DLD, are shown by the arrows. The effect in 
all cases is to move 0 towards the 45 degree line, and therefore towards 0*. Therefore, 
0 in DLD is a compromise between the regression parameter 0 in DID*  and the 
correlation parameter 0*. The estimator is well approximated by 80% of 0 and 20% of 
0". The root-mean-square standard error of 006 for 0 in DLD is less than the value of 
0•08 in DLD*  because of the unjustified assumption that extra precision is obtained 
from the correlation structure. 

Fig. 3 is a plot of the data which produced the right-most arrow in Fig. 4; the data 
for which there was the largest discrepancy between the fits obtained by DLD and 
DLD*. The figure serves to illustrate how the differences arose, but these data are not 
typical of the lactation data as a whole. The yield from this cow dropped markedly 32 
weeks after calving. Other cows show many different forms of variation, as can be seen 
from the spread of values for 0 and 0 *  in Fig. 4. The least squares fit, shown by the 
dashed line in Fig. 3, is almost identical tofobtained by DLD which is not shown. For 
the first 5 weeks of lactation the fitted curve f obtained by DLD*  is shown, and for 
subsequent weeks the predicted yields at each time conditional on yields at earlier 
times for DLD and DLD*  are plotted. The fit of DLD is represented by the dotted 
line, and DLD*  by the continuous line. In DLD, 0 is larger, so the fitted curve reaches 
its linear asymptote more slowly than it does for DLD*.  However, the correlation 
parameter 0 in DLD is smaller than 0 *  in DLD*  and the predicted values follow the 
fluctuations in yield less well. The lack of fit of DLD arises because 0 is a compromise 
between the low value required for the lactation curve to peak shortly after time zero, 
and the high, value needed to follow the high autocorrelations of the data about the 
smooth curve. 
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Fig. 4. For each of the 23 sets of milk yield data, estimates of 0 plotted against the estimate of 0* in 
DLD* (Dhanoa & Le Du's model modified to have a separate correlation parameter 0*). The circle 
denotes 0 in DLD*,  the arrow represents the change in 0 from DLD* to D.D (Dhanoa & Le Du's 
model), and 'x' denotes the least squares estimate of 0. The relationship Ø=Ø* is plotted 
ordinate: 
abscissa: 0 *  

The least-squares estimates of 0 are also plotted against Ø* in Fig. 4, and denoted by 
x 's. When Ø is close to zero the least squares estimates of 0 are the same as the 
estimates in DLD*.  Otherwise, there is no consistent relationship between the least 
squares estimate and the estimates from the other two models. 

In conclusion, there is no reason, either theoretical or empirical, for assuming that a 
common parameter 0 can be used in both the lactation curve and the expression for 
the error autocorrelations. Therefore Dhanoa and Le. Du's model cannot be rec-
ommended. Further, if the regression function is of.sole interest, then there appears to 
be little gain from using any model with correlated errors. The average correlation 
between observations at weekly intervals is only 03, a value sufficiently small for the 
least squares regression parameter estimators to be almost efficient. This is shown by 
the standard deviations in Table 2 being very similar for the least squares fit and for 
DLD*. Also, any bias in the standard errors appears to be small. Therefore, least 
squares estimation of the regression function is adequate. For purposes of prediction, 
however, correlations should be taken into account, for example by the use of DLD*. 

4 Discussion 

Generalised least squares estimators which are based on the wrong error variance 
matrix may be even less efficient, and the estimated standard errors even more biased, 
than the ordinary least squares ones. Moreover, regression parameters can have a 
different interpretation when errors are modelled by a correlated process. The con-
junction of regression model and error model describe a data set, so a change in the 
error model forces a compensatory change in the regression model. For example, the 
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fitted regression will make larger systematic departures from the data if errors are 
assumed to be highly correlated than if they are assumed to be independent. This is 
illustrated by the fits to the ion-channel data plotted in Fig. 2. Therefore, although the 
estimation of regression parameters with almost any choice of variance matrix has 
become computationally easy, it is beset with statistical difficulties. 

If the processes by which data are generated are understood, then a mechanistic 
error model should be built. In the case of the ion-channel data this approach worked 
well, the assumed model was approximately correct, and therefore made for the most 
efficient use of the data. For the milk yield data, Dhanoa & Le Du's model did not fit 
well, so the results it produced were, potentially, very misleading. In general, for 
mechanistic error models it is recommended that (i) an independent observation error 
is included, (ii) the goodness-of-fit is tested by refitting the model with separate 
parameters in the regression and error components, and (iii) a stochastic model is not 
used unless it has a sound scientific basis. It should not be assumed that a particular 
stochastic model is appropriate simply because its deterministic counterpart fits well. 
Sources of error are usually many and varied and it is safer to model them separately 
from the regression model. 

If a mechanistic error model is not available, then an empirical approach has to be 
adopted. The form of error model will depend on the structure of the data. In 
applications with serially-structured data it may be reasonable to assume that the error 
process is stationary and use the sample autocorrelations of the least squares residuals 
to identify a low-order ARMA model. Regression and error parameters may then be 
estimated jointly by maximum likelihood. However, least squares estimation may be 
adequate if autocorrelations are small, as is the case for the milk yield data. Also, if 
there are discrepancies between the least squares and maximum likelihood estimates, 
or evidence for non-stationarity in the error process, then least squares may be 
preferable as it is easier to understand the method. Valid standard errors can be 
obtained without recourse to specific error models. 
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Appendix: Generalized ARMA processes 

A random vector e of length n is defined to be a generalised ARMA(p, q) process for 
non-negative integers p and q, if its variance matrix, V, is real, Symmetric and 
positive-definite and can be decomposed as follows. There exist (possibly complex) n-
vectors C, and ?1, for k= 1,.. ., 

p such that for j=l,..., n, if p>0, then 

77kj for i~j+q—p+l, 
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and if p — O, then V,=0 for i~j+q+ 1. Here 1kj  refers to the ith element in 
It can be shown that there exist real lower-triangular band matrices c1 and e which 

are n x n with bandwidths (p+ 1) and (q+ 1) respectively, and c1 has diagonal elements 
of unity, such that c1 VcIT= OøT (Glasbey, 1986). A lower-triangular band matrix with 
bandwidth (/+1) has zero elements above the diagonal and after / terms below the 
diagonal. 

The Gaussian log-likelihood of e, defined to be 

 -- -lnI 111 	V 	e, 

can be simply evaluated as 

- Y.  lneii__zTZ, 
2 

where z is the n-vector 8 - ' (De. Because of the lower-triangular band structures, z can 
be obtained very easily. 

The unbiased linear predictor of e, with minimum variance given (e1 ,..., e.. 1 ) is 
(cF9 f),, where z11' =z for j= ., (i —  1) and z=O forj=i,..., n. Algebraically, the 
predictor can be re-expressed as (e -91). 
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Statistics are proposed to help identify the orders of autoregressive-moving average models. 
These are functions of the sample autocorrelations and include partial autocorrelations as 
special cases. The large-sample variances of the statistics are derived and small-sample proper-
ties are explored by simulation. Their interpretation is illustrated using Wolfer's annual sunspot 
numbers and wind velocity data (Cleveland 1972). 
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1. INTRODUCTION 

Autoregressive-moving average processes have 
proved to be very useful in modeling time series data. 
The model of order (p, q), denoted by ARMA (p, q), 
relates an observation X of the process at time t 

(t = 1 ... n) to previous observations by means of the 
difference equation 

- O 1 e_ 1  - 	 - 0qtq 

Here, using standard notation (Box and Jenkins 1976, 

pp. 46-53), 4. and 0 are the parameters in the model 
and the terms e, are independent normal deviates with 
zero mean and constant variance o. 

Before estimating 4) and 0 it is necessary to identify 
appropriate values for p and q, although subsequent 
analysis may cause us to modify these. This is usually 
done by calculating the sample autocorrelations r of 
the series, where 

= ( 
xx +1)/( x) 

and from these calculating the partial auto-
correlations (Box and Jenkins, p.  497). If p = 0 then all 
but the first q sample autocorrelations have zero ex-
pectation. Conversely if q = 0 then all but the first p 
sample partial autocorrelations have approximately 
zero expectation. Consequently, in these cases the 
values of p and q are relatively easy to establish. When 
both p and q exceed zero, the expected auto- 

correlations and partial autocorrelations are approxi-
mately sums of exponentials and/or sinusoids and it is 
much more difficult to select values for them. In this 
article partial autocorrelations are generalized to 
assist in the identification. 

The proposed statistics use an expression for the 
(p + q + 1)st autocorrelation of an ARMA (p, q) pro-
cess based on the first p + q autocorrelations. The 
discrepancy between this predicted autocorrelation 
and the sample autocorrelation at lag (p + q + 1) is a 
measure of the lack of fit of the ARMA (p, q) model. 
Let Pk  denote the expected autocorrelation of X at lag 
k; then it can easily be shown (Box and Jenkins, p.  75) 
that 

Pi = 41P11-ii + 	+ 4pi-i for 1 ~ q + 1. (1) 

After replacing p by its estimator r, 4)  can be estimated 
by solving the linear equations corresponding to (1) 
for l=q+ 1,...,q+p. When l=q+p+ 1,(1)gives 
a predicted autocorrelation at lag (p + q + 1) of 

&rp+q + 	+ p rq+t , 

and a test statistic is 

Yp q  = rp+ q +j - &rp+q  - 	 - 

which has an asymptotic expected value of zero. 
Similar statistics have already appeared in the 

literature. In the notation of Gray, Kelley, and McIn-
tire (1978), 

Ypq = Hp+i[rq _p+i]/Hp[rq _p+i], 
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81) = (0.8, 0.5) 

n 	(1,3) = 	(1,1) (2,1) (1,2) (2,2) 

40 0.78 0.47 0.60 0.37 

200 1.03 0.75 0.92 0.53 

1000 0.92 0.95 0.97 0.49 

'1' 01) 
= (0.5, 0.8) 

	

40 	 0.44 	0.55 	0.47 	0.42 

	

200 	 0.88 	0.72 	0.56 	0.65 

	

i000 	 1.00 	1.10 	0.92 	0.61 

°1 
= (0.5 1 -0.5) 

	

40 	 0.91 	0.81 	0.75 	0.55 

	

200 	 0.99 	0.87 	0.81 	0.52 

	

1000 	 0.90 	1.01 	0.95 	0.53 
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and Beguin, Gourieroux, and Monfort (1980) pro-
posed a statistic 

t(i, 3) = (- 1)integer Part( '2 H [r_ +  1 ]. 
Gray, Kelley, and McIntire advocated a method of 
pattern recognition using tables of their statistics to 
identify the true model orders. Beguin, Gourieroux, 
and Monfort went further in showing how approxi-
mate variances could be derived for their statistics by 
a numerical linearization. The advantage of the pres-
ent formulation, as is shown in the next section, is that 
the asymptotic variance of Ypq  can be obtained in 
closed form. 

2. LARGE-SAMPLE DISTRIBUTION OF Yp q  
In Appendix 1 the large-sample distribution of ypq  is 

derived by extending the technique used by Queno-
uille (1947) in finding the distribution of the sample 
partial autocorrelations. If the true model order is 
(p, q) and I = p and J ~ q, or I ~! p and J = q, then Yij 
is normally distributed asymptotically with zero 
mean. Also if K = p and L ~! q, or K ~: p and L = q, 
then 

1 
CoV(y1j, YKL) - 	6m6m+K+L_1_J, 

m—q 

where 

Appendix 2 the simplest case is considered: when the 
process has order (0, 0), that is white noise, both Yii 
and z 11  converge to zero at rate neither is 
normally distributed, y, , has an infinite variance, and 
var(z 1  ) = .41/n. This result together with the results 
in Sections 3 and 4 are consistent with the hypothesis 
that asymptotically P(I Zjj I > 2//) :!~ .05. 

We can identify the true order (p, q) by evaluating 
z 11  over a range of values of I and J. If either I <p or 
J < q then the expected value of z, is nonzero. If 
either I = p and J ~! q or I ~?! p and J = q, then 
asymptotically Z1j is normally distributed with zero 
mean and variance 11n. Otherwise if I > p and J > q 
then we are not sure but may expect z, to be small. 
Therefore we can identify p and q as the smallest 
integers such that Zjj is small when I = p and J ~!! q or 
1 2! p and J = q. 

3. SIMULATION 

To investigate their small-sample properties, z sta-
tistics were calculated from 400 independent realiza-
tions of an ARMA (1, 1) process for a range of values 
of n, 0

, 
and 01.  Table 1 shows n x the mean square 

z, for I, J = 1, 2. When n is large these have an 
expected value of 1.0 for (I, J) = (1, 1), (2, 1), and (1, 2) 
but no known value for (I, J) = (2, 2). With these 
values of 4 and 0 1 , the large-sample variances appear 

Defining 

min(p,q—m) p 

13m
= 	k=0 

I 2 1 Zpq_ - Ypq1 / 

/ \m Y_ q / 

Table 1. n x Mean Square z1 , for 400 Simulations 
From an ARMA (1, 1) Process of Length n. Figures 
Consistent With the Large-Sample Variance Un-
derlined (i.e., between .90 and 1.10) 

we have a test statistic with an approximate variance 
of 1/n when the true model orders are p and q. 

Examining special cases Yoa = rq+1 	and 
var(rq+  ) 1/n 	= —q r, which is in agreement with 
Bartlett's (1946) result, and if q = 0, Zpq  simplifies to 

(r +1  - 	. . - ,,r 1 )/(1 - 	 .. - 

which is the formula for the (p + 1)st partial auto-
correlation shown by Quenouille (1947) to have a 
variance of approximately 1/n. For other values of p 
and q, Z pq  can be considered a generalization of partial 
autocorrelations. Unlike partial autocorrelations, the 
z statistics are correlated. In particular, if the true 
order is (p, q), then asymptotically 

11 	ifl+J=K+L, 
cor(z1 , ZKL) 

= O 	if I K + L - - I > 2q. 

When I > p and J > q, 4) is not a consistent esti-
mator of 4) and the derivation in Appendix 1 is no 
longer valid. It has not been possible to derive the 
large-sample distribution of y,, in this situation. In 
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to be approximately attained when n ~ 200 but to 
overestimate the variances for shorter series. 

Table 2 shows the percentage of the Zjj exceeding 
two standard errors (2/J) in magnitude. The ex-
pected proportion of 5 percent for large samples is in 
good agreement with the simulations for n ~ 200. 
Tables 3 and 4 show similar results for ARMA (2, 1) 
and ARMA (1, 2) models. When using the z statistics 
with shorter time series these results suggest that there 
will be a tendency for p and q to be underestimated. 

4. EXAMPLES 

Autoregressive and autoregressive-moving average 
processes have been used to model the well-known 
series of Wolfer's sunspot numbers 1749-1924 (Ander-
son 1971, p.  660). The best fitting low-order model has 
been found to be an ARMA (2, 0), although an ARMA 
(9, 0) model gives a significantly better fit (Morris 
1977). The z statistics given in Table 5 show that an 
ARMA (2, 0) model should be adequate and moving 
average parameters appear to be unnecessary. This is 
because only one large z value is not in the first or 
second row of the table. 

Cleveland (1972) used a series of 1600 wind-velocity 

Table 2. Percentage of zjj  Exceeding Two Stan-
dard Errors in Magnitude for 400 Simulations From 
an A RMA (1, 1) Process of Length n. Figures Con -
sistent With the Large-Sample Distribution Under-
lined (i.e., between 2.8 and 7.2) 

i'  0  1  ) 
= (0.8, 0.5) 

(1,1) 	(2,1) 	(1,2) 	(2,2)  

40 2.5 0.3 	1.5 0.3 

200 4.5 2.0 	4.0 1.5 

1000 4.3 4.3 	4.3 1.0 

(Oil 61) 	= 	(0.5, 	0.8) 

40 1.8 2.0 	ö.8 0.5 

200 4.0 3.0 	1.5 2.0 

1000 3 8 	3 2.5 

1' 	61) 	= 	(0.5,-0.5) 

40 3.5 3.0 	3.0 1.8 

200 4.5 4.3 	1.5 1.3 

1000 SM 5.3 	'hO 1.3 

Table 3. n x Mean Square z1 , for 400 Simulations 
From anARMA (2, 1) Process and anARMA (1,2) 
Process of Length n. Figures Consistent With the 
Large-Sample Variance Underlined (i.e., between 
.90 and 1.10) 

112,01) = (1.0,-0.64,0.6) 

n 	(1,3) 	= 	(2,1) 	(3,1) 	(2,2) 	(3,2) 

40 0.90 0.54 0.77 0.43 

200 1.10 0.98 1.11 0.63 

1000 0.92 0.92 0.93 0.52 

= (0.8 1 0.0 1 1.0) 

/ n 	(1,3) 	= 	(1,2) 	(2,2) 	(1,3) 	(2,3) 

40 0.65 0.63 0.59 0.40 

200 0.79 0.69 0.68 0.66 

1000 0.93 0.96 0.92 0.65 

Table 4. Percentage of z, Exceeding Two Stan-
dard Errors in Magnitude for 400 Simulations From 
an A RMA (2, 1) Process and an A RMA (1, 2) 
Process of Length n. Figures Consistent With 
Large-Sample Distribution Underlined (i.e., be-
tween 2.8 and 7.2) 

(112,01) 	= 	(1.0,-0.64,0.6) 

(2,1) (3,1) (2,2) (3,2) 

40 3.5 0.5 2.3 1.0 

200 4.3 SM 4 2.3 

1000 3.5 2.8 2.0 1.5 

= 	(0.8,0.0,1.0) 1161,02) 

n 	(1,3) 	= (1,2) (2,2) (1,3) (2,3) 

40 1.8 2.5 1.0 1.0 

200 2.0 1.3 1.3 2.5 

1000 4.8 3.8 2.8 1.0 
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Table 5. 100 x z,, for Wolfer 's Sunspot Data. 
Values Exceeding 15.1 (two standard errors) Un-
derlined 

I 	 J 
0 1 2 3 4 5 6 7 8 9 

0 	81 28 2 -16 -24 -20 -9 5 18 25 

1 	164 -34 -18 -2 20 27 24 9 -5 -16 

2 	-10 1 -4 14 6 14 -6 11 4 0 

3 	-1 -4 0 5 9 -4 8 6 -1 6 

4 	-4 1 5 1 -7 -3 8 -5 4 2 

5 	14 5 2 1 3 7 3 -2 4 -3 

6 	4 6 -10 3 0 -3 6 3 0 -3 

7 	2 1 -4 6 -3 0 8 -2 -3 -1 

8 	3 9 4 -4 -3 3 2 -6 1 -1 

9 	10 -2 -7 -3 4 2 -4 -3 -2 2 

measurements to illustrate the use of inverse auto-
correlations in selecting the orders in ARMA models. 
(Inverse autocorrelations are defined as the auto-
correlations associated with the reciprocal of a series 
spectrum). The z statistics given in Table 6 have been 
calculated from Cleveland's published sample auto-
correlations rounded to two decimal places. In this 
particular example the rounding errors have been 
found not to affect the pattern of large values. An 
ARMA (0, 1) model appears to be adequate although 
z01 , z 03 , and z 04  are all quite large and could imply an 
ARMA (1, 1) model. This is because only one large z 
value is not in the first row or first column of the table. 

Chatfield (1979) conjectured that inverse auto-
correlations have the same sampling properties as the 
autocorrelations. If this is the case, then inverse z 
statistics calculated from the inverse autocorrelations 
will have the same large-sample variances as those 
calculated from the autocorrelations. Table 7 shows 
the inverse z statistics for the wind-velocity data, the 
spectrum having been estimated by applying a 
moving average of length 2m + 1 to the periodogram, 
where m = 25. I should now be interpreted as the 

Table 6. 100 x zI, for Wind Velocity Data. Values 
Exceeding 5.0 (two standard errors) Underlined 

I .1 

0 1 2 3 4 5 

0 -34 -5 -3 -4 -4 2 

1 -19 -2 -1 0 2 6 

2 -13 -2 0 2 0 1 

3 -13 -1 2 0 1 0 

4 -16 3 2 1 1 1 

5 -11 3 0 -1 1 0 
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Table 7. 100 x Inverse z1 , for Wind Velocity Data. 
Values Exceeding 5.0 (two standard errors?) Un-
derlined 

I 	 J 

0 	 1 	 2 	 3 	 4 	 5 

0 57  32  23  !Z.  13 	8 

1 13 3 0 1 -4 	1 

2 7 -1 1 0 -1 	3 

3 3 1 -2 -1 0 	3 

4 2 -3 -1 1 0 	2 

5 -4 -1 -1 2 2 	0 

moving average order in the original process and J 
conversely as the autoregression order. The z statistics 
again suggest an ARMA (1, 1) model. Cleveland iden-
tified an ARMA (2, 1) model after comparing ratios of 
inverse autocorrelations, which is actually what is 
being done in the Zjj statistics. The z statistics show 
that he did not need to select p > 1 because the pat-
tern he identified could have arisen by chance. 

5. CONCLUSIONS 

We have seen that the z statistics can be useful in 
identifying starting values for p and q by forming 
simple functions of the sample autocorrelations. A 
complication in interpreting a table of z statistics is 
that unlike partial autocorrelations, they are corre-
lated with each other. Also when q > 0, 4 is an inef-
ficient estimator and consequently Zpg  will lack dis-
criminating power when compared with techniques 
using efficient estimators. Further possible contribu-
tors to underestimation of the model orders are the 
small variances of the z statistics for short series sug-
gested by the simulation study. However, on balance, 
the features in the sample autocorrelations highligh-
ted by the z statistics would appear to outweigh their 
small computational cost. 
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APPENDIX 1: DERIVATION OF THE 
LARGE-SAMPLE DISTRIBUTION OF Ypq  

By defining (ko  and & to be - 1, we can express Yij 

as 
I w or i +j+i  + 	 L + 	+ ow:rj+i 

I 	I 

+ 
j=1 i=O 
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because the extra term is zero from the derivation of 
4). Applying Taylor's expansion of y, about 4), when 
either I = p and J ~ q or I ~ p and J = q, 

= 	 + 0(11n) (A.1) 
i=0 j=0 

because the first derivatives of y r., with respect to (0 
are zero and  (4) _  4)2 is of order 11n. Therefore 
E(y 1 ) = 0(1/n) and yr., is asymptotically normal from 
the large-sample distribution of r. The variance of the 
right side of (A.1) has been derived by Bartlett and 
Diananda (1950). Substituting for r in (A.1) and ne-
glecting end effects, which are of order 1/n, we can 
show by algebraic manipulation that 

= - 	 J X t+J+J+l_ l X. fJ  + 0(1/n) 
1=0 j=0 

=( \10 

xY_ oj x
l+j) 

 
(j = 0 

+ 0(1/n) 

fq 
= 	( 	i 	 Wt  + 0(1/n), 

\i=0 

where 00 = - 1, d is the estimated variance of X, and 

	

W is defined to be 	4Xt+ . It follows that W is 
normally distributed, independent of e + , for i > p and 

	

E(HW + = 	&lpI+k_IIa 

	

3 	 X . 
k=0 1=0 

We can use these properties together with the inde-
pendence and normality of the terms e1  to show that, 
when either K = p and L ~! q or K ~! p and L = q 

cov(yjj, YKL) 

1 q 	q 

>o,oJ 

	

n a 	t 1=0 j=0 

x E(l+ We S +J+J+l_Ie+K+L+l_J) + 0(1/n 2) 

1 

n2a t 1=0 j=0 

x E(l4 l4+K4L_I_J+i_j)E(et4p4q+ i_i) + 0(1/n 2) 

	

q 	q 	p 	p 

=-;-2 
i=0 j=0 k=0 1=0 

X (/k (/)lPIK+LJJ+j J+IC II + 0(1/n2) 

	

acr

m 

q 	(q-1-1  

	

4 	6i6&+m
-q 	1=0 

X  

	

(k=O 	
kIPIK+L_I_J+m+k_lI) + 0(1/n2). 

 1=0  

However it can be shown that 

q-ImI 

L. 0i 01+1 - 1 
1=0 

= 1 
	

say. (A.3) 
k=0 1=0 

Therefore, substituting (A.3) into (A.2), 

q 
cov(yjj, YKL) 

= 	
Vm Vm +K+L_I_J + 0(1/n 2) 

m -q 

I 	q 

(A.4) 
m q   

by substituting estimators for the unknown pa-
rameters in (A.4), where tim  simplifies to 

min(p,q-m) k 

>&I.zrIm+k_lI. 
k=0  

APPENDIX 2: LARGE-SAMPLE PROPERTIES 
OF y11  AND z 11  FOR A 
WHITE-NOISE PROCESS 

By definition Yii = r3  - r/r1 . When the process is 
white noise r1 , r2 , and r3  are distributed asymp-
totically as independent normal deviates with zero 
means and variances 1/n. Therefore Yi'  converges to 
zero at rate 11..J. Because 11r 1  has an infinite vari-
ance so does Y  i. 

By definition 

Zii = Yii/[t' + 26]2, 

= (r 2 ' 2  r3  - r1 r)/[(r - 2r1 r2  + r2 j 

+ 2(r - r1 r2) 2] 2 , 

= (r r3 - rr)/[r + 4rr 

+ r + 0(n 512)] 2 . 

Therefore z 11  converges to zero at rate 	is not 
normally distributed, and has an asymptotic variance 
of 

(27in312 f  f  f [(X2Z 
- 

(x4  + 4x 2y2  + y4)"2] 2  

x exp[- 4 n(x 2  + y2  + z 2)] dx dy dz, 

= (2xn)' 

x f  f[(x "In + x 2y4)1(x4  + 4x 2y 2  + y4)] 

x exp[- 4 n(x 2  + y2)] dx dy, 

(A.2) 	after integrating through by z. We transform to polar 
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coordinates (r, 0), where x = n 2r sin 0 and y = 
n"2r cos 0. Therefore 

var(z 11 ) 	(2tn 1)' 
r  Jo,2n

x 	[(n 3 r4  sin4  0 + n 3r6  sin 2  0 cos4  0)! 
Jo  

(n 2r4  sin  0+4n 2r4  sin  0 cos 2  0+n 2r4  cos4  0)] 

x exp[—r 2/2]n t r dr dO 

I2n Jo, [(sin4  0 + r2  sin 2  0 cos4  0)! 
 

(1 + 2 sin  0 cos 2  O)]r exp[—r 2/2] dr dO 

I2n 

(2irn) 1 	[(sin4  0 + 2 sin 2  0 cos4  0)/ 

(1 + 2 sin  0 cos 2  0)] dO 

after integrating through by r. At this point we resort 
to numerical integration to obtain var(z 1 

 ) 
.41/n. 

[Received December 1980. Revised February 1982.] 
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SUMMARY 

For parameter estimators in linear models, variance estimates are proposed which are 
positive- semidefinite quadratic forms like the conventional ones but are less dependent 
on assumptions about error variance. Examples are given of their use in spatial analyses 
of field trials and analyses of series of trials. 

Some key words: Block-diagonal; Neighbour analysis; Quadratic form; Repeated measurements; Residual; 
Smoothing; Variety x environment table. 

1. INTRODUCTION 

An n x 1 vector, y, of observations is considered in this paper to be multivariate normally 
distributed with mean XP and variance V, where X is an n x m design matrix of full 
rank with m < n, 6 is an m x 1 vector of unknown parameters and V is an n x n error 
variance matrix. It is assumed that partial knowledge exists about V, for example, that 
it is diagonal or block-diagonal in form. The generalized least-squares estimator of /3, 
based on an estimate V of V, is f3 = (XTV_IX)_IXTV_5', and the vector of residuals is 

= y - X/3, = Py say, where P is an n x n matrix. Therefore, for a particular parameter 
or linear combination of parameters, a, given by zT/3  for specified vector z, 6 = uTy 

where u = V_IX(XTV_IX)_I z.  Therefore, conditional on V, 6 is a linear function in y. 
Without this conditioning, t is only approximately linear, except in special cases such 
as V = 62  I,  because V is a function of Y. However, for practical purposes it may be 
possible to assume that the dependency of u on y is negligible. If this is not the case, 
then we could obtain a linear approximation to 6, based on a Taylor expansion of V in 
terms of y, without affecting the subsequent methods. 

The variance of 6 , UT  Vu, is conventionally estimated by 6() = UT Vu. But, if incorrect 
assumptions have been made in estimating V then, although 6 will be unbiased and also 
reasonably efficient provided that the error variances are not too severely misspecified 2  
i) will be biased. For example, V may be known to be diagonal, but in obtaining V 
it may additionally, and inappropriately, have been assumed that the diagonal elements 
are all equal. A simple, alternative estimate is t() = uT Vu, where Vjj  = unless V, is 
known to be zero. The estimator can be used when V is diagonal, block-diagonal or 
banded, that is elements are zero after a certain separation from the diagonal. But it 
cannot be used without some modification, such as smoothing V as discussed in § 2, 
when nothing is known about V, because the identity uTêO  ensures that L(t) is always 
zero! If V is diagonal or block-diagonal in form, then 5(6) is a positive-semidefinite 
quadratic form of the data, yTCy  say, which is less dependent than i) on assumptions 
about V. 

S 
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In particular, when V is diagonal ii(&) = 	This estimator was proposed by Eicker 
(1967), and shown by White (1980) to be consistent under weak conditions. An identical 
estimator is obtained if the weighted jackknife of Hinkley (1977) is used, for which see 
Glasbey (1986). Rao (1970) identified another quadratic estimator of v(&) in this situation, 

an example of a MINQUE. It is unbiased for any diagonal V and has minimum variance 

among all such estimators when V = u2 1, but is not positive-semidefinite. Therefore the 
variance estimator has the undesirable feature that it can be negative. Glasbey (1986) 
obtained a further quadratic estimator, one which is positive-semidefinite and never 
downward biased, but has to be found using a computationally-intensive numerical 
algorithm. None of these estimators has been used much in linear regression, perhaps 
because a scatter plot of ê   against u reveals any heterogeneity in variance which could 

bias i(t). 
The resilient variance estimator based on V is of greater potential use when V is 

block-diagonal, and for this type of application it is developed further in § 2 and used 
in two situations in § 3. 

2. METHOD 

In general, e j  is a biased estimate of V, and therefore 6(6) is a biased estimate of 

v(c). However, it can be scaled to be unbiased for one choice of V, V for example, by 

simply multiplying by uTVu /tr(CV) provided that the random variation in V can be 
ignored. Alternative ways of scaling exist in particular cases. For example, if V is diagonal 

then the use of standardized least-squares residuals in V yields an estimate of v() which 

is unbiased when V=o 2 1. 
For inference, the distribution of the quadratic form may be assumed to be approxi-

mately proportional to x (Satterthwaite, 1946). The noninteger effective degrees of 

freedom can be estimated by I={tr(CV)} 2/tr(CVCV), making use of the assumption 
that y is normally distributed to equate coefficients of variation. 

If the estimator has few degrees of freedom, then to obtain a usable result an average 
could be formed with O() in order to reach a compromise between precision and 
resilience to misspecifi cation of V. Alternatively, in many cases where it can be assumed 
that changes between 'adjacent' elements in V are small, V can be smoothed to increase 
the degrees of freedom in the variance estimator. By considering only moving-average 
forms of smoothing, () retains its quadratic form. By further limitation, the positive-
semidefinite property can be retained, if this is deemed to be important. 

When V is block-diagonal and data within each block are serially-structured, as might 
occur with repeated measurements or field trials, an estimator of the form 

k=-1 	
(1) 

may be appropriate for some small positive value of I, with i + k and j + k replaced by 
limit values if they exceed them within each block. This method is used in § 31. It is 
shown in the Appendix that it leads to an estimator of v(&) which is a positive-semidefinite 

quadratic form. It can also be applied when V is diagonal, and smoothing of variable 
width can be used if this is more appropriate. As an alternative, for smoothing which is 
more severe, V., could be set to the Ii -ilth sample autocovariance of . However, t() 

may then take negative values. 
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In other cases, such as the analyses of series of trials, adjacent elements in each block 
of V may be similar, but without the serial structure assumed above. A smoothed estimator 
is given, for j i, by 

T  p 	0 	00 (1 —T2p)/(l —p) p1(1 —p) 

ê, 	0 1-2p 0 	0 (1-2p)1(1—p) p/(l—p) 	, 	(2) 

0 	0 	p I 1 	0 	 0  

with i ± 1 and j ± 1 replaced by limit values within each block if they exceed them. In 
the Appendix it is shown that this leads to an estimator of v(s) which is a positive-
semidefinite quadratic form, provided that 0 p 4. If p = 4 then 

,=(ê_ 1 +ê-l- +1 )/3, 

for li-il large, and intermediate elements are a compromise between these two 
expressions. Further smoothing can be achieved by repeating the averaging procedure. 

3. EXAMPLES 

31. Spatial analyses of field trials 

Least-squares analysis of field trials is valid within a randomization framework, but 
can be inefficient if correlations are high between adjacent plots and block sizes are large. 
Such an example is provided by the triticale factorial trial, in three blocks, reported by 
Besag & Kempton (1986). Various spatial or neighbour analyses have been proposed to 
take account of correlation in field trials and thereby improve efficiency. However, 
difficulties are then encountered in obtaining valid standard errors. 

The basic method of § 2, applied to Besag & Kempton's data, on the assumption that 
correlations are zero between plots in different blocks, resulted in variance estimates with 
2 degrees of freedom only. Therefore the smoothing method given by (1) was used. Table 
1 shows the lower triangle of the first block of V when 1= 2. Standard errors of estimated 

Table 1. Estimate of first block in V. from analysis of triticale trial by Besag & Kempton 
(1986); lower triangle of 10 3 V, smoothed with 1=2, using (1) 

4 

3 	3 
2 	2 3 

2 	1 1 2 

0 	-1 2 1 5 

1 	-2 -1 1 2 6 

5 	-5 -1 -1 5 4 10 

6 	-6 -3 -1 3 8 10 15 

8 	-8 -4 -3 4 6 14 15 22 

7 	-7 -6 -3 -1 6 9 14 16 19 

7 	-6 -6 -5 -3 0 6 7 12 14 18 

4 	-4 -4 -4 -3 -1 2 4 7 8 11 12 

2 	-2 -3 -2 -4 -3 -2 -2 1 2 6 6 9 

2 	2 0 -1 -3 -4 -5 -7 -7 -4 0 0 2 4 

4 	5 1 0 -5 -6 -10 -11 -14 -8 -3 -1 2 6 11 

6 	6 3 0 -4 -8 -11 -14 -16 -14 -6 -2 3 7 12 	15 

8 	8 4 3 -3 -6 -13 -15 -20 -17 -13 -7 0 6 12 	16 

9 	9 5 3 -2 -6 -12 -16 -21 -19 -15 -10 -3 6 12 	16 

19 
20 23 
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treatment effects are given in Table 2, together with Besag & Kempton's values, for the 
two estimation methods they presented. In correcting for bias, it was assumed that 

= 20.75Ii-il within each block in the least-squares case, and V = ô 2 I in the first-
differenced case. The conventional standard errors in the least-squares analysis are valid 
within a randomization framework, but those obtained in the first-differences analysis 
depend heavily on assumptions about V. The new standard errors, however, rely neither 
on randomization nor on any assumptions beyond V being block-diagonal. 

The method can also be applied to other neighbour analyses. For example, examination 
of the least-squares residuals suggests a model with V = 20.751'-uI within each block. 
When this is fitted by generalized least-squares, standard errors are almost identical to 
those obtained in the 'first-differences' analysis. Therefore there is little to choose between 
the two methods which are probably both nearly efficient in this application. 

32. Analysis of series of trials 
When the environment for each of a series of trials is chosen at random from a 

population, the response of a treatment averaged over the trials in which it is applied 
provides an unbiased estimate of that treatment effect. Further, if all treatments occur 
in all trials, then simple averaging provides a fully-efficient estimation procedure. But if 
treatments are missing from some trials, that is the so-called variety x environment table 
is incomplete, then this result no longer holds true and 'fitting constants' analyses have 
been proposed. The environment in each trial is either considered to be a fixed effect 
and included in the regression term leaving an error model with V = 0-

2 1, or it is considered 

Table 2. Standard errors of two sets of estimates of treatment effects in 
triticale trial from Besag & Kempton (1986) 

	

Least-squares estimation 	First-differenced estimation 

Effect 	 Conventional 	New 	 B&K 	New 

Variety 	 34, 33,34 	41,27,27 	 15, 14, 13 	15, 13, 14 
Seed rate 	 27 	 33 	 11 	 11 
Nitrogen rate 	34,34,33 	32,28,31 	 13, 12,13 	11, 12,15 
Growth regulator 	34, 33,34 	15,30,29 	 15, 14,16 	12,9, 12 

	

Degrees of freedom 	44 	 7 	 28 	 9 

Table 3. Standard errors (and degrees of freedom) 
of estimated differences, using fitting-constants 
analysis, between variety means and the mean of the 

controls in data from Digby (1979) 

103  x standard error 
Variety 	No of trials 	Conventional 	New d.f. 

	

3 	 9 	 121 	128 	9 

	

4 	 9 	 121 	90 	9 

	

5 	 17 	 93 	120 	16 

	

6 	 16 	 95 	89 	15 

	

7 	 16 	 95 	97 	15 

	

8 	 7 	 135 	85 	7 

	

9 	 16 	 95 	122 	15 

	

10 	 10 	 116 	112 	10 

Conventional degrees of freedom, 108. 
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to be a random effect and V is taken to be block-diagonal with block terms of the form 
cr2 !+rJ if the data are ordered by trial. Digby (1979) proposed and illustrated an 
augmented analysis with blocks in V of the form o.2!  + r2yyT. 

Irrespective of whether or not tables are complete, conventional standard errors are 
based on the model assumed for V. There was evidence in Digby's data for the assumptions 
in the fitting-constants analysis being inappropriate, but nor could there by any certainty 
about the assumptions in the augmented model. Table 3 gives conventional and new 
standard errors of differences between new and control varieties for the fitting-constants 
analysis of Digby's data. The method of § 2 was used without smoothing, based on a 
block-diagonal structure for V. with V= &2 j  assumed in correcting for bias. Degrees of 
freedom of the new estimators are closely related to the numbers of trials in which 
varieties occur, as are the conventional standard errors, but not the new standard errors. 
Rather, their variability is evidence for varieties having different error variances. Very 
similar results are obtained from paired t-tests between control varieties and each new 
variety for the trials in which it occurred: in the case of variety 5, which was grown in 
all trials, the results are identical. 

Degrees of freedom are sufficient in this example for smoothing to be unnecessary. 
When this is not the case, varieties can be ordered according to elements in , for example, 
and (2) used to improve precision. 
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APPENDIX 

Proof that smoothing methods yield positive-semidefinite matrices 

The estimate V defined by (1) is positive-semidefinite because, for any n-vector x, 

xTx 
= 	

{ kT2 0, 
k=—I  

where i and iV are vector shift operators defined by 

lxx.--.

0
(ix)1 = 

 I + n  

(i = 1), 
(i=2,..., n — 

 
I), 

(1 = 

xl + x 2  
(Ax)1 = x±i 

0 

(i= 1), 
2,..., n — i), 

(i=n). 

Also V defined by (2) is positive-semidefinite because 

X  x = p{(Ax) Tê} 2  ' 0, 

where A is a permutation operator on the elements of x, and p,.. is its corresponding proportional 
occurrence. Permutations are generated by exchanging x 1  and x 2  with probability p, exchanging 

X2 and x3  with probability p/ (l —p) if x 1  and x2  are unchanged and otherwise leaving them 
unchanged, exchanging x 3  and x4  with probability p/(l —p) if x 2  and x3  are unchanged and 
otherwise leaving then unchanged, and continuing with this rule until x,, is reached. The prob-
abilities that xi  for i + 1, n is in positions i — i, i or i+ 1 are p. 1 —2p and p respectively. By 
evaluating pairwise probabilities for x 1  and x the result is established. 
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SUMMARY 

Estimators are obtained for EDq, the dose at which q percent of subjects respond in quantal 
dose-response situations, when information about the tolerance distribution is minimal. Among the 
options considered are simply that the distribution exists, or that it is unimodal, "bell-shaped", or 
symmetric. An example shows the extents to which ED50 is estimated less precisely than in probit 
analysis. 

Keywords: Bell-shaped distribution; Bootstrapped confidence limits; Likelihood- based confidence 
limits; Linear constraints; Pool-adjacent-violators algorithm; Probit analysis; Symmetric distribution; 
Unimodal distribution 

I. Introduction 
The standard quantal dose-response situation is where, for i = 1, . . . , n, t 1  different subjects 
are given dose x, of a substance and r, respond. The important feature is that the effect of 
the substance on a subject is measured on a binary scale, response or non-response. Analysis 
is, classically, either by probit analysis or logit analysis. In either case it is assumed that each 
subject has a tolerance level and a dose will elicit a response if and only if it is above this 
level. If subjects are chosen at random from a population, then r, is binomially distributed 
with expectation t i pi , where p, is the proportion of the population with a tolerance level below 
x. Probit analysis further assumes that the tolerance distribution is normal, either on the 
dose scale or, more commonly, on a log-dose scale and parameters are conventionally estimated 
by maximum likelihood. In logit analysis, instead the distribution function is taken to be 
logistic and the parameters are estimated by either minimum x 2  or maximum likelihood. The 
results are usually summarised in terms of ED 50, the dose at which 50 per cent of subjects 
respond, although EDq for values of q such as 10 or 99 are also used occasionally. In most 
situations the results obtained by the two methods are very similar (see for example Finney, 
1971, pp.  47-52). 

Advances in computing have made it progressively easier to analyse quantal dose-response 
data in alternative ways, but the classical methods have persisted. Some efforts have been 
made to reduce the dependence of the estimate of EDq on a specific tolerance distribution. 
A series of papers have advocated more flexible parametric models for the distribution, see 
for example Morgan (1985). Miller and Halpern (1980) extended to quantal dose-response 
situations the techniques for robust estimation of a location parameter. The estimate of ED50 
they obtained is insensitive to data at extreme dose levels, but depends on the tolerance 

t Address for correspondence: AFRC Unit of Statistics, University of Edinburgh, King's Buildings, Edinburgh 
EH9 3JZ, Scotland, UK. 
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distribution being symmetric. Another strategy is to analyse the data making only minimal 
assumptions. If the tolerance distribution is simply assumed to exist, then its integral, the 
response function, is monotonically non-decreasing. Ayer, Brunk, Ewing, Reid and Silverman 
(1955) developed the "pool-adjacent-violators" algorithm as a solution to this problem. (The 
algorithm has since found application in many other areas, for which see Barlow, Bartholomew, 
Bremner and Brunk (1972).) Schmoyer (1984) assumed further that the tolerance distribution 
is unimodal, and therefore that the response function is sigmoidal. 

The approach of minimal assumptions is developed further in this paper. Ranges of possible 
constraints on the response function are considered. The derivation of estimates for EDq, 
together with confidence limits, are discussed. An example is used to show how the assumptions 
affect the precision with which ED50 is estimated. 

2. Theory 
The minimal assumption that can be made about the tolerance distribution is that it exists. 

Therefore the response function is monotonically non-decreasing. The order constraints placed 
on the p's are given in the appendix, under the assumption that the x's have distinct values 
and are in ascending order. The values of the p's which maximize the log-likelihood 

L = 	ri  In p 1  + 	( t 1  - r1 ) In(l - pt), 

subject to the constraints, can be obtained in a finite number of steps using the "pool-adjacent- 
violators" algorithm. In essence, if any two adjacent observed proportions are out of order, 
that is r1 /t 1 > 	1/ti + 1' then the observations at these doses are pooled to form a block with 
(r 1  + r 4  ) out of (t i  + 	) subjects responding. Further, if any two adjacent block proportions 
are out of order, then the observations in them are pooled to form a new block. The process 
is continued until all the block proportions are in ascending order. Cran (1980) has written 
a Fortran implementation of the algorithm. 

For illustration, consider an artificial example in which 0, 0, 2, 5, 10, 17, 14 and 17 out of 
20 subjects respond at 8 equally-spaced dose levels. The best monotonic fit involves pooling 
responses of 17 and 14, and results in estimated probabilities of 0.0, 0.0, 0.1, 0.25, 0.5, 0.775, 
0.775 and 0.85. 

The fitted p's often look unsmooth because they increase in an irregular manner, and this 
has been considered to be a disadvantage of the method. The response function could, 
additionally, be constrained to be differentiable one or more times. However this does not 
improve the smoothness because the constraints can be satisfied without changing the fitted 
values. If a limit were placed on the magnitude of a derivative then this would improve 
smoothness, but in most situations the selection of a value for such a limit would be totally 
arbitrary. 

An extra assumption, that the tolerance distribution is unimodal, should improve regularity 
in the p's and bring us closer to the results obtained in probit analysis. Biologically, it may 
be considered to be a reasonable assumption if all tolerances belong to a single population. 
This, and succeeding assumptions, are not transformation invariant, however; different results 
can be obtained for example on a log-dose scale than on the original scale. The response 
function is constrained to be sigmoidal and implies the sets of linear constraints on the p's 
which are given in the appendix. This situation was considered by Schmoyer (1984); according 
to where the point of inflexion occurs, there are (n - 1) possible sets of constraints. Each set 
of constraints defines a convex polytope in the space of p, within which the log-likelihood 
has to be maximized. Therefore, (n - 1) optimization problems have to be solved before the 
best-fitting p's are found. The likelihood surface is convex, so within each convex region a 
unique maximum exists which can be found by a general iterative optimization procedure 
(see for example Fletcher, 1981, pp. 105-117). It is unfortunate that no simple extension of 
the "pool-adjacent-violators" algorithm exists. However, the problem is well structured: the 
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matrix of second derivatives of L with respect to the p's is diagonal and the constraints 
matrix is banded, having non-zero elements only near the diagonal. 

The monotonic fit in the illustration is not sigmoidal because the increments (0.0, 0.1, 0.15, 
0.25, 0.275, 0.0, 0.075) are not unimodal. The best way of satisfying the constraints is to place 
the point of inflexion at the sixth dose and estimate probabilities as 0.0, 0.0, 0.1,0.25, 0.5, 0.8, 
0.8 and 0.8. 

To further strengthen the assumptions we could constrain the tolerance distribution to be 
differentiable with two points of inflexion, one on either side of its mode. The result is a 
"bell-shaped" tolerance distribution and yet-more regular increments in the p's. The 
constraints on the p's are again linear, there are (n - 3)(n - 2)/2 + 2 sets according to where 
the points of inflexion in the tolerance distribution occur. These are given in the appendix. 
However, they are weaker than the constraints on the tolerance distribution; p's which satisfy 
a set of constraints may not have a corresponding bell-shaped tolerance distribution. 

The sigmoidal fit in the illustration is not bell-shaped because the increments (0.0,0.1, 0. 15, 
0.25, 0.3, 0.0, 0.0) are firstly convex, then concave, convex and concave again. This is shown 
by the second differences of the p's (0.1, 0.05, 0.1, 0.05, —0.3, 0.0) decreasing, increasing, 
decreasing and finally increasing. The best bell-shaped fit, to four decimal places, is 0.0, 0.0, 
0.0953, 0.2605, 0.4955, 0.8, 0.8 and 0.8. 

The approach could be taken further, constraints could be placed on higher-order differences 
of the p's to reflect properties of higher-order derivatives of the normal distribution. However, 
unless there are a lot of dose levels, the extra constraints will most likely have little or no effect. 
Also, the number of optimization problems to be solved continues to multiply. 

Further constraints are obtained if the tolerance distribution is assumed to be symmetric. 
This is an important feature of the normal distribution, although one that often lacks any 
biological basis. To obtain constraints on the p's appropriate to the above assumptions in 
conjunction with symmetry it is necessary to reorder the data. If the point of symmetry is at 
a dose of y and a particular dose x i  exceeds y, then x 1  is replaced by 2y - x i  and r• by t 1  - r,. 
The observations are sorted into ascending order of x, and if two x's are equal then the 
observations at these doses are pooled. 

The constraints appropriate to symmetry combined with monotonicity are given in the 
appendix. For a particular point of symmetry the best-fitting p's can be found by using the 
"pool-adjacent-violators" algoithm again. It is sufficient to consider n(n + 1)/2 + I points of 
symmetry, one in each interval formed by the points (x 1  + x)12 forj ? i, because, as y is moved 
within each interval, the order of the doses remains unchanged. 

The monotonic fit in the illustration is not symmetric. For example, if the point of symmetry 
lies between 5 and 5.5, where dose levels are 1, 2.....8, then the reordered fit is 0.0, 0.0, 0. 15, 
0.1, 0.225, 0.25, 0.225 and 0.5. This turns out to be the best point of symmetry, and on the 
original scale gives estimated probabilities of 0.0, 0.0,0.125,0.2333,0.5,0.7667,0.7667 and 0.875. 

The constraints appropriate to symmetry combined with, either a unimodal or a "bell-
shaped" tolerance distribution are also given in the appendix. In the first case there is only 
one set of constraints for a specified point of symmetry, whereas in the second there are (n - 1) 
sets, dependent on the positions of the points of inflexion of the tolerance distribution. To 
maximize the likelihood, in either case, it is necessary to find the best point of symmetry. 
Locally-best points may exist, so some form of grid search is advisable. 

For the illustration, the best points of symmetry are 5.37 and 5.23 in the two cases, with 
estimated probabilities of 0.0, 0.0, 0. 119, 0.23 8, 0.3978, 0.674, 0.793 and 0.912 for the sigmoidal 
constraints and 0.0, 0.0723, 0.1447, 0.2170, 0.4265, 0.7502, 0.8225 and 0.8948 to satisfy a set 
of bell-shaped constraints. 

Whichever assumptions are made, once the best-fitting p's have been obtained, an estimate 
of EDq is required. Schmoyer (1984) obtained one by linear interpolation. An approach more 
in keeping with the spirit of this paper is to define EDq to be the range of doses at which the 
response rate can equal q without either the constraints being violated or the log-likelihood 
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being reduced. For some assumptions this range can be obtained quite simply. For example, 
in the monotone case EDq is a single interval with lower and upper limits of 

	

min 1x1I,+1  q} and 	max Ix i  I _ 1  q} 
i1 ... n 	 i=1 ... n 

respectively, where x 0  and x, 1  are taken to be —co and co. In general, it is necessary to 
include p at dose z as an additional variable in the optimization problem, and by trying 
different values for z with p set to the value q, find which do not give a reduced log-likelihood. 

The procedure can be extended to find likelihood-based confidence limits for EDq. A notional 

95% range can be defined as the range of doses at which the response rate can equal q without 
either the constraints being violated or the log-likelihood being reduced by more than 1.92 

(obtained as x(9S %)). The validity of these limits rests on the asymptotic properties of 
maximum likelihood estimation, for which it is sufficient that the number of doses is held 
fixed as the number of subjects is increased and that none of the constraints is active for the 
true values of the p's. These conditions ensure that the estimates of the p's have standard 
asymptotic properties. However, their appropriateness is open to question in small-sample 
applications where constraints will often be active for the fitted p's. 

Confidence limits may alternatively be obtained by simulation, either using the observed 
response rates, or the fitted rates as advocated by Schmoyer (1984). In the first case this is 
bootstrap sampling and in the second case it is model-based sampling. In bootstrap sampling 
a new data set is generated with r' binomially distributed with expectation rL  out of t, for 
= I..... n, and EDq is estimated as above. If this procedure is repeated 399 times, for example, 

with independent simulations, then the tenth smallest and tenth largest estimates provide 
approximate 95% confidence limits for EDq. The exactness of the limits rests on a symmetry, 
or pivotal, condition, for which see Buckland (1984). 

3. Example 
The data to be used for exploring the methods are the responses of five batches of about 

fifty insects to a series of concentrations of an insecticide, rotenone. A sixth batch with zero 
response at zero dose has no effect on the analysis on a log-transformed scale, and has therefore 
been omitted. The results were reported by Martin (1942) and have been used as a numerical 
example by Finney (1971, pp.  28-38). The data are given in Table 1. With dose In-transformed, 
the fit of the probit model is very good. The x2 goodness-of-fit statistic, based on the difference 
between observed and fitted values, takes a value of 1.6 which is well within the range of 
values of a x2  distribution with 3 degrees of freedom. Morgan (1985) fitted a cubic logistic, 
but found that a logistic curve gave as good a fit. The fitted probit response function is plotted 
together with the data in Fig. le. The results of a logistic fit are almost identical. The dashed 
lines show the best-fitting curves associated with the likelihood-based 95 % confidence limits 
for ED50, that is the curves which pass through the most extreme values of ED50 subject to 
the log-likelihood being reduced by no more than 1.92. Bootstrapped confidence limits were 

TABLE I 

A test of the toxicity of rotenone (Martin, 1942) 

In-dose (x) 	 no. of insects (I) 	 no. responding (r) 

	

0.96 	 50 	 6 

	

1.34 	 48 	 16 

	

1.63 	 46 	 24 

	

2.04 	 49 	 42 

	

2.32 	 50 	 44 
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Fig. I. For a range of assumptions about the tolerance distribution, observed probabilities of response r 1/i 1 ( x) and estimated probabilities of response P 
plotted against In-dose x i  for i = I..... 5. Two interpolations between experimental doses show the limits of EbSO. Estimated probabilities associated 

with likelihood-based 95% confidence limits for Eb50 are also plotted (----). The tolerance distribution: (a) exists, (b) is symmetric, (c) is unimodal, (d) is unimodal 
and symmetric, and (e) is normal. 
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TABLE 2 

Estimates and hootstraped confidence limits for ED50 on a in-dose scale for 
a range of assumptions about the tolerance distribution 

Assumptions 	 Eb50 	 95% confidence limits 	 width 

none 1.34-1.63 1.34-2.04 0.70 

symmetric 1.37— 1.63 1.34-2.04 0.70 

uniniodal 1.59— 1.63 1.34— 1.88 0.54 

unimodal and symmetric 1.57 1.45— 1.68 0.23 

normal 1.58 1.48— 1.67 0.19 

obtained from 399 simulations. These are given in the final row of Table 2, and are almost 
identical to the likelihood-based limits. 

The same procedures were followed in estimating ED50 using the reduced assumptions 
about the tolerance distribution discussed in Section 2. A Fortran subroutine, E04 VDF, in 

the NAG (1984) subroutine library was used to carry out the optimizations. For this example 
the results when a "bell-shaped" distribution was assumed were identical with those for the 
weaker assumptions of a unimodal distribution. The results are presented for four combinations 
of assumptions: when the tolerance distribution simply exists, is symmetric, unimodal or 
unimodal and symmetric. The best-fitting curves are plotted respectively in Figs. Ia, b, c and 
d together with the fits that give 95% confidence limits for EDSO. The estimates of EDSO and 
bootstrapped 95% confidence limits are given in Table 2. There is very close agreement 
between the results for the two methods of obtaining confidence limits, which suggests that 
asymptotic properties are being well approximated. 

It can be seen in Table 2 that the width of the confidence interval for ED50 shortens as 
the assumptions are strengthened. For this example the combined assumptions of symmetry 
and unimodality produce limits almost as tight as the normal assumption. The width of 0.23 
appears to be the limit of precision achievable using constraints obtained from derivatives of 
the response function, because the "bell-shaped" assumption provides no additional precision. 
In the probit model further assumptions are made, for example the points of inflexion in the 
tolerance distribution are fixed at response rates of 0.17 and 0.83. Therefore the confidence 
interval obtained in probit analysis may be expected to be shorter than that obtained in any 
of the distribution-free approaches. The relative improvements in precision made by the 
different assumptions depend on the data. In the example it is the combined assumptions of 
the tolerance distribution being unimodal and symmetric that has the largest effect. IfEDlO had 
been estimated, then the difference between probit analysis and the weaker assumptions would 
have been even greater, the distribution-free approaches would all have resulted in interval 
estimates of EDIO with no lower limits. 

The assumptions in probit analysis are not the strongest set that can be made. Indeed it is 
a somewhat arbitrary choice to assume that, before data have been collected, everything is 
known about the tolerance distribution except for two parameters, about which nothing is 
known. The preceding methods have been based on less being known about the distribution; 
the alternative approach is to claim that, not only is the form of the distribution known, but 
also the parameters have values which are known approximately. This Bayesian approach 
may be contrasted with Disch's (1981) model, which is Bayesian but nonparametric. If, for 
the sake of argument, the prior distribution of ED50 is normal with mean 1.60 and standard 
deviation 0.05, then the posterior distribution is approximately normal with mean 1.59 and 
standard deviation 0.036. A 95% interval for ED50 has a width of 0.14. The most extreme 
case is where ED50 is known precisely before the experiment, which therefore provides no 
further information, and the interval width is zero! 
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It is evident from Figs. la—d that estimates of ED50 are only influenced by data at doses 
near to 50% response. This can be illustrated by adding to the data set a single positive 
response at In—dose z, and observing the effect on ED50 as z is varied. Table 3 gives the 
changes in ED50, from those given in Table 2, for values of z over the range of administered 
doses. As the assumptions about the response function are strengthened, the range spreads 
for which the added point exerts an influence on ED50. In probit analysis, the influence persists 
indefinitely, which shows the method's sensitivity to outlying observations, a feature which 
Miller and Halpern (1980) sought to reduce. 

TABLE 3 
1000 x change in the left and right limits of ED50 with the addition of a single positive response 

at In-dose z, for a range of assumptions about the tolerance distribution 

Assuniplions 	 z = 	0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

none 0,0 0,0 0, 	0 0, —229 0, —29 0,0 0,0 0,0 0,0 
symmetric 0.0 0,0 0, 	0 0, 	0 29, —29 0.0 0,0 0,0 0,0 
unimodal 0,0 - 1,0 —2, —28 —6, 	—40 —13, —46 0,0 0,0 0,0 0,0 
unimodal and symmetric 0 0 —15 —8 —4 —2 - I 0 0 
normal —10 —9 —7 —5 —4 —2 —2 - I - 

4. Discussion 
The estimates of EDq obtained by tolerance-distribution-free methods only depend on data 

close to the q percent response rate. This is both the strength and weakness of the method. 
The estimators are robust, but fail to summarize all the data. In probit analysis, the estimator 
of ED50 also estimates the mean, the mode, and many other measures of location of the 
tolerance distribution. If the distribution were skew then the estimator would probably be as 
much influenced by the mean as by the median, and therefore it is misleading simply to regard 
the estimate as being of ED50. If a more general measure of location had been used then the 
differences between the results obtained in probit analysis and with distribution-free methods 
would have been much less. However, whatever method of analysis is used, if the experimental 
subjects are not typical of the population about which inference is to be made, then estimates 
of ED50 can be severely biased. 

The distribution-free methods can be extended to estimates of relative potency using parallel 
assays, and to multiple explanatory variables. There are also implications for optimal design. 
The same principles could be applied to other analyses where the required statistics can be 
estimated without certain assumptions being made. 
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Appendix: Constraints on p's 
Define 	Api = p1 - p - 	 for i = 2,..., n, 

	

A 2 	 pi_1+ 2 	(x 1  - x 1 _ 2) 	(x 1  - x t) -  
(x 	- x 1 _ 2 ) 	(x1 1 - x 1 _ 2 ) 

for i=3,...,n 

	

3 	 (Xi —x 1 _ 2 )(x 1 —x 1 _ 3) 
and 	Ap 1 =p1 — 	 pi-1 

(Xi - 1 - x_ 2 )(x 1  —x 3 ) 

+ 
(x 1  - x 1 . 1)(x 	

P1-2 
- x 3 ) 	 (x 1  - x 1 1 )(x 1  - x12) 

(x1_ I - x_ 2 )(x 2  - x 1 _ 3) 	(x 1 - x_3)(x2 - x 1 _ 3 ) 
for 	i=4,..., n. 

When the tolerance distribution simply exists the set of constraints is: 

Pi 

	

Ap1  0 	for i = 2..... n, 

and 	p<l. 

When the tolerance distribution is unimodal there exists a separate set of constraints for each 
value of s from 2 to n: 

Pi O, 

AP2 1> 0 ,  

for i=3, ..., s, 

for i=s+1, .... n, 

Ap 0, 

and 	p<l. 

By convention, if s = 2 then there are no constraints of the form L 2p, > 0, and if s = n then 
there are no constraints of the form it 2p 0. If the tolerance distribution is "bell-shaped", 
then each pair of values of s and t, for s = 3..... n - 1, t = s + 1,..., nor s = t = 3 or n, defines 
a set of constraints: 

Pt ?0, 

	

Ap 3 >1  0 	unless s = 3, then A 2 
P3<1 0  if t =3  

or Etp 3 0 if t4, 

	

A3 
pi 	0 	for i=4,  ..., s, 

	

zO 	for i=s+l,...,t, 

	

0 	for i=t+l,...,n, 
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A 2p < 	0 	unless t = n, then / 2 p 0 if s = n 

or t\p. 1 ?O if sn-1, 

Ltp n 	0, 

and 	p<l. 

When the tolerance distribution is symmetric about a dose y, without any other assumptions, 
and the x's have been reordered as explained in Section 2, the set of constraints is: 

Pi 0, 

	

LpO 	for i=2..... n+1, 

where x, 1  is defined to be y, and p,,, 1 to be -. If, the tolerance distribution is also unimodal, 
then the set of constraints becomes: 

Pi ?0, 

	

Mp,0 	for i=3,...,n+l, 

P. +1 ?0. 

When the tolerance distribution is both symmetric and "bell-shaped" there is a separate set 
of constraints for each point of symmetry y and each value of s between 3 and n + 1: 

Pi ?0, 

Ap 3 O, 

	

0 	for i = 4, ..., s, 

	

0 	for i=s+l,...,n+l, 

A 2  p 1  ?O 

/pn+1 >1 O. 
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Suinriary 

An algorithm is proposed for estimating the value of a definite integral in a regression model, 
subject to the constraint that increasing the value of any observation does not decrease the esti-
mated value of the integral. It is shown that the estimator is consistent and asymptotically un-
biased. It also has minimum variance in the special case of simple linear regression. In estimating 
the average milk yield of cows in 100-day periods, using monthly observations and various non-
linear regression functions, the method produces estimates with lower mean square error than 
either least squares regression or simple averaging. 

Key words: Cobby and Le Du's curve; Inverse quadratic; Milk yield; Wood's 
curve. 

1. Introduction 

Regression models provide a means of summarizing data and of estimating the 
values of parameters or functions of parameters. Sometimes definite integrals 
of regression functions are of specific interest. For example, curves fitted to data 
on recorded milk yield of a cow over time are integrated in order to estimate the 
yield during given periods of the lactation. Fig. 1 shows least squares fits to data 
from a single cow of three commonly-used three-parameter models: WOOD'S (1967) 
curve ,91t52C_53t, COBBY and LE Du's (1978) curve ,91 (1 —e') —192t, and the in-
verse quadratic curve t/(191  + 192t + #3 t2) which is a special case of a general class of 
curves proposed by NELDER (1966). Here t denotes time since calving and fi is the 
3-vector of parameters The equations are all non-linear, and so were fitted by a 
numerical optimization routine. There is evidence for positive correlation between 
consecutive residuals. However, if this is assumed to be a result of correlated 
errors, rather than lack of fit of the regression models, then correlations are 
sufficiently small for least squares to be a reasonably efficient estimation pro-
cedure. 

The ô-contribution of an observation to an estimator is defined in this paper to 
be the rate of change in the value of the estimate with respect to a small increase 
in value of that observation. When estimating a definite integral it may be 



35 

30 

25 

10 

5 

0 
0 

20 

0 

rz 15 

326 	 C. A. GLASBY: Regression Definite Integrals 

thought undesirable that any observation makes a negative s-contribution. 
Fig. 2 (a—c) shows the ö-contribution, for the data and curves in Fig. 1, of ob- 
servations at various times on estimates of average yield in 100-day periods, each 

0 	5 	10 	15 	20 	25 	30 	35 	40 
time (weeks) 

Fig. 1. Milk yield of an individual cow in a single lactation plotted against time since calving; 
observed milk yields on single days (X)  and least squares fits of Wood's curve ( ), Cobby and 

Le Du's curve (— — —) and an inverse quadratic curve (.....). 

Fig. 2. The 6-contributions to estimated mean yield in each third of lactation (that is the rate of 
change in the value of the estimate resulting from a small increase in value of an observation) for 
the data plotted in Fig. 1, plotted against the time of the observation, using Wood's curve ( 
Cobby and Le Du's curve (— — —) and an inverse quadratic curve (.....); fitting by conventional 
least squares to estimate yield in days 0-100 (a), 100-200 (b) and 200-300 (c), and with restric-
tion to observations with positive 6-contribution, using the algorithm, to estimate yield in days 
0-100 (d), 100-200 (e) and 200-300 (f). 
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of which covers one third of lactation. In all cases, there are times at which an in-
crease in yield would depress the estimated average yield in a period. For example, 
in Fig. 2(a) it can be seen, most particularly with Cobby and Le Du's curve, that 
an increase in an observation at more than 35 weeks after calving would reduce 
the estimated milk yield in the first 100 days of lactation. 

The simplest way of overcoming the problem of negative (5-contributions is to 
estimate the integrals directly from the data without employing a regression 
model as an intermediate step. In the example, average milk yields could be 
estimated by linear interpolation between data points. This performs reasonably 
well with weekly data, although less well in situations where yields are recorded 
only monthly. Further, knowledge about smoothness, which is implicit in the 
regression models, is not being used. 

An alternative approach, which will be pursued in this paper, is to retain the 
parametric curves but constrain the estimation procedure so that observations 
can only make positive (5-contributions to the integrals. The proposed algorithm 
consists of fitting the curve by least squares to all the data, discarding observations 
which make negative (5-contributions, and refitting. This is done repeatedly until 
all remaining observations make positive 6-contribution and these are used to 

estimate the integral. 
The algorithm fails if a point is reached at which there are fewer observations 

than there are parameters to be estimated. Obviously, this will always occur if no 
estimator exists which meets the specifications. Unfortunately, the algorithm 
may also fail when estimators do exist. These issues will be examined further. 
The theory underlying the method will be considered in section 2, before returning 

to the example in section 3. 

2. Theory 

The steps of the algorithm are as follows: 

Find 0 , by numerical optimization in non-linear cases, which minimizes 

( 	f)T W (y —f) with respect to P. Here y is the n-vector of observations, f is 

the n-vector of fitted values which are functions of the rn-vector j9 of unknown 

parameters, and W is an nXn, diagonal 0-1 matrix (set initially to the 

identity matrix). 
For the specified integral, a function of parameters, a =g(j9) say, the change in 

= g()) resulting from small changes ((5y) in the observations, is approximately 

u3y). The n-vector of (5-contributions, u, is calculated as W(TT)_1  z 

where z is the rn-vector t9g/8 and X is the n X rn matrix atafi T  both evaluated 

at fl. Alternatively, u can be derived numerically by perturbing each observation 

in turn and re-estimating /9. 
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if all elements in u are non-negative then stop, otherwise change Wii to zero 
if ui is negative. 
If in or more elements in W are non-zero then return to step (1), otherwise the 
algorithm has failed to find an estimator of o satisfying the conditions. 

Because discarded observations are never re-introduced the algorithm will take 
at most n - in + 1. iterations. 

In the case of simple linear regression, this algorithm will always find the 
estimator of oc with the minimum variance among all those which are linear, 
unbiased and which allow no observation to make a negative s-contribution, 
provided that at least one such estimator exists (see the Appendix). No estimator 
exists which meets these conditions when the definite integral is centred outside 
the range of values of the explanatory variable. Fig. 3 shows the estimates of the 

VA 

6H 	I
* 

5- 	 N 

0 	1 	2 	3 	4 	5 	6 
A  

Fig. 3. A plot of y against x in simple 
linear regression, an illustration of the 
new method using an artificial data set; 
data (*), least squares regressions to sub-
sets of data (— — —) and the estimated fit 
using the new method with the restric-
tion to data with positive 6-contribution 

4 

3 

2 

fitted values (f) obtained for an artificial set of six observations with explanatory 

variable Xj = i. Between x = 1 and 1 -, / is estimated as a linear combination of yi 

and ya,  then up to x = 1 -, Y3 is also used and / is the least squares fit to the first 

three observations. Between x =2 and 4 the fit is that obtained by conventional 
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least squares regression. Overall, the fit is piecewise linear, and is a form of moving 
average, but with varying spread. Only local observations are used at the ex-
tremes, whereas the averaging is over all observations at the centre of the x-rang. 
This is appealing because more is known about the adequacy of the linear model 
in the middle of the x-range than at the extremes, and commensurately more use 
can be made of it. 

In multiple regression, if the algorithm finds an estimator, then it is linear and 
unbiased, but it is not necessarily the one with minimum variance. It would be 
possible in some cases to reduce the variance of the estimator found by the 
algorithm by conducting a local search, such as reintroducing previously discarded 
observations into the fitting procedure. If the algorithm fails to find an estimator 
this does not imply that no such estimator exists. The best linear unbiased 
estimator, Li = u "y, provided one exists, will always be found by minimizing uTu, 

subject to XT,u = z and u 0 (see the Appendix). This is a quadratic programming 
problem, for which algorithms exist (see for example FLETCHER, 19812 pp.  79-101). 

As in the case of simple linear regression, no slope estimator exists which satisfies 
the constraints when the integral is centred outside the convex hull of the x-values. 
Within this space, the results obtained from either the algorithm or the quadratic 
program have the same qualitative features: at the extremes of the space only 
local observations are used by the estimator, but at the centre all observations 
are used. 

When the regression function is non-linear, the quadratic programming formu-
lation cannot be used because X and z are functions of 9. Therefore there is no 

alternative to using an algorithm such as the one above if it is required that ob-
servations cannot make negative ô-contributions. Unfortunately, if the algorithm 
fails then this does not necessarily mean that no estimator exists. If the algorithm 
succeeds then the resulting estimator is consistent and asymptotically unbiased, 
but does not necessarily have minimum variance. 

3. Result 

The method was used to estimate yield in each 100-day period of lactation from 
the data in Fig. 1 and data from a further 22 cows in the same herd (NEILSON 

et al., 1983). To ensure that the fits always conformed to the characteristic shapes 
of lactation curves, all parameters were constrained to be non-negative, except 
for 192 in the inverse quadratic curve. Further, in Cobby and Le Du's curve f93 was 
ill-defined when estimating yield after 100 days of lactation, and so it was held 
at 0.5/week, a form of lower bound. 

With these restrictions, the algorithm always succeeded in obtaining an estimate. 
Moreover, no observation within, the period of interest was ever discarded, and 
with one minor exception, all observations used in the final estimates were con- 



Table 1 

Estimated mean yields in each third of lactation, averaged over results from 23 cows for various methods, and the root-mean-square of the differ- 

ences between pans of methods for the same cow, averaged over cows and thirds of lactation. 

Weekly data Monthly data 
linear conventional new method linear conventional new method 

inter- least squares inter- least squares 3 

polation W 	CD IQ W CD IQ polation W 	CD IQ W 	CD IQ 

mean yield (kg/day) 
days 	0-100 31.4 32.1 	31.6 31.7 32.2 31.6 30.2 32.7 32.4 	31.7 31.9 32.5 	32.1 31.8 

100-200 24.4 24.6 	25.3 23.7 24.5 24.4 24.5 24.6 24.7 	25.6 23.6 24.7 	24.6 24.6 

200-300 17.5 17.1 	16.6 18.2 17.5 17.4 17.5 17.6 17.0 	16.9 17.9 17.5 	17.5 17.6 

root-mean-square 
differences with 
weekly: 
interpolation - 

LS: 	W 1.1 - 

CD 1.2 0.9 	- 

IQ 1.4 1.0 	1.7 - - 

new: 	W 0.6 0.7 	1.2 1.2 - 

CD 0.4 0.8 	1.1 1.2 0.4 - 

IQ 0.5 0.8 	1.1 1.1 0.4 0.3 - 

monthly: 
interpolation 1.5 .1.4 	1.9 1.6 1.2 1.4 1.3 - 

LS: 	W 1.5 0.9 	1.4 1.4 1.2 1.3 1.3 1.1 - 

CD 1.5 1.2 	0.8 1.8 1.4 1.4 1.3 1.7 1.1 	- 

IQ 1.6 1.2 	1.9 0.9 1.5 1.5 1.4 1.5 1.2 	1.7 - 

new: 	W 1.3 1.2 	1.6 1.5 1.0 1.2 1.2 0.5 0.8 	1.4 1.3 - 

CD 1.2 1.1 	1.5 1.4 1.0 1.1 1.1 0.9 0.9 	1.2 1.2 0.5 	- 

IQ 1.6 1.2 	1.6 1.4 1.1 1.1 1.0 1.0 1.1 	1.3 1.1 0.7 	0.7 - 

W denotes Wood's curve, CD denotes Cobby and Le Dii's curve and IQ denotes the inverse quadratic curve. 



332 	 C. A. GLASBEY: Regression Definite Integrals 

secutive. Fig. 2 (d—f) shows the new (5-contribution curves for the single cow. 
The price that has had to be paid for restrictions to positive (5-contributions is 
increased variances of the estimators, which are proportional to Ulu; the increases 
are approximately 10 0/0, 100 °Io and 40 % in the three periods of lactation. 

The new method produces estimators which are more similar for different 
curves than the conventional method. The root-mean-square of the differences 
between pairs of curves is 1.3 (the average of 0.9, 1.0 and 1.7 in Table 1) for 
standard least squares, but only 0.4 (the average of 0.4, 0.4 and 0.3) for the new 
method. Also, the new method is in closer agreement with the results of simple 
averaging, with root-mean-squares of 0.6, 0.4 and 0.5 for the three curves. 

Also given in Table 1 are results obtained when the data are reduced to monthly 
observations. On the assumption that the weekly averages give the correct yield, 
the root-mean-square error for the new method is 1.3 (the average of 1.3, 1.2 
and 1.6) which is less than the value of 1.5 when either least squares or simple 
averaging is used with monthly data. It is also lower than the value of 1.4 which 
is obtained if the lactation curves are fitted only to observations in the intervals 
of interest. 

4. Discussion 

The new method of estimation makes only partial use of the regression model. 
Local smoothing is employed automatically to estimate definite integrals. The 
resulting estimators have larger variances than the conventional least squares 
estimators, but are less dependent on the specific model. 

The algorithm is not guaranteed to , find an estimator, where one exists, except 
in the special case of simple linear regression. In particular, problems may be 
encountered when certain parameters cannot be estimated from the reduced 
data set. In the example these difficulties were overcome by restricting the para-
meter space and, where necessary, holding nuisance parameters fixed. 
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Resume 

On propose tm algorithrne pour estimer Ia valeur d'une integrate dans un modèle de regression, 
avec la condition qu'une augmentation de la valeur d'une observation ne diminue pas la valeur 
estiñée de l'intégrale. On montre que l'estimateur est convergent et asymptotiquement non 
biaisé. Dans le cos de la regression Iinéaire simple, it a aussi la variance minimale. Dans l'estiination 
de la production Iaitière moyenne des vaches pour des périodes de 100 jours, en utilisant des ob-
servations mensuelles et plusieurs fonctions de regression non linéaire, Ia méthode none donne des 
estimateurs avec tine erreur quadratique moyenne plus basse que celle de la regression des rnoindrcs 
corrés, ou d'une moyenne simple. 
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Appendix 

Proof that in the case of simple linear regression the algorithm finds the linear unbiased estimator 
with minimum variance among those which allow no observation a negative 6-contribution 

To be unbiased, the linear estimator, uTy,  ofm =Z T # must satisfy XTu=z,since the expected value 

of y  is X. Therefore, the best estimator minimizes uTu  subject to XTu=z  and uO. By intro-

ducing Lagrangian multipliers, the problem simplifies to minimizing 

uTu_(uTX_zT) 

without constraint, where 2 and  are rn-and n-vectors of constants. The solution is u=(X2+y)12, 
which is of the form obtained by the algorithm if 2 =2(XTWX)-1 z and y = (117_J) XA. At success- 

ful termination of the algorithm u satisfies the constraints and so is primal feasible. Also, the Con-
dition uTy=0  is satisfied. Therefore, to prove optimality, it is sufficient to show that yO  and so 

is dual feasible. (See, for example, FLETCHER, 1981, pp.  46-74). 
Consider the case of simple linear regression. On the first cycle y=O and u=h(')(x), where 

hV-)( x ) =[(S —z2) + (z - 8) x]/(n,S - n 2 ) 

= x/n, 8=x/n and z 2'  =(1, z). Further, we can assume that z 	in which case u 0 if and 
only if x-<(zf —S)/(z 	=v (say). 

On the second cycle, yj= —h( 2)(x) and u=0 if x - v, and y=O  and u=h(2) (x) otherwise. 
However, the effect of removing any point x.<v is to increase the value of x at which h(x) =0 
without changing the positive sign of its slope, and therefore y RO. To see this, consider removing 

a single point, which without loss of generality may be taken to be 0. Then 

h,( 2)(x)={(S—z1)+(z (n-1)/n—) x]/((m-1) 8—n1 2 ) 

which equals zero at the point x=(z1—$)/(z (n-1)/n — fl =v (z —)/(z (n-1)/n fl v, because 
v '-O ensures that z '-S/8, and 

a 	in \2 

8= x/nu( 	x) /(n(n_1))=n2/(n_1), 

from which z (n-1)/n-. 
Therefore, because y  is dual feasible after every cycle of the algorithm, it is dual feasible at the 

solution. 
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Book Review 

RODEnTS , T., F. T. Wright, R. L. Dykstra 
Wiley 1'8, XIX, 521 pp., £ 50.00 

Order Restricted Statistical Inference. 

After BARLOW/BA'OLOMW/BREMNER/BR1JNK'S (1972) 'Statistical Inference under Order 
Restrictions' this is thescond monograph on the topic of statistical inference under inequality 
constraints of the paramete ace. Taking the former one as a basis, this book concentrates on the 
development of the field after 72. The considerable amount of research in ordered inference to 
which the authors themselves con • buted a significant part, is illustrated by the number of 800 
references in the reviewed monograph ompared with 300 in Barlow et al. 

The contents: 1. Isotonic regression, Tests of ordered hypotheses—The normal means case, 
3. Approximations to the 2  and R2  distrib on, 4. Tests of ordered hypotheses—Generalizations 
of the likelihood ratio tests and other procedu , 5. Inferences about a set of multinomial para-
meters, 6. Duality, 7. Inferences regarding distrib ions subject to 'shape' restrictions, 8. Condi-
tional expectation given a a-lattice—projections in a ore general setting, 9. Complements. 

Emphasis lies on mathematical properties of the disc sed procedures, the style of large parts 
of the book is characterized to a certain extent by the folio ng quotation: 

Theorem 4.2.6. Let y, vERk. If (c,v)< =0, then 

c (It+Y v) =xc(fL) for all  

If (c, v), -0 ((c, v).. <0), then n, Cu +yv) is increasing (decreasing) in with lim [' ( 4u +yv)] = 

=1(0) and lim [ru+yv)]=0(1). 

So the book is designed mainly for readers being interested or even invo\
irmation

ch  work in 
isotone inference. For those readers this volume represents a valuable sour  on the 
state of the art in this topic. 

R. Pincus 
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NON-PARAMETRIC LACTATION CURVES 

D. A. ELSTON', C. A. GLASBEY' AND D. R. NEILSON2t 
'Scottish Agricultural Statistics Service, University of Edinburgh, King's Buildings, 

Edinburgh EH9 3JZ 
'Edinburgh School of Agriculture, West Mains Road, Edinburgh EH9 3JG 

ABSTRACT 

Lactation curves are fitted to data as a preliminary to estimating summary statistics. Two widely quoted 
curves are ate-c' (Wood, 1967) and a(1 - e") - ct (Cobby and Le Du, 1978), each of which has 
three parameters. Restriction to either of these curves imposes limitations on the fit to the data and can 
result in biased estimation of summary statistics. Alternatively, lactation curves can be generated by the 
use of a non-parametric method which requires only weak assumptions about the signs of derivatives of 
the curves. Because the non-parametric curves are more flexible, estimates of summary statistics are less 
likely to be biased than those based on parametric models. Use of the non-parametric curves is 
particularly advantageous around the time of peak yield, where the curves of Wood and Cobby and Le 
Du are known to fit data poorly. 

INTRODUCTION 

STATISTICAL analysis of milk yields, recorded 
for individual cows at regular intervals 
throughout lactation, often involves fitting 
curves to the data. This process smoothes out 
random fluctuations and allows summary 
statistics to be estimated from the fitted 
curves. Suitably chosen summary statistics 
describe the yield from each animal and can 
be related both to biological variables, such 
as live weight and body condition, and to 
experimental treatments. Estimates of 
summary statistics may be biased if the curve 
is a poor fit to the data. This paper describes 
an alternative to the conventional approach of 
fitting parametric curves. 

The first curve to gain wide acceptance for 
fitting to data from complete lactation cycles 
(Wood, 1967) expressed the milk yield at 
time t from calving as f(t) = attse _ct ,  where 
a, b and c are parameters to be estimated. 
However, Wood's curve is not the only three-
pa'ameter model which has been used to 

t Present address: Edinburgh University Computing 
Service, University of Edinburgh. King's Buildings, 
Edinburgh EH9 3JZ. 

summarize lactation data: Cobby and Le Du 
(1978) showed that the model f(t) = a(1 - 
e') - Ct gave a better fit to their data. In 
general, Wood's curve and Cobby and Le 
Du's curve can be regarded as alternatives in 
the sense that each fits some data sets more 
closely than the other (Rowlands, Lucey and 
Russell, 1982). 

Other work on lactation curves has 
concentrated on the correlations in the errors. 
Although a detailed knowledge of the error 
structure is advantageous to make predictions 
of future milk yields (Goodall and Sprevak, 
1985), it is often not required for fitting 
lactation curves. Indeed, Cobby and Le Du 
(1978) showed that good estimates of the 
parameters of lactation curves can be 
obtained when they are fitted using 
unweighted least squares. 

For estimates of summary statistics to be 
unbiased, the form of the fitted curve must 
be sufficiently flexible to allow it to follow 
closely any trends in the data. However, 
neither Wood's curve nor Cobby and Le Du's 
curve gives a consistently good fit to data 
from high-yielding dairy cows around the time 
of peak yield (Rowlands et al., 1982). The 
lactation curves we propose are more flexible 
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and hence fit more closely to data around 
peak yield. They have no parameters as such 
but are fully described by the set of points 
which they pass through. 

To explain how we can obtain a lactation 
curve using a non-parametric model, suppose 
our data set consists of yields y, on days t,, i 
= 1 . . . n. If we were to fit Wood's, 
parametric model f(t) = at"e by least 
squares we would find the values a, b and c 
which minimize 

(athIe_11_y 1)2
1 

 

using a numerical optimization routine. 
Equivalently, we could find the set of fitted 
values (t1) which minimize (f(t 1)—y1)2  subject 
to the constraints f(t) = at'?èV 'i, i = 1 . . . n. 
In the non-parametric case, we impose 
restrictions on the shape of the curve by 
placing constraints on the signs of certain 
linear combinations of the f(t 1)'s. Having 
estimated the curve at each observation time, 
a method of interpolation is used which 
preserves the shape of the curve. Note that 
f(0) = 0 for both parametric curves, so we 
have set 1(0) = 0 in all of the non-
parametric curves. 

This method has been used previously by 
Glasbey (1987) to relax assumptions about 
the distribution of tolerances in analyses of 
quantal dose-response data, and by Johnson 
and Routledge (1985). We shall first explain 
how these non-parametric curves can be fitted 
to lactation data, and then show how to use 
the curves to estimate summary statistics. 

The different forms of lactation curve 
discussed below are illustrated by fitting them 
to data from 23 cows in the high-yielding 
Langhill dairy herd (Neilson, Whittemore, 
Lewis, Alliston, Roberts, Hodgson-Jones, 
Mills, Parkinson and Prescott, 1983). These 
animals calved in September to October, 
remained indoors throughout the study, and 
were fed ad libitum on complete grass 
silage diets (metabolizable energy 
concentration 118 MJ per kg dry matter 
(DM); protein 165 g/kg). The selected group 
contained only those animals which were free 
from veterinary intervention. For each cow, 
the data consist of total yield on individual  

days roughly at weekly intervals. In a 
separate analysis of the data, Glasbey (1988) 
concludes that, despite correlations in 
successive errors, use of ordinary least 
squares gives curves which fit well to the 
data and have valid standard errors. Data 
from cow 96 are used to give a detailed 
description of each type of curve in the 
method section below. In the estimation 
section which follows, the different lactation 
curves are compared through estimates of 
summary statistics based on data from each 
animal. 

METHOD 

Estimating fitted values at observation times 
The simplest geometrical property of a 

lactation curve is that it increases from zero 
to a peak, after which it decreases 
monotonically. This is obscured in the data 
from cow 96 (Figure 1) by random 
fluctuation, but is evident from the fits of 
Wood's curve (abbreviated below to W) and 
Cobby and Le Du's curve (CLD) in Figures 
le and if. This property may be expressed 
analytically by saying that the curve has a 
first derivative which is positive until the 
peak and negative thereafter. Derivatives of 
W and CLD are plotted against time in 
Figure 2. 

For discrete time points, we match the 
above derivative property by demanding that 
the fitted values (t) satisfy the constraints 

- (t1 ) 	0 i = 0 . . . r, 

- (t,) 	0 i = r 1 +i . . . n—i, 

for a given value r1  and where t0  = 0 and 
1(0) = 0. This is equivalent to placing sign 
constraints on first-order divided differences 
At = ((t1) - I(t))I(t1+1  - t.) of which 
further use is made below. The best choice 
of r1  is sometimes unclear, so it needs to be 
found iteratively for each plausible value of 
r, the final solution being the one for which 
the residual sum of squares (f(t,)—y 1)2  is 
smallest. The complete range of possible 
values of r1  is from —1 to n—i, where, by 
convention, if r1  = —1 there are no 
constraints of the form A 0 whilst if r1  = 
n—i there are no constraints of the form 
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FIG. 1. Lactation curves fitted to data from cow 96 (abbreviations used to describe the curves are given in Table I): 
(a) Dl, (b) D2, (c) Di (d) D3+, (e) W. (f) CLD. 
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FIG. 2. Typical examples of (a) Wood's curve, (b) Cobby and Le Du's curve, with corresponding first and second 
derivatives. 
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0. However, examination of the data 
should make it necessary to fit curves for 
only a selected range of values of r1 . Details 
of how to calculate the least squares solution 
1(t,), i = 0 . . . n, are given in the APPENDIX. 

The best fit to the data from cow 96 is 
obtained when r1  = 7, but the plot of fitted 
points against time has a rough appearance 
(Figure la). To obtain a smoother curve we 
must impose a stronger set of constraints. 

To motivate the stronger constraints, note 
that W is convex up to a point of inflexion, 
after which it is concave. On the other hand, 
CLD has no point of inflexion and is always 
convex. This can be seen by examining the 
second derivatives of these curves with 
respect to time. The second derivative of W 
is negative at first but becomes positive later 
(Figure 2e), whereas the second derivative of 
CLD is always negative (Figure 2f). 

The equivalent of second derivatives for 
discrete time points are second-order divided 
differences A = (Al,, - A)I(4 +2  - t,). If 
the A are all negative the curve will be 
convex. Conversely, if the A are all positive 
the curve will be concave. Thus the set of 
constraints 

A0 	i=0...r2 , 

A 3 	0 	i = r2 +1 . . . n-2, 

will give a non-parametric curve with a point 
of inflexion, like W. The full range of values 
of r2  to be tried is from —1 to n-2. When r2  
= n-2 there are no constraints of the form 

0, so the shape of the curve more 
closely resembles the shape of CLD. Details 
of fitting are given in the APPENDIX. The 
best-fitting curve to the data from cow 96 
using second-order constraints is obtained 
when r2  = 8 and is shown in Figure lb. 

Adding on divided difference constraints of 
higher orders results in even smoother fitted 
points of the non-parametric curves. The 
third derivative of W changes sign once, 
going from positive to negative, whereas the 
third derivative of CLD is always positive 
(the second derivative, shown in Figure 2f, is 
always increasing). Hence third-order divided 
differences A = (A +1 —A)/(t +3 —t1) need to 
be constrained to be positive for i = 0 . . . r3  
and negative for i = r3 +1 . . . n-3 to  

correspond to W. Details of fitting are again 
given in the APPENDIX. 

Analysis of data from all 23 cows showed 
that on some occasions a good fit was 
obtained when r3  = n-3 and hence all third-
order divided differences were positive. This 
case was treated separately from the general 
third-order curve because of its computational 
simplicity. Divided difference constraints of 
order greater than 3 were never used, 
although clearly the method could be 
extended. 

The curves chosen by least squares for 
cow 96, with r3  = 8, giving the best fit for 
—1 r3  n-3, and with r3  fixed at 
n-3, are shown in Figures ic and id. 

Interpolating between observation times 
Thus far we have considered only how to 

calculate least-squares estimates of milk yield 
at times when observations were made. 
However, a method is also required for 
interpolating between the fitted points. This 
method must be chosen so that the 
interpolated curve has the same geometrical 
properties as were forced onto the fitted 
points by using constraints on the divided 
differences. 

When only first-order constraints have been 
used, the interpolated curve must increase to 

convex 	inflexion 	concave 

-- X- - --- 

Time 

FIG. 3. Interpolation between fitted points when second- 
order constraints are used; x = fitted point; 	= area 
within which interpolated points must lie; 	= 
interpolated line; - - - = construction line. 
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the maximum yield and decrease from there 
on. Hence the interpolated yield (t) at a 
time t between t, and-  t 1  must lie between 
(t) and (t, ±1 ). For the curve to be 

continuous the most reasonable way of 
joining the points (t1 , (t)) and (t ± , (t, 1 )) is 
by means of a straight line. The curve is 
fully defined by the set of order constraints 
and the method of interpolation, and we 
denote it by Dl. 

When the fitted points are made to satisfy 
second-order constraints, the range of 
acceptable interpolated points is much 
reduced. Each such point in either the 
convex or the concave region must satisfy 
three linear inequalities if the shape of the 
curve is to be retained. Hence it has to lie 
inside a triangle, two of whose vertices are 
fitted points (Figure 3). Interpolation within 
each triangle must be done in such a way 
that when all of the interpolated segments 
are joined together, the whole curve is 
convex at first and then concave. There are 
many possibilities. Joining the fitted points by 
a straight line is one possibility, but the 
resulting curve always follows a boundary of 
the triangular acceptable regions. A more 
reasonable alternative is to take the lines 
through the fitted points which bisect the 
angles at the vertices of the triangles (Figure 
3). Note that, where the convex and concave 
sections of the curve meet, the acceptable 
region is a quadrilateral. Interpolation within 
this is reasonably done by a straight line 
joining the fitted points. 

Finding a method of interpolation which 
satisfies the shape restrictions when third-
order constraints have been used is more 
difficult. Each interpolated milk yield 1(t) at 
time r must satisfy four inequalities which are 
quadratic in t. However, for our data the 
fitted points at approximately weekly intervals 
varied smoothly with time. Hence any one 
smooth curve through these points would 
differ little from any other such curve. 
Because of its simplicity, we chose to use the 
method of interpolation described above when 
second-order constraints have been used and 
denote the resulting curves D3 and D3+ 
when the third-order constraints are 
respectively with and without a change of 
sign. 

A total of six different lactation curves 
have been mentioned above. On fitting them 
to our test data, it was evident that Dl and 
D2 were not sufficiently smooth to give 
plausible lactation curves. Hence we shall 
only describe the estimates of summary 
statistics arising from the remaining four 
curves. 

ESTIMATION OF SUMMARY STATISTICS 

Fitting one of the lactation curves described 
in the previous section and plotting it against 
time provides a visual summary of the data. 
However, analysis of milk yield data often 
requires the estimation of summary statistics. 
This section illustrates how estimates of milk 
yield, time and value of peak yield and rate 
of decline after peak yield can be extracted 
from the non-parametric curves. The resulting 
estimates are then compared with estimates 
made after fitting the parametric curves. 

Total milk yield may be required over the 
complete lactation cycle or some specific time 
interval, and is estimated by the area under 
the fitted curve between the appropriate 
limits. Calculation is easy for the non-
parametric curves since they consist of a 
series of straight line segments: all that is 
required is repeated use of the trapezium 
rule. 

For the non-parametric curves, time and 
value of peak yield are calculated simply by 
finding the line-intersection which has the 
largest value of f(t). 

The rate of decline in milk yield at some 
time t after peak production can be estimated 
in a number of ways. One option is to use 
the slope of the fitted curve at time t. This 
is unsuitable for the non-parametric curves, 
since they consist of a sequence of straight 
line segments and so change slope in 
quantum jumps at every point of intersection. 
A more stable estimate comes from 
calculating the divided difference {1(t+ô) - 
t(t—)1128 which is the average slope over 
the range 8 days before and after t. Larger 
values of 8 give rise to more stable 
estimates, but are affected by the non-
linearity of the relationship between milk 
yield and time. For data recorded at weekly 
intervals, we found 8 =10 days to be suitable 
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since the resulting estimate used interpolations 
on non-adjacent line segments but did not 
allow the non-linear form of the curve to 
have too great an influence. 

Total yield has been estimated for the 
intervals 90 to 120 and 0 to 244 days after 
the start of lactation. The former interval was 
chosen as it occurs shortly after peak yield 
when differences between estimates provided 
by the different curves might be at their 
greatest: the latter interval was chosen instead 
of the standard 0 to 305 days interval because 
only 11 of the 23 lactations were recorded 
beyond the first 10 months of lactation,  

whereas 22 of the 23 lactations were recorded 
up to 8 months. Rate of decline in yield was 
estimated at day 100 as this was considered 
typical of the long tail after peak in each of 
the curves (Madsen, 1975). 

Estimates of the four summary statistics 
mentioned above, averaged across all 23 
cows, are given in Table 1 for each of the 
four types of lactation curve, together with 
s.e.d.s of the means. The s.e.d.s have been 
calculated using the within-animal differences 
between pairs, of methods, thus eliminating 
the between animal component of variance. 

The highest and lowest estimates of total 

TABLE 1 
Estimates averaged across 23 cows, and within-animal standard 
errors of differences of means (22 d.f.), of (a) total milk yield 
between 0 and 244 days after calving, (b) total milk yield between 
90 and 120 days after calving, (c) peak yield, (d) time from start 
of lactation to peak yield, (e) rate of change of lactation curve at 

day 100 

Methodt 

Mean 
s.e.d. with: 

0 to 244 day yield (kg) D3+ 
W 
CLD 

Mean 
s.e.d. with: 

90 to 120 day yield (kg) D3+ 
W 
CLD 

Mean 
s.e.d. with: 

Peak yield (kg/day) D3+ 
W 
CLD 

Mean 
s.e.d. with: 

Time to peak (day) D3+ 
W 
CLD 

Mean 
s.e.d. with: 

Slope at day 100 (kg/day 2) D3+ 
W 
CLD 

D3 D3+ W CLD 

6374 6378 6400 6367 

3 
14 15 
11 12 7 

8702 876•4 8787 866•7 

3.7 
57 36 
74 45 32 

3571 3545 3493 3578 

014 
0•26 021 
033 029 0•16 

365 337 401 274 

0'9 
27 2•3 
2•4 23 16 

—0111 —0099 —0107 —0094 

0•009 
0•012 0005 
0.013 0.005 0.003 

t Abbreviations used to denote the different types of lactation curve are: D3, 
third-order constraints positive then negative (time of sign change variable); 
D3+, third-order constraints all positive; W, Wood's curve; CLD, Cobby and Le 
Du's curve. 
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milk yield are given by W and CLD 
respectively, both over the interval 0 to 244 
days and over the interval 90 to 120 days. 
The corresponding t values are 47 and 69, 
indicating that these differences are extremely 
unlikely to have arisen by chance. It is 
interesting to note that, for the 0 to 244 days 
interval, the s.e.d. between D3 and D3+ is 
also very small, whereas each s.e.d. between 
a parametric method and a non-parametric 
method is not so small. Thus, it appears that 
the features of the data that influence the 
parametric methods are different from the 
features that influence the non-parametric 
methods. 

There are also considerable differences 
between the estimates of peak yield and time 
to peak yield. Thus W has a later, and lower 
peak compared to the other three methods. 
Indeed, estimates of the time of peak yield 
appear to vary between all four methods. 
The estimate from D3+ is closer than D3 to 
CLD, whereas the estimate from D3 is closer 
to W, indicating that assumptions about the 
third derivative may be affecting the 
estimated time of peak yield. 

The estimated slopes at day 100 are most 
negative for D3 and least negative for CLD. 
Note again the systematic difference between 
W and CLD (t = 4.3) 

DISCUSSION 

The data in Table 1 indicate small but 
consistent differences between the estimates 
of summary statistics made after fitting the 
different lactation curves. This is particularly 
true of the W and CLD estimates, 
emphasizing the biases which can be caused 
by using one or other of the parametric 
curves. The non-parametric curves fit much 
more closely to the data around peak 
lactation than do the parametric curves 
(Figure 1), and so their use is particularly 
appropriate in part-lactation experiments 
which normally only last for the first 14 to 
18 weeks of lactation. 

It is difficult to decide which of the non-
parametric curves to recommend for use in 
practice. The advantage of D3+ is that there 
is only one set of constraints for which the 
least-squares solution needs to be calculated. 

However, this makes D3+ less flexible than 
D3, which requires to be refitted for different 
positions of the change of sign of divided 
difference constraints. In general, it is 
probably best to use D3, although, if 
computing time is restricted, D3+ provides a 
reasonable alternative. Enforcement of third-
order constraints is necessary to obtain 
sufficiently smooth curves. 

The non-parametric curves are not suitable 
for predicting future yields because they make 
only weak assumptions about the shape of 
lactation curves. Whether this is an advantage 
or a disadvantage depends on one's point of 
view: it certainly emphasizes the strength of 
the assumptions made in obtaining predictions 
by fitting parametric curves. The non-
parametric curves are most useful for 
estimating summary statistics in particular 
time intervals. By incorporating the smoothing 
effect of data outside the interval, they will 
tend to give better estimates than can be 
obtained from the data in the time interval 
alone. But by giving less weight to the data 
outside the time interval than do the 
parametric curves, the non-parametric curves 
will tend to give a better local fit. 

If the data display marked environmental 
or seasonal effects (which was not the case 
with the Langhill data), it may be necessary 
to modify the non-parametric models 
accordingly. For example, spring hump is 
caused by the sustained increase in liquid 
content of milk beginning when cows are first 
sent outside to graze. Thus, milk yields show 
a discontinuity which can be removed by 
dividing all the observations after that point 
by a constant whose value needs to be 
estimated from the data. In experiments, 
other effects such as initial cow weight can 
be removed as covariates in the analysis of 
summary statistics prior to the estimation of 
treatment effects. Careful attention should, of 
course, be paid to experimental designs to 
ensure the correlations between treatment 
estimates and estimates of environmental and 
seasonal effects are as small as possible. 

We have demonstrated the use of non-
parametric lactation curves by fitting them to 
milk yield data from high-yielding dairy cows. 
Because of their flexibility, the non-
parametric curves can also be fitted to milk 



NON-PARAMETRIC LACTATION CURVES 
	

339 

yields of suckler cows or milk constituent 
data. Current practice seems to be to fit W 
to these other types of data as well; yet their 
relationships with time are sufficiently varied 
that it is unlikely for a three-parameter 
model to fit them all without systematic 
departures from the data. The non-parametric 
models described above are more flexible and 
so provide a useful alternative method of 
analysis for lactation data. 
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APPENDIX 

Computation of the fitted values of the non-parametric 
curves 

Divided differences of increasing order can be 
calculated iteratively as 

= f(tJ, i = 0 . . . n, 

	

A*I 	= 	 i = 0 . . . n - (s+1), 
s=0 ... n-2, 

where observations y, have been made at times t, i = 1 
n, and f(t1) is the fitted value at time t,. 

Thus the divided differences are linear combinations of 
the f(t1)'s. Calculation of the best set of fitted values 
using least squares requires minimization of the quadratic 

	

function 	(f(t1)— y1) 2  subject to linear constraints of the 

	

form ± 	0. The solution to this problem can be 
found numerically by using the Numerical Algorithms 
Group (NAG) library subroutine E04NAF (NAG, 1987). 

The full sets of divided difference constraints used to 
fit the non-parametric curves are: 

first-order constraints (Dl) 

f(t0) = 0, 

A0fori=0...r, 

0 for i = r 1 ±1 . . . n—I, 

	

f(t,,) 	0; 

second-order constraints (132) 

f(t0) = 0, 

 0, 

A0fori=O...r, 

0 for i = r2 +1 . . . n-2, 

0 , 

	

f(t,,) 	0; 

third-order constraints (133, D3+) 

f(t0) = 0, 

	

t ) 	0, 

0, 

A0fori=0...r3 (r3 =n-3forD3+), 

0 for i = r3 +1 . . . n-3 
(no constraints of this type for D3+), 

0 , 

	

f(t) 	0. 

(The omission of a bound on A,_ 2  allows for the 
possibility of it being either negative or positive.) 

Note that the solution to the constrained minimization 
problem must be re-computed for each set of constraints 
(i.e. each value of r-) used. The residual sum of squares 
does not vary smoothly with ri  and may have more than 
one minimum. Hence a wide range of values of r, need 
to be chosen and the minimization procedure carried Out 
for each. The safest thing to do is to re-compute the 
solution for each value of r, considered feasible. A 
computer program to fit the non-parametric model, 
written in Fortran 77, is available from the authors on 
request. 
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A synthesis of single linkage 
and complete linkage clustering criteria 

Glasbey, C.A., Edinburgh, GB 	 Session P1/first pa,er 
Cluster analysis 

SUMMARY 

Single linkage clustering seeks well separated clusters, whereas 
complete linkage clustering seeks compact clusters. A method is proposed 
for combining these objectives. It is shown how this can be used to produce 
a hierarchy of clusters and to optimize, by relocation, for a fixed number 
of clusters. The methods are demonstrated on the data used by Duncan (1965). 

Keywords 
Hierarchical; Relocation; Mixed Integer linear programming. 

1. Introduction 

Single linkage clustering maximizes x hierarchically, where x is the 

minimum distance between any two points in different clusters. In contrast, 

complete linkage clustering minimizes y hierarchically, where y is the 

maximum distance between any two points in the same cluster. 

Since both criteria are desirable it is proposed, - as a new criterion, to 

optimize a combination of x and y . The gains in one parameter are 

balanced against the losses in the other by means of a function f , such 

that f(x,y) decreases monotonically as x increases, and increases monotoni-

cally as y increases, (for example, f= y-x). The synthesised criterion 

is then to minimize f , conditional on a fixed number of clusters. There-

fore clusters are sought which exhibit both "internal cohesion and external 

isolation" (Cormack, 1971, p.  329). 	Gengerelli (1963) suggested that 

clusters do not exist unless y<x . 	 - 

The criterion can be applied to hierarchical clustering, and this is 

described in §2. Because the resulting partitions are not necessarily those 

which minimize f globally, other techniques are also considered. In 93 

an algorithm is described for finding a local minimum of f , conditional 

on a fixed number of clusters, by the relocation of points. In §4 an 

approach to finding the global minimum of f is described. Finally the 

methods are applied to-the data used by Duncan (1965). 

COMPSTAT 1980 ©Physica-Vezlag, Vienna for IASC (International Association for Statistical Computing), 1980 
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2. Hierarchical Clustering 

Agglomerative hierarchical techniques (Everitt, 1974, pp  8-18) are 

commonly used methods of clustering. They do not require a specification 

of the number of clusters in the data, and for most criteria are computation-

ally quick. 	Initially every point is taken to be a cluster of size one. 

At each stage in the hierarchy two clusters are pooled, until finally every 

point is in the same cluster. The synthesised criterion pools the two 

clusters which minimize f 

Suppose that at a particular stage the two nearest points in different 

clusters are in clusters k and 2. , at a distance XkL . Let y0  be the 

largest distance within a cluster, and let z be the largest distance pq 
between a point in cluster p and a point in cluster q . Then if clusters 

p and q are pooled, f will take the value 

f 
pq 	k2. 

= f(x , 	O, pq 
max(y z )) 	if (p,q) j4 (k,2) 

and 	f k2. = f(w, max(yOszk2.)) 

where w is the nearest distance between a pair of clusters, excluding the 

pair (k,2.) . 	Therefore f is minimized by either pooling clusters k and 

2. , or pooling clusters i and j which minimize z 	, according aspq 
or f. is smaller. Thus each stage of clustering meets either the single 

linkage criterion or the complete linkage criterion, with the choice between 

them depending on the function f being used. 

This technique can be programmed by having two distance arrays, one (x) 

storing the minimum distances between clusters, and the other (z) the maximum 

distances. Initially the two arrays both contain the matrix of distances 

between points. After two clusters have been pooled the arrays are updated 

by recalculating the minimum and maximum distances between the new cluster 

and the rest, as is done in single linkage and complete linkage clustering 

respectively. The algorithm proceeds as follows: 

Step 1: Set y0  = 0 

For p,q = 1, . .., n, set m = 0, x = z 	= distance 
P 	pq pq 

between points p and q 

Step 2: Restricting to p,q with m = m  = 0 find k,k which minimize x pq 

find i,j which minimize z pq 

and w = minimum x pq , excluding xk2. 
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Step 3: Evaluate f1. = f(xk, max(y0, z.)) and fkz = f(wmax(y0z)) 

Step 4: If f 
< k9. "O = max  (yo' z1.)ii 

Otherwise y0 = max(y, zk9.), i = k, j = 9. 

Step 5: For p = 1, ..., ri with m = 0 set x. = x 	= min(x 
p 	 , x

j  ), 3-P 	p1 	ipp 

Set z. = z . 	
i 

= max(z , z. 
-p 	P1 	p jp 

Set m. = 1 
3 

Step 6: (Clusters labelled i and j are pooled. 	Resulting cluster. 

labelled i ). 	If m = 0 for more than 2 values of p go to 

Step 2. 

3. Relocation 

A second approach to clustering is to optimize an objective by relocation 

(Everitt, pp 24-30). 	Starting with a particular partition of the data each 

point is taken in turn and moved to the cluster which gives the best value 

for the objective. The process stops when a local optimum is found from 

which no single relocation can improve the objective. 

This technique can be applied in minimizing f for a fixed number of 

clusters. Among the possible starting configurations are those given by 

hierarchically clustering using single linkage, complete linkage, and the 

synthesised criterion. A reduction in the number of relocations to be con-

sidered may be achieved by realising that only the four points at the ends 

of the minimum external and maximum internal distances can possibly reduce 

f by being moved. Of these, the two points atthe ends of the minimum 

external distance need only be considered moved to each other's cluster. 

Because this substantially reduces the number of relocations to be considered 

it is possible to relocate more than one point at a time, thus improving the 

chances of finding the global minimum of f . Each of the four points is 

moved in turn. 	If any move reduces f then this is made permanent and the 

process restarts. Otherwise, for one of the points considered moved, the 

four points which now define f are moved in turn. This method can be ex-

tended up to several levels of search. So several points are moved at once, 

though the number of relocations to be considered increases rapidly with the 

number of levels. Although this method can be most naturally programmed 

using a recursive language such as Algol, I have programmed it in Fortran 
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using a chain of identical subroutines for the levels of search. 

4. Mixed integer linear programming 

A disadvantage of clustering by relocation is that it does not guarantee 

a globally best partition. For most criteria no way has been found over 

this difficulty. 	However, if f is a monotonic transformation of a linear 

combination of monotonic transformations of x and y , then the problem of 

minimizing f for a fixed number of clusters can be formulated as a mixed 

integer linear programme (i.e. the minimization of a linear function of van-

ables, some of which are integers, subject to linear constraints Monts, 

1974, p  321)). 	This can then be solved to find the global minimum of f 

Unfortunately, solving the problem in this form appears to take far too much 

computer time, though experience suggests that a specific adaptation of the 

branch-and-bound tree search (Zionts, pp 414-436) may give a solution in 

reasonable time. 

Hansen & Delattre (1978) have solved the simpler problem of globally mini-

mizing y , which is very similar to the problem of colouring the vertices 

of a graph. There is no problem in maximizing x because the single linkage 

partitions are optimal in this case. 

5. Example 

These techniques have been applied to the set of data originally 

analysed by Duncan, and subsequently used as an example by Jolliffe (1975) 

and Califski and Corsten (1979). They are the results of a bread baking 

experiment, and consist of measurements of loaf volume for 17 varieties of 

wheat. 	The treatment means were (H) 654, (P) 729, (D) 755, (C) 801, (Q) 828, 

(L) 829, (H) 846, (G) 853, (N) 861, (B) 903, (F) 908, (I) 922, (K) 933, (J) 951. 

(E) 977, (A) 987 and (0) 1030. 

16 
Because the data are one-dimensional, only the 	contiguous parti- 

tions into p clusters need be considered. The. figure shows the x and 

y values for the 120 partitions into.3 clusters. It can be seen that par-

titioning after D and after F (D,F) minimizes y to 108, although com-

plete linkage hierarchical clustering partitioned suboptimally at (D,N) 

with y equal to 127. partitioning at (M,D) maximizes x to 46: From 
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the definition of f it follows that a partition will always be preferred 

to one having a lower x value and a higher y value. Therefore only the 

partitions (D,F), (D IN), (D,A) and (M,D) can possibly minimize f . 	In 
fact, for suitable choices of f each of these partitions is optimal. For 

example, (D,A) is optimal if f = y8 - (5.4x) 8  

Contours of constant (y-x) are shown on the figure. From these it 

can be seen that (D IN) minimizes f = y - x with a value of 85. 	The 
hierarchical method found this partition at the level of three clusters, as 

did the relocation method from 10 different random starting configurations. 

Of these, three runs located the optimum using only the first level of search, 

that is moving only one point at a time, and the other seven runs required 

the second level of search. This does not guarantee global optimality. 
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In the simple example it has been established by a complete enumeration of all 

contiguous partitions. Sometimes partitions have the same values of x and 

y so there may not always be a unique optimum. 

The partition (D,N) is in many ways the best one, the clusters being 

only slightly less compact than those of (D,F), and only slightly less well 

separated than those of (M,D) . 	For this example a wide range of functions 

would have selected (D,N) . 	Therefore the result is insensitive to the 

choice of f . 	However, in other data sets different functions may give 

widely differing partitions. A choice must then be made between different 

functions. In particular it may he desirable to give greater weight to x 

because it takes a smaller range of values. More experience is needed in 

this area. 

An extension of the technique could be to minimize f without constraint 

on the number of clusters. Whereas y is always minimized by each point 

being in a separate cluster and x is always maximized by the single linkage 

partition into two clusters, f may be of assistance in establishing objec-

tively the actual number of clusters. 
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Complete Linkage as a Multiple Stopping Rule 
for Single Linkage Clustering 
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University of Edinburgh 

Abstract: Two commonly used clustering criteria are single linkage, which 
maximizes the minimum distance between clusters, and complete linkage, 
which minimizes the maximum distance within a cluster. By synthesizing 
these criteria, partitions of objects are sought which maximize a combined 
measure of the minimum distance between clusters and the maximum dis-
tance within a cluster. Each combined measure is shown to select a partition 
in the single linkage hierarchy. Therefore, in effect, complete linkage is used 
to provide a stopping rule for single linkage. An algorithm is outlined which 
uses the distance between each pair of objects twice only. To illustrate the 
method, an example is given using 23 Glamorganshire soil profiles. 

Keywords: Algorithm; Cohesion; Isolation; Soil profile. 

1. Introduction 

In many forms of clustering "two basic ideas are involved: internal 
cohesion and external isolation" (Cormack 1971, P. 329). Some clustering 
techniques seek partitions which satisfy both conditions, whereas others sim-
ply concentrate on one. Two commonly used methods, single and complete 
linkage, fall into this second category. They both take as their starting point 
a single two-way matrix of proximities, which are treated here as dissimilari-
ties, between all pairs of objects in a set. There are many ways in which this 
matrix can be constructed, given information about the objects (see, for 
example, Gordon 1981, pp.  13-32), but these do not affect the definitions of 
the methods. They can both operate agglomeratively, to produce a hierar -
chy of partitions. Initially, every object is placed in a separate cluster. At 
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each subsequent step, two clusters are selected by some criterion and pooled 
to form a new cluster, with this process continuing until all the objects are 
in a single cluster. The methods differ in the criterion for selecting which 
two clusters to pool. In single linkage the two clusters are chosen so that 
the minimum distance between any object in one cluster and any object in 
another cluster is made as large as possible in the new partition; in complete 
linkage the clusters are chosen so that the maximum distance between any 
two objects in the same cluster is as small as possible. Therefore isolated 
clusters and compact clusters are sought respectively by the two methods. 

In order to retain the benefits of single and complete linkage, while 
obtaining clusters that are both compact and well separated, Glasbey (1980) 
proposed a synthesized criterion. Partitions are found which minimize 
f(x,y), where f is a prespecified function of the minimum separation (x) 
between clusters and the maximum distance (y) within a cluster. A sensibly 
chosen function f will decrease both as x increases for fixed y and as y 
decreases for fixed x. It is important to realize that, although the results of 
single and complete linkage are unchanged by monotonic transformations of 
the distances, this is not the case with the synthesized method. Glasbey 
(1980) gave algorithms for agglomerative clustering and for relocating points 
between clusters in order to find a locally-optimal partition for a fixed 
number of clusters. 

In this paper I obtain the best partitions according to a specific criterion, 
without constraining the number of clusters. These are shown to be the 
partitions produced by single linkage. Therefore, for a particular function, 
the maximum distance within a cluster is used to select the optimal partition 
in the single linkage hierarchy. Stopping rules have the same effect; they 
choose one from a hierarchy of partitions, usually by identifying large 
changes in level of whatever criterion is being used; for examples see 
Mojena (1977). Different synthesizing functions lead to the selection of 
different partitions; therefore, in effect, the complete linkage criterion is 
used as a multiple stopping rule for single linkage clustering. 

2. Theory 

To show that all optimal partitions lie in the single linkage hierarchy, 
consider a partition of objects which optimizes a particular synthesizing 
function and denote the minimum separation between clusters by x. Any 
two objects whose separation is less than x must therefore be in the same 
cluster. If a graph is constructed by linking all such pairs of objects, then 
the partition into connected subgraphs is one of the hierarchy of partitions 
produced by single linkage. Either this partition is the same as the optimal 
one, or is the result of splitting one or more of the clusters in the optimal 
partition. In the latter case the optimal partition cannot have a smaller max-
imum distance between objects in the same cluster, so it must have the 
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same maximum internal distance. It follows that the single linkage partition 
is also optimal. 

Therefore, in order to minimize a synthesized criterion, it is sufficient 
to examine all partitions in the single linkage hierarchy and obtain the max-
imum internal distance in each partition. This information can be gained by 
a simple addition to any single linkage algorithm. As each partition is 
formed in an agglomerative algorithm, two clusters are pooled, and the new 
maximum internal distance can be found as the greatest of the maximum 
internal distances in the two original clusters and of the distances between 
every object in one cluster and every object in the other. If objects have 
been ordered for printing a single linkage dendrogram then, at each 
agglomeration, adjacent groups of objects are pooled. Let 
p(l),p(2).....p(n) denote the labels of the reordered objects, and D(k) 
the maximum distance within a cluster for the partition into k clusters. A 
working array, x(1)..... x(n) is also required. The algorithm is as fol-
lows: 

I. Set x 	= 0 for k = 1.....n, also set D(n) = 0 and I = 0. 

Increase I by 1. For the i-th agglomeration it is assumed that the 
group of objects p(a) .....p(b - 1) is pooled with the group of 
objects p(b).....p(c - 1). 

Calculate x(a) = max {x(a), x(b), d}, where d denotes the 
maximum distance between one of the group of objects 
p(a).....p(b - 1) and one of the group of objects 
p(b) .....p(c - 1). 

Calculate D(n - I) = max fD(n - I + 1), x(a)}. 

If I <n then go to step 2, otherwise stop. 

I have added the above steps to Ross's (1969) single linkage algorithm. 
Each distance between pairs of objects is used twice, whereas previously it 
was used only once. A computer program, written in Fortran77, implement-
ing this method is available on request. 

As an alternative to finding the optimal partition for a particular choice 
of function, it may be more informative to plot the minimum separation 
against the maximum internal distance for all the single linkage partitions. 
Both measures increase as the number of clusters decreases, but the relative 
rates of increase can be used to identify potentially optimal partitions. For 
example, one would not select a partition if the effect of the next 
agglomeration was to increase the minimum separation without affecting the 
maximum distance within a cluster, whereas an agglomeration which caused 
a massive leap in the maximum internal distance without any compensating 
increase in separation could lead one to select the previous partition. The 
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result will not usually be the selection of a single partition as optimal, but 
rather to a sequence of nested partitions, each of which is optimal for a 
range of synthesizing criteria. An example is given in the following section. 

3. Example 

Gordon (1981, pp. 152-161) used as a case study data on similarities 
among 23 Glamorganshire soil profiles. These data had originally been 
investigated by Rayner (1966) who compared the results of cluster analysis 
with a classification given by a surveyor into "great soil groups." Gordon 
reported the results of single linkage and complete linkage clustering, and 
found single linkage to be in closer accord with the surveyor's classification, 
particularly in separating unqualified brown earths from acid brown earths. 

The methods of Section 2 were applied to measures of dissimilarity, 
which are one minus the similarities given by Gordon. Figure 1 shows a 
plot of minimum separation against maximum internal dissimilarity for the 
partitions in the single linkage hierarchy. For 23 clusters, that is every soil 
sample in a separate cluster, the minimum dissimilarity between clusters is 
0.135 and the maximum internal dissimilarity is zero. As the number of 
clusters decreases, both the minimum separation between clusters and the 
maximum dissimilarity within a cluster increases, until finally there is only 
one cluster with a maximum dissimilarity of 0.514 and an undefined separa-
tion. For this reason, the partition into a single cluster is denoted by an 
arrow in the figure. 

If the synthesizing function were a linear expression, then only parti-
tions represented by points on the lower convex envelope of all the points 
could be optimal. For this example there are only two such partitions, con-
sisting of 2 and 23 clusters. If f = y - x then the partition into 23 clusters 
would be optimal, whereas if f = y - lOx then the partition into 2 clusters 
would be optimal. However this result is not invariant under montonic 
transformations of the dissimilarities, unlike the results of single or com-
plete linkage alone, and if the dissimilarities were raised to the fourth power 
(say) then points corresponding to partitions into 7 and 19 clusters would 
also lie on the convex envelope. The partition with every sample in the 
same cluster cannot be included in the above approach, but it is, in a way, 
equivalent to the partition with every sample in a separate cluster. The 
selection of either partition indicates that no compact, isolated clusters are 
present in the data. 

Figure 1 has several approximately horizontal bands of points, 
representing partitions in which the maximum dissimilarity within a cluster 
remains reasonably constant. The decision as to exactly how many groups 
of points are present is rather subjective. Between 19 and 22 clusters, the 
maximum dissimilarity within a cluster remains at about 0.15, rising to the 
range 0.25 to 0.3 for partitions of between 7 and 18 clusters. Then for 2 to 
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Figure 1. Maximum internal dissimilarity plotted against minimum separation for the partitions 

in a single linkage hierarchy, based on dissimilarities among 23 Glamorganshire soil profiles. 

Points are labeled by the number of clusters. 

6 clusters the diameter is 0.4. The other two bands are the extreme 
configurations of 1 and 23 clusters. There may be some information to be 
gained from dissecting the group of 7 to 18 clusters into several subgroups 
but, in order to simplify the ensuing discussion, attention will be restricted 
to the 5 groups identified above. The partitions represented in the figure by 
the points on the right extremes of these bands are of main importance, 
they represent partitions into 1, 2, 7, 19 and 23 clusters. All other partitions 
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SOIL TYPE 	CODE 
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Figure 2. Reduced single linkage dendrogram based on dissimilarities among 23 Glamor -

ganshire soil profiles. 
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can be improved upon by agglomerating clusters, which has the effect of 
increasing separation without drastically increasing the maximum internal 
dissimilarity. 

A single linkage dendrogram, reduced to consist only of this subset of 
partitions, is given in Figure 2. The surveyor's classifications are also given, 
and the ordering of samples has been made judiciously to place together, as 
far as possible, similar soil types. The partition into 7 clusters places 
together all the acid brown earths and one gley soil. The lessivated brown 
earths and unqualified brown earths are also grouped together with one gley 
sample and one gleyed brown earth. The remaining five clusters are all sin-
gle samples, one each of gleyed brown earth, gley, slightly acidic brown 
earth, peaty gley and rendzina. This partition into 7 clusters is the best one 
in the single linkage hierarchy for separating acid brown earths and other 
brown earths. However, it would not have been selected by a stopping rule 
based solely on cluster separations, because the partition into 7 clusters only 
improves separation marginally from 0.177 to 0.181. The synthesized cri-
terion selects this partition because the next agglomeration is of the two 
large clusters, which raises the maximum internal dissimilarity from 0.302 to 
0.405. 

4. Discussion 

Single linkage clustering is a simple, fast way of exploring a data set for 
structure. The technique proposed in this paper for incorporating a measure 
of cluster size is a useful addendum to single linkage. It can be used to help 
identify when chaining starts, to reduce the dendrogram to a few partitions 
of relatively isolated, compact clusters and to select the optimal partition. 
The concepts behind the method are natural and easily comprehended. The 
computational details are simple and enable the technique to be applied to 
very large data sets. 
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Introduction 

In many forms of clustering 'two basic ideas are involved: internal cohesion and external isolation' (Cormack, 
1971). Most clustering techniques seek partitions which satisfy both conditions. However, two commonly used 
methods, single and complete linkage, simply concentrate on one. They both take as their starting point a 
symmetric matrix of similarities between all pairs of objects in a set, and they operate agglomeratively, to 
produce a hierarchy of partitions in a dendrogram. Initially, every object is placed in a separate cluster. At each 
subsequent step, two clusters are selected and pooled to form a new cluster, with this process continuing until 
all the objects are in a single cluster. In single linkage the two clusters are chosen so that the maximum 
similarity between any object in one cluster and any object in another cluster is made as small as possible in the 
new partition (i.e. minimax); in complete linkage the clusters are chosen so that the minimum similarity between 
any two objects in the same cluster is as large as possible (i.e. maximin). Therefore isolated clusters and 
compact clusters are sought respectively by the two methods. In contrast, Ward's (1963) method seeks both 
compact and isolated clusters. The sum of squares of similarities within clusters, a measure of cohesion, is 
maximized at each agglomeration. At the same time the sum of squares of similarities between clusters, a 
measure of isolation, is minimized because the two terms sum to a constant. 

Review of single and complete linkage 

The single linkage method has many attractive features. It can be computed very quickly and can therefore be 
used with large data sets (Sibson, 1973). Gower and Ross (1969) pointed out its connection with the spanning 
tree of minimum length (i.e. maximum similarity). Also, single linkage solutions are optimal in the sense that, 
for any specified number of clusters, no partition exists which has a smaller maximum similarity between objects 
in different clusters. Therefore no other method for optimizing the particular criterion of minimum separation 
need be considered. Further, single linkage clustering is a method known to satisfy a set of axioms specified 
by Jardine and Sibson (1968) and it meets all but one of the conditions given by Fisher and Van Ness (1971). 
However it frequently produces diffuse clusters, a phenomenon known as 'chaining' (Lance and Williams, 1967). 
This is not surprising as the method takes no account of the size of similarities within clusters. 

Complete linkage clustering is, in a sense, the dual of single linkage. An efficient algorithm exists, similar to 
Sibson's, due to Defays (1977). However the agglomerative procedure is not necessarily optimal: other partitions 
may exist which contain the same number of clusters but have a larger minimum similarity within a cluster. The 
criterion of maximizing the minimum similarity within a cluster may be used divisively, to produce another 
hierarchy of partitions. Initially, all objects are placed in the same cluster. At each subsequent step, one cluster 
is selected to split into two, with this process continuing until all the objects are in separate clusters. The cluster 
chosen for splitting is the one containing the minimum similarity between two objects in the same cluster. The 
spanning tree of maximum length is constructed for the objects in this cluster, using a method analogous to the 
one for constructing the minimum spanning tree. Then, one arbitrarily chosen object in the cluster is placed in 
one of the two new clusters. All objects adjacent to this one in the spanning tree are placed in the other new 
cluster. All objects adjacent to these ones are placed in the first cluster, and so on until all objects have been 
allocated to one or other of the new clusters. By this method, no two objects in the same new cluster are 
adjacent in the spanning tree. This algorithm was proposed by Rao (1971). Again, the partitions may not be 
optimal. 

The complete linkage partitions which, for each different number of clusters, have the largest minimum similarity 
between two objects in the same cluster are not necessarily nested; that is, they cannot be formed from one 

13 
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another by either a sequence of agglomerations or divisions. Baker and Hubert (1976) showed the connection 
between complete linkage clustering and the graph colouring problem, where linked points in a graph have to 
be coloured differently using the minimum number of colours. In essence, if a graph is constructed by joining 
all objects which are less similar than a certain value and this graph is coloured, then a partition formed from 
the colouring will have a minimum internal similarity which is greater than this specified value. Hansen and 
Delattre (1978) gave an algorithm which produces optimal partitions for fixed numbers of clusters. Although 
the clusters which are formed are compact they are sometimes close together and find a dissection of compact 
groups of points. 

Synthesized criterion 

In order to retain the benefits of single and complete linkage, whilst obtaining clusters which are both compact 
and well separated, I proposed a synthesized criterion (Glasbey, 1980). Partitions are found which minimize 
f(b,w), where f is a function of the maximum similiarity (b) between objects in different clusters and the 

minimum similarity (w) within clusters. Any function can be chosen, subject to the restriction thatf decreases 
both as w increases for fixed b and as b decreases for fixed w. I showed that the criterion could be used in 
hierarchical clustering although, as with complete linkage, the results are not necessarily optimal. I also gave 
an algorithm for relocating points between clusters in order to find a locally-optimal partition for a fixed number 
of clusters. In a subsequent paper (Glasbey, 1987)1 showed that all partitions which optimize the synthesized 
criterion are partitions in the single linkage dendrograni. In effect, complete linkage is used to provide a multiple 
stopping rule for single linkage clustering. 

In this article I show how measures b and w can be combined graphically in Genstat, and the results used to 
simplify both the single linkage and complete linkage dendrograms. 

Illustrative data 

To illustrate the approach, I have used amino acid sequences for the protein cytochrome c' for twenty four 
animal species (Dayhoff, 1972). Sequences are between 100 and 120 in length, with missing values inserted 
where necessary to ensure correct alignment. McNicol, Hirst and Kempton (1993) derived similarities between 
species as the proportion of sequence positions with matching amino acids. They also produced displays like 
those shown in Figs 1-3. 
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Fig 1 shows a plot of the first two principal coordinates obtained from the similarity matrix, together with the 
minimum spanning tree, produced by the procedure EXST. 

Fig 2 shows the single linkage dendrogram output by the procedure DDEN)ROGBAN based on the tree produced 
by the Genstax command HDISPLAY. Fig 3 shows the complete linkage dendrogram from the Genstat command 
HCLtTSTER and the procedure DDENDROGRAm 

*go rhkoge  

Figure 2  

conçMa Eakage  

Figure 3 

There are similarities between the dendrograms, such as the four insect species forming a separate cluster which 
is only amalgamated with the rest at the final level of aggregation. However, complete linkage groups all the 
mammals whereas single linkage includes birds and turtles as well. 

5. Simplified single linkage dendrogram 

Fig 4 shows minimum within-group similarity plotted against maximum between-group similarity for the 
partitions in the single linkage dendrogram. 
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Figure 4 
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The Genstat code for obtaining a lineprinter version of this graph, given an Ndata by N6ata similarity matrix 
Si—at is as follows: 

1ISPLAT (PRINT=*] Simmat; TREE=Mstree 
CALCULATE Matt = TRANSPOSE (Matree) 
EQUATE Matt; IP(Clus2,Between) 
FACTOR ILEVELS=Ndata; VALUES=Ndata ... 1] Nclus 
VARIATE (VALUES=l ... Ndata] dual, Within, Labels, Duy 
SORT (DXRECTION=descendingl Between. duel, Clus2 
CALCULATE Between = CIRCULATE (Between; -1) 

CALCULATE Minsim=l 
CALCULATE Xndex=i. 
CALCULATE Ndataz=Ndata-1 
FOR [N'PIXES=Ndataz] 

CALCULATE Xndex=Index+l 
- CALCULATE Labi = ELEMENTS (Labels; ELEMENTS (dual; Index) ) 
CALCULATE Lab2 = ELEMENTS (Labels; ELEMENTS (Clue 2; Index)) 
CALCULATE Veclabi = MIN(Labl)*(Duy)O) 
CALCULATE Veclab2 = Mm (Lah2) * (Dunany> 0) 
RESTRICT Dummy; CONDITION= (Labela==Veclabl); SAVESET=Locel 
RESTRICT Dummy; CONDITION= (Labels ==Veclab2) ; SAVESET=Locs2 
RESTRICT Dummy 
CALCULATE Minnow = M (ELEMENTS (S1—at; Local; Locs2)) 
IF Nine 4 >Minnew 

CALCULATE Nina im=Minnew 
ENDIF 
CALCULATE ELEMENTS (Within; Index) = Nina in 
CALCULATE Veclab2a = MIN(Lab2)(Locsl>O) 
CALCULATE ELEMENTS (Labels; Local) = Veclab2a 
DELETE [REDEYINE=yes] Local, Locs2 , Veclab2a 

ENDFOR 

GRAPE (YTITLE='minimun within-groups similarity'; \ 
XTITLE='maximum between-groups similarity'] Y=Within; X=Between; SYMBOLS=Nclus 

The first block of commands reformats the matrix 
Matree output by EDISPLAY so that amalgamations are 
in order. The maximum similarities between clusters is 
stored in the variate Between. In the second block of 
commands, the minimum similarity within each newly 
formed partition of clusters is obtained by extracting 
submatrices from the similarity matrix, calculating their 
minimum value (Mirinew) and comparing this with the 
current minimum, Minsim. This is stored as an element 
in the variate within. In Fig 4 we look for partitions 
which have high within-group similarity and low 
between-group similarity, i.e. towards the top left 
corner of the figure. Ideally, partitions should lie above 
the 1:1 line which is included in Fig 4, because then all 
similarities within clusters exceed all similarities 
between objects in different clusters. 

ingie friage Th stcççing rue 

Partitions of size 2, 8, 13 and 23 can be identified in 
this figure as having better combined measures of 	 Figure 5 
compactness and separation than other nearby partitions. 
Fig 5 gives the simplified single linkage dendrogram, consisting only of these partitions. This is achieved by 
modifying the matrix Mstree as follows: 

VARIATE (VALUES=23,13,8,2,1] Select 
CALCULATE Index0 
CALCULATE Neelect = NVALUES(Select) 
FOR (NTXMES=Nselect I 

CALCULATE Xndex=Index+l 
CALCULATE Threshold = ELEMENTS (Between; Ndata - ELEMENTS (Select; Index)) 
CALCULATE Index2=1 
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FOR (N'rIMES=Ndataz] 
CALCULATE Index2=Index2+1 
IF ELEMENTS(Nstree; Index2; 2) > Threshold - 0.0001 
CALCULATE ELEMENTS (Metree; Index2; 2) = -Threshold 

ENDIF 
ENDFOR 

ENDFOR 
CALCULATE Index=1 
FOR (NTINES=Ndataz] 

CALCULATE Index=Index+1 
CALCULATE ELEMENTS (Matree; Index; 2) = -ELETS (Metree; Index; 2) 

ENDFOR 

DDENDROGB.AN (STYLE=centroid; REVERSE=yeB; GRAPHICB=lineprinterl Metree; \ 
TITLE='single linkage with stopping rule'; LABELS=Specnam 

The grouping into eight clusters is: 

• Whale, Pig, Rabbit, Horse, Dog, Kangaroo, Pigeon, Duck, Penguin, Chicken, Turtle, Monkey, Human 
• Bonito, Tuna, Carp 
• Tobacco horn-worm Moth, Silk worm 
• Screw worm, Fruit fly 

and the other species (Bullfrog, Lamprey, Snake, Dogfish) form single clusters. 

6. Simplified complete linkage dendrogram 

It is also possible to reverse the procedure, and plot minimum within-group similarity plotted against maximum 
between-group similarity for the partitions in the complete linkage dendrogram, although this has less theoretical 
justification. Figs 6 and 7 show results analogous to the above. 

wrçWe Unkcge with stcçping ,u 

Figure 7 

The Genstat code is similar, but now has to use the matrix array clink output by ECLUSTER. 

HCLTJSTZR (METEOD=complete 3 Siat; ANALGANATIONS=Cliflk 
VARIATE [Ndataz] Clusl,Clus2, Between, Within 
CALCULATE Clinkt = TRANSPOSE (Clink) 
EQUATE Clinkt; IP(Clus1,C1UB2,Withifl) 
FACTOR (LEVELS=Ndata; VALUES=Ndata ... 2] Nclus 
VARIATE (VALUES1 ... Ndata] Labels,DuIy 
CALCULATE within = CIRCULATE (Within; 1) 

17 
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CALCULATE ELEMENTS (Within; 1) = 1 

CALCULATE Index=O 
FOR (NTIXES=Ndata) 

CALCULATE Indextndex+l 
CALCULATE ELEMENTS (Siimnat; Index; Index) = -ELEMENTS (Sinat; index; Index) 

ENDFOR 
CALCULATE Index=O 
FOR (N'rIxES=Ndataz] 

CALCULATE indexIndex+1 
CALCULATE ELEMENTS (Between; Index) !X (Simmat) 
CALCULATE Lábl = ELEMENTS (Labels; T.MTS (Clue 1; Index)) 
CALCULATE Lab2 = tENTS (Labels; ELEMENTS (Clue 2; Index)) 
CALCULATE Veclabi = MIN(Labl)*(DUmmY)O) 
CALCULATE Veclab2 = MIN (Lab2) (Dummy) 0) 
RESTRICT Dummy; CONDITION (Labe1s==Vec1abl) SAVESETLOCS1 
RESTRICT Dummy; CONDITION= (Labe1sVeC1ab2) SAVESETL0CS2 
RESTRICT Dummy 
CALCULATE ELEMENTS(Si=at; Local; Locs2) = -ELNTS(Siflmlat; Local; Locs2) 
CALCULATE Veclab2a = MIN(Lab2)(LOC$1>0) 
CALCULATE ELEMENTS (LabelS;Local) = Veclab2a 
DELETE LRBDEFINEYeS3 Local, Locs2 ,Veclab2a 

ENDFOR 

GRAPH (YTITE='"'"" within-groups similarity'; 's 

XTITLE= 'maximum between-groups similarity') Y=Within; X=Between; SMBOLS'NcluS 

VARIATE (VALUES23,13,2) Select 
CALCULATE Index0 
CALCULATE Nselect=NVALUES (Select) 
FOR (NTIMES=NaeleCt3 

CALCULATE Index=Index+1 
CALCULATE Threshold = ELEMENTS (Within; Ndata + 1 - ELEMENTS (Select; Index)) 
CALCULATE Index2=0 
FOR (NTIMES=Ndataz) 
CALCULATE Index2=Index2 +1 
IF ELEMENTS(CliIak, Index2; 3) > Threshold - 0.0001 

CALCULATE ELEMENTS (Clink; Index2; 3) = -Threshold 
ENDIF 

ENDFOR 
ENDFOR 
CALCULATE Index0 
FOR (NTI1dES=NdataZl 

CALCULATE XndexIndex+l 
CALCULATE ELEMENTS (Clink; Index; 3) = -ELEMENTS (Clink; Index; 3) 

ENDFOR 
r.v7T'n(c1ink: Ndataz; 3) = -ELEMENTS (Clink; Ndataz; 3) 

DDENDROGRA24 (STYLE=cefltrOid; REVERSE=yea; GRAPHICS= linepriflterl Clink; \ 
TITLE='complete linkage with stopping rule'; LABELS=Specnam 

The same partition into thirteen clusters is identified. This partition is the largest grouping for which all species 
within a cluster are at least as similar to each other as they are to any species in other clusters. The grouping 

is: 

• Dog, Pig, Rabbit, Whale, Horse 
• Pigeon, Duck, Penguin, Chicken 
• Monkey, Human 
• Bonito, Tuna 
• Tobacco horn-worm moth, Silk worm 
• Screw worm, Fruit fly 

and the other species (Kangaroo, Snake, Turtle, Bullfrog, Carp, Lamprey, Dogfish) form single clusters. This 
partition shows good agreement with the spatial distribution of species in the principal coordinates plot in Fig 

1. 
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The Benefits of Different Speed Control Systems for 
Combine Harvesters 

M. B. MCGECHAN*;  C. A. GLASBEYI 

Models for cereal harvesting were adapted to allow for crop variability. These were then used to 
assess the value, in terms of reduction of total grain loss, of operating a combine harvester at 
constant threshing loss rather than at constant speed. Upper bounds on the benefits of constant 
loss control systems were determined which are so small that the development of such automatic 
control systems is not worthwhile. 

1. Introduction 

A number of workers have already developed operational research (O.R.) models for cereal 
harvesting. These models use a set of equations for costs and grain losses to determine the 
minimum cost system for a particular crop, in terms of size of combine, size of drier, combine 
forward speed, etc. All previous models have assumed a uniform crop with respect to yield and 
other characteristics. 

Many combine harvesters are fitted with acoustic grain loss monitors, and a number of attempts 
have been made at devising automatic forward speed control systems using grain loss or through-
put sensors. Such systems are intended to allow the combine to be operated at constant threshing 
loss by maintaining a constant rate of throughput despite a non-uniform crop. Indeed, the term 
"automatic forward speed control" is widely used to imply automatic constant loss control, not 
automatic constant speed control. 

In this study, the case for constant threshing loss control has been discussed in general terms 
(section 2). Models of complete grain harvesting systems previously developed by Audsley and 
Boyce' and Philips and O'Callaghan 2  were critically examined, and equations relating to grain 
losses were identified as the only parts of the models relevant to the current study (section 3). 
Information about crop variability (section 4) was drawn both from a telemetry survey of the 
performance on commercial farms of combines in the giant size category 3  and from grain loss 
trials at SIAE with a combine of medium size' (hereafter called the "SIAE combine"). The 
threshing loss equations in the models were adapted to take into account the effect of crop 
variability for a number of control systems (section 5). The practical benefits of systems which 
attempt to maintain constant threshing loss in a variable crop were assessed in terms of the total 
grain loss throughout a typical harvest (section 6). 

2. Case for constant threshing loss control 

A case for an automatic control system for a combine can be made on 2 separate counts. 

The performance of an automatic control system should be superior to, and more con-
sistent than, a manual system, since it is not influenced by variations in concentration, motivation 
and fatigue of the operator. 

It has been generally assumed that losses are lower with constant loss operation than with 
constant speed operation, although hitherto there has been no factual evidence to support this. 

SIAE, Bush Estate, Penicuik, Midlothian EH26 OPH, Scotland 
tAgricultural Research Council Unit of Statistics, University of Edinburgh, King's Buildings, Edinburgh EH9 33Z, Scotland 

Received 3 June 1982; accepted in revised form 7 August 1982 
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NOTATION 

L 	threshing loss, t/ha 
Y 	constant yield for crop on farm, t/ha 
Y0  an arbitrarily defined standard yield for the crop, t/ha 
R 	grain/straw ratio (assumed to have a value of 1) 
S 	combine operating speed, km/h 
S0  combine rated speed, km/h 
C 	combine rated throughput, t/h 
W width of cut, m 
a5 , a6  constants in Philips & O'Callaghan' threshing loss equation 
A'1  number of days past maturity (Audsley & Boyce') 
A'2  number of days past maturity (Philips & O'Callaghan 2) 

a 	standard deviation of m.o.g. yield, t/ha 
p 	average crop yield, t/ha 
a 	standard deviation of correlated component of m.o.g. yield 
02 	standard deviation of uncorrelated component of m.o.g. yield 
a 	standard deviation of sampling component of measured m.o.g. yield 
ço 	autocorrelation coefficient at lag 1 
E 	denotes expectation (or averaging) 
U P 	standard deviation of predictable component of m.o.g. yield 
°r 	standard deviation of unpredictable component of m.o.g. yield 
1 	time lag between crop being cut and loss being measured (in units of time intervals) 
k 	calibration constant for monitor readings to grain loss/unit time 
z 	predictable proportion of crop variability 
M grain loss monitor reading 
C, 	autocovariance at lag / 
a, b constants 

In this study, only the benefits of operating a combine at optimum constant loss relative to the 
optimum constant speed have been examined. It was expected that the case for this mode of 
combine operation would rest on the interaction between 2 factors: 

the convexity in the grain loss/forward speed relationship; and 
the crop variability. 

If either of these factors were absent, there would be no penalty from operating at constant speed. 
For example, if the loss/speed relationship were linear, high losses in areas of high yield would 
be exactly cancelled out by low losses in areas of low yield. 

3. Simplification of previous cereal harvesting models 

3. 1. Assessment of costs 
The cereal harvesting models developed by both Audsley and Boyce' and Philips and O'Callag-

han2  were considered to be more complex than necessary to study the effects of yield variability; 
an attempt was therefore made to define simpler subsets of these models. 

Initially, the effect of different combine forward speeds on costs of grain losses and fuel through-
out the whole harvest was considered. All other costs were ignored since they were unaffected by 
combine speed. The costs derived from threshing losses increase with increase in speed; conversely, 
assuming a standard harvest start date, the costs of grain which remains uncut at the end of the 
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harvest, and of front-end losses (which are related to the time the crop stands in the field before 
being cut), decrease with increase in speed. Assuming that grain moisture content decreases 
throughout the harvest, and again that the harvest starts on a standard date, the cost of fuel for 
drying grain should be greater at higher combine speeds because more grain must be dried at a 
higher moisture content. (This effect may be offset by a later starting date.) Combine fuel 
consumption was assumed by Audsley and Boyce' to be proportional to the number of hours of 
combine operation, since a combine is operated at constant engine speed, forward speed being 
controlled by the transmission ratio. Thus the cost should decrease with increase in forward 
speed, partially offsetting the increase in drying fuel consumption. Furthermore, on detailed 
examination of the cost equations in the Audsley and Boyce model, it was noted that the costs of 
fuel were small relative to the costs of lost grain. It was therefore decided to ignore fuel costs and 
consider only uncut and lost grain. This meant that the objective function in the models could be 
the total quantity of grain lost rather than the total cost of the harvest. 

3.2. Available working time 
Audsley and Boyce' assumed a working day length which reduced as the season proceeded. 

Using 10 years' meteorological data from several locations, they determined whether harvesting 
could take place each day from consideration of the rainfall on the current and previous days. 
To represent the moisture content curve throughout the harvest period, they used a sixth-order 
polynominal in time starting at 30% moisture content wet basis (m.c.(w.b.)) fitted to data for 
spring barley recorded at 4 sites in England in 1971. 5  They also specified a moisture content 
value above which combining could not start. Grain was regarded as a total loss if it remained 
uncut 70 days after 1 August, or if its moisture content rose above 30 % towards the end of the 
season. 

In the present study, the harvest was assumed to begin at l9% m.c.(w.b.), i.e. 15 days after the 
30% m.c.(w.b.) day using the Audsley and Boyce moisture content curve. From this, and a set 
of working day lengths prepared by running the complete Audsley and Boyce model with a 
typical record of 10 years' weather data, the mean quantity of grain remaining uncut was deter-
mined. No use was made of the Philips and O'Callaghan' work day equations, which were based 
on hourly weather data. 

3.3. Loss equations 
3.3.1. Threshing loss 

Threshing loss rises with increase in throughput; at low throughput, losses rise slowly, but as 
throughput reaches the designed capacity of the machine, further increases overload the grain/ 
straw separating mechanism, causing a very large increase in threshing loss. A number of simple 
mathematical relationships can be postulated to represent the convex threshing loss/throughput 
curve. Audsley and Boyce' and Philips and O'Callaghan' have used 2 different equations based 
on the same data in NIAE test reports. 

Following an earlier study by Boyce and Rutherford," Audsley and Boyce' assumed the 
following relationship between threshing loss, as a proportion of available yield, and throughput 
of material other than grain (m.o.g.): 

L =002{YS/(Y 0RS 0)} 2 Y. 

They thus calculated threshing loss in terms of variation of speed and yield from standard values 
which would give a threshing loss of 2%. The size of the combine was similarly specified in 
terms of a rated throughput which would cause a 2% threshing loss, from which the rated speed 
was derived as follows: 

S o  = e-1-f C, 	 ...(2) 
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Forward speed with 4 m cutter bar and 5 t/ha crop, km/h 

-O 	1 	2 	3 	4 	5 	6 	7 	8 
020 

I 	 I 

I 	 / 
I 	 / 0,18 

016 

3  

014 
ZZ 

I 	 /  
0I2 

2 	

j//// 

g 
0•10 • 

-c 
0. 

2 
C) 

I-. 40. 
008 • 

8 
-Q 
0' 

006 

-t 

/ 	,Q- 
004 

0-02 

0 

2 	4 	6 	8 	10, 	12, 	14 	16 
10 

Throughput, t/h 

Fig. 1. Threshing loss/throughput curves as defined by Audsley and Boyce' 

where e = 241 andf = 032. Although Eqn (1) gives a quadratic relationship between threshing 
loss per unit area and forward speed, the relationship between threshing loss and grain yield is of 
cubic form. 

Audsley and Boyce carried out simulations for combines of 5, 75, 10 and 125 t/h rated 
capacities (Fig. 1). Although the "giant" size combines monitored in the telemetry survey have 
come on the market since Audsley and Boyce did their study, a threshing loss curve of this form 
could readily be specified for these machines; this assumed a capacity of 159 t/h at 2 % loss, in 
accordance with figures reported by Rutherford .7  The threshing loss data from the SIAE 
combine did not fit this form of curve very satisfactorily,' but a least squares fit was closest to 
the curve for 125 t/h throughput. 

Philips and O'Callaghan' fitted an exponential curve to data for threshing loss against through-
put of m.o.g. (t/h): 

L 1  = exp {a5 +a6  (throughput)} 
or 

= exp {a5 +a6  WYS/1OR}. 

This gives the same form of relationship for loss against speed at constant yield as it does for 
loss against yield at constant speed. These authors carried out simulations for small, medium 
and large combines, using a different set of estimated coefficients a5  and a6  for each (Fig2). 
Threshing loss data from the SIAE combine were a good fit to an exponential curve with 
similar parameters to those for Philips and O'Callaghan's medium combine; 48 % of the variability 
was accounted for compared with 38 % for Eqn (1). Specifying an exponential curve for the giant 
combine was less satisfactory; a curve which passed through both the 1% and 2% loss points 
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Fig. 2. Threshing loss/throughput equations as defined  by Philips and O'Callaghan' 

reported by Rutherford' for one giant combine differed considerably in shape from those of 
Philips and O'Callaghan.' It was considered important to maintain the general shape of curve 
used by Philips and O'Callaghan, so a curve was chosen which approximated to the data points 
for a range of giant combines. 78  A few sample threshing loss measurements made in the field 
behind these giant combines gave results closer to the chosen curve than to either the exponential 
curve passing through 2 points for one combine, or the Audsley and Boyce' curve. The parameters 
of the chosen curve were: 

a5  = — 880, 	(a5  = — 2.01), 

a6  = 043, 	(a6  = 044). 

The figures in parentheses are the equivalent values in Imperial units, corresponding to those 
reported by Philips and O'Callaghan.' 

3.3.2. Front-end losses 
Front-end losses consist of shedding losses, which occur naturally before harvesting takes place, 

and cutter-bar (header) losses induced by passage of the combine through the crop. Both increase 
with the time the mature crop stands in the field before being cut. 

Audsley and Boyce' used second order polynominal relationships to represent shedding loss 
and cutter-bar loss. They chose constants based on a compromise between widely differing loss 
data for spring barley collected at 6 sites in England during 3 harvests' (Fig. 3): 
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Fig. 3. Total front-end loss throughout harvest 

shedding loss = 0001 (06746 X1 -00062 A'1 2) Y, t/ha, 

cutter-bar loss = 000l (153364+08819 X1 -00065 X1 2) Y, t/ha. 

Audsley and Boyce' specify the maturity date as the 30% m.c.(w.b.) day. 
Philips and O'Callaghan 2  chose a linear relationship as an approximate equation to represent 

shedding loss; a coefficient was chosen based on a compromise between the curves for wheat 
and barley in U.S.A. and the Netherlands reported by Johnson 9  and de Jong and Zelhorst'° ' 
For cutter-bar loss they used, in their words, "an arbitrary relationship"; this consisted of a 
constant term to represent a man—machine component, together with an exponential term, with 
constants such that the increment of loss doubled with every week of delay, to represent the 
timeliness component (Fig. 3). Thus they assumed 

	

shedding loss = 0003 X2  Y, t/ha, 	 ...(6) 

cutter-bar loss = 0001 1208 {15+[l +0025 (X 2 -40)] exp (0521462+0101065 X2 2 }, t/ha. ...(7) 

Philips and O'Callaghan' specify their equation with reference to the date of "technological 
maturity", i.e. day on which combining can commence. (A' 2  = A'1 — 15 in this study.) 

3.3.3. Choice of loss equations 
The Philips and O'Callaghan' threshing loss equation was reported as being fitted to loss data, 

whereas Audsley and Boyce' used a functional relationship originally fitted to Canadian data' 2  
with parameters chosen to suit British data at one grain loss value.' Also, the Philips and 
O'Callaghan 2  threshing loss equation was a better fit to experimental data collected at SIAE 
than was that of Audsley and Boyce.' On the other hand, the Audsley and Boyce front-end loss 
curve was based entirely on experimental data from U.K. sources, unlike that of Philips and 
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O'Callaghan.' The soundest choice therefore appeared to be a composite set of equations with 
front-end losses according to Audsley and Boyce' and threshing losses according to Philips and 
O'Callaghan.' However, for comparison, results were also calculated using only the Audsley 
and Boyce' loss equations, and using only the Philips and O'Callaghan 2  loss equations. 

3.4. Selection of optimum speeds 
Each control system or strategy studied was assessed at its optimum speed, which was chosen 

after determining the total grain loss (including uncut grain) for a range of speeds (Fig. 4). Total 
loss values and optimum speeds were determined for a range of typical crop sizes and for each 
of the three sets of loss equations. 
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Fig. 4. Effect of forward speed on total grain loss (including uncut grain). Giant combine culling 200 ha crop, mean 
yield 5 t/ha. -, Audsley and Boyce' loss equations; - - -, Philips and O'Callaghan' loss equations; - - —,Philips 

and O'Callaghan threshing loss, Audsley and Boyce front-end loss equations 

4. Crop variability 

4.1. Nature of crop variability 
Many characteristics of the crop influence combine threshing loss. These probably include 

yield of grain, yield of m.o.g., moisture content of grain, dampness of straw, and levels of weed 
infestation; it is generally assumed that the most important factor is yield of m.o.g. Unlike some 
of the other factors, yield can be quantified conveniently in units of and related to threshing 
loss in a simple equation. 

Threshing losses in a combine may occur at the drum, at the sieves, in the air flow from the 
fan, and in the straw falling off the end of the straw walkers; the loss from the straw walkers is 
usually the largest and is probably most influenced by quantity of m.o.g. For this study, crop 
variability was measured in terms of its effect on variability of threshing loss, as measured by a 
grain loss monitor behind the straw walkers. All the components of the combine have a capacity 
for holding material, so as material passes through the machine m.o.g. yield variations are likely 
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to be changed from the pattern pertaining in the field. Because the monitor senses loss at the 
relevant point in the combine it was considered to be a more useful indication of variability than 
the crop in the field. Also, although the measured variability was converted to units of yield 
(t/ha) for analytical purposes, it included the effects of variability of crop characteristics other 
than yield of m.o.g. 

4.2. Sources of crop variability data 
4.2.1. Automatic telemetry survey on commercial farms 

Automatic telemetry equipment developed at SIAE has been used for a survey of combine 
harvester performance on commercial farms. 3  During this survey, a large quantity of grain loss 
monitor data had been collected from 3 giant combines during 3 harvests. These data consisted of 
uncalibrated readings representing, from successive 12 s periods, the loss measured by 3 acoustic 
sensors located below the straw walkers, below the sieves, and in the air flow from the fan. 
Information from sensors on the control levers and cutter-bar indicated whether the combine 
was actually cutting crop during each period, and the distance moved by the combine (and hence 
the speed) was also recorded. 8  

Two parallel sets of yield/time profiles for use with O.R. models of the grain harvest were 
generated from the straw walker loss data, according to the Audsley and Boyce' and Philips and 
O'Callaghan' threshing loss equations with coefficients appropriate to the size of combine. 
Values of apparent yield of m.o.g., varying about an assumed mean value of 5 t/ha, were derived 
from the monitor readings by removing the effect of the known variation in forward speed (see 
Appendix A). 

4.2.2. Grain loss trials at SIAE 
Experiments were conducted in which passes were made through cereal crops at a range of 

speeds. The grain loss monitor data was found to be in better agreement with the exponential 
relationship between threshing loss and throughput, as postulated by Philips and O'Callaghan,' 
than with the Audsley and Boyce' threshing loss equation .4  Typical values of crop variability 
parameters were determined .13 

4.3. Representation of crop variability 
A simple statistical measure of crop variability is the standard deviation of m.o.g. yield (in 

t/ha) about its mean value. 
As an indication of the extent to which a manual or automatic control system can maintain 

constant throughput, it was useful to subdivide the measured crop variability into 3 components :13 

correlated, in that it changed slowly through the crop; 
uncorrelated, and therefore totally unpredictable; and 
sampling variability introduced by the grain loss monitor. 

By employing standard time series analysis methods on the crop variability data, standard 
deviations for the 3 components were estimated, together with the autocorrelation coefficient 
at lag one in the first component (see Appendix B). 

5. Representation of control systems and strategies for a combine operating in a 
variable crop 

5.1. Analysis of simulation 
By making some simplifying assumptions, idealized control systems and strategies could be 

studied analytically. Practical control systems were tested by simulation. The yield/time profiles 
were used as data for simulation of the giant combine. A computer routine "COMBINE" ) 13  
which represented a stochastic model of crop variability, was used for simulation of the SIAE 
combine. 
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5.2. Constant speed operation 
Combine harvesters are normally operated with the engine running at full speed, and forward 

speed is maintained virtually constant by a hydraulic system unless the speed is adjusted by the 
operator. Constant speed operation therefore represents a realistic situation. It was assumed that 
this would be the worst conceivable control strategy, and other systems and strategies were 
assessed in terms of the saving in total grain loss (including uncut grain) compared with constant 
speed operation. 

An approximate analysis of constant speed operation with variable yield was carried out by 
introducing an adjustment for the standard deviation of yield into the threshing loss equations 
(see Appendix Q. 

In the Audsley and Boyce' equation, Eqn (1): 

/ 	\2 
E(Lr) = 002 y S 

R s) 
E( Y3) G 

I 	 \ 
- 002 (Y 

S  
R 

s)' (p3  + 3a2p). 

Because the sampling variability of the monitor does not affect the true grain loss, a2  = a1 2  +a2 2 . 
In the Philips and O'Callaghan' equation, Eqn (3): 

E(L) = E(exp[a5 +a6  WYS/IOR]) 

{ 

I+  (a6 WSa) 2 1 - 	
2(IOR) 2 

 j exp(a5+a6WSp/1OR). 

5.3. Constant loss operation 
Unlike constant speed operation, true constant threshing loss operation is an idealized, hypo-

thetical situation, unattainable in a variable crop. Analysis of constant threshing loss operation 
was nevertheless found to be a useful exercise; it enabled an absolute upper bound to be placed 
on the benefit of a control system, for particular sizes of combines and crops. 

An approximate analysis of true constant loss operation was once again carried out by intro-
ducing the standard deviation of yield into the loss equations (see Appendix Q. Transforming 
the Audsley and Boyce' equation, Eqn (I): 

E(S) = Y0R S0V50L  E(Y 312) 

/50 L 1 5a2 1 ...(l0) 

and transforming the Philips and O'Callaghan' equation, Eqn (3): 

IOR (In L 1  —a5) 
E(S) = 
	a6 W 	(T) 

]OR (In L ,  — a5) I 	a 2  
l+ -j. a6 Wp 	p 

Eqns (10) and (11) can be back-transformed to express threshing loss in terms of average speed. 

5.4. Acoustic grain loss monitors 
An acoustic monitor, as fitted to many combines, displays a grain loss reading on a dial, and 

the operator attempts to drive at a speed which keeps the needle between 2 limits. The displayed 
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loss is a weighted average of past grain losses, where the weighting decays exponentially with a 
time constant of about 10 s. A combine whose speed is adjusted using a grain loss monitor is 
therefore a practical attempt at constant loss operation. Simulation of this mode of combine 
operation was carried out, both for the giant combine in conjunction with yield/time profiles, 
and for the SIAE combine with the stochastic model of crop variability. 

The average threshing loss, using an optimal control system based in a grain loss monitor, was 
derived analytically from the components of yield variability. The equations are stated here (with 
crop variability parameters expressed in units of t/ha of m.o.g. yield), but their derivations are 
reported elsewhere.', 13  For the Audsley and Boyce' threshing loss equation: 

S 	\2 	(p2+3a,.2) 
E(L,) = 002 (Y

0  R 0) 	(2+(l5a2/8)2 	
...(l2) 

and for the Philips and O'Callaghan' threshing loss equation: 

E(L,) - 
	

a6 WSu 2ar
J 
 	+

aWSp 3  
2 	

j exp;a5 
 
 (13)

lOR(p+a) 	l0R(i+a)J  

where 

ar2  = ae 	
J 

	

2  {i+ ( — O) 2  ('-P21-2)1 —a 3 	 (14) 2 , 	 ... l_ 2   

0 = 

A 
= U1 2  +U2 +U3 - 

p2(72 + p2(72  + p2(72 

2ç (a2 2  + a3 ) 

- (a
22  +63) 

- 	0 

= a1 +a2 —a,.. 

In Eqn (14), values of one 12 s time interval for the survey data or five 2 s time intervals for -the 
SIAE combine data were taken as the nearest approximation to the time lag between crop 
being cut and the loss being measured. For this control system, the standard deviations of 
predictable and random components of variability of m.o.g. yield, on which threshing loss 
depends, are represented by a,, and ar . 

It may be noted that if a,, = 0, i.e. no part of the m.o.g. yield variability is predictable, then 
Eqns (12) and (13) are equivalent to the constant speed Eqns (8) and (9). Similarly, if a,. = 0, 
i.e. the m.o.g. yield is completely predictable, then Eqns (12) and (13) are equivalent to the con-
stant loss Eqns (10) and (11). 

The sampling standard deviation is related to the size of the monitor reading on which it is 
based. Since the monitor reading is related to velocity, rather than using the value of a 3  estimated 
for the mean velocity in the crop data set, a new value was calculated for each velocity. 8  For the 
Audsley and Boyce' equation: 

a32 = 
k(Y 0  R S0)2 	

...(15) 
002 p 9S3  

and for the Philips and O'Callaghan' equation: 

/lOR\ 2 	 k 
a32 

= 	W) S3exp{a5+a6SWp/(lOR)} 
. 	 ...(16) 

For each loss equation a maximum value of the benefit of a control system based on a grain 
loss monitor could be derived. Total grain loss has been plotted against total crop variability 
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for the giant combine with such a system for a range of values of the predictable proportion of 
the crop variability: 

z= UP  2 
 

ap+ar 

on to this points representing each of the yield/time profiles have been superimposed (Fig. 5). All 
these points represent over-estimates of z for this practical control system, because the analysis 
assumes that the crop yield variability parametres O, a2 , a3  and are known to the control 
system. For comparison, mean values of the crop variability parameters for all the crop yield 
profiles from giant combines, and for the most comprehensive data set from the SIAE 
combine,'- 3  are listed in Table 1. 

TABLE I 

Mean crop variability parameters expressed as the standard deviation of apparent m.o.g. yield (in t/ha) 

z Recording a1  6 2  Ua V \/a22 +52 (monitor interval, 
system) s 

Survey data, Audsley and Boyce' 
threshing loss equation 0926 0595 0142 0813 1.101 0414 12 

Survey data, Philips and O'Callaghan' 
threshing loss equation 1150 0582 0241 0787 1289 0388 12 

SLAE combine, Philips and 
O'Callaghan' threshing loss equation 0738 0430 0866 0950 0854 0483 12 

5.5. A table auger torque control system 
Experiments at SIAE have shown that the torque in the table auger gives some indication 

of the throughput of m.o.g. on which threshing loss is dependent. 4  This torque is measured only 
15 s after the grain is cut, unlike the monitor which gives an indication of throughput about 9 s 
after it is cut. It was expected that a system sensing auger torque, with a short time constant, 
would provide more sensitive control than a monitor system, without introducing instability. 
However, the constants in the torque/loss equation appeared to change considerably from day 
to day and in different crop conditions. It would therefore be necessary to provide continuous 
calibration of the auger torque system, which could be achieved by making grain loss measure-
ments with an acoustic monitor with a very long time constant. The system was tested by simu-
lation. 

Again, an upper bound on the benefit of a system based on a monitor and an auger torque 
sensor was derived using loss Eqns (12) and (13). In this case the values of the predictable and 
random components of variability were derived numerically. 13  

6. Results of analysis and simulation 

6.1. Results with different loss equations 
The predicted savings from constant loss operation were greater when threshing losses were 

determined using the equation of Audsley and Boyce' rather than that of Philips and O'Callaghan .2 

There were even greater predicted savings using the front-end loss curves of Philips and O'Callag-
han rather than those of Audsley and Boyce. This general pattern was followed consistently 
in results from all sources. Furthermore, the Philips and O'Callaghan front-end loss equation 
tended to predict a higher optimum speed uninfluenced by consideration of uncut grain, whereas 



M. B. MCGECHAN; C. A. GLASBEY 	 549 

with the Audsley and Boyce equation the optimum speed was often such that the crop was just 
completely cut (Fig. 4). Also, the Philips and O'Callaghan loss equations indicated the greatest 
curvature in the total loss curve in the vicinity of the optimum (Fig. 4), which explains why the 
predicted savings were greatest with these equations. 

6.2. Upper bounds on the benefits of automatic control 
Taking the mean values of total crop yield variability from Table I, the savings in grain loss, 

relative to constant speed operation, from a hypothetical constant loss system were 14, 3•1 and 
51 t according to the composite, the Audsley and Boyce' and the Philips and O'Callaghan 2  loss 
equations for a giant combine in a typical 200 ha crop of 1000 t. These values rose to 22, 49 and 
7.1 t for the most variable crop. The corresponding savings for the optimal monitor system 
were about 04, 14 and 1-6 t, rising to about 09, 27 and 3-5 t for the crop which gave the greatest 
benefits from this system. To put this in perspective, 04 t represents a saving of 004 % of the 
total crop, or about 0-9 Y. of the total crop loss of 49 t; if grain costs £l00/t; this represents a 
saving of £40 per year to the farmer. The savings from the smaller SIAE combine in a 150 ha 
crop with variability parameters estimated from one experiment were 0-50 and 0-90 t when 
controlling on the monitor alone, and 064 and 104 t when controlling on the auger plus monitor, 
according to the composite and the Philips and O'Callaghan 2  loss equations. Thus adding the 
table auger torque sensor to the monitor control system gives a further saving of about 20 % 
relative to use of the monitor system alone. 

6.3. Benefits of actual control systems derived by simulation 
There were considerable differences between the results of different simulation runs with the 

same control system parameters. Because the potential benefits from constant loss control 
systems were so small, these differences did not allow much useful information to be obtained 
from a small number of simulations, and there seemed little point in continuing with this approach.' 

Simulations with crop yield/time profiles of the giant combine with a standard grain loss 
monitor system always showed smaller benefits than those determined analytically for the optimal 
monitor system, and in some instances the losses were higher than for constant speed operation. 
It was found to be difficult to use simulations of the SIAE combine to select parameters for an 
automatic control system, either based on an auger torque sensor plus monitor, or on the monitor 
alone. 

7. Conclusions 

The results of this study suggest that the potential benefits of a combine control system which 
maintains constant threshing loss, compared with constant speed operation, are very small. 
However, the precise values for the saving in lost grain between the two modes of operation vary 
much more among different forms of loss equations than among different crops or among 
different control systems. 

The loss equations which seem to be closest to experimental data are the Audsley and 
Boyce' front-end loss equations and the exponential threshing loss equation postulated by 
Philips and O'Callaghan.' This composite set of equations gave a maximum saving of 0-4 t in a 
typical 1000 t crop for a giant combine with a control system based on a grain loss monitor alone. 
In a crop which has characteristics more favourable to automatic control, the figure rose to 09 t. 
A control system which senses throughput near the front of the combine increased these figures by 
about 20%. 

A more optimistic view can be taken on the basis of the quadratic threshing loss equation 
postulated by Audsley and Boyce,' which does not agree well with experimental findings at 
SIAE or on the basis of the Philips and O'Callaghan 2  front-end loss equations, which are 
based on arbitrary and non-U.K. data. These equations gave savings from the monitor system 
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of 14 or 16 t for the giant combine in a typical 1000 t crop, rising to 27 or 35 t in a more 
favourable crop. 

On the basis of the most probable loss equations, a constant loss control system is definitely 
not worthwhile for a saving of £40 per year. It is unlikely that a system could be developed 
cheaply enough to be justified even on the basis of the other loss equations, and choosing im-
probable loss equations is a dubious basis on which to develop a system. Using a table auger 
sensor to estimate throughput near the front of a combine does not appear to be worthwhile 
either. 

This study suggests that there is only a very small penalty from operating a combine at constant 
speed, using the existing combine control system as an automatic constant speed system with no 
operator intervention under normal circumstances. However, inevitably there are occasions 
when operator intervention is required to prevent a catastrophe. There may therefore be a case 
for a small modification to such a system so that, after an intervention, it automatically returns 
to a predetermined speed (which should be the optimum speed) rather than remaining at its last 
set speed. 

This study illustrates the benefits of carrying out O.R. work before resources are committed 
to engineering developments. If an O.R. study cannot show worthwhile savings from a control 
system, it is most unlikely that savings could be demonstrated in the field with a real system. 
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Appendix A 

Conversion of uncalibrated grain loss and speed data to yield of m.o.g. 
The acoustic grain loss monitor reading M is assumed to be a constant proportion of the 1os 

per unit time. Therefore, the loss per unit area 

L=kM/S, 	 ...(A1J 
where k is a calibration constant. 
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Audsley and Boyce equation 
From Eqns (I) and (Al) 

k MIS = 002 {YSJ(Y0  R S ,)12 y.  

Therefore, 

Y = {kM( Y 0  R S0)2/0.02}1/S. 	 . . .(A2) 

The constant k was chosen so that the average yield, calculated from the observed monitor and 
speed readings, was 5 t/h. Therefore, 

	

' 	OO2 
k = [5/G] (Y

0  R S0)2' 	
...(A3) 

where C is the average of M*/S for all 12 s periods. Yields can be derived from Eqn (A2) using 
each monitor and speed reading. 

Philips and O'Callaghan equation 
From Eqns (3) and (Al) 

ln(kM/S) = a5 +a6 WYS/IOR. 

Therefore, 

lOR 
= a6  w { In k+in(M/S)—a5 } 

	
...(A4) 

As in (a), k was chosen so that the average yield was 5 t/h. Therefore, 

	

ink = 	 .(A5) 

where C is the average of IOR[ln(M/S) —a 5]f a6  W S and 1T1 is the average of 1OR/a 6  W S for all 
12 s periods. 

Yields can be derived from Eqn (A4) using each monitor and speed reading. 

Appendix B 

Calculation of components of crop variability 
It was assumed that the monitored grain loss was Poisson distributed, and therefore had a 

sampling variance equal to its mean. The assumed distribution is not so important as the magni-
tude of the sampling variability. This could not be distinguished from the crop variability in the 
survey data but did appear to account for the relationship between variability and speed in the 
experimental data. The standard deviation of the component of the crop variability caused by 
sampling, 03, was calculated as half the difference between the yield corresponding to the mean of 
the monitor plus one standard deviation and the mean of the monitor minus one standard devi-
ation, using Eqns (A2) and (A4). Therefore in the Audsiey and Boyce' equation: 

1k (M_ 1/M)] 
- L 7P] 	 ...(BI ) 

and in the Philips and O'Callaghan' equation: 

I IOR 	- 	 - 
2 a6  ws {ln(M+\/M)—In (M—\/M)}. 	 ...(B2) 
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The standard deviation of the correlated component of crop variability, U,, was estimated by a 
logarithmic extrapolation to lag zero of the autocovariances of the yield at lags 1 and 2. Also an 
estimate of the correlation coefficient q was obtained as the ratio of the autocovariances at lags 
2 and 1. The standard deviation of the uncorrelated component of crop variability, a2 , was 
estimated by subtracting the variances of the sampling and correlated compoents from the total 
variance of yield. Therefore with the autocovariance at lag I defined to be: 

C1  = average {( Y—p) (Y[l time intervals later] —p)}  for / = 0, 1, 2, 

ço = C21C1 , a1  = \/C1 /ço and a2  = -,I CO —a 12  —a3 . 

Appendix C 

Derivation of approximate threshing loss equations with vairable yield 

Suppose Y is a random variable with mean p and variance a2, then Y = p+ e, with E() = 0, 
and E( g2) 	a2. 

For a differentiable function f, by Taylor's expansion 

f(p+ e) = f(p) + tf'(p) + e 2/2 !f"(u) + 6 3/3 !f ... (It) +. 

If e is small relative to the derivatives off, then 

E(f( Y)) f(p)+E()f'(p)+ 1/2! E(e2)f 11 (p) = f(p)+a2/2f"(p). 

Therefore, for the equations in sections 52 and 53, 

E(Y3)p3 +a2/2(6p) =p 3 +3a2p; 

__ 	a2 
(-4-

15 'E(Y3/2) 	 p3fl. + 7/2)j p_3/2(1 + - 15 2 

E {exp(a+bY)}exp (a+ by) +a2/2 {b 2  exp(a+bp)} = (l+a2b2/2)exp(a+bp) 

and 
E(l/Y) 	l/p+a2/2 2/p2 = 1/p(l+a2/p2). 
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Threshing Loss Stochastic Variability on Combine Harvesters 

C. A. GLASBEY*; M. B. MCGECHANt 

The stochastic variability is investigated in experimental results from an acoustic grain loss 
monitor and a table auger torque sensor on a combine harvester. A model is identified and used 
to specify optimal control systems for adjusting combine forward speed to maintain constant 
threshing losses. These provide upper bounds on the benefits of practical forward speed control 
systems. 

1. Introduction 
The main losses of cereal grain within a combine harvester occur at the drum, the sieves and the 

straw-walkers. These losses are collectively called the threshing losses. It is well established that 
these are an increasing convex function of the combine throughput (see, for example, Boyce and 
Rutherford' and Philips and O'Callaghan'). As a consequence, in a variable crop a combine 
controlled to operate at constant throughput will incur less threshing loss than a combine operating 
constantly at the same average speed. Alternatively, the combine can be operated at a higher 
speed to incur the same threshing loss as it would operating at a lower constant speed, but will 
complete the harvest in a shorter time and thus incur lower front-end losses. Therefore, in either 
case, adjusting the forward speed of the combine to maintain a constant throughput will reduce 
the total grain loss in the harvest. The extent of the saving depends on the convexity of the loss/ 
throughput relationship and the variability of throughput at constant speed (McGechan and 
Glasbey 3). 

Experiments have been conducted at S.I.A.E. for a number of years with the objective of 
assessing whether a constant throughput control system is feasible. 4-6  The threshing losses have 
been estimated using an acoustic monitor at the end of the straw-walkers, so calibrated that a 
pulse was recorded every time a cereal grain struck it. As there was a time delay between crop 
being cut and reaching the straw-walkers, the torque in the drive chain of the table auger at the 
front of the combine was measured to give a faster indication of changes in throughput. Passes of 
about 80 m in length were made through barley crop at a range of approximately constant speeds. 
The monitor, auger torque and speed were recorded every 2 s. 

The experimental data were used to obtain estimates of the delays between the crop being cut 
and reaching the auger, and between being cut and reaching the monitor. Times of 0 and 8 s, 
respectively, were selected. The actual time delays could have been greater than these, but it was 
only possible to use multiples of 2 s, and the subsequent analysis is not sensitive to this particular 
choice. The most appropriate functional relationship between the number of grains striking the 
monitor in the 2 S preceeding time t, denoted M, and the forward speed four 2-s periods earlier 
(i.e. 8 s earlier), denoted 5t-4,  was found to be the exponential 

M, = S, -, exp[a+b (throughput)], 
where throughput is proportional to S_ 4 . Parameters a and b were estimated by the method of 
weighted least squares for each of five days of data. Fig. 1 shows the plot mean values and fitted 
curve for one day's data. The weighting was used to take account of the heterogeneity of variance. 
The auger torque at time t, denoted T, was found to be linearly related to the throughput, and 
therefore also to the speed S: 

7', = c+dS. 
Parameters c and d were once again estimated by weighted least squares. 6  
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Fig. 1. Observed and fitted monitor values for 1 September 1980 

In this paper the relationship between consecutive monitor and torque measurements is 
examined using standard time series techniques. A model is selected and used to identify the best 
predictor of future crop intake. A control system which uses the predictor is therefore an optimal 
system, and its performance places an upper bound on the performance of a practical system. 
Results of an analysis of optimal control systems using either a monitor alone or a monitor and an 
auger torque sensor are presented as savings in threshing loss compared with constant speed 
operation. Results are given in detail for one day, 1 September 1980, on which the most compre-
hensive data set was obtained, with a summary for four other days. The success of control 
systems using the monitor and auger torque depend on three conditions being satisfied: 

(I) the monitor measuring grain loss accurately; 
the grain loss changing more slowly than the 8 s time delay in the monitor; 
the torque accurately predicting future changes in grain loss. 

In section 5 we will interpret the performance of the control systems using these criteria. 
In another paper, McGechan and Glasbey 3  extend this work by including data from an auto-

matic telemetry survey of combine performance on commercial farms, 7  and by considering total 
grain loss throughout the harvest as in the operational research studies on cereal harvesting of 
Audsley and Boyce' and Philips and O'Callaghan.' 
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NOTATION 
a,b parameters in monitor/speed relationship 
c,d parameters in auger torque/speed relationship 
e 	series of independent normally distributed random variates with zero mean 
k calibration constant converting MIS to L 
/ 	time lag between grain being cut and reaching the grain loss monitor 
L grain loss, t/ha 
M1  number of grains striking acoustic grain loss monitor in 2 s up to time i 
5, average forward speed of combine in 2 s up to time t, km/h 
t 	index for time, measured in units of 2 s 
T average auger torque in two seconds up to time 
up  component of x which can be predicted by the control system 
Ur component of x, excluding sampling variability, which cannot be predicted 
x, departure of "crop density" from unity as observed by the monitor at time t+4 

departure of "crop density" from unity as observed by the auger torque at time t 
o parameter used to relate x, and e 
a 2  variance of component of x, which is autocorrelated 
U 2  variance of component of x 1 , excluding sampling variability, which is uncorrelated 
o- 2  

3 variance of component of x attributed to the sampling variability of the monitor 
a, variance of component of j' which is autocorrelated 
o 2 

5 variance of component of y, which is uncorrelated 
a covariance between Xt and y 
cy variance of e 
o 	variance of Up 

a 2 
r variance of Ur 

V autocorrelation between correlated components of x 1 , x, 	y,, y 1  

2. Time series analysis 
2.1. Transformation of data 

Combine threshing loss is dependent on a number of characteristics of the crop, which are 
considered here as a single factor with a mean value of unity, referred to as "crop density". 
Because the crop throughput is the product of the combine speed and the crop density the 
variability is assumed to enter the equations multiplicatively. Therefore if (I +Xt) represents the 
density of crop cut at time t, then 

S,_ 4  exp[a+b S, -,(I +x, -,)], 
and by a transformation 

- ln(M,/S1_4)—a 
I 

similarly, 
Tt  = c+dS(l+y1 ) 

md 

y, = 	I, 

vhere (1 +y,) represents the component of crop density affecting the auger torque. It is expected 
hat x and yt  will be similar, but not identical because: 

M and T, will include sampling errors; 
the crop throughput will change between the auger and the monitor because of the capacity 
of the combine components to hold material; 
different characteristics of the crop will affect the monitor and the auger to different degrees. 
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2.2. Monitor sampling variability 
Part of the variability in x is due to sampling because only a small proportion of the lost grain 

is detected by the monitor. We assume that M 1  is Poisson-distributed and therefore has a sampling 
variance equal to its mean. The sampling variance of x1 , denoted or 2 ,  can be derived from Eqn 
(1) by a linearizing approximization (Cox and Hinkley,' p. 275) as 

[E(ax4)]2 E(M1), 

where E denotes expectation, and (ax, ./ am,) denotes the first derivative of x 1 	with respect to 

M. Therefore 

03 	
_exp[a+bS,_41 

For the most comprehensive data set a and b were estimated as —349 and 098 with S measured in 

units of km/h, 6  and U2 for a range of speeds is shown in the second column of Table I. 

2.3. Variability of x 
A useful indication of the relation between consecutive terms in a time series is the set of auto-

covariances. These measure the correlations between elements a fixed time apart in the series. 
The autocovariances of x were estimated separately for each pass through the crop, where the 
sample autocovariance at lag / is 

1 	n-i 

Xt x1 for 1 = 0, 1, 2 . . . , 10, 

and n is the number of observations in a particular pass (see, for example, Chatfield,'° pp.  23-25). 
Sampling variability acts independently on each observation and so only affects the auto-
covariance at lag zero. After the value of U2 appropriate to each pass was subtracted the auto-
covariances showed no relation with combine speed. Therefore at each lag they were averaged 
over all passes in each day. Fig. 2 shows the autocovariances derived from one day's data. The  
autocovariances appear to decline approximately exponentially except for a step change betweer 
lags zero and one. A simple structure with this form has an autocovariance at lag / given by 

where parameters o, a and 
for the data used in Fig. 1. 

if! =0, 1+ 0 2 	3  (2; E(x, x11) 
= I U2 	if 1>0, 

ip take the approximate values 0-022, 0007 and 0-95, respectively 
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Fig. 2. Sample auloco variances of x for 1 September 1980 
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2.4. Variability in y 
In a similar way the autocovariances of y were estimated. They showed no relation with speed 

and were averaged over each day. Fig. 3 shows the average values for one data set. The pattern 
is the same as for x, leading to the assumption that the covariance of y at lag 1 is 

(U 2  + Or2 if! = 0, 4 	5  
E(y,,y11) = 	I a,2 if />0, 

with the same value of . Approximate values for the parameters U 2  and a5' were identified as 
0022 and 0016. 
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Fig. 3. Sample autoco variances of y for 1 September 1980 

2.5. Covariability between x and  
To complete the model it is necessary to know how x and y are related to each other. A 

standard time series approach is to use the sample cross-covariances (Chatfield, 1 ° pp.  172-174), 
defined at lag Ito be 

1 
x1 y, ~ 1 for! = —10, —9, ..., 0, 

E x, y,, for / = 1, 2, ..., 10. 
n—I t=i 

The cross-covariances measure the correlation between elements in one series and those a fixed 
time apart in the other series. Unlike the autocovariances the negative lag times have a meaning 
different from the positive lag times. The sample cross-covariances, calculated for each pass, 
showed no relation with speed and were therefore averaged over each day of data. Fig. 4 displays 
the results for one day. The cross-covariances appear not to have a step change at lag zero, to be 
symmetric about zero and to decline exponentially, although at a faster rate than the auto-
covariances. However, for simplicity, the rate of decay was assumed to be the same and the cross-
covariance between x and y at lag / to be 

E(x,,y,,) = 

The parameter a took the value 0014 for the data used in Fig. 3. 
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Fig. 4. Sample cross-co variances between x and y for 1 September 1980 

2.6. Interpretation 
If we assume normally-distributed errors then the autocovariances and cross-covariances in 

Eqns (2), (3) and (4) completely specify the stochastic model of monitor and torque variability. 
This model has the advantages of being easy to simulate (see Appendix I) and lending itself to a 
simple interpretation. The parameters U2  and o are the variances of correlated components of 
crop density, which change slowly over the field, and o  12  and G2  are variances of uncorrelated 
components. The physical interpretation of the components in terms of the crop is unknown. 

No attempt at rigour in testing the assumed covariance model has been made because: 
the ensuing analysis is not sensitive to small changes in the model; 
testing is made complicated by the presence of Poisson sampling variability and multiple 
short series. 

3. Optimal prediction 

3. I. Using the monitor 
The assumed covariance structure and normality of x permits it to be represented mathematic-

ally as a first-order autoregressive first-order moving average process 

x = çox, 	+ e, - Oe, , 	 .. (5) 

where the terms e are independent normal deviates with zero mean and variance o- . This is one 
of a class of autoregressive-moving average models (see, for example, Box and Jenkins,' 1  pp.  46-
80) which have proved to be very useful in modelling many different time series. The parameters 
O and C2  are expressible in terms of o, a, o and go, as derived in Appendix 2. Also in Appendix 2, 
it is shown that the minimum variance unbiased linear predictor of x, from x, , x, , , . . . is 

00 

go'(go—O) 

with an error variance of 

a2 + ( go - 0)2(1 - go2t) 
e 	(1—go2) 

At time t, in order to select the speed s 	to maintain the throughput constant, it is necessary 
to predict x 1 . However, at time t only x, x,_5 , . . . are known and so 1 = 4. Part of the error 
variance in predicting x,. 1  is the sampling variability which affects the monitor but does not affect 
the true grain loss. Therefore the variance of the unpredictable component of grain loss, denoted 
a, is 

are 
E'+0)2('"]- (I—(P2) 	

31 
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and the variance of the predictable component, denoted o, is 

Values of the parameters over the experimental range of speeds, derived from one set of data, are 
presented in Table 1. 

TABLE I 

Results for 1 September 1980 using the monitor for prediction 

S,km/h 0 

252 0178 089 0.199 0006 
288 0084 085 0102 0007 
324 0041 080 0058 0.009 
360 0021 075 0036 0.010 
396 0011 071 0025 0.010 
432 0006 066 0.019 0.011 

3.2. Using the monitor and auger torque 
The covariance structure of x and y permits them to be represented as a bivariate first-order 

autoregressive first-order moving average process. The same methods as employed in section 3.1 
could have been used to find the best predictor of x 1 , 1  at time I but this would have involved 
solving seven non-linear simultaneous equations. The analytic form of the solution would be two 
exponentially decaying sums of past x and y values. Instead, for simplicity, the prediction errors 
were obtained for a range of speeds using a numerical approach described in Appendix 3. Values 
of a derived from one data set are given in Table 2 for a range of speeds. As might be expected 
uv2  is larger than in Table 1 because the prediction is improved by the inclusion of the extra infor-
mation contained in the auger torque. 

TABLE 2 

Results for 1 September 1980 using the monitor and auger for prediction 

S, km/h 	 252 	288 	324 	360 	396 	432 

0.009 	0.010 	0.011 	0012 	0012 	0012 

4. The threshing losses using control systems 

4.1. Analytic solution 
If a proportional relationship is assumed between grain loss monitored per unit distance, that is 

MIS, and true grain loss L, measured in units of tonnes/hectare, then 

L =kexp[a+bS(l+up+ur)], 

where k is a calibration constant (0032), Up is the predictable component of the crop variability 
and Ur is the unpredictable component. The sum of Up and Ur is the crop density x with the 
Poisson sampling variability excluded. The speed S can be selected using Up to try to maintain a 
constant loss L by replacing Ur by its expectation of zero in Eqn (6) to give 

S ln(LT/k)—a 
b(1 +u) 
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In Appendix 4 it is shown that the expected, or average, loss L is related to the average speed S by 

L k(l+(1/ S 	)a+ 
exp1b52), 

where cr,2, and U2  are the variances of Up and Ur, respectively. 
Two cases of special interest are constant speed and constant threshing loss: 

when U2 = 0 the speed is constant, a = cr+a and 
L k(l+b 2 S2 a)exp(a+bS), 

when U2 = 0 the loss is constant, 7 = a+a and 

b \ 
L kex(a+ 12). 

4.2. Results 
In Table 3 the average threshing losses are presented for a range of speeds using the parameters 

estimated from one day of data. Four operating systems are considered: 
constant speed, therefore U2 = 0; 
controlling the speed using predictions from the monitor, a 2  given in Table 1; 
controlling the speed using predictions from both the monitor and the auger torque, a 
given in Table 2; 
the idealized situation of perfect control in which threshing loss is held constant, therefore 

=6 2 + C 2  . This provides a lower limit on threshing losses at a given average speed 
achievable using monitoring equipment other than the grain loss monitor and auger 
torque sensor. 

TABLE 3 

Average threshing losses (in t/ha) for 1 September 1980 

. 	 km/h 
Constant 

speed 
Monitor 
control 

Monitor/auger 
control 

Constant 
loss 

252 0013 0012 0012 0.011 
288 0.019 0018 0018 0016 
324 0027 0026 0025 0022 
3.60 0040 0037 0036 0031 
396 0059 0053 0052 0043 
432 0087 0077 0075 0061 

4.3. Simulation 
Approximations have been used in section 2.2 in estimating the sampling variability, and in 

Appendix 4 in linearizing the threshing loss relationship. Their validity was checked by simulating 
the control systems using COMBINE described in Appendix 1. COMBINE simulates the vari-
ations in crop density using a series of pseudo-random numbers which are fed into mathematical 
formulae. By taking a sufficiently long set of simulations the average losses obtained from the 
formulae in COMBINE can be compared with the direct but approximate analytical estimates to 
any desired degree of accuracy. One hundred independent runs of length 1000 s were simulated 
for six average speeds using the parameters derived from one day's data. In Table 4 the estimated 
average losses, accurate to three decimal places, are given for the monitor control system together 
with the expected losses derived by the analytical approach of section 4.1. The two sets of results 
are in sufficiently close agreement to justify the approximations over the range of speeds con-
sidered. However, it may be noted that the results start to diverge as the speed increases because 
the loss/speed relationship increases in curvature. 
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which equals 

ci2  11 +_0)2(1 - 2I) 

(l) 

The known terms in Eqn (11) provide an unbiased linear predictor of x 1 . By Gauss's theorem 
this predictor has minimum variance. 

Appendix 3. Optimal prediction using the monitor and auger 

By a standard result (see, for example, Anderson '12 pp. 27-28), if (x, 1 , XT)  is multivariate 
normally distributed with mean (0, OT)  and variance 

(A 15  A 1 \, 
\A 21  A 22) 

then, when X is known, x +1  has a mean of fTX  and a variance of 

	

A ll "1i 	Tfl 21' 

where f is the solution of the simultaneous equations 

A 22f = A 21 . 

	

In the present application XT = (x1 _, 	-, 	, 	— 28) y, . . ., y 24),  arbitrarily restricting to 
the most recent 25 known values of x and y. Elements in A can be obtained using Eqns (2), (3) 
and (4). From these f can be calculated and 

= (A 11 _fT A 21)—o, 
 a 2+a2—U2 = 

Appendix 4. The relationship between average threshing loss and average speed 

Using Taylor's theorem, if g is a differentiable function of u, then if u is small, 

g(u) g(0)+ug'(0)+u2 g(0). 

If u is a random variable with zero expectation, then 

E(g(u)) = g(0) + var(u) g(0) 	 . . . (12) 
(see, for example, Cox and Hinkley," p.  260). 

Applying this approximation to Eqn(7), the average speed is 

S = E(S) [1 +a(— l)(-2)] 
ln(LT/k)—a 

b 	
...(13) 

Substituting for L T from Eqn (13) in Eqn (7) gives 

	

S 	 ...(l4) 
(1 +O) (1 +Up) 

and substituting for S from Eqn (14) in Eqn (6) gives 

	

L
- 

kexP[a+ 
bS 	1 

(1 +a) (I + 
up) (l+u + Ur)]. 

Once again applying the approximation in Eqn (12) the average loss is 

_  I 	 1 
L = E(L) 	[l+ var 

Ur 	b 2 52  
1+1 (l+)2j k exp [a+ 

bS 
12j 

	

b 2 S2 	\ 

	

____ 	 bSl k(1+1 
(l+)lar) exp [a+ l+j 
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In the above 
= 	zt' = w', 

= z 1 +(1_ 2)+w( ') fort>1, 

= z1 +(l- 2)4 w (  for t>l, 

and 	w) and w" are independent normal deviates with zero means and unit variances for 
all values of t. The resulting sequence of M and T has the covariance structure specified in Eqns 
(2)-(4). 

Appendix 2. Optimal prediction using the monitor 

By considering the covariance at lags 0 and 1 of (x 1  - (px, _) using Eqns (2) and (5) it can be 
shown that 

(1 + 02)U,2 = a + a + a2 -2(a2  - a - a) 
and 

OC2  = 
These are solved by 

0 = A—(A 2 -1) 
and 

(72 = ço(a+a)/0, 
where 

A
=  

2g9(a+a) 

To obtain the minimum variance unbiased linear predictor of 	we express x, 1  in terms of a 
series of past observations. From Eqn (5) 

x 1  = x1+e1+1 -0e, 
and 

x, = ,x 1 _ 1 +e-0et_1 . 

Substituting for x from Eqn (9) in Eqn (8) leads to 

= e +1 +(—O)e 1 — 0e,_ 1 + 9 2Xr _ 1 . 

This can be repeated for x 1 _ 1 ....., x-, 1  to give 

i-i 
X 41  = e1+((P-0) 	i e +l+lx _I0e, 	 ...(10) 

1=0 

From Eqn (5) 
x_ 1 — çox, _, 1 +0e1 - 1 -1 , 

which can be used to substitute for e, ., in Eqn (10). If this is repeated for e, _, j, 	-2' 	. we 
obtain 

I-i 
x +i  =e 1 +(-0) 	ç9'e1 _ 1 +qJ'((p—O) : 0x- 1 -g, 	 ...(1l) 

1=0 	 J=0 

provided I°I < 1, to ensure the infinite sum exists. 
The terms in x , 	, , . . . in Eqn (11) are known and the terms in e +1, e1 , . . ., e j+ are 

unknown. The unknown terms give the prediction error which has zero mean and a variance of 

I-i 

1=0 
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Audsley and Boyce 8  have pointed out that it is misleading to look in isolation at one factor in 
the cereal harvest, in this case the threshing loss. In another paper McGechan and Glasbey 3  
incorporate the results of this paper into an operational research study of the complete harvest in 
which all the grain losses are assessed, with the conclusion that the development of a system is not 
worthwhile. 

6. Conclusions 

This study has demonstrated how upper bounds can be placed on the benefit of combine 
forward speed control systems using the variability in measured threshing loss. 

The control system, using the monitor and auger torque sensor, only achieves about 30 % of the 
potential savings of a perfect constant loss control system. This indicates the benefits available to a 
control system using improved monitoring equipment. 
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Appendix 1. Simulating the stochastic variability in COMBINE 

A computer program, "COMBINE", supplied with a speed S r , at time t, generates an auger 
torque T of 

c+dS,(1 +a4z q ) +a5  w 1 ) 

and a monitor value M, 4  which is Poisson-distributed with a mean of 

S, exp[a+b S,(1 +a/oz 1  +(a-a/a) z' +a2  w1V)]. 
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TABLE 4 

Average threshing losses (in tfha) for control using 
monitor for 1 September 1980 

5, km/h 
Average simulation 

result 
Analytic 

result 

250 0012 0012 
288 0'018 0018 
324 0026 0025 
361 0037 0036 
395 0054 0052 
431 0078 0074 

4.4 Results from other days 
In Table 5 the results estimated from four other days of data are presented for a single speed of 

36 km/h. Although the losses vary considerably between days, the savings made by the control 
systems are more similar. These are in broad agreement with the results from the most compre-
hensive day which have been given in detail. 

TABLE 5 

Summary of parameter estimates and threshing losses (in t/ha) at 36 km/h derived from other days of data 

Date a b 2 a1  2 
C2 

Constant 
speed 

Monitor 
control 

Constant 
loss 

14 September 1979 —119 045 0066 0.090 096 0059 0055 0040 
19 September 1979 —148 029 0030 0040 097 0024 0.019 0016 

21 September 1979 —018 031 0067 0081 095 0.090 0086 0071 

4 September 1980 —350 113 0022 0.000 097 0067 0057 0052 

5. Discussion 

The monitor control system performs poorly at low speeds because sampling variability in the 
monitor obscures the true grain losses. At higher speeds the results are slightly better because 
sampling variability is smaller and, because is close to unity, most of the correlated component 
of "crop density", although none of the uncorrelated component, can be predicted. Addition of 
the auger torque makes a small improvement to the control because the correlation between the 
correlated components of "crop density" in the auger and monitor is 63 %. 

The optimal control systems are useful in placing upper bounds on the savings in grain loss but 
the performance of a practical system may not come near to these bounds. This is because the 
optimal systems assume a model with known parameters, whereas the model is only an approxi-
mation and the parameters will be unknown since they depend largely on the crop which varies 
from day to day and between one field and another. A practical control system would probably 
have to be adaptive, that is the parameters in it would have to change with time. Also, the 
optimal control considered takes no account of the rate at which the forward speed of the com-
bine can be varied, and in this respect a practical control system might have a lower performance. 

In this paper the threshing loss has been considered to be a fixed proportion of the monitored 
loss per unit distance, excluding sampling variability, but this is probably not completely true. 
Therefore, the effect of the monitor in controlling the grain loss will have been overestimated and 
the effect of the auger torque could have been underestimated. 
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The Assessment of Combining Work-days Criteria and 
Forecasting Models 

C. A. GLASBEY*,  M. B. MCGECHANt 

Audsley and Boyce's criterion for predicting in which weather conditions combine harvesters can 
work was assessed using automatic telemetry survey data. A simpler criterion was found which 
gave better agreement with the data. A time-series model was built to forecast future combining 
work-days from past work-days using either criterion. In another paper this has been 
incorporated in a selected daily speed strategy to 'take account of varying weather conditions. 

1. Introduction 

In this paper Audsley and Boyce's 1  criterion for predicting when combining can take place is 
assessed, modified, and used to build a time-series model for forecasting future work-days from 
past work-days. This is the first stage in assessing the value of a selected daily speed strategy for 
combining, which takes account of varying weather conditions.' 

As part of their operational reseach model of cereal harvesting Audsley and Boyce' proposed a 
criterion to predict whether a combine harvester can work, based on previous rainfall. This 
states that combining can take place on days when the discounted sum of past rainfall is less than 
1-27 mm. The discounted sum is the rainfall in the past 24 h plus 20% of the previo%ls day's 
discounted sum. ;This is the same as taking a geometrically decaying sum of past rainfall,,.with 
each day given 20% of the weight of the succeeding day. 

The Scottish Institute of Agricultural Engineering automatic telemetry survey 3,4  gave partial 
information on the number of hours of combining which took place each day on up to six farms 
on the southern outskirts of Edinburgh between 1977 and 1982. In total, there were 23 
combinations of farms and years, with an average of 21 days of data in each, making 483 days in 
total. The data were censored in two respects; combining sometimes took place without being 
recorded (due to faulty, recording equipment) and at other times did not take place for reasons 
other than the state of the weather (such as combine breakdown or the crop not being quite ready 
for harvesting), so the criterion was expected to predict more combining work-days than -were 
recorded. Daily rainfall records at 0900 hours GMT between 1977 and 1982 were available at 
sites near each farm. A longer period of daily rainfall records between 1943 and 1982 was 
available for Penicuik, about 8 km from the farms, and this was used in the time-series modelling. 

Philips and O'Callaghan 6  have also proposed a criterion for predicting when a combine 
harvester can work, which operates on an hourly basis. In practice this turned out consistently to 
predict more combining hours than were observed. However, it is not possible to say whether 
this represents a deficiency in the criterion or is simply due to censoring in the survey data. 
Therefore, the criterion could not be assessed. It was found to be possible to assess a criterion 
which operates on a daily basis such as Audsley and Boyce's. This is described in Section 2 and 
leads to the specification of a new criterion. Then, in Section 3, a time-series model is identified 
for forecasting future combining work-days from the immediate past history of work-days. 
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2. Predicting combining work-days from weather data 

2.1. General approach 
An operational research simulation model using a criterion for working days based on daily 

rainfall is less precise than one using a criterion for working hours based on hourly weather-data. 
Either criterion is satisfactory for rain-free days or for days of continuous rain, but the daily 
criterion cannot take account of days when rain starts half way through a day and combining has 
taken place up to that time. Furthermore, combining often cannot take place on a damp, misty 
day with little or no recorded rainfall, so only a more complex criterion taking account of other 
weather parameters such as relative humidity (as included in the Philips and O'Callaghan 
criterion') would correctly indicate this as a non-working day. Despite its limitations, a more 
satisfactory test can be made of criteria based on daily rainfall with the quality of observed 
combining work-period data available, particularly as these include a number of instances when 
combining was recorded for only part of the working day, and when combining stopped for part 
of the day for reasons other than the weather. Furthermore, the daily criterion lends itself to a 
simple forecasting technique (Section 3) on which a combine speed strategy can be based,' 
whereas an hourly criterion would be much too complex for this. 

The effectiveness of Audsley and Boyce's criterion for predicting combining work-days from 
local rainfall records is assessed, in the first instance by examining a table of observed and 
predicted work and non-working days. The statistical treatment is then extended to present 
graphical 'and regression techniques which provide additional measures of effectiveness of the 
criterion and enable an improved, validated criterion to be specified. 

In the data, only days on which more than three hours work were observed are treated as 
working days. This arbitrary choice means that some short working periods prior to rain have 
been ignored, a correct assumption when comparing work periods with rainfall, and many of the 
periods when work was not recorded or combining did not take place for reasons other than the 
weather were sufficiently short, for the remaining recorded work period to be in excess of three 
hours. 

2.2. Assessment from tabular data 
If Audsley and Boyce's criterion were correct then there should not be any days when combin-

ing was observed but predicted to be not possible, although because of censoring there might be 
days when combining was predicted possible but not observed. However, all four entries in Table 
1 are non-zero and on 66 days combining was observed in direct contradiction of the prediction 
from Audsley and Boyce's criterion, so the criterion is not in full agreement with the data. Con-
versely, if the criterion had no predictive power whatsoever then there would be no association 
(i.e. correlation) between rows and columns in Table 1. However the X 2 statistic (Siegel, 7  pp 
107-109) of 101 8 is very much greater than would be expected from a x2  distribution with one 
degree of freedom if there were no association. We therefore conclude from Table 1 that Audsley 
and Boyce's criterion provides some measure of prediction. 

Table 1 
Comparison of observed and predicted combining work-days using 

Audsley and Boyce's criterion 

Number of days combining predicted 

Possible 	I 	Not possible 

Combining took place 	 235 	 66 
Did not take place 	 57 	 125 
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2.3. Exploratory plot of the data 
To reach a better understanding of the effectiveness of Audsley and Boyce's criterion an indi-

cator variable yj  was calculated, with y j  set to unity if combining was observed to take place for 
three or more hours on day i and otherwise set to zero. Then, a standard statistical technique was 
used of grouping the days into batches with increasing values of dependent variate, in this case 
the discounted sum of past rainfall, without regard for farm or year. Batches of size 21 were 
chosen as a convenient divisor of 483, the total number of days of survey data. Batch averages 
were calculated and plotted with rainfall log-transformed to emphasize the features of low rain-
fall (Fig. 1). The revealed trend is sigmoidal; as rainfall increases from zero the proportion of 
combining work-days initially does not change, then drops progressively more quickly before 
slowing down and reaching a new constant level of zero once the rainfall is great enough. 
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'E 04 
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0 
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02 

0.i.)I 	 0.1 	 1 	 10 

Discounted post rainfall, mm (logarithmic scale) 

Fig. 1. Indicator variable against past rainfall, data grouped into batches of size 21. x, Data;-, criterion with P= 127; 
- 	 -- -, criterion with p = 2-58 

2.4. Interpretation of signioidal shape 
If the discounted sum of past rainfall were the sole determinant of whether combining could 

ake place, then Fig. 1 would have revealed a step function. Below a particular rain threshold 
ombining would have been observed with constant rate, dependent upon the censoring prob-
ibility in the data; above the threshold, no combining would have taken place. However, the 
harp corners of the step function have been smoothed out by variability from other sources such 
s: (1) the difference in rainfall between the farms and the recording sites; (2) the distribution of 

-ain over each 24 hour period; (3) changes in other climatic variables such as temperature and 
-elative humidity; and (4) differences in field, crop and machinery characteristics between farms 
)r between different days on each farm. These variables change over continuous ranges, so the 
implest effect on the probability of combining is to produce a sigmoidal curve. 

2.5. Theory of Probit analysis 
A commonly used formula for a sigmoidál curve is the integral of the normal frequency dis-

ribution; The normal integral was first assumed, and later demonstrated to be an appropriate 
unction. It gives the probability of combining being recorded on day i as 
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Notation 

L log-likelihood 
n 483, the number of days of survey data 
pi  probability of combining being observed on day i 
r rainfall on day i (mm) 
yi 1 if combining observed for three or more hours on day i, otherwise 0 
K probability of combining being recorded by the survey on a combining work-day 
p the discounted sum of past rainfall for which there is a 50% probability of combining 

being possible (mm) 
c proportional to the inverse of the slope of the Probit curve 
a discounting parameter for rainfall effect in past days 

standardized normal integral 

(z)=Jz

e_2/2  
, 

 /dX 

where (1 - K) is the proportion of days when combining is possible but is not recorded as having 
occurred. Therefore K is not an integral part of a combining work-days criterion but rather a 
censoring factor arising out of the deficiencies in the survey data. ,  

We assumed that y i  equalled 1, that is combining was observed on day i, with probability p. 
We also assumed that the values of y on other days did not affect the value of y i  which meant that 
the log-likelihood of the data was 

L={Y(n 1 +(l —y)t°n(1 _P)}. 

(There are reasons to believe the observations will not be totally independent when made on 
different farms on the same day or on consecutive days but this should only have a small effect on 
the following analysis.) 

The objective was to estimate the parameters in Eqn (1) to give the normal integral curve with 
the best fit by maximizing the log-likelihood L. This may be done numerically by iterative refine-
ment from a preliminary graphical estimate of the parameter values. A general assessment of the 
adequacy of the fit could be performed by carrying out ax 2  test using the grouped data. The log-
likelihood provided another measure of the effectiveness of the criterion for predicting work-days 
from weather, where foreach change in criterion the increase in log-likelihood represented the 
improvement in fit. The slope of the sigmoid 1/a could be regarded as a further measure of effec-
tiveness of the criterion, since the steeper the slope the closer the sigmoid curve was to a step-
function. What we have described above is a particular type of Probit analysis with individual 
records (Finney,' pp  179-190), as opposed to the more conventional Probit analysis with 
giouped data. 

2.6. Probit analysis and Audsley and Boyce's criterion 
Audsley and Boyce's criterion states that a equals 02 and also places a constraint on p and 

a. However, the form of the constraint is dependent on the probability of harvesting which 



C. A. GLASBEY; M. B. MCGECHAN 	 27 

corresponds to the critical rainfall level of 1 27 mm. The simplest case, when the critical level 
gives a 50% chance of harvesting, gives p equal to 1.27 mm and a is unspecified. With a and p 
held constant, K was estimated at 094 with a standard error, derived from the inverted Hessian 
matrix of L, of 0'02 and a was estimated as 19 with a standard error of 03. (The Hessian is the 
matrix of second derivatives of L with respect to the parameters being estimated.) The estimated 
probability of combining being observed was plotted as the continuous line in Fig. 1. The x2  
goodness-of-fit statistic derived from the grouped data was 201 with 21 degrees of freedom, 
which is no greater than expectation. 

2.7. Improvements to A udsley and Boyce's criterion 
A more powerful test of the effectiveness of the model than the above x2  could be achieved by 

testing against a more specific alternative criterion. For example, to test whether 1 27 mm is an 
appropriate value for p, the model was refitted allowing p to vary. The result was to increase L 
from —2623 to —2519, giving the estimated value of p as 258 mm with a standard error of 
037 mm. The estimated probability of combining is shown as the dotted line in Fig. 1 The 
improvement in fit was sufficient to reject 1-27 mm as a value for p. It should be noted that the 
new value of p is not incompatible with Audsley and Boyce's criterion, provided that the critical 
rainfall level of 1-27 mm gives a 72% chance of harvesting. It can be seen in Fig. 1 that K and a 
are both smaller for the new criterion. At first sight it appears strange that K should change, but 
in fact censoring is only interpretable within the context of a particular model, that is specific 
values for p. a and a. Another way of expressing this is that if the point of inflexion of the sig-
moid is held fixed at 1-27 mm, then the curve which fits the data best can be seen in Fig. I to have 
a higher upper asymptote than otherwise. The decrease in a is a secondary measure of model 
improvement, because it means that the Probit curve more closely approximates a step function. 

Furthermore, to test whether 02 is an appropriate value for a, the model was refitted allowing 
panda to vary. This increased L to —2403, i.e. once again there was a substantial improvement 
in fit, and a was estimated as —002. Audsley and Boyce's criterion was therefore rejected by the 
survey data. 

If a is negative, then the weights attaching to rainfall in some past days are also negative, and 
this makes no physical sense. Moreover, a was not estimated as being significantly different from 
zero. Therefore a was set to zero, which means that only the previous 24 hours rainfall would 
determine whether combining could take place, and p. a and K were estimated by maximizing L. 
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Rainfall in previous 24 h, mm (logarithmic scale) 

Fig. 2. Indicator variable against past rainfall, data grouped into batches of size 21. x , data; -, new criterion 
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The result was L decreased by an insignificant amount to —2413 and p estimated as 1 42 mm 
with a standard error of 027 mm. Therefore, with 95% confidence, p lies between 088 mm and 
I 96 mm, conditional upon a being equal to zero. 

The estimated and observed probabilities of combining being recorded have been plotted 
against the log-transformed rainfall during the previous 24 hours in Fig. 2. The x 2  statistic was 
91 with 20 degrees of freedom, which confirmed the goodness-of-fit of the model. 

We therefore propose a new criterion for determining combining work-days: combining can 
take place when the rainfall in the previous 24 hours is less than 14mm. It is a somewhat 
arbitrary assumption to equate the critical threshold with the parameter It which represents the 
point of inflexion of the fitted curve. However, it does give approximately the correct number of 
combining work-days; the model predicts 338 work-days, of which 12% are censored, so there 
should be 298 observed work-days, and in fact there are 301. 

3. Forecasting future combining work-days from past work-days 

3.1. General approach 
Having assessed alternative criteria for predicting combining work-days from weather data, we 

progressed to forecasting future work-days from the immediate past history of work-days. The 
procedure was developed using a series of work-days derived using the Audsley and Boyce 
criterion (Sections 3.2-3.4), then repeated on work-days derived using the new criterion. Time 
dependence correlations were assessed by carrying out x 2  tests on tabulated data in a manner 
similar to that already used in Section 3.3. 

3.2. Model identification 
When the Audsley and Boyce criterion is applied to 38 years of rainfall data for Penicuik 

(1943-1982, excluding 1951, 1960) between 1 August and 9 October, it yields a sequence of 0's 
(denoting days when combining could not take place) and l's (when combining could take 
place). In order to identify the type of time dependence in these data 2 x 2 contingency tables 
were formed of the frequencies of a 0 or 1 immediately following particular sequences of 0's and 
I's. Thus, Table 2 shows the frequencies conditional on one day previously. If there were no 
dependence then, although the data are serially structured, the x2  statistic for this table would be 
approximately x2  distributed with one degree of freedom (Cox,' pp  72-75). Therefore the x 2  
statistic of 4598 shows a significant dependence on the previous day. 

To test the dependence with 2 days' separation, two 2 x 2 contingency tables similar to Table 2 
were formed of the frequencies of a 0 or 1 in relation to the situation 2 days previously, one table 
for each of the two situations on the immediately preceding day. The x2  statistics for each table 
are given in the second and third rows of Table 3. Their sum, which has two degrees of freedom, 
is a statistic for testing the dependence with 2 days' separation conditional on the dependence 
with one day's separation. In a similar manner, four tables were required for the time 
dependence with 3 days separation, one for each of the four permutations for the 2 intervening 
days, and eight tables were required for 4 days separation. 

Table 2 
Occurrences of combining work and non- 
work days using Audsley and Boyce's 

criterion with Penicuik rainfall data 

Current day 
0 

Previous day 	0 	866 I 349 
1 	352 	903 
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Table 3 
X1  tests for time dependence in 2 x 2 contingency tables of current 
work-days in relation to past work-days. Combining work-days derived 

using Audsley and Boyce's criterion with Penicuik rainfall data 

X2 statistics 
Sequence of immediately 

Single Pooled tables preceding work-days 
tables (degrees offreedom) 

0 or I 459.8* 4598 (l)* 

OOorlO 04 
OlorIl 20.1* 205(2)* 

000 or 100 16 
010 or 110 4.1* 
001 or 101 03 
011 or 111 90* 150(4)* 

0000 or 1000 06 
0100 or 1100 07 
0010 or 1010 06 
011OorlIlO 09 
0001 or 1001 0•5 
0101 or 1101 09 
O011or1011 00 
011iorlIll 14 56(8) 

Statistics significant at 5% level 

Table 4 
Probabilities of being able to combine derived using Audsley and 

Boyce's criterion with Penicuik rainfall data 

Previous three days Probability of combining on current day 

000 030 
100 025 
010 023 
110 034 
001 062 
101 .065 
011 068 
111 078 

The X2  statistics in Table 3 showed that the time dependence was significant up to 3 days 
separation. The probabilities of l's following each of the eight possible permutations of 0's and 
I's over 3 days are listed in Table 4. 

3.3. Model Testing 
To test the fit of the model, observed frequencies of runs of l's were compared with the 

expected frequencies using the above model with a time dependence of 3 days. The transition 
probabilities in Table 4 were used to calculate the expected probabilities. For example, the 
probability of a run of three l's starting with an initial state 001 is 

P(l00l) P(lIOl 1) P(OIl  11) 
=(062)(068)(l—O78)=009. 
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Table 5 
Time-series model testing using combining work-days derived 

from Audsley and Boyce's criterion with Penicuik rainfall data 

Length 

Number of runs of l's Number of runs of Os 

Observed 	Expected Observed 	Expected 

126 121 104 100 
2 68 66 59 57 
3 36 30 47 51 
4 27 24 35 36 
5 15 19 27 25 
6 7 15 16 18 
7 16 11 15 13 
8 10 9 7 9 
9 7 7 6 6 

10 3 5 5 4 
11 1 4 4 3 
12 1 3 2 2 
13 3 3 1 2 

>13 6 9 2 4 

Expected frequencies were calculated by multiplying the total number of observed runs of l's 
(326) by the expected probabilities (Table 5). The Z' statistic of 147 with nine degrees of freedom 
is not sufficiently large to reject the model. Dumont and Boyce" used the same criterion of 
run-length to test their rainfall model, but using a different type of statistic. Both approaches are 
valid only approximately, because of the time dependence in the data. 

The calculations were repeated for sequences of 0's and the results are also shown in Table 5. 
The x 2  statistic was 30 with nine degrees of freedom and once again the model was not rejected. 

3.4. Tests for stationarity 
In sections 3.2 and 3.3 it has been assumed that the transition probabilities do not change, 

either during the harvest or between years, i.e. that the process is stationary. In order to test 
whether this is true, run-lengths were counted separately for the first 35 days and the last 35 days 
of the harvesting season, and for each year, and compared with the expected numbers of 
run-lengths. Only two of the 80 test statistics were significant at the 5% level, which is no greater 
than would be expected by chance. We therefore concluded that the stationary model was 
consistent with the Penicuik rainfall data. 

3.5. Repetition using new combining work-days criterion 
When the new combining work-days criterion was applied to the rainfall data it yielded a dif-

ferent sequence of 0's and l's. The same identificatioif procedure was followed, yielding pooled 
x 2  statistics of 119-2 (with 1 degree of freedom), 266 (2), 104 (4) and 95 (8). This once 
again indicated a dependence of 3 days, although it was not as decisive as with Audsley and 
Boyce's criterion. One test at 4 days separation, between 0111 and 1111 has a x 2  statistic of 8-1, 
which is highly significant. However, for consistency with Audsley and Boyce's criterion, we 
selected a model with 3 days dependence. The transition probabilities are listed in Table 6. 

Repeating the tests of fit comparing run-lengths, only three of the 82 test statistics (that is two 
as in Section 3.3 and 80 as in Section 3.4) were significant at the 5% level, so the model is in 
acceptable agreement with the data. 
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Table 6 
Probabilities of being able to combine derived using new work-days criterion 

with Pemcuik rainfall data 

	

Previous three days 	Probability of combining on current day 

000 047 
100 050 
010 045 
110 053 
001 0•60 
101 064 
Oil 069 
111 077 

4. Conclusion 

Our ability to test combine work-period criteria was limited by the quality of observed work-
period data available. By introducing into the analysis a censoring parameter, representing the 
difference between observed work-days and days on which combining did or could have taken 
place, it was possible to test criteria based on daily rainfall within the limitations imposed by the 
simplifying assumptions of this type of criterion. On this basis, a new criterion using only the 
past 24 hours rainfall appeared to be an improvement on the previously used criterion proposed 
by Audsley and. Boyce. The time dependence of combining work and non-working days during 
the harvesting period was specified. Both Audsley and Boyce'sand the new criterion for deriving 
combining work-days from daily rainfall, and the time dependence of work and non-working 
days, were used by McGechan and Glasbey 2  as the basis for a selected daily speed strategy to 
take account of varying weather. 
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Combine Speed Strategies in Cereal Harvesting. 
Part 2: Adjustment for Weather Variability 

M. B. MCGECHAN*;  C. A. GLASBEYt 

Existing models of cereal harvesting have derived a common optimum combine speed for every 
harvesting day on a particular farm. This study is an assessment of the economic benefits of 
selecting a different speed for each day of the harvest, taking into account the history of previous 
weather. Both a simple simulation approach, and a dynamic—stochastic programming approach 
which incorporates a forecast of future work-days, have been developed. 

Overall, the results showed small benefits from a strategy based on a selected daily speed 
compared with single constant speed operation, when averaged out over a number of years. 
However, substantial benefits were shown in the occasional very wet harvests, when combining 
could take place on only a small number of days, and in some other exceptional situations. 

1. Introduction 
Operational Research (OR) models of cereal harvesting, such as those developed by Audsley and 
Boyce" and by Philips and O'Callaghan,' determine the optimum values for combine size and 
speed for the crops and conditions on a particular farm. This two-part paper describes adap-
tations of the models to assess the value of adjusting the combine speed for changes in circum-
stances on the farm. Part l considered adjustments for the crop parameters (such as straw yield) 
in different harvest years, or for different crops, varieties or fields in the same year. Part 2 assesses 
the benefits of a daily adjustment of speed to allow for weather variations. The adjustment 
makes use of information about the weather history and the amount of crop remaining to be cut 
on each day throughout the harvest. This study indicates the potential value of a program which 
a farmer can run himself, on his own microcomputer, to recalculate the optimum combine speed 
daily as the harvest progresses. 

Existing models include unvalidated equations for determining work-days from weather data. 
So far, in work with adaptations of these models, 39  the criterion suggested by Audsley and 
Boyce using daily rainfall data has been assumed. By comparing survey data on commercial 
combine working periods (McGechan 10) with weather records, Glasbey and McGechan 11  
developed a new criterion, which they considered to be an improvement on the arbitrary Audsley 
and Boyce criterion. In the current study, parallel assessments of benefits of a selected daily 
speed strategy were carried out using both Audsley and Boyce's and Glasbey and McGechan's 
criteria for determining work-days from weather. Since the effect of vatriations in other model 
parameters has already been examined thoroughly 7,8  a single set of values was assumed here. 
Front end (i.e. shedding and cutter bar) losses were determined from the equations suggested by 

Audsley and Boyce; a farm with 200 ha of cereals with mean yield of both grain and straw 5 t/ha, 
and grain price £120/t, was assumed. As in Part 1, a range of alternative sizes of combine was 
assumed, each with a set of costs and values of the parameters of the exponential threshing loss 
equation suggested by Philips and O'Callaghan' (Part 1, Table 1). 
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COMBINE SPEED STRATEGIES 

Notation 
A 	area of crop cut on day i, ha 
C 	expected cost with optimal strategy 
D 	day length, h 
F 	field efficiency, % (assumed = 75%) 
G 	grain cost, L/t 
H 	hourly cost of harvesting, L/h (costs of labour, fuel and repairs 8) 

L1 	front-end loss, t/ha 
L 	threshing loss, t/ha 
min 	minimum value of bracketed expression with respect to variation in S only 

S 

k,I 	probability of weather state I following weather state k 
R 	overall work-rate, ha/h 
S 	combine forward speed, km/h 
W 	cutter bar width, in 
Y 	yield of grain, t/ha 

Subscripts 
E+ 1 	day following finish day (assumed to be 8th October) 

day of harvest (integer) 
i+ I 	day following day i 
j 	area of crop remaining to be cut at beginning of day, ha (integer in range 0-200) 
f—A 	area of crop remaining to be cut at end of day, ha (integer in range 0-200) 
k 	weather state on day i (integer in range 1-8, as in Table I) 
/ 	weather state on day + I (integer in range 1-8, as in Table 1) 

Table 1 
Conditional probabilities 

Weather 
status 

on day j 

Ability to combine 
on last three days 

number  

Probability of being able to 
combine on day i + 1 

i-2 1-1 I Audsley and Boyce Glasbey and McGechan 

0 0 0 030 047 
2 1 0 0 025 0-50 
3 0 1 0 023 0-45 
4 1 1 0 0-34 053 
5 0 0 1 062 060 
6 1 0 I 0-65 0-64 
7 0 I I 068 0-69 
8 1 1 1 0-78 0-77 

2. Derivation of combining work-days from weather data 
2.1. Audsley and Boyce's combining work-days criterion 

Audsley and Boyce' assumed that no combining would take place if the discounted sum of past 
rainfall exceeded the arbitrary value of 1 27 mm. The discounted sum was the rainfall in the past 
24 hours plus 20% of the previous day's discounted sum of past rainfall. 

Glasbey and McGechan" showed that combining work-days derived from daily rainfall using 
the Audsley and Boyce criterion were not in complete agreement with those observed in a survey 
during six harvests on up to six commercial farms to the south of Edinburgh. 10 
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2.2. Glasbey and McGechan 's combine work-days criterion 
Glasbey and McGechan 11  investigated alternative criteria for deriving combining work-days 
from daily rainfall data. They proposed a new criterion which states that combining can take 
place when rainfall in the previous 24 h is less than 1 4 mm. This value gave the best fit to the 
survey data; no significant improvement in fit was obtained by including proportions of rainfall 
from earlier days. 

2.3. Start andfinish dates 
When running their model, Audsley and Boyce specified the day when the crop reached 30% m.c. 
(w.b.) and the moisture content at which combining could start; from this, the combining start 
day was computed from a sixth order polynomial for the moisture content curve, dependent on 
time but not weather. Grain was regarded as a total loss if it remained uncut 70 days after 1st 
August, or if its moisture content rose above 30% m.c. (w.b.) towards the end of the season. 

For this study, combining was assumed to start with a moisture content of 21% m.c. (w.b.) on 
20th August, an average date observed in the survey. No information about the grain moisture 
content throughout each harvest was recorded in the survey, so the last available date for 
combining was calculated as 7th October by assuming the Audsley and Boyce moisture content 
curve with 10th August as the 30% m.c. (w.b.) day [which gave 21% m.c. (w.b.) on 20th August]. 

2.4. Length of work-days records for simulation 
Audsley and Boyce' determined costs and optimum combine speeds by simulation over combine 
workdays derived from 10 years' rainfall data for six different areas of England. McGechan 8  
has shown that simulation over longer periods gives results very different from those using 10 
years' data, indicating that 10 years' rainfall is inadequate to obtain a reliable indication of 
optimum speed. 

For this study, a set of 38 years' daily rainfall was available for a site at Penicuik, under 8 km 
distant from the furthest farm. Simulations were carried out over work-days derived from all 38 
years of this data set. 

3. Variable speed strategies 

3.1. Simulation approach 
The method used to derive the optimal single constant speed, used extensively in the authors' 
earlier work, 3  was to calculate the mean total annual cost of combining the total area of crop 
for a range of typical constant speeds, bya simulation over a number of years of work-days 
derived from rainfall data,' and then to select the speed with the least cost. The main costs 
dependent on combine speed are those associated with threshing losses, front-end losses and 
grain which remains uncut if the harvest is not completed in the time available. 8  Since the first of 
these losses increases with increasing speed, and the others decrease with increasing speed, the 
selected speed is a compromise between these losses. 

The simulation approach to deriving an optimal daily speed was a natural extension of the 
approach in the single constant speed case. For each day of harvesting in each of 38 years, the 
optimum combine speed was selected which minimized an estimated mean total annual cost of 
harvesting the area of crop remaining uncut at the beginning of that day. This estimated cost was 
derived by a simulation over the work-days derived from all 38 year's daily rainfall data; the 
work-days considered in each year were only those from the current day to the last available 
date for combining. If rainfall on the current day in the current year prevented combining 
taking place, no cost would be incurred; otherwise, the actual cost of harvesting on that day was 
calculated at this optimum speed. The total annual cost was then calculated by repeating the 
procedure and summing for all the days of the harvest. Finally, the mean total annual cost was 
obtained for the 38 year period. 
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3.2. Dynamic—stochastic programming approach 
3.2.1. Weatherforecasting 
The simulation approach made use of the weather history from previous years only. The 
effectiveness of a selected daily speed strategy should be capable of improvement from a current 
weather forecast based on weather earlier that season, so this was considered. 

Glasbey and McGechan 11  examined the time dependence of days when combining could take 
place (denoted by one), and days when it could not (denoted by zero). Eight "weather states" 
were used to represent the possible combinations of ability to combine on each of the three pre-
vious days. For each weather state, they determined conditional probabilities, i.e. the probability 
of being able to combine on the current day, using both Audsley and Boyce's and Glasbey and 
McGechan's criteria for deriving work-days from daily rainfall data (Table 1). The proportion of 
days when combining could take place was 0 - 51 using the Audsley and Boyce work-days criterion 
and 059 using Glasbey and McGechan's criteria. 

3.2.2. Dynamic—stochastic programming 
Dynamic—stochastic programming (DSP) is a method of mathematical optimization in an uncer -

tain environment, when a choice has to be made at a range of points in time. The optimal choice 
is that which minimizes the expected cost from each point to the final time. Working backwards 
in time, expected costs are determined recursively, to take account of the probability of being 
in each of a number of possible states at the next time point (Whittle' 2). An important simpli-
fication is when the number of states is finite. Values of certain parameters must be integers to 
achieve this, so the range and increment of parameter values must be chosen carefully. This 
makes the problem manageable in computer time and workspace. 

3.2.3. Formulation of DSP model 
For the current problem, using the conditional probabilities for each weather state (Table 1), the 
model was formulated to estimate the optimum speed on each day, which minimizes the expected 
overall cost from the beginning of that day to the end of the season, CkJ as follows: 

on days when combining was possible (i.e. k= 5-8) 

CkJ =minL1 +L)AG+AH/R+ Pkl Cj ,j—A,i+ l}, 

where A=RDifj ~!JW orA=jifj.<RD, and R=OOOl SF W; 
on days when combining was not possible (i.e. k = 1-4) 

Ck J =Pk ,C, J+  and 

at the end of the harvesting period the value of the uncut grain 

C15+1 =J YG. 

For each of the eight weather states (Table I), for all integer areas of crop between zero and 
200 ha, and for each harvesting day recursively from the last to the first within the permissible 
range, the expected cost CkJ , was calculated for each of a range of speeds, so that the optimum 
(least cost) speed could be selected. A three-dimensional array was thus created, containing the 
optimum speed for each weather state, area of crop, and harvest day. Speeds considered were 
those at which a whole number of hectares was cut in a day, i.e. multiples of 1000/(FWD). 
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4. Assessment of the benefits of variable speed strategies 

4.1. General method of assessment 
Mean costs, according to both Audsley and Boyce's and Glasbey and McGechan's criteria for 
deriving work-days from weather, were calculated for each strategy considered. The benefits of 
the selected daily speed strategy were assumed to be the difference in the costs derived from the 38 
year simulation and those derived from operating at the single optimum constant speed. Thus, 
any assumptions in the strategies which were inaccurate or unvalidated would affect the costs of 
both similarly, so their difference would be largely unaffected. For the DSP approach, the costs 
were obtained by carrying out a 38 year simulation, using the optimal daily speeds selected from 
the array previously created and the set of work-days derived from daily rainfall data. 

4.2. Mean benefits over an extended period 
The annual costs, averaged over 38 years, of harvesting a 200 ha crop using all the speed 
strategies considered, based on both work-days criteria, are listed in Table 2. The savings from 
the selected daily speed strategy compared with single constant speed operation were greatest for 
the smaller combine sizes, and greater using the Audsley and Boyce work-days criteria; this gave 
a smaller number of available days than Glasbey and McGechan's criterion. Thus the savings 
were greatest when the combine was stretched in terms of the size of the task relative to the size of 
the combine. For a size 4 combine, the optimum size for this crop, the annual saving according 
to the Audsley and Boyce work-days criterion was £300 when derived by simulation, rising to 
£400 when derived by the DSP approach: However, using Glasbey and McGechan's work-days 
criterion, the benefits were less than £100 for either approach. The effect of the selected daily 
speed strategy was not sufficiently great in any situation to change the optimum size of combine. 

4.3 Benefits in individual years 
The year by year costs of harvesting using either an optimum single constant speed, or the 
selected daily speed strategy are listed in Table 3. By far the most substantial benefits from the 

Table 2 
Mean annual costs. Crop size 200 ha, grain and straw yield 5t/ha 

Combining work-days criterion 

Audsley and Boyce Glasbey and McGeehan 

Average 
speed Total Annual cost Saving 

A verage 
Total Annual cost Saving 

loss (I) (1.100) (1.100) speed  
loss (t) (1.100) (1.100) 

Size  Single constant speed 550 976 176 500 669 141 
Daily speed, simulation 424 930 171 5 449 608 136 5 
Daily speed, DSP 410 907 169 7 4'43 602 136 6 

Size  Single constant speed 475 897 172 425 618 141 
Daily speed, simulation 439 857 167 5 395 572 136 4 
Daily speed, DSP 425 839 166 6 392 569 136 4 

Size  Single constant speed 5'25 697 150 475 515 130 
Daily speed, simulation 512 667 147 3 432 46'7 129 1 
Daily speed, DSP 494 654 146 4 446 499 129 

Size  Single constant speed 5'75 613 155 5'00 48'1 141 
Daily speed, simulation 573 583 152 3 4'71 473 141 0 
Variable speed, DSP 549 574 152 3 4'83 475 141 0 

Size  Single constant speed 575 562 154 500 467 145 
Daily.speed, simulation 608 533 152 2 475 459 145 0 
Daily speed, DSP 594 529 152 2 492 463 145 0 



Table 3 
Year by year costs for alternative speed strategies. Size 4 combine 38 year simulation 

Audsley and Boyce combining work-days criterion Glasbey and McGechan combining work-days criterion 

Single Selected daily sped, Selected daily speed, 
A vailable 

Single Selected daily speed, Selected daily speed, 

Year 
A vailable 
combining 

constant speed simulation DSP 
combining 

constant speed simulation DSP 

work-days work-days - - 

Cost Uncut Cost Uncut Saving Cost Uncut Saving Cost Uncut Cost Uncut Saving Cost Uncut Saving 

(.CIOO) grain (t) grain (lOO) (E100) grain (.f 100) (fJOO) grain (t) grain (L1OO) (1.100) grain (1.100) 
(t) 

1943 20 143 0 149 0 —5 146 0 —3 29 131 0 131 0 I 131 0 
1944 24 133 0 132 0 1 131 0 2 29 130 0 128 0 0 128 0 1 
1945 26 134 0 133 0 1 132 0 2 31 127 0 127 0 1 127 0 I 

1946 20 140 0 154 0 —14 151 0 —II 25 134 0 135 0 —1 133 0 0 

1947 34 127 0 124 0 3 124 0 3 37 124 0 123 0 1 123 0 1 

1948 23 142 0 149 0 —7 147 0 4 29 134 0 134 0 0 133 0 1 

1949 38 128 0 126 0 2 126 0 3 41 124 0 124 0 0 124 0 1 

1950 II 459 289: 386 203 73 401 210 58 17 158 185 144 0 14 147 0 11 

1952 26 129 0 127 0 2 126 0 3 31 126 0 125 0 0 125 0 

1953 27 133 0 131 0 0 131 0 3 29 128 0 128 0 1 128 0 I 

1954 16 139 0 143 0 —4 140 0 —1 24 131 0 131 0 0 130 0 0 

1955 28 131 0 130 0 2 129 0 2 33 128 0 127 0 0 127 0 

1956 22 143 0 147 0 —4 146 0 —3 31 133 0 133 0 1 133 0 1 

1957 28 135 0 133 0 2 133 0 2 32 131 0 131 0 0 130 0 0 

00 

0 



1958 21 136 0 134 0 1 134 0 2 31 128 0 127 0 I 127 0 
1959 42 131 0 129 0 I 128 0 3 42 128 0 127 0 I 127 0 
1961 23 136 0 135 0 I 134 0 2 28 131 0 131 0 0 130 0 
1962 18 146 0 161 0 —15 158 0 —12 30 135 0 134 0 I 134 0 
1963 23 139 0 139 0 0 138 0 I 32 129 0 128 0 I 128 0 
1964 22 137 0 139 0 —2 137 0 I 25 133 0 133 0 0 133 0 
1965 12 391 226 307 140 84 323 155 68 21 135 0 135 0 0 135 0 
1966 25 135 0 133 0 2 132 0 2 33 128 0 128 0 0 128 0 
1967 25 132 0 130 0 2 129 0 3 29 128 0 127 0 0 127 0 
1968 22 132 0 130 0 2 129 0 3 28 127 0 127 0 0 127 0 
1969 27 133 0 132 0 I 131 0 2 34 129 0 128 0 0 128 0 
1970 23 136 0 134 0 2 134 0 2 29 129 0 129 0 0 129 0 
1971 33 133 0 131 0 2 131 0 3 38 129 0 129 0 1 129 0 
1972 47 127 0 124 0 3 124 0 3 47 124 0 123 0 1 123 0 
1973 34 130 0 128 0 2 127 0 3 38 126 0 125 0 0 125 0 
1974 22 135 0 134 0 -1 133 0 2 27 129 0 128 0 0 128 0 
1975 20 132 0 131 0 I 130 0 2 28 126 0 126 0 0 126 0 
1976 27 128 0 126 0 2 125 0 3 34 124 0 124 0 1 124 0 
1977 20 141 0 145 0 —4 142 0 —1 27 132 0 131 0 1 131 0 
1978 19 139 0 140 0 —1 138 0 I 28 132 0 131 0 0 131 0 
1979 27 132 0 131 0 0 130 0 3 34 127 0 127 0 1 127 0 
1980 25 .132 0 130 0 2 130 0 2 31 127 0 127 0 0 127 0 
1981 24 127 0 125 0 2 .124 0 3 31 124 0 123 0 I 123 0 
1982 22 138 0 137 0 	. 0 136 0 2 26 132 0 132 0 I 132 0 

overall 	 150 1  136 1  147 1  96 	1 	3 	1  146 1  96 	1 	4 	 130 J 049 	129 1 	0 	1 	I 	129 	0 

I 

C) 
rn 

z 
C) 

C) 
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Fig. 1. Daily combine speeds throughout harvest in two sample years. Audsley and Boyce work-days criterion. 
dynamic— stochastic programming approach; — — —,simulation approach. 

selected daily speed strategy accrued in the very wet harvests, 1950 and 1965 using the Audsley 
and Boyce work-days criterion, and 1950 alone using Glasbey and McGechan's criterion. In 
these years, a substantial quantity of grain was not cut in the available time when operating at the 
optimal single constant speed; the selected daily speed strategy gave a considerable reduction in 
the quantity of uncut grain using the Audsley and Boyce work-days criterion, and reduced it to 
zero using Glasbey and McGechan's criterion. In practice, even if he were otherwise adopting a 
constant speed strategy, a farmer would probably take drastic measures in a very wet year to 
reduce the quantity of uncut grain, such as hiring another combine (at additional cost) or increas-
ing his combining speed. Hence, the benefits of the selected daily speed strategy relative to such a 
modified constant speed strategy may not be quite as great as have been calculated. Nevertheless, 
since the optimum speed is critical, there would still be a benefit from operating at a correctly 
calculated rather than an arbitrarily increased speed, although it would be difficult to calculate 
the value of this benefit. 

The daily selected speeds for both approaches to derivation in two sample years are illustrated 
in Fig.. 1. This shows a progressive increase in speed throughout the harvest in a very wet season 
(1950), and a decrease in speed in a fairly dry season (1973), with slight differences between the 
daily speed derived by each of the two approaches in both years. 
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4.4. Benefits in other circumstances 
The benefits of the DSP strategy relative to constant speed operations were investigated for three 



M. B. McGECHAN; C. A. GLASBEY 
	

21 

Table 4 
Annual costs of combining, in critical years and mean of 38 years, where work-days 

differ from expectation 

Annual costs (.f 100) Annual 

Actual work-days 
Critical 
years 

Available 
work-days 

___________ ________ saving 
from DSP Constant DSP 

speed strategy (1100) 

(1) 	Rainfall in 1950 16 221 155 66 
previous 24 hours 1965 16 223 159 64 
less than 088 mm  

Mean of 
38 years 135 131 4 

(3) 	Audsley and Boyce 1950 11 532 476 56 
work-days formula 1954 16 212 181 31 

1965 12 470 392 78 

Mean of 
38 years 153 149 4 

cases where the relationship between work-days and weather was not as expected. For a size 4 
combine, apparent optimum speeds were derived from historical rainfall data according to the 
Glasbey and McGechan criterion, but in fact the criterion was incorrect as follows: 

(1) and (2) Combining could take place when rainfall in the previous 24 hours was less than 
either 088 mm or 1 96 mm; these values represent the 95% confidence limits in Glasbey and 
McGechan's 11  estimate of the threshold rainfall of 14 mm. 

(3) Combining work-days were related to daily rainfall using the Audsley and Boyce formula. 
In each case, costs were higher at the apparent optimum speed than they would have been at the 
true optimum speed, but to a much greater degree at a single constant speed than with the daily 
selected speed strategy. In cases 1 and 3, average annual benefits of the daily selected speed 
strategy were about £400, compared with single constant speed operation, with benefits of up to 
£7800 in individual years (Table 4). This demonstrates the capability of the selected daily speed 
strategy if the work-days criterion is incorrect and predicts more work-days than are actually 
available. 

5. Conclusions 

A selected daily speed strategy derived by dynamic—stochastic programming, which incorporates 
some weather forecasting, performed slightly better than a selected daily speed strategy 
derived by simulation with no forecasting, and better still than a single constant speed strategy. 
However, the average benefits over a number of years were very small. 

Glasbey and McGechan's criterion for deriving combining work-days from weather data gave 
more available work-days than Audsley and Boyce's criterion, with a consequent reduction in the 
benefits from a selected daily speed strategy. Although the mean annual saving from the selected 
daily speed strategy to take account of weather variability was small (about £400 using the 
Audsley and Boyce work-days formula), it was greater than that from an automatic speed con-
trol system under the same conditions.' It was also greater than that from a strategy to take 
account of crop variability if the crop variability was typical, but not in the minority of instances 
when the crop variability was high for a particular reason .3  A selected daily speed strategy to 
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take account of weather variability would be easier to implement than one to take account of 
crop variability, because it is easier to record whether combining has taken place each day and 
the amount of crop cut than to make accurate measurement of crop parameters such as straw 
yield. 

Despite the small benefits from the selected daily speed strategy when averaged over a number 
of years, there appeared to be large benefits in the occasional very wet harvests, when the com-
bine could work on only a small number of days. Also, if the relationship between work-days 
and weather was not as expected, very substantial benefits were shown in occasional critical 
years. 

A farmer may wish to employ a selected daily speed strategy, even for a relatively small average 
benefit, if it makes use of computer equipment which he already has and so incurs little or no 
additional expense. He may also favour this strategy because it gives substantial benefits in 
disastrous years, for which any small additional cost in the remaining years can be regarded as an 
insurance premium. Large benefits of this type would be obtained even if the program were run 
only in a crisis situation, rather than every day. 
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SUMMARY 

The effects of mechanical conditioning, which crimps mown grass, and of either spreading or gathering 
into windrows are estimated from a field trial with repeated measurements. Except for treatment-
dependent scaling terms, drying curves are found to have a common shape that is described by a 
cubic spline. The rate of drying is approximately proportional to potential evaporation from a free-
water surface, as predicted by Penman's equation, which is a function of basic weather variables. 

1. Introduction 

A series of field and laboratory trials has been conducted at the Scottish Institute of 
Agricultural Engineering to ascertain the benefits of various mower conditioning systems 
(Klinner, 1975) in Scottish climatic conditions. Effects of either spreading the mown grass 
to dry or gathering it into ridges called windrows, were also investigated. The field trials 
had, as a secondary objective, the identification of a relationship between drying rate and 
weather variation for use in operational research studies of forage conservation systems. 

Methods of analysis and results are illustrated using a silage wilting trial which was 
conducted over 4 days in June 1985. There were three replicates of a 4 x 2 factorial 
treatment structure laid out as a randomized block design. The first factor had four levels 
denoting whether the grass was conditioned by one of three mower conditioners which 
crimp the grass and break its waxy surface, or left unconditioned. The two levels of the 
second factor corresponded to the grass being spread or gathered into windrows. 

Five samples of grass were taken at random from the swath, that is the strip of mown 
grass, in each plot both at the beginning and end of the experiment. These were separately 
weighed, dried in an oven at 102°C for 24 hours, and reweighed. Moisture contents (dry 
basis), the ratios of water to dry matter in the grass, could then be calculated. In order to 
estimate moisture contents during the trial, repeated measurements were taken by weighing 
a length of each swath at regular intervals of time, as well as at the times when the samples 
were collected. To ensure that the same lengths were monitored throughout, they were 
contained within nets supported on lightweight aluminium frames. Also recorded were 
basic weather variables: air temperature, vapour pressure deficit, net radiation above 
the swaths, wind speed 2 in above the ground, and rainfall. Further details of the trial 
are given by Spencer et al. (Scottish Institute of Agricultural Engineering Dep. Note, 
No. SIN/472, 1986). 

Analysis was in two stages, reflecting the twofold objectives. Initially, the effects of 
treatment on drying rates were examined, then the relation to weather variability was 

Key words: Cubic spline; Moisture content; Penman's equation; Repeated measurements. 
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investigated. The advantage of this approach is that treatment differences are identified 
independently of any weather model. 

2. Treatment Effects 

The moisture content (dry basis) of the grass in the ith plot, denoted M 3  at the time tij of 
the jth weighing, was calculated as (W - D)1D 1 . Here W,, is the weight of the grass in the 
net in plot i at time t, and D1  is the estimated weight of the grass when dry, which was 
calculated by 

J4'11 (1 - Xii  )( Win(i)Sjn(i)) + 'Vi n(e)( 1 - XIn(I) )( JV11 Si1 
)2  

(J47in() SIn(j) ) 2  + ( JV,1S1 )2  

This uses the means and standard deviations of the five sample moisture contents (wet 
basis), denoted by X11  and S11  respectively for the ith plot at the start of the trial, time t, 1 , 

and by Xjn(j) and Si,() at the time ti,(,) of the n(i)th and final weighing in plot i. (Sample 
values calculated on a wet basis, that is as the proportions of water in the grass, were found 
to be more symmetrically distributed than those obtained on a dry basis and were therefore 
preferred in deriving plot average values.) In essence, D- is derived from initial and final 
moisture contents, and the two are averaged in proportion to their variances. An alternative 
approach would have been to estimate the D's along with other parameters in the model 
given below, by modifying step (iii) to be a nonlinear regression involving W. Although 
this ought to be more efficient, in practice it turned out to be less robust to any minor 
model inadequacies, and the resulting estimates were highly variable. 

Figure 1 shows moisture contents plotted on a logarithmic scale against time for four 
plots within one replicate. (These particular plots were chosen because those with the fastest 
drying rates had the lowest initial moisture contents and they therefore produced a clear 
figure. In general there was no association between these two variables.) The overall drying 
rate was slow; in particular, it was retarded by periods of rainfall early in day 2 and late in 
day 3. The data suggest a model in which drying curves have the same shape, differing only 
in location a, and scale 13, that is, 

Mij = e''"-' 

The continuous function f is common to all plots. (This is a special case of a class 
of models considered by Mr D. Sales of the AFRC Institute of Animal Physiology and 
Genetics Research, Edinburgh. He allows for the use of location and scale transformations 
on both left and right sides of the expression.) 

Given the a's and 13's, f can be estimated, by splines for instance. Conversely, if f is 
known then a i  and f3, can be estimated for each plot. This leads to the following 
algorithm: 

Initially, estimate &, = In(Mil ) and /3, = ln(Ji4'Il/M fl(,)/t fl (,) for I = 1, . . . , 24, with time 
measured from the start of the experiment. 
Fit a spline to [ln(M1) - &,]/& with a variance weight of l/[?(W, - Di )2]  for 
j = 1, . . . , n(i); i = 1, ..., 24. The variances are based on the assumption that the 
measured weights in each plot have equal variances, which appears to be consistent 
with the data, and therefore, ignoring variability in the D's, ln(M,) has a variance 
proportional to l/(W - Di )2  in each plot, to a first-order approximation. A cubic 
spline was fitted (Cox, 1974) with a knot every 2 hours, except at night when no 
measurements were made. To eliminate arbitrariness in location and scale, f was 
normalized so that it was zero at the start of the experiment, and had an average unit 
fall per hour over the trial. 
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DAY NUMBER 

Figure 1. Observed and fitted moisture contents (dry basis) for four plots in one replicate plotted 
on a logarithmic scale against time. Observed values denoted by 0 for a nonconditioned windrow, 

for a windrow conditioned by machine 1, X for a nonconditioned spread swath, and * for a 
spread swath conditioned by machine 2. Interpolated fitted values obtained using a cubic spline are 

shown by the continuous lines. 

Reestimate ai  and fl i  by regressing ln(M11) against 1(t 3 ) with a variance weight of 
l/(W, - D•) 2  for  = 1, . . ., n(i). Repeat for i = 1, .. , 24. 
If the &'s and j's are almost unchanged then stop; otherwise, return to step (ii). 

Convergences proved to be rapid, five iterations being needed in the particular example. 
This algorithm is not guaranteed to find the parameter values that globally minimize the 
error sum of squares, but it appears to work well in practice. A full least-squares algorithm 
would be prohibitively expensive in computer time. 

Estimates of a and /3 for different plots are not independent because they use a common 
spline function, j  which was estimated using all the data. However, as the number of plots 
is reasonably large, the &'s and /3's  will be approximately independent and can be compared 
in the usual way by analysis of variance. Values of /3 given in Table 1 represent average 
rates of decrease in ln(moisture content) for each treatment over the three replicates. Spread 
grass dries significantly more quickly than grass in windrows. Conditioning also improved 
drying, although to a lesser extent. Only one difference was found between machines and 
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Table I 
Average rates of decrease in ln(moisture content) by treatment 

Treatment 	 0: rate of decrease in 
In(moisture) content (10 4/hour) 

Swath structure 	Conditioning 	averaged over three replicates 

Windrow 	None 	 40 
Machine 1 	 48 
Machine 2 	 48 
Machine 3 	 45 

Spread 	 None 	 58 
Machine 1 	 69 
Machine 2 	 68 
Machine 3 	 56 

Standard error of differences = 4, with 14 degrees of freedom. 

this could not be attributed to any particular cause: it was not reproduced in other trials. 
A similar analysis of the &s, which represent ln(moisture contents) of plots at the start of 
the trial, revealed no significant treatment effects, as expected. 

Because the drying processes involved in spread grass and windrows are quite distinct it 
may be expected that different treatments would generate different shapes of drying curve. 
There is some evidence for this in that the final few residuals for the spread treatments are 
generally positive. However, the above analysis summarizes most of the information in the 
data, as can be seen by the fitted lines for the subset of the data plotted in Figure 1. A 
simpler approach, fitting a straight line to the ln(moisture contents) from each plot, would 
summarize only the overall rates of drying. As a consequence, it makes less efficient use of 
the data and, for 0, the ratio of between-treatment variation to residual variation is reduced 
from 15.7, for the previous analysis, to 11.4. 

Although rates of drying were generally higher in other trials, the same treatment 
differences were found (Lamond et al., 1987). Relative to a nonconditioned windrow, 
conditioning increases the rate of drying by about 20% and spreading increases it by 35%. 
These effects multiply together to give an improvement of around 60% for conditioning 
and then spreading the grass. 

3. Weather Effects 

There are insufficient days of data to attempt a purely data-based approach to relating 
moisture content to weather variables. Almost certainly an excellent fit could be obtained, 
but it would probably defy any physical interpretation and would predict poorly in other 
weather conditions. Therefore attention is restricted to existing models. 

The physics underlying evaporation from a grass swath (see, for example, Thompson, 
198 1) is very complicated, and it can be difficult to assess which factors are most important. 
Modelling evaporation from a free-water surface is rather simpler. From Penman's (1948) 
seminal work, a widely used model has evolved. Attempts to modify Penman's model for 
crop use, that of Monteith (1965) for instance, introduce many additional complications 
such as unknown parameters. Simpler relationships have therefore been sought for specific 
situations. For cut grass, Pitt (1984) related drying rate to evaporation from a free-water 
surface, as measured from a pan during rainfree periods. 

Figure 2 shows fitted moisture content for a nonconditioned windrow plotted on a 
logarithmic scale against the cumulative evaporation predicted by Penman's equation, as 
given by Rosenberg (1974, pp.  168-169), that is the integral of 

[RA + .0945(1 + .0lu)V]/(i + .27) mm/day. 
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Figure 2. Fitted moisture contents (dry basis) for a nonconditioned windrow plotted on a logarithmic 
scale against cumulative evaporation from a free-water surface, as predicted by Penman's equation. 
The continuous line shows the interpolated fitted values obtained using a cubic spline. The dashed 

lines show three parallel straight lines which are the least-squares approximation to the spline fit. 

Here R is net radiation (mm H 2  0/day), i is the slope of the saturation vapour pressure 
curve for water at air temperature (mm Hg/°F), u is wind speed 2 m above the ground 
(miles/day), and V is the vapour pressure deficit (mm Hg). The curve is well approximated 
by three parallel line segments, shown as dashed lines, excluding interruptions which 
coincide with periods of rain followed by the rapid evaporation of surface water. The same 
model has been found to hold in other trials (Glasbey and McGechan, Scottish Institute of 
Agricultural Engineering, Dep. Note, No. SIN/480, 1986). It may be expressed as 

M(t) = 

during rainfree periods, where M(t) is moisture content at time t, E(t) is cumulative 
evaporation up to time t, a is the log-transformed initial moisture content, and 'y is a drying 
constant estimated as .095. It was also found that the delays caused by rain were such 
that 1.5 mm of potential evaporation are required to drive off each mm of rainfall before 
drying of moisture within the grass could recommence. 

The interpretation of 'y  is quite simple: 1 mm of predicted evaporation reduces moisture 
content by a factor of e. It follows that on average, 9% of moisture is lost for each mm 
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of predicted evaporation. Values for 'y appropriate to spread and/or conditioned grass can 
be obtained by applying the percentage changes given in Section 2. Therefore, 'y is estimated 
as. 114 for a conditioned windrow, .128 for a nonconditioned spread swath, and .152 for a 
conditioned spread swath. The initial weight of water in one of the weighing nets is around 
10 kg. Therefore, at most, 1.52 kg is evaporated for each 1 mm of predicted evaporation 
of free water. As the cross-sectional area of the frame holding the net is about 1.6 m 2, this 
is equivalent to .95 mm of water loss or 95% efficiency at the start of the experiment 
compared with a free-water surface. Of course, the efficiency is far lower if the total surface 
area of the grass is taken into account. 
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RÉSUMÉ 

Les effets du conditionnement mécanique qui écrase l'herbe fauchée, et de la densité des andains sont 
estimés a partir d'un essai de plein champ avec répétitions. On montre que les courbes de dessication 
ont une méme forme, décrite par une spline cubique, a un facteur d'échelle prés, lie aux traitements. 
Le taux de dessication est approximativement proportionnel a l'évaporation potentielle d'une surface 
d'eau estimée par la formule de Penman qui est fonction de variables climatiques de base. 
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Summary 

This paper reports on a series of field trials carried out to assess the effectiveness of mower conditioners in improving 
drying and wilting rates under Scottish climatic conditions. The trials were carried out over a period of two years and 
used three conditioners of different designs, two of which are available commercially. 

The mower conditioners improved drying rates by 20 per cent, which was less than anticipated. It was found that 
changes in swath structure had a much greater influence on drying rates, giving up the 35 per cent improvement. It 
is postulated that the disappointing results of conditioning are due to the resistance offered by the swath to moisture transfer. 

Key words: wilting - drying - grass - conditioners - cool climate - Scotland - swath - structure 
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Introduction 

The removal of moisture from grass crops by field wilting or 
drying remains an important agricultural process upon which 
the quality of material subsequently conserved is dependent. 

For silage production, wilting eases the problems of obtain-
ing the correct fermentation without recourse to additives and 
reduces effluent problems. The production of quality hay, or 
any hay in wet climates, is very dependent on the drying rates 
obtainable in the field. 

The advent of commercial mower conditioners and published 
work on the improvements in drying rates obtainable from grass 
treated with such machines appear to indicate that substantial 
benefits should be obtainable in cool moist climates compared 
with non-conditioned grass. 

The effects of conditioning are usually measured using 
laboratory apparatus and comparing the rates of drying of thin 
layers of material, with the drying air passed through the bed 
by forced convection. These techniques, described by Klmner 
(1975). Klinner and Hale (1984) and Hale (1986) permit the 
effectiveness of conditioners to be measured with reference to 
a standard treatment, thus enabling the confusing effects of crop 
variations and maturity to be eliminated during machine develop-
ment trials. 

However, no data were found on full-scale replicated field 
trials on the effectiveness of these mower conditioner systems 
under climatic conditions that are unfavourable for drying or 
wilting. The conduct of comparative trials involves the elimina-
tion of as many confounding factors as possible, such as weather 
and crop maturity. 

Determination of the swath moisture content during wilting 
and drying presents problems due to the variation of moisture 

tFormerly SIAE, Bush Estate. Penicuik, Midlothian. EH26 OPH, Scotland. 

© Longman Group UK Ltd 1988 
0264-5467/87/05102023/$03.50 

content within the swath. Sampling schemes have to be devised 
to cope with an unknown moisture distribution within the swath. 
Thus, any experiments based on taking samples from a swath 
are likely to run into 'resource difficulties' because of the large 
number of samples required and the problem of extracting 
representative samples from the swath without bias. 

Attempts have been made to build a mathematical model for 
swath drying in the field and significant advances have been 
achieved by Thompson (1981) and Thompson et al. (1985). 
However, paucity of experimental data has prevented confir-
mation of the model's usefulness except for parameter sensitivity 
studies and a preliminary system study of climatic regions 
suitable for field drying. There are many variables involved in 
describing the drying process of the swath; Thompson et al. 
(1985) list seventeen factors, some of which are not readily 
measurable. The number of variables to be measured during 
a field trial to test the model is likely to place considerable 
demands on resources. However, before such models are used 
in system studies, experimental verification will be required over 
a range of climates. For example in Thompson's study of field 
hay drying in north-west Europe swath. resistance is assumed 
to be halved by use of conditioned grass. This assumption is 
based on the thin layer results of conditioned grass and may 
not apply to the swath. 

To measure differences in the field drying rates of conditioned 
and non-conditioned swaths and the effect of swath structure, 
a series of trials were designed to compare directly the drying 
rates achieved by different conditioning treatments and swath 
structures. 

Description of trials 

The four trials reported here were carried out in the summers 
of 1984 and 1985 (Spencer et al. 1985 a,b; 1986 a,b). The 
treatments consisted of various swath profiles (spread, single 
and double) produced by various mower conditioners. Non- 
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Figure 1 Preparation of experimental plots using NIAE develop-
ment conditioner. Copyright Scottish Institute of AgIlCUItUrnI 
Engineering. 

conditioned treatments were produced using mowers, or mower 
conditioners with the conditioning mechanism disengaged. 

The experimental technique consisted of weighing a particular 
sample length of the swath at regular intervals throughout the 
trial. This sample was 1.5 in in length and was selected at ran-
dom from the middle half of a swath 25 in long. The blocks 
contained at least two swaths for each treatment and two dummy 
swaths at each end of the blocks. The sample was contained 
within a light plastic net supported on a lighweight aluminium 
frame to ensure that the same material was monitored throughout 
the trial. Sampling problems associated with taking small 
samples from the swath are thus avoided. The initial dry mat-
ter of the swath sample was determined by oven drying (102 °C 
for 24 hours) samples taken immediately after cutting. This does 
not pose problems as the freshly-cut swath has a relatively 
uniform moisture distribution. Subsequent weight gains or losses 
of the swath sample can then be ascribed to moisture change 
of the swath sample. In hay trials, tedding was carried out both 
by machine and by hand, depending on the trial objectives. Hand 
tedding was carried out while retaining the swath sample within 
the basket. Machine tedding entailed removing the sample swath 
from the basket to enable machine tedding to take place and 
then placing a different swath sample in the basket. In order 
to re-establish the dry matter in the sample, swath samples were 
taken from the swath adjacent to the sample swath. 

It is appreciated that hand tedding does not relate directly to 
practice, but in the early trials using machine tedding no signifi-
cant effect of conditioning could be found and it was thought 
that the machine tedding was introducing further conditioning 
and perhaps masking the original conditioning effect. Thus a 
trial was conducted with only hand tedding in order to eliminate 
this effect. By hand tedding, the possible inaccuracies in re-
establishing dry matter contents from swath sampling are also 
eliminated, thus improving the accuracy of the experiment. 

There were two trials in both years, one of hay, the other 
of silage. In 1984 six treatments were used: 

I. Conditioned, spread; 
Conditioned, single set-up swath; 
Conditioned, two single swaths placed into one double swath; 
Non-conditioned, spread; 
Non-conditioned, single set-up swath:  

Non-conditioned, two single swaths placed into one double 
swath. 

All treatments were cut, and half were conditioned, using a Kidd 
nylon brush mower conditioner. In the hay drying trial, swaths 
were machine tedded. In 1985 eight treatments were used: 

I. Non-conditioned, single swath; 
Machine K (Kidd), nylon brush conditioner, single swath; 
Machine N (NIAE) development machine, severe condition-
ing, single swath; 
Machine T (Taarup), steel V- spoke conditioner, single swath 
Non-conditioned, spread swath; 
Machine K, spread swath; 
Machine N, spread swath; 
Machine T, spread swath. 

In the hay drying trial swaths were tedded by hand. 
The climatic conditions prevailing during the trials are given 

in detail in the references. It is however possible to summarise 
the climate in terms of evaporation potential. This was done 
using a form of Penman's equation (Rodda etal. 1976, 104-5): 

E = (0.00I5RD + 0.0072 (1 + 0.54W)V)/(D + 0.66) 
[1] 

where E = evaporation from a free water surface (mm/h) 
R = net radiation above the swath (W/m 2) 

D = slope of saturation vapour pressure curve at air 
temperature (mbar/°C) 

W = wind speed at 2 in above ground level (m/s) 
V = vapour pressure deficit (mbar) 

The cumulative evaporation and rainfall for each of the trials 
are given in Table 1. 

Table I Cumulative evaporation and rainfall for 1984/85 
trials 

Cumulative 	 Cumulative 
Evaporation 	 rainfall 

Trial 	 (mm) 	 (mm) 

1984 silage wilt 	 10 	 0.5 
1984 hay 	 21 	 1.5 
1985 silage wilt 	 7 	 2.6 
1985 hay 	 15 	 1.2 

Analysis of results 

The complexity of the shape of the drying curves of the grass 
swaths under field conditions poses problems in characterising 
the curves to obtain measures of the drying rate. Simple 
examination of the drying curves for the different treatments 
offers a qualitative comparison. However, some means of 
quantifying the differences between treatments is desirable. 

The 1984 trials were carried out under reasonable drying con-
ditions and the general shape of the drying and rewetting 
(moisture regain) curves, except during and immediately follow-
ing periods of rainfall, could be described by an equation of 
the form: 

M(t) = exp[A—Bt + C cos (t—D)1121 	[2] 

with four parameters where, M(r) denotes the moisture con- 
tent, dry basis, at time t (ii). The initial log-transformed moisture 
content is represented by A, B is the mean rate of decrease in 
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Figure 2 1984 silage wilt trial, moisture content - time. 

log-moisture content, C is the magnitude of the daily cycle of 
drying and rewetting and D is the cycle time to maximum rewet-
ting. This model well represents the general decay of the dry -
ing curve with the decaying oscillatory terms superimposed. 
Figures 2 and 3 show typical curves obtained from the 1984 
silage wilt and hay drying trials: these show moisture content 
against time for treatments 1, 2 and 3 in single replicates. Clearly 
seen is the slower drying rate of the double swath, treatment 
3, compared with the other treatments. 

The differences between the swaths are summarised by the 
values of the parameters in the model equations. Fitting the 
models to the experimental drying data gives estimates of the 
constants. As values are then available fdreach swath an analysis 
of variance over swaths can be carried out to assess whether 
the differences between the mean values of the constants describ-
ing the drying model are statistically significant. 

Table 2 Mean rate of decrease in log-moisture content 

Decrease in log-moisture 
Treatment 	 content (103h I)  

(swath structure) 	 Machine 	Silage 	Hay 

1984 1985 i984 1985 

Spread N.C.* 20 6 15 	17 
Kidd 28 7 16 	19 
NIAE 7 21 
Taarup 6 21 

Single N.C. 15 4 11 	14 
Kidd 17 5 12 	16 

- N!AE 5 19 
Taarup 5 16 

Double N.C. 11 9 
Kidd 11 9 

Standard error of difference 	 (3.5) (0.4) 
between treatments 

NC., Non-conditioned  

00 	20 	40 	60 	80 	100 	120 140 	160 180 

Time. h 

Figure 3 1984 bay drying trial, moisture content - time. 

Model equation [2] was fitted by the method described by 
Spencer etal. (1985a). Values of B for the silage trial, averag-
ed over replicates, are given in the first column of Table 2, 
together with the standard error of differences between 
treatments. The other parameter which reflects drying rate, C, 
is almost exactly seven times B and therefore carries little ex-
tra information. There are statistically significant differences 
in drying rate between the different swath structures and bet-
ween the conditioned and non-conditioned spread swaths. 

The first column of Table 3 shows percentage increases in 
drying rate, due to conditioning and/or swath structure effects 
compared with the non-conditioned single swath. These results 
clearly demonstrate the effect of swath structure to be the domi-
nant effect in determining the drying rate. At best conditioning 
saves only 40 per cent, this is in the case of spread swaths. The 
more practical case, for silage wilting, of the single set-up swath 
the savings in drying time amount to only 10 per cent. Full 
details of this trial are given by Spencer et al. (1985a). 

For the hay drying trial the drying rate is given in the third 
column of Table 3. There are statistically significant differences 
between the swath structures, but not for conditioning. The 
swath structure effect clearly dominates the conditioning effect. 

Table 3 Percentage improvement in drying rate compared 
with non-conditioned single swath 

Improvement in drying rate (%) 

	

Silage 	Hay 

1984 1985 1984 1985 Average 

40 40 	40 20 	35 
90 60 	50 50 	60 

10 20 	10 30 	20 

—30 —10 —20 
—20 —20 —20 

Treatment 

Swath 	Conditioned 
structure 

Spread 	No 
Yes 

(1.5) (1.7) 	Single 

Double 

Yes 

No 
Yes 
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Figure 5 1985 hay drying trial, moisture content - time. 
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This trial was carried out during good drying weather with a 
relatively lush crop early in the 1984 season. Full details of the 
trial are given by Spencer et al. i 1985b). 

The 1985 trials were carried out under weather conditions 
which were poor for drying and wilting. The typical shapes of 
the drying curves are shown in Figures 4 and 5. The shapes 
have no easily identified pattern and do not follow the simple 
exponential decay with a sinusoid oscillation of previous years 
trials. It was found necessary to use a model of the form: 

M(i) = exp[A - Bf(t)] 	 [3] 

where A and Bare constants which take different values in each 
swath, but f(t)  is a function which is then shared by all the 
swaths. The initial log-moisture content represented by A, and 
B is the mean drying rate provided that f(0) = 0 and the mean 
rate of decrease inf is I h'. For 'f' a cubic spline function 
was used. This is a simple way of obtaining a smooth, but flex-
ible, curve: 'f' follows a different cubic function in each 2 h 
period, and functions in adjacent intervals are connected at a 
point where they share a common 1st derivative. 

The second column of Table 2 shows mean drying rates in 
the silage experiment. There are significant differences between 
treatments, the largest one being between the single and spread 
swaths. The non-conditioned treatment has a lower drying rate 
than the other treatments with both swath types. The only detect-
able difference between the machines is that B is lower for V-
spoke conditioning in the spread swaths. 

Estimates of drying rates in the hay trial are given in the fourth 
column of Table 2. There is a larger difference between the 
single and spread swaths than between machines. The non-
conditioned treatment has a lower drying rate than the other 
treatments with both swath types. The only detectable difference 
between the machines is that B is higher for severe condition-
ing in the single swath. Full details of the trials are given by 
Spencer et al. (1986a,b). 

Consistent results have been found in all four trials. The 
average effects of swath structure and conditioning are given 
in the final column of Table 3. 

Further, a simple relationship was found between drying rates 
of grass swaths and basic weather variables: air temperature, 
wind speed, vapour pressure deficit, radiation and rainfall 
(Glasbey and McGechan 1986). The rate of decrease in moisture 
content (dry basis) is approximately proportional to evapora- 

non, as predicted by Penman's equation, less 1.5 times the rain-
fall. One millimetre of evaporation removes 9 per cent of the 
moisture from a non-conditioned single swath. Therefore, cor-
responding results are II per cent if the grass is conditioned. 
12 per cent if the swath is spread, and 14 per cent if the grass 
is both conditioned and spread. 

Evaporation measurements within the swath 
In order to assess the potential evaporation at various sites in 
and around the swaths, use was made of Piche evaporimeters 
(Prescott and Stirk 1951). These devices consist of a small cir-
cle of filter paper charged from a column of water, the evapora-
tion from the disc being measured in terms of the fall in water 
level in the column. They are extensively used in measuring 
evaporation potential in meteorological and hydrological studies 
and have the advantage of being relatively small. thus minimiz-
ing disturbance to the swath when placed therein. These devices 
were used only in the 1985 trials to measure the evaporation 
rates at the following locations in and around a swath produced 
by a Taarup mower conditioner: 

Within a Stevenson Screen; 
Just below the top of the swath; 
Near the bottom of the swath; 
Near the ground, between swaths. 

Also available near the trial site was a standard evaporation 
pan to enable the Piche measurements to be compared with a 
widely accepted measure of evaporation. 

Figures 6 and 7 show the evaporation rates measured during 
the 1985 silage wilting and hay drying trials. The low evapora-
tion rates in the swath interior are evident and the large 
differences in slope represent large differences in potential 
evaporation, typical Piche evaporation rates at the swath bot-
tom being around 0.02 mm/h and at the top of the swath around 
0.1 mm/h. The Piche evaporation rates obtained during thin 
layer drying at 25 °C and 50 per cent rh have been measured 
at 0.33 mm/h. To date no thin layer drying measurements have 
been made at these low evaporation rates (high rh) but if as 
suspected the gains in drying rates so far measured due to con-
ditioning are not realised at high humidity levels then gains in 
swath drying rates are likely to be much less than is indicated 
from the thin layer tests. 
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Figure 6 Evaporation, 1985 silage wilt trial. 

16 	I 	I 	I 	I 	 I 	I 	I 	 I 	I 	Pj 

12 

	

-'---- 	n 

L 8  

4 

n 	I '00 

	 - --:T 
"0 	20 	40 	60 	80 	too 	120 

Time h 

Figure 7 Evaporation, 1985 hay trial (see Figure 6 for legend). 



28 
	

Research and Development in Agriculture 

Discussion 

The increases in drying rate measured from the field trials are 
much lower than the increases obtained from laboratory thin 
layer drying experiments. The gains in drying rate9 from condi-
tioning, as measured in the laboratory trials, are often in excess 
of 50 per cent. Increases in drying rate due to conditioning in 
the field trials so far conducted have only been 20 per cent 
Differences in drying rate due to swath structure changes have 
proved to be much larger. Increases in drying rates due to the 
swath being spread average about 35 per cent. 

The relative low rates of increase due to conditioning are 
attributed to the resistance to moisture transfer of the swath. 
This resistance is best illustrated by the evaporation rates as 
measured by Piche evaporimeters placed at various places within 
the swath. These relatively low rates of evaporation within a 
swath may explain why mechanical conditioning of the crop is 
less effective than in thin layer drying. If little or no evapora-
tion of free water is taking place, however much conditioning 
is accomplished that part of the swath having low evaporation 
rates w1 not show an increased drying rate due to condition-
ing. If only small volumes of the swath, perhaps close to the 
outside surface, can take advantage of the lower resistance to 
moisture transfer produced by conditioning, then increases in 
drying rate of the whole swath will be small. 

Another way of considering the discrepancy between the thin 
layer improvements and the swath measurements is to consider 
'resistances'. Some evidence exists from wind tunnel trials by 
Bowden (1986) that when swaths are dried with air at 25 °C 
and 50 per cent rh the overall drying rates are less than 1/10th 
of the rates for thin layers dried under the same drying air con-
ditions. This points to the considerable resistance of the swath 
to moisture transfer from the swath interior to the air. Therefore, 
by decreasing the resistance of the grass to moisture transfer, 
by conditioning, only a small part of the overall resistance is 
reduced and therefore likely to produce only small benefits. To 
utilise the gain offered by conditioning, swath resistance must 
be lowered. 

The practical implications of the differences in drying rates 
are not easy to assess. The drying rates, Table 2, are only a 
description of the average slope of the drying curve. The actual 
drying curve follows a complicated oscillatory decay which is 
weather dependent - reflecting the diurnal nature of the 
weather. 

If a target moisture content is required then small differences 
in drying rate may mean starting harvest a day earlier. Again 
the drying rates vary with the weather, see equation [1]. This 
implies that a system study is necessary to ascertain the prac-
tical significance of the differences in drying rates between con-
ditioned and non-conditioned grass. 

Conclusions 

I. Effects of conditioning on swath drying rates are much lower 
than those measured by thin layer laboratory apparatus. 
The drying rate improvements are usually lower than im-
provements obtained from spreading the swaths. 
Evidence exists that the swath structure is inhibiting the full 
potential of conditioning from being realised. 
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SUMMARY 

A simple relationship is found between drying rates of grass 

swaths and basic weather variables: air temperature, wind speed, vapour 

pressure deficit, radiation and rainfall. The rate of decrease in 

moisture content (dry basis) is approximately proportional to potential 

evaporation, as predicted by Penman's equation, less 1.5 times the 

rainfall. On average, one mm of evaporation removes 9% of the moisture 

from a non-conditioned single swath, 11% if the grass is conditioned, 

12% if the swath is spread, and 14% if the grass is both conditioned and 

spread. However, it is to be expected that the grass characteristics 

will affect these rates. 
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A RELATIONSHIP BETWEEN WEATHER AND DRYING RATES IN GRASS SWATHS 

INTRODUCTION 

The primary aim of forage drying experiments conducted recently at 

SIAE has been to examine the effects of conditioning and swath 

structure. Results of field trials for silage and hay in 1984 and 1985 

have been reported individually 1,29391+ and in combination 5 . This 

report addresses a secondary aim of the experiments, to identify a 

relationship between drying and weather for use in OR studies of forage 

conservation systems 6 

The physics underlying evaporation from a crop, for example cut 

grass either spread 7  or in a windrow 8,  is very complicated, and it can 

be difficult to assess which factors are most important. Modelling 

evaporation from a free water surface is rather simpler. From Penman's 

seminal work 9 , a widely used model has evolved 10 . Attempts to modify 

Penman's model for crop use, that of Mont e ithU for instance, introduce 

many additional complications such as unknown parameters. Simpler 

relationships have therefore been sought for specific situations. In 

the case of cut grass, Parke and Dumont 12  related drying rate to vapour 

pressure deficit and Pitt 13  related it to evaporation from a free water 

surface, as measured from a pan during rain-free periods. The rewetting 

effects of rain have also been considered 4• 

DATA 

Swath moisture content data measured at intervals during field 

silage and hay wilting experiments in 1984 and 1985 were used. The 

method used to analyse the 1985 data, by fitting splines has already 

been described 3 , and the 1984 data were subsequently reanalysed by the 
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same technique. The basis for the analysis was that the same spline 

model could be fitted for the alternative swath treatments as for 

non-conditioned single swaths, with the drying rate increased by the 

following factors: 

20% for a conditioned swath, 

35% for a spread swath, 

and 60% for a swath which is both conditioned and spread. 

Analysis in this report was carried out using data from all four 

treatments pooled together and fitted according to the spline model, 

with drying rates for the conditioned and spread swaths reduced by the 

above factors to appear like the non-conditioned single swaths. The 

derived data points for log moisture contents (dry basis) of 

non-conditioned single swaths are plotted against time, and denoted by 

X's, in Figs 1-4. Moisture contents (dry basis) lie in the range 500% 

to 75%. Times of rainfall are also indicated on the Figs. 

The following climatic variables were also available: 

Rs - solar radiation (W/m 2 ), 

R - net radiation above the swath (W/m 2 ), 

u - wind speed 2m above the ground (mis), 

I - atmospheric temperature (° C), 

TD - dew point temperature (°C). 

Hourly averages were calculated. Pan evaporation was also measured in 

1985. Net  radiation was taken as the average of readings from two 

radiometers, except for the 1985 hay experiment in which the first 

radiometer malfunctioned. The first of two sets of records of wind 

speed was used in 1984, as there was some doubt about the calibration of 

the second recorder, whereas in the 1985 silage experiment the two sets 

were averaged. In the hay experiment in 1985, wind speed was measured 

by anemometers at the top of the swath, on the stubble between two 

swaths, and at 18m, rather than at 2m. We estimated an empirical 
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relationship between wind speeds at swath height, 2m and 18m. As a 

result we estimated u as 1.4 times the wind speed at the top of the 

swath in the 1985 hay experiment, the wind speed between swaths seeming 

more variable and less well correlated with the wind speed at 18m. 

3. IDENTIFICATION OF RELATIONSHIP 

There are insufficient days of data to attempt a purely data-based 

approach to relating moisture content to weather variables. Almost 

certainly an excellent fit could be obtained, but it would lack any 

physical basis and would predict poorly in other weather conditions. 

Therefore we restricted ourselves to considering three models which had 

been used in the past to represent evaporation in terms of weather 

parameters. The log moisture content represented by the spline curve 

fitted to the pooled data from all four swath treatments was plotted 

against evaporation as predicted by each of the three models. The 

process was repeated for each of the four data sets (silage and hay in 

each of two years). 

Parke and Dumont 12  assumed that the log-transformed difference 

between moisture content and equilibrium moisture content is linearly 

related to cumulative vapour pressure deficit during the period 

0900-1800 GMT (1000-1900 BST) each day. The average relative humidity 

during the trials was about 75%, which corresponds to an equilibrium 

moisture content of about 18% dry basis. Therefore, because it makes 

very little difference whether or not 18% is subtracted from the 

recorded moisture contents, for simplicity the equilibrium values were 

ignored. Figs 5-8 show plots for the four data sets of log-moisture 

content against vapour pressure deficit, V mbars, cumulated. Variable V 

was calculated from the recorded weather variables as 

V = f(T)_f(TD) 
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where f(T) is the saturated vapour pressure at temperature 1, for 

which we have used the equation 

log 10 f(T) = 31.59051 - 8.2 1og 10 (T4-273.16) 

+ 0.0024804(T+273.16) - 3142.31/(1+273.16). 

Apart from delays due to rain, and a diurnal period, there is some 

semblance of linearity in the Figs. 

For comparison, the drying curve assumed in the Parke and Dumont 

model for rain-free periods has been superimposed as straight lines for 

the periods 1000-1900 BST on Figs 5-8; their constant of 0.094, with V 

measured in kN/m 2 , for unconditioned spread grass was adjusted to a 

value of 0.007, with V in mbars, to represent a single swath of 

unconditioned grass. In most cases, the exoerimental data showed a 

slightly slower rate of drying during rain-free day time periods than 

that assumed by Parke and Dumont; however, a rather variable but usually 

positive amount of drying took place during the period 1900-1000 which 

could not realistically be assumed to be zero as did Parke and Dumont. 

Figs 9-10 are plots of log-moisture content against cumulative pan 

evaporation for the 1985 data. According to Pitt 13 , these should be 

linear except during periods of rain. Although this is approximately 

the case for hay, in the silage experiment agreement is poor, in 

particular because during one overnight and early morning period there 

was 2mm of pan evaporation without any change in the swath moisture 

content. 

Penman's model can be viewed both as a modification of vapour 

pressure deficit 15, and as a mathematical equivalent to a pan. 

Evaporation, denoted as E mm water, from a rough surface is given by 

summation over past hours of 

(0.0015 R A + 0.0072 (1 + 0.54 u) V)/(A + 0.66) 

Details of this formulation of the equation are given in the appendix. 
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Here A is the derivative of f evaluated at T. For Simplicity we 

derived an empirical approximation 

= 0.443 + 0.5906X + 0.2659X 2  + 0.15030, 

where X = T/20 . Evaporation during each hour was calculated using 

hourly averages of the climatic variables. Cumulative evaporation could 

then be obtained by summing. 

Figs 11-14 are plots of log-moisture content against cumulative 

evaporation predicted by Penman's equation. They are much closer to 

linearity than any of those preceding, excluding interruptions for 

rain. Therefore Penman's equation will be used as the basis for 

subsequent modelling. It may be noted that there is good overall 

agreement between predicted and pan evaporation in both 1985 

experiments. 

4. ESTIMATION OF RELATIONSHIP BETWEEN MOISTURE CONTENT AND EVAPORATION 

While, out of the existing models, the Penman equation appeared to 

give the best prediction of evaporation from swaths, a model was sought 

which would give a better prediction of moisture loss from a swath than 

a constant (straight line) relationship with the Penman prediction. 

Inspection of Figs 11-14 shows a suggestion of curvature and diurnal 

cycling. Hence the model assumed was 

Ln(MC) = n(MC) + a(E-F) + b(E-F) 2  + c sin(nt/12) + d cos(irt/12). 

Here MC denotes initial moisture content, t measures time (hours) 

and F is a rain correction factor which is zero before the first period 

of rain, and takes a different constant value within each subsequent 

rain-free interval. Parameters were estimated by least squares using 

each data set separately and omitting data obtained either during or 

immediately following rain. Estimates of a, b, c and d are listed in 

Table 1. Estimates of F are plotted against rainfall in Fig 15, which 

is discussed below. 



Predicted log-moisture contents are plotted as the continuous 

lines in Figs 1-4. Breaks in the lines are times when prediction was 

not possible because of the effects of rain. The agreement with the 

data is encouragingly close. 

Although it has previously been found that rain effects on the 

grass depend on amount, duration and moisture content 79 1, we were only 

able to detect a relation with the amount for the seven rain periods 

during the SIAE experiments. Fig 15 shows the rain corrections plotted 

against amount of rainfall in each period. Regression through the 

origin yields a relationship where the correction is 50% greater than 

the actual rainfall, irrespective of whether or not the right-most point 

is included. This reassures us that the most influential point is not 

distorting the fit. Therefore, it takes 1.5mm of potential evaporation 

to drive off each mm of rainfall before drying of moisture within the 

grass can recommence. 

In contrast, Parke and Dumont 12 stated that evaporation of 

rainfall would be at the same rate as from a free-water surface, i.e. 

that it would take 1 mm of potential evaporation to drive off 1 mm of 

rainfall. However, they determined potential evaporation in terms of 

vapour pressure deficit alone, assuming that 1 mbar h of vapour pressure 

deficit would evaporate 0.024 mm of water. A comparison of cumulative 

vapour pressure deficit and cumulative potential evaporation according 

to the Penman equation at various points in the SIAE experiments (Figs 

5-8 and 11-14) gives values such as 0.035, 0.042, 0.026, 0.031 and 

0.035, with an average of 0.033 mm of potential evaporation for every 

mbar h of vapour pressure deficit. Therefore, in effect, Parke and 

Dumont also assumed that it would take roughly 1.5 mm of potential 

evaporation to drive off each mm of rainfall. 
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The Inclusion of quadratic and sinusoidal terms did not 

substantially improve the fit and estimates of b, c and d were small 

(Table 1). Therefore the simplified equation 

£n(MC) = £n(MC) + a(E-F) 

was also fitted, with MC 0  set to observed initial moisture content and F 

set at 1.5 times the cumulative rainfall. Predicted moisture contents 

are shown by the dashed lines in Figs 1-4. Estimates of a are listed 

in Table 2. 

The interpretation of a is quite simple, 1 mm of predicted 

evaporation reduces moisture content to a factor of e 	. Therefore, 

on average, 9% of moisture is lost for each mm of predicted 

evaporation. The initial weight of water in one of the weighing baskets 

is around 10 kg. Therefore, at most, 0.9 kg is evaporated for each 1 mm 

of predicted evaporation from a free water surface. As the basket 

cross-sectional area is about 1.6 m 2 , this is equivalent to 0.55 mm of 

water loss or 55% efficiency. But, as time proceeds, the efficiency 

decreases. 

If net radiation measurements are not available, as is usually the 

case, then they can be estimated from solar radiation, R
S  9  

measurements. As can be seen in Fig 16, there is a close association 

between the two variates, and a good predictor is given by 

R = -20 + 0.63 Rs 

5. ALTERNATIVE DRYING RATE CONSTANTS 

While it has been shown above that the Penman equation gives a 

good prediction of moisture loss from swaths, it has also been shown 

that a different value of a , a 'drying rate constant', must be 

selected for each set of circumstances. Factors which will influence 

the drying rate constant include: 



whether a swath is in a windrow ('single') or spread, 

whether grass has been conditioned at mowing time, 

whether a swath is regularly tedded/turned, or left 

undisturbed, 

grass characteristics, e.g. variety, stage of maturity, 

different environmental factors during the growth period, 

crop yield, and hence swath thickness. 

Percentage changes in the value of a appropriate to spread 

rather than windrowed swaths, and conditioned rather than 

non-conditioned grass have been determined previously and discussed in 

Section 2. Appropriate mean values for a over the four experiments 

are: 

0.095 for a non-conditioned single swath (windrow), 

0.114 for a conditioned single swath, 

0.128 for a non-conditioned spread swath, 

and 0.152 for a conditioned spread swath. 

Thus the highest value represents 0.95 mm of water loss for each 1 mm of 

predicted evaporation from a free surface, or 95% efficiency. 

Different values of a in different years must reflect 

differences in grass characteristics, since the yields were very similar 

(Table 3) and all other factors were identical. For comparison, values 

of thin-layer drying rates B 	are presented in Table 4. They show 

variations between years similar to those obtained from the swath drying 

rates. Variations in thin-layer drying rates can only arise because of 

differences in grass characteristics and according to whether it is 

conditioned or not. For conditioning, the thin-layer drying rates 

reflect only the effect of true conditioning, i.e. abrasion of the waxy 

surface of the grass material, not secondary effect of conditioning such 

as improvements to swath structure. 



Higher values of a with hay compared to silage must arise 

because of a combination of the grass characteristics and because the 

hay swaths were regularly tedded whereas the silage swaths were left 

undisturbed. In fact, the effect of these factors must have been 

greater than would appear from the differing values of a , since the 

yields in the hay crops were substantially higher than in the silage 

crops (Table 3), which would have suggested a lower value of a for hay 

than for silage. In the hay, drying rates were probably highest 

immediately after tedding, falling off gradually until the next tedding, 

but since swaths were only weighed every three hours this effect could 

not be detected and only an overall increase in drying rate with tedding 

was apparent. 

6. CONCLUSION 

Moisture content (dry basis) of grass swaths in the range 500% to 

75% can be represented by 

MC0 e _ a_ 1  

except during and immediately following rainfall, and excluding slight 

diurnal variations. Here MC 
0  is the initial moisture content, and a 

is a constant. E is the evaporation (mm) predicted by Penman's 

equation, that is the summation over past hours of 

(0.0015 R A + 0.0072 (1 + 0.54 u) V)/( + 0.66) 

where R = net radiation (W/m 2 ), or -20 + 0.63 x solar radiation, 

= the slope of the saturation vapour pressure curve at air 

temperature (mbar/°C), 

u = wind speed 2m above the ground (mis), 

V = the vapour pressure deficit (mbar), 

and 	F = 1.5 times the cumulative rainfall (mm). 
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For an OR model which draws on historic meteorological data, this 

equation will simulate moisture loss from swaths during rain-free 

periods more accurately than previously used equations. 

The absolute value of a for a non-conditioned single swath will 

vary according to factors such as grass characteristics and crop yield, 

but for the crops used in these four experiments the mean value was 

estimated at 0.095, or 0.08 for silage grass and 0.11 for hay grass. 

The value of a for a non-conditioned, single swath (windrow) 

should be increased as follows: 

20% for a conditioned single swath (windrow), 

35% for a non-conditioned spread swath, 

and 60% for a conditioned spread swath. 

References 

1 
SPENCER, H.B.; BOWDEN, P.J.; SMITH, E.A.; GRAHAM, R.; GLASBEY, C.A. 

The effect of conditioning on silage wilting - a field trial 

(1984). Dep. Note SIN/435 Scot. Inst. Agric. Engng. Penicuik, 

May 1985 (unpubl.) 

2 
SPENCER, H.B.; BOWDEN, P.J.; SMITH, E.A.; GRAHAM, R.; GLASBEY, C.A. 

The effect of conditioning on hay drying - a field trial 

(1984). Dep. Note SIN/436 Scot. Inst. Agric. Engng. Penicuik, 

May 1985 (unpubi .) 

SPENCER, H.B.; LAMOND, W.J.; GRAHAM, R.; GLASBEY, C.A.; BOWDEN, P.J.; 

HAUGHEY, D.P. Silage wilting - a field trial comparing 3 

different conditioners (1985). Dep. Note SIN/472 Scot. Inst. 

Agric. Engng. Penicuik, August 1986 (unpubl .) 

'4 
SPENCER, H.B.; LAMOND, W.J.; GRAHAM, R.; BOWDEN, P.J.: GLASBEY, C.A.; 

HAUGHEY, D.P. Hay drying - a field trial comparing 3 different 

conditioners (1985). Dep. Note SIN/473 Scot. Inst. Agric. 

Engng. Penicuik, August 1986 (unpubl .) 



- 11 - 

LAMOND, W.J.; SPENCER, H.B.; GLASBEY, C.A; HAUGHEY, D.P. Field 

wilting and drying of grass in a cool moist climate. Res. 

Dev. Agric. (to be submitted) 

6 McGECHAN, M.B. Initial experience with using the NIAE forage 

conservation system simulation model to compare Scottish and 

English sites. Dep. Note 51N1434 Scot. Inst. Agric. Enqng. 

Penicuik, March 1985. 

THOMPSON, N. Modelling the field drying of hay. J. agric. Sci., 

Camb. 97, 241-260, 1981. 

8 SMITH, E.A. A bulk model for the field drying of grass in windrows. 

Dep. Note SIN/451 Scot. Inst. Agric. Engng. Penicuik, June 1985 

(unpubi .). 

PENMAN, H.L. Natural evaporation from open water, bare soil and 

grass. Proc. Royal Soc. Lond. A193, 120-146, 1948. 

RODDA, J.C.; DOWNING, R.A.; LAW, F.M. Systematic hydrology. 

Newnes-Butterworths, London, 1976. 

' MONTEITH, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 

19, 205-234, 1965. 

12 PARKE, D.; DUMONT, A.C. A simulation model to study forage 

conservation systems. Dep. Note DN/DY/920/11007, Natn. Inst. 

Agric. Engng, Silsoe, February 1979 (unpubi.). 

13 PITT, R.E. Forage drying in relation to pan evaporation. Trans. 

Am. Soc. Agric. Engrs. 27, 1933-1944, 1984. 

14 Van ELDEREN, E.; de FEIJIER, J.; van HOVEN, S.P.J.H. Moisture in a 

grass sward. J. Agric. Engng. Res. 17, 209-218, 1972. 

15 
ROSENBERG, N.J. Microclimate: the biological environment. Wiley, 

New York, 1974. 



- 12 - 

Appendix. Penman's equation 

Penman's equation appears in the literature in many forms and is 

expressed in several different units of measurement. The varied forms 

are partly a result of Penman's own more recent work, and modification 

for different types of surface. For a rough surface, Rodda, Downing and 

Law" (pp104-5) use the equation 

+ 0.0945 (1 + 0.01 u') V)/(' + 0.27) mm water/day. 

Here R' is net radiation in units of mm water/day, ' is in units of mm 

Hg/°F, u' and V are expressed in units of miles/day and mm Hg 

respectively. See also Rosenberg15 (pp 168-9). 

We can convert to SI units using the following conversion factors: 

2450 JIm 2  evaporates 1 mm of water, 

1 mmHg = 1.333 mbar, 

1 mile = 1.6093 km, 

and 	1.8 OF = 1°C. 

As a result, evaporation is predicted to be 

(0.0015 R A + 0.0072 (1 + 0.54 u) V)/( + 0.66) mm water/hour. 



Table 1 

Estimated values of coefficients in complete model 

crop year a b c d 

silage 1984 -0.08 0.001 0.029 -0.002 

hay 1984 -0.11 0.001 0.011 0.003 

silage 1985 -0.13 0.007 0.015 0.000 

hay 1985 -0.16 0.003 0.007 -0.001 

Table 2 

Estimated value of coefficient in simplified model 

crop year a 

silage 1984 -0.07 

hay 1984 -0.09 

silage 1985 -0.09 

hay 1985 -0.13 

Table 3 

Yields of experimental crops 

wet yield dry matter percentage 
crop year t/ha yield t/ha dry matter 

silage 1984 24.8 4.85 19.6 

hay 1984 42.6 8.78 20.5 

silage 1985 27.1 4.63 17.1 

hay 1985 48.8 7.80 17.0 



Table 4 

Drying rate constants (B) from thin layer drying experiments 

conditioned non-conditioned mean of two 
crop year crop crop treatments 

silage 1984 0.241 0.117 0.179 

hay 1984 0.152 0.122 0.137 

silage 1985 0.185 0.127 0.156 

hay 1985 0.332 0.207 0.270 
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SUMMARY 

Solar radiation was measured for 19 months at 10 sites in the Pentland Hills, an area 20 km by 17 km 
to the south of Edinburgh. Singular value decompositions of the data matrix of monthly means, with 
and without subtraction of row and/or column averages, revealed the pattern of variations. A reduced 
rank regression model was used, which related site weightings in the decomposition to physical 

characteristics of the sites. 

Keywords: Principal components; Singular value decomposition 

Introduction 

'o supplement macroscopic knowledge of solar radiation in western Europe, the 
uropean Community sponsored a three-year project into microclimates, i.e. regions 
ns of kilometres in size in which there are substantial variations in solar radiation. A 
atabase was created from readings of 10 or more radiometers in each of eight 
egions, together with other meteorological data collected locally and at the nearest 
ynoptic station to each region. 

This paper reports on the analysis of data collected in the Pentland Hills to the 
outh of Edinburgh, by the Scottish Centre of Agricultural Engineering (Fig. 1). 10 
adiometric stations were situated on both sides of the range of hills which run south-
vest to north-east, thus providing a good measure of both across-hill and along-hill 
ariation. The across-hill variation is likely to be influenced by the prevailing weather 
ystems which are generally from a south-west direction. In summer, sea fogs 
penetrate from the Firth of Forth which lies immediately to the north of Edinburgh. 
reas nearest the Firth have extensive fog cover for greater periods than the more 

riland areas of the region during the summer period. 
Monthly averaged data over the 19-month recording period are given in Table 1. It 

s evident that average values and variability between sites are both substantially less 
ri winter than in summer. All subsequent analysis has been carried out on a log-scale 
o make variability more constant over the seasons. Three site characteristics in 
Lddition to geographical location were known: altitude and percentages of time lost 
because of shadow at the summer and winter solstices. These are given in Table 2. 
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Fig. 1. Microclimate survey area 

The aim of the analysis was to summarize the differences in solar radiation between 
sites, and if possible to relate them to other physical characteristics of the sites. 
As a first stage, singular value decompositions (SVDs) were applied to Table 1. 
These generate simple models which account for most variability in the data by 
using the least number of parameters. Then, the summary vectors were regressed 
on variates which describe physical characteristics. Therefore, a connection is 
made between solar radiation at sites and other site features. The result is a form 
of reduced rank regression, but obtained in a more intuitive way than traditionally, 
via an SVD. 
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&BLE 1 
War radiation data for 19 months at 10 sites in the Pentland Hills 

Average daily solar radiation (Wm -2) at the following sites: Average Standard 

1 2 3 4 5 6 7 8 9 10 deviation 

?87 
pril 3909 3788 3803 3725 3755 3754 3900 3934 3908 3936 3841 84 

Lay 4032 4203 4135 4337 4225 4308 4251 4150 4065 4005 4171 114 

me 3649 3378 3540 3472 3607 3693 3716 3792 3777 3697 3632 134 

Illy 4010 3783 3972 3970 3766 3897 4040 3936 3951 3904 3923 90 

ugust 3741 3534 3494 3372 3327 3348 3575 3650 3664 3714 3542 154 

ptember 2865 2740 2645 2592 2682 2673 2831 2964 2950 2931 2787 138 

ctober 1288 1253 1235 1241 1248 1360 1389 1391 1304 1310 1302 60 

ovember 591 572 558 560 550 591 601 614 557 617 581 25 

ecember 289 277 255 277 260 288 297 311 273 292 282 17 

288 
snuary 435 401 399 410 413 420 444 465 440 479 431 27 

ebruary 1152 1141 1135 1089 1048 1013 1038 1058 1003 1127 1080 56 

larch 2194 2094 2000 1907 1884 1950 2007 2120 2094 2220 2047 16 

pril 3222 3054 2998 3011 3017 3145 3301 3376 3260 3201 3159 134 

lay 4159 4175 4097 4196 4130 4261 4309 4328 4183 4058 4190 88 

une 5241 5291 5271 5380 5240 5308 5427 5434 5360 5287 5324 72 

uly 3795 3537 3466 3333 3378 3419 3603 3759 3730 3810 3583 182 

ugust 3885 3513 3390 3272 3298 3381 3579 3768 3686 3849 3562 227 

eptember 2328 2192 2174 1933 1994 2023 2228 2211 2082 2292 2146 132 

ctober 936 901 872 896 890 988 980 981 936 964 934 43 

verage 2722 2622 2602 2578 2564 2622 2711 2750 2696 2721 2659 68 

tandard deviation 	1522 1493 1497 1514 1490 1507 1543 1548 1545 1509 	1514 

SABLE 2 
'hysical characteristics of the sites and two new site variates derived by regressing against the site 

haracteristics the variates obtained by a singular value decomposition of the month-corrected log- 

ransformed radiation data 

ite Latitude (X1 ) Longitude (X2) 	Altitude (X3) % sun loss 
Summer (X4) 	Winter (X5) 

Site value 

f/I 	V2 

1 55.8517 3.2295 	204.9 3 28 0.22 -0.29 

2 55.8292 3.3044 	354.0 20 25 -0.13 -0.26 

3 55.7904 3.3457 	340.0 9 8 -0.23 -0.33 

4 55.7841 3.3937 	340.0 8 37 -0.48 -0.08 

5 55.7510 3.3927 	280.0 9 25 -0.44 -0.05 

6 55.8027 3.5041 	283.0 4 17 -0.09 0.60 

7 55.8356 3.4319 	275.3 4 11 0.15 0.36 

8 55.8721 3.3100 	244.9 8 23 0.32 0.08 

9 55.8967 3.2650 	179.3 1 75 0.18 0.15 

0 55.8737 3.2026 	195.4 7 12 0.50 -0.29 

= -319.3 + 5.7X1  + 0.2X2 - 0.0022X3  + 0.004X4  - 0.0076X5 ; 
(1.2) (0.6) 	(0.0013) 	(0.012) (0.0019) 

= 160.2 + 2.6X1  + 4.8X2 - 0.0037X3  + 0.017X4  + 0.0019X5 . 
(2.1) (1.1) 	(0.0024) 	(0.022) (0.0034) 



384 	 GLASBEY 

2. Singular Value Decomposition 

The SVD of Y, the matrix of log-transformed radiation values (19 months by 
sites), is 

Y= L/lV', 

where U and V are orthonormal matrices (i.e. UT   and VT  V are identity matrices; 
and E is a 10 x 10 diagonal matrix (see for example Krzanowksi (1988)). The best rank 
s approximation to Y is given by 

U(s) 
 s-' uT r (s)' 

where U(S) is the matrix given by the first s columns of U, similarly for V(3) , and l i5 
the s x stop left-hand corner of E. The rank 1 approximation accounted for 99.998% 
of the sum of squares of elements in Y. The unexplained variability, i.e. the residua] 
sum of squares, is 0.208. By increasing s to 2, a second term is introduced, and the 
residual sum of squares is reduced to 0.118. A third term reduces it further to 0.047. 

An alternative approach is to subtract site means (v0) from Y before carrying out 
the SVD, i.e. 

V = 1v' + UIVT ,  

where 1 is a vector of is. This is equivalent to principal components analysis on the 
columns of Y, using the covariance matrix. Similarly, monthly means (u0) could be 
subtracted, or both site and month terms, subject to an identifiability constraint, 
resulting in 

Y = 1v + U01T  + LIE VT.  

Note that this involves an additive first term 1v" + U01T,  in contrast with a multi- 0 
plicative first term U(I)E(1)  V(T) in the original SVD of Y. The additive term fitted 
slightly better, giving a residual sum of squares of 0.197. This has been called the 
additive main effects and multiplicative interaction model. See, for example, Gauch 
(1988) and associated references. 

Table 3 gives residual sums of squares for all four models, together with the 
numbers of parameters involved. No strong preference for any particular model is 
indicated. Jolliffe (1986) discusses when 'non-centred' and 'double-centred' principal 
components analyses may be appropriate. 

TABLE 3 
Results of SVDs of log-transformed solar radiation data with and without subtraction of row and/or 
column averages 

No. of 	 Residual sum of squares (no. of parameters) 
SVD terms (s) 	 Data 	 Corrected for 

unadjusted 	 Site 	 Month 	 Site ± month 

	

0.358 (18) 	 0.197 (28) 
0.208 (28) 	0.173 (37) 	0.125 (45) 	 0.111 (54) 
0.118 (54) 	0.088 (63) 	0.051 (71) 	 0.045 (80) 
0.047 (80) 	0.028 (89) 
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Fig. 2. Site values in V1  plotted against V2  

For this study, values standardized by monthly means seem most appropriate, 
ecause temporal patterns in solar radiation are already well understood. From Table 
we can calculate that two terms in the SVD account for 85% of the variability of the 

ite values about the monthly mean over all sites. The model is 

Y = u01" + U(2)(2)V(i) + error. 

[he first column in V(2) , which has a sample correlation coefficient of 0.99 with v 0 , 
epresents differences in averages between sites. 

Fig. 2 is a plot of site weightings in the model, i.e. terms in the first column of V(2)  
)lotted against terms in the second column, rotated to show the similarity to Fig. 1. 
rhere is obviously an opportunity for relating the coefficients in V(2)  to measurable 
'eatures of the sites. 

Reduced Rank Regression 

The two columns of V(2)  were separately regressed on the five site variates, resulting 
n fitted values V(2)  which are also given in Table 2. The modified model, 

U01T + 

Lccounts for 80% of the month-corrected variability in Y, leaving a residual sum of 
;quares of 0.070. This is a slight increase on that achieved previously, but with more 
nterpretable terms based on physical characteristics. It is a regression of Yon the site 
,ariates, but restricted to be only of rank 2, which greatly reduces the number of 
arameters in the model. Table 4 gives the monthly multipliers which combine with 
he site values in Table 2 to summarize the sites' variability about monthly means. 
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TABLE 4 
First two columns of LIE obtained by an SVD of the month-corrected log-transformed radiation date 

Month (LIE)1 (x 1000) (LIE) 2  (x 1000) Month (LIE) 1  (x 1000) (LIE) 2  (x lOOt 

1987 1988 
April 62 - 1 January 165 42 
May —55 48 February 8 —136 
June 74 58 March 146 —79 
July 27 7 April 113 49 
August 116 —51 May 13 47 
September 138 1 June 12 26 
October 3 93 July 145 —36 
November 106 26 August 182 —48 
December 142 75 September 146 —89 

October 100 84 

The model is a reduced rank regression, but the above method does not generall 
lead to the best fit. Expressed in my notation, Davies and Tso (1982) derive the best fi 
as 

U01T + A (2) A ) AX. 

Here Xis the matrix of variate-by-site characteristics; Al, defined by 

Ic! = (Y_ uo1T)XT(XXT) -, 

is the matrix of estimated coefficients in the full rank regression 

(Y_U011T) = MX + error; 

and A (2)  is the first two columns of A from the SVD 

Icix = A ABT. 

In our example, the residual sum of squares after fitting the reduced rank regressior 
model by the exact algorithm is 0.069. This is only a marginal improvement over th 
result of the approximate algorithm. An alternative algorithm for fitting the sam 
model is given by Wood (1976), based on Rao (1964). 

Site value V1  is primarily a latitude effect, with negative adjustments for altitud 
and percentage sun loss in winter. The more northerly sites have positive values, anc 
the southern sites have negative values. Combining this with Table 4, we see that th 
northern sites received more radiation in all months except May 1987. The  
north-south gradient was greatest in September 1987 and January, March, July. 
August and September 1988. The sites at higher altitudes received less radiation 
perhaps surprisingly. Winter sun loss also reduced radiation levels, but summer los 
did not appear to do so. These results may not be causal, but due to the effects ol 
other, unrecorded, variables. 

Site value 172  is a longitude effect, slightly rotated by the latitude term to give au 
across-the-ridge measure, and adjusted again for altitude. The western sites have the 
positive values. Table 4 therefore shows that the western sites had higher radiation 
values particularly in October 1987 and October 1988, and lower values in February 
1988. 
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Table 4 shows some positive associations between adjacent months, which reveals 
rat not all temporal effects have been removed by subtracting monthly means. If 
'ily, rather than monthly, data had been analysed then these effects would have been 
ronger, and perhaps some form of time series analysis would have been necessary. 
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IMPUTATION OF MISSING VALUES IN SPATIO- 
TEMPORAL SOLAR RADIATION DATA 

C. A. GLASBEY 
Biomathematics and Statistics Scotland, JCMB, King's Buildings, Edinburgh, EH9 3JZ, Scotland 

SUMMARY 

Solar radiation was measured almost every 10 minutes for 2 years at ten sites in the Pentland Hills to the 
south of Edinburgh. A few values were missing because of instrument failure or because the data logger 
was occupied in data transfer. Two ad hoc methods for replacing the missing values are compared by 
cross-validation. It is found to be better to interpolate sequences of up to four missing values, and the first 
and last missing values in longer sequences, using data from the same site, but otherwise it is better to aver-
age synchronous data from the other nine sites. A spatio-temporal model of the second-order moments of 
the data is identified and used to specify optimal linear predictors based on both within- and between-site 
data. 

KEY WORDS 	autocorrelation; 	best linear predictor; 	cross-validation; 	interpolation; 
kriging; 	multivariate time series 

1. INTRODUCTION 

To supplement macroscopic knowledge of solar radiation in Western Europe, the European 
Community sponsored a three-year project into microclimates, that is, regions tens of kilometres 
in size in which there are substantial variations in solar radiation. A database was created from 10 
minute readings of ten or more radiometers in each of eight regions. This paper reports on the 
data collected from 10 radiometers in the Pentland Hills to the south of Edinburgh (see Figure 1), 
by the Scottish Centre of Agricultural Engineering between May 1987 and April 1989 (Spencer et 
al., 1992). 

One or two readings were lost from each radiometer each month when the data logger was 
being used to down-load data from the instrument to a computer. Also, longer periods, up to 
several days in length, were lost because of instrument failures. The distribution of lengths of 
missing value sequences is given in Table I. Note that they are all either at most 200 minutes in 
duration or last for more than one day. 

Missing values are ubiquitous in large data sets. It makes many tasks simpler if these gaps can 
be filled with imputed values. For example, in computing daily or monthly averages in radiation 
(as were used in Glasbey (1992)) failure to account for missing values can introduce systematic 
biases and imprecisions into the results. If missing values are ignored, then the total radiation will 
be underestimated on days when they occur. Although averages which exclude missing values are 
unbiased, if missing values occur at random, they are unnecessarily imprecise because account is 
not taken of when the missing values occurred. 

As a temporary expedient, missing values were imputed using a simple rule; sequences of at 

CCC 1180-4009/95/040363-09 	 Received 20 January 1994 
© 1995 by John Wiley & Sons, Ltd. 	 Revised 10 October 1994 
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Figure 1. Map showing locations of ten solar radiometers in the Pentland Hills to the south of Edinburgh 

most 20 observations in length were linearly interpolated from immediately preceding and 
succeeding data from the same radiometer, whereas sequences of a day or more were replaced by 
values averaged over the other nine radiometers. In other words, if y ij  denotes the jth reading at 
site i, and Yi,j 1  +1'• 'Yi,j 2 - i are missing, then Yij  is estimated by: 

(J—f)y,,±(J—J)y1j2 if (f2 — fi) 	20 
Yij— 
	

for j=(ji +l),...,(j2 —l). 
kLi Ykj 	otherwise 

The purpose of this paper is to examine the efficacy of the above, and similar imputation rules for 

Table I. Occurrences of missing value sequences 
for two years' data from ten radiometers 

Number of consecutive 
10 minute values missing 	Frequency 

1 234 
2 129 
3-5 14 
6-10 5 

11-20 2 
21-144 0 

>144 45 
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these spatio-temporal data. Estimation of missing values in time series has been considered by 
many authors. For example, Kohn and Ansley (1986) presented an efficient algorithm, based on 
the Kalman filter, for fitting autoregressive integrated moving average (ARIMA) models to data 
and simultaneously estimating missing values. Alternative approaches are discussed by Ferreiro 
(1987) and Battaglia (1992). Many models exist for spatial data, but the simplest approach to 
imputation is by kriging (Cressie, 1991, Chapter 3), which is a minimum-mean-squared-error 
method of prediction based on the second-order properties of the spatial process. Space-time 
autoregressive moving average (STARMA) processes have been proposed as models for spatio-
temporal data (Cliff and Ord 1975; Bennett, 1979, Chapter 7) and could be used to obtain 
expectations of missing values. 

Cross-validation provides a simple, model-free method for assessing alternative predictors of 
missing values. In section 2, interpolation and across-site averaging are compared by this means. 
However, other questions arise. For example, what is the best way to combine observations from 
the same and other sites? Is it better to give more weight to nearer sites in forming an average? In 
order to address such questions, a spatio-temporal model of the second-order moments of the 
data is identified in section 3, using only the first year of data, i.e. up to April 1988. This is 
subsequently used in section 4 to specify optimal linear predictors, which are validated on the 
second year's data. 

2. CROSS-VALIDATION 

A simple way to assess the ad hoc imputation rule, and in general to compare interpolation with 
across-site averaging, is to delete one or more recorded values from the data set, then see how well 
they are predicted by the method. This is a form of cross-validation. 

A times for which data were available from all 10 radiometers, the radiation level at each site 
was predicted both by linear interpolation from the values 10 minutes earlier and 10 minutes later 
at that site, and by averaging the values at the other 9 sites. The magnitudes of the prediction 
errors were found to be strongly related to the radiation levels. Therefore, to produce a 
meaningful summary of the results, for readings in excess of 1 0Wm 2  differences were compared 
on a log-scale. (Because it is a trivial matter to predict solar radiation at night or in twilight, when 
readings are near zero, these times were omitted. The use of a log-transformation also simplifies 
comparisons with Section 4.) The root-mean-square difference between the log-transformed 
predicted radiation and the log-transformed observed radiation, averaged over 2 years for all 
sites, was 0239 for interpolation and 0385 for across-site averaging. It is, therefore, better to use 
the interpolation method if only one value is missing. This is consistent with the ad hoc rule. 

If two consecutive values are deleted, then the first of them can be linearly interpolated from 
the values 10 minutes earlier and 20 minutes later at the same site. Averaged over all sites, the 
root-mean-square error (RMSE) of prediction was found to be 0286. If the supposed missing 
value is instead predicted by averaging over the other sites, then the RMSE is 0385, as above. 
Results for the second of two missing values are almost identical. 

Table II gives these results, and others for longer sequences of missing values. Either increasing 
the number of missing values or increasing the distance from the nearest recorded value, increases 
the prediction error. At most, the first three values are given in the table, because averaging over 
other sites is clearly the superior method beyond this point. Nor are results given for the last few 
missing values because they are almost identical to the first few, as was the case with two missing 
values. 

The results in Table II show that it is better to interpolate sequences of up to four missing values, 
and the first and last missing values in longer sequences, using data from the same site, but 
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Table II. Root-mean-square error of prediction of the first three 
missing values in a sequence by linear interpolation at the same 
site. Values are based on cross-validatory deletion of observations 

and are expressed on a log-transformed scale 

Number of consecutive 
10 minute values missing First Second Third 

1 0.239* 
2 0.286* 
3 0.300* 0.357* 
4 0.307* 0.383* 
5 0.312* 0-397 0414 

10 0.322* 0425 0-465 
20 0.329* 0-442 0494 

* denotes that linear interpolation is a better predictor than the across-
site average, which has a root-mean-square error of 0-385. 

otherwise it is better to form an average of synchronous data from the remaining sites. Therefore, it 
would appear that other sites should be used on more occasions than was originally proposed. 

3. MODEL 

In order to specify optimal linear predictors of missing values, in this section a spatio-temporal 
model of the second-order moments of the data is identified from the first year's data. This 
approach is followed in preference to building a STARMA model, for instance, because second- 

6. 	II 	
I 

5. 

0 

10 	12 	14 	16 	18 

hour of day 

Figure 2. Solar radiation for site 1 in April 1988. Non-zero values plotted on a log-scale against hour of day, together with 
mean, log-transformed, radiation for each 10-minute interval in April 1988, obtained by averaging over all sites 
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order moments are all that are required for the minimum mean-square-error prediction in 
Section 4. The first year of data only are used, the second year's data are used subsequently in 
Section 4 for validation. 

All non-zero data were log-transformed to make variation more uniform both within days and 
across seasons. For example, Figure 2 shows the data for site 1 in April 1988 plotted against time 
of day. Mean, log-transformed, solar radiation in that month, obtained by averaging over all 
sites and days, is also shown. Time has been restricted to the range in which the mean solar 
radiation exceeded 10Wm 2 . The plot, and similar plots for other sites and other months, is 
consistent with a model in which the marginal distribution of each transformed observation has a 
mean which varies with month and with time of day, and a site variance (of)  which is constant 
over months. Therefore 

logy, ' (prnt,°?), 

where m denotes the month corresponding to observationj, t = j modulo 144 and /mt  denotes the 
mean, log-transformed, solar radiation during the tth 10-minute interval of the day in month m. 
The parameters can be estimated from their sample values. Note that we have left the distribution 
unspecified. Probability plots of the data suggest that marginal normality is a reasonable 
approximation. However, we will simply make use of second-order moments, so it is not 
necessary to invoke any distribution (see Section 4). 

To investigate relationships between variables, sample correlation and autocorrelation 
coefficients were obtained. The autocorrelation at lag / for site i is 

a 1  = cor(z 1 , 	where z j  = ( log y13) - 

which is assumed to be unaffected by time, j. (For further details, see for example Chatfield 
(1989).) Estimated values were consistent over months, and so were averaged over the 12 months 
to produce Figure 3(a). The autocorrelation at lag I (i.e. 10 minutes) has an average value of 
about 090, at lag 2 the average is about 081 and at lag 3 it is 076. Autocorrelations continue to 
decrease with increasing separation, 1, although slightly more slowly than an exponential rate. 

Correlations between synchronous observations at different sites were also estimated. The 
correlation between sites i and k is 

Cjk =cor(zIJ,zkf), 

which is again assumed to be unaffected by time, j. These estimated values were also consistent 
over months, and so were averaged over the 12 months to produce Figure 3(b); Here, correlations 
have been plotted against inter-site distances. Sites 1 and 10, and 3 and 4, are closest, at 30 and 

31 km apart, respectively. They also have the highest correlations of 089 and 090, respectively. 
Sites 6 and 10 are furthest apart and have the lowest correlation of 065. It is tempting to fit a 

curve to Figure 3(b) to characterize correlation in terms of distance. Such an approach would be 
necessary if we wished to predict radiation at an eleventh site, say, as in knging. In our situation it 
is unnecessary, and may not be appropriate because correlations could also depend on latitude, 
altitude, etc. Therefore, in our model we retain the 55 individual correlations. 

Correlations betwen asynchronous observations at different sites were also estimated from 
sample statistics. In an earlier (unpublished) model, variances (u? ) and autocorrelations (a11) were 
assumed to be constant over sites and the spatial and temporal components were assumed to be 
separable. Therefore 

cor(z 1 , Zk,J+1) = Cik a1 . 

This is an approach in spatio-temporal modelling which is guaranteed to yield positive-definite 



368 
	

C. GLASBEY 

(a) 

(I, 
C 
0 

0 
a, 

0 C., 
0 

0 

time (minutes) 

(b) 
u, 	1.0 
a, 

- 	0.9 
X ' 	0.8 	 X) 	)(X X 

- 	 X.XX)O( 	X a, 

	

 
0.7 	 X 	

At X 
 

x  
X 

.9 	0.6 
0 

0.5 
0 '-' 0.4 _______________________________________________ 

0.0 	2.5 	5.0 	7.5 	10.0 	12.5 	15.0 	17.5 	20.0 

distance (km) 
Figure 3. Correlations obtained from tog-transformed data at all sites over the first year's data: (a) Autocorrelations 
between radiation measurements for a range of time lags for each site; (b) Correlations between sites at the same time, 

plotted against inter-site distance 

variance matrices. However, it led to spuriously precise predictors, to be discussed in Section 4. 
Therefore, sample-based estimates were used instead. 

4. PREDICTION 

Imputation of missing values during night-time, that is when yi j  = 0, is a trivial matter which will 
not be considered further. Nor was the first or last non-zero value of the day ever missing in 
isolation, so this special case will not be considered either. During daytime, we will consider the 
prediction of z, 1  from a vector of n observations at other times and/or sites: 

(z 11 , .. . , z1 ). 

It is then a simple matter to obtain j jj from 2ij  as either the median estimator exp[2 1  + Imt], or as 
the unbiased estimator exp [2, + Pmt  + 1  r2], where r is the standard error of prediction, if we also 
make the assumption that the log-transformed data are normally distributed (see, for example, 
Cressie (1991, p.  135)). If other functions of y,3  are needed, such as its squared value if the 
variance in radiation values is required, then these can similarly be estimated. 

Let V denote the n x n variance matrix of the vector of observations. Similarly, let w denote the 
vector of covariances between z1  and the observations. If z,3  is predicted by a linear function 

bkzjkjk, 
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Table III. Percentage weights of log-transformed synchronous values at other sites, to predict missing values 
at a site. Weights are derived from a model fitted to the first year's data 

Predicted site Other sites: 	1 2 3 4 5 6 7 8 9 10 

1 * 13 20 —4 —2 —3 —3 10 1 58 
2 18 * 34 16 1 0 3 24 —3 9 

3 17 22 * 51 17 0 2 2 —9 0 
4 —3 10 51 * 23 16 6 —2 —2 —2 

5 —3 1 30 42 * 15 5 —10 10 8 

6 —4 0 0 28 14 * 51 1 3 0 
7 —3 3 2 8 4 41 38 5 0 
8 8 15 2 —2 —5 1 26 * 53 4 

9 1 —2 —9 —3 6 2 4 60 * 37 

10 54 6 0 —2 5 0 0 4 37 * 

then (in matrix notation) the predictor has RMSE 

- 2b"w + bTVb). 

The RMSE is minimized when 

b = V'w, 

which yields an unbiased predictor with RMSE 

T = v'W - wTv_tw) .  

Hence, this is the best linear predictor of z 1 . If the zs are normally distributed, then it is also the 
best possible predictor (although not necessarily the minimum RMSE predictor of Yij).  For 
further details, see for example, Mardia et al. 1979 pp.  62-65). It is known as the best linear 
predictor in multivariate analysis and as simple kriging in spatial statistics (Cressie, 1991 p.  110). 

Making use of the estimates of a, a 11  and ca from Section 3, the best predictor of z 3  from 
adjacent observations at the same site, that is 	and 	is 

0 .496z1 ,j_1 + 0.496z1J+1, 

with RMSE 0250. (Note that there is no constraint that the coefficients in b sum to unity.) This is 
similar to the RMSE of 0239 for linear interpolation in Section 2. The difference arises because 
here we are using detrended log-transformed data, not interpolating precisely and basing results 
on a model rather than on cross-validation. Use of more data from the same site, such as z1 ,j2 
and Z1,J+2, reduces the error only slightly, to 0249, and to 0248 if the 10 preceding and 
succeeding observations are all used. Therefore, the series appear to be approximately 
Markovian. This is an example of imputing a missing value in a single time series. The RMSE 
averaged over all sites is 0260 if the immediately preceding and succeeding values are used, and 
0258 if 10 observations either side of the missing one are used. 

If synchronous data are used from other sites, the best predictor at site 1 is 

013Z2  + 020Z3J - 004Z4J  - 002Z5J - 0034 - 003Z 7J  + 010z + 001Z9J  + 058Z jj  

with an RMSE of 0305. Most weight is given to site 10, the nearest one, and progressively less 
weight to more distant sites. Table III gives weights for predictors at all 10 sites. The same pattern 
of weights for nearer/more-distant sites is observed as for site 1. The average RMSE is 0319. If, 
instead, the ad hoc rule of averaging all other sites is used, the RMSE is 0405. Again, this is in 
reasonable agreement with the value of 0385 obtained in Section 2 for a very similar predictor. 
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If synchronous data are used from other sites and adjacent observations at the same site are 
used, the best predictor at site 1 is 

034z_ + 035z 3+  + 006Z2j  + 005Z 3J  - OOlZ4J  - 003Z5J  
- 0024 - 003z71  + 004z81 - 004z9J  + 027z10 , 

with an RMSE of 0225. Averaged over all sites, the RMSE is 0239, which is 8 per cent less than 
the value when only the same site is used. Again, inclusion of observations at greater time 
separations only produces a small improvement in accuracy. For example, if values 10 minutes 
earlier and later at other sites are included, the RMSE is reduced to 0228. 

A much larger effect was observed with the separable cross-correlation model mentioned in 
Section 3. To simplify matters, let us consider sites 1 and 10, for which the synchronous 
correlation in 089. Let us also assume a common variance of 062 and autocorrelations at lags 1 
and 2 of 090 and 081, respectively. Predictor 

036z i3i  + 036z i ,j+i  + 0.32Z, 
has an RMSE of 0-216, but with the separable model 

050z 11_ 1  + 050z 	+ 0.89zio  - 	- 

has an RMSE of 0i16. The seemingly innocuous assumption of separability has produced an 
apparently large increase in precision. However, this is not borne out by cross-validation on the 
second year of data. Although the first predictor has an RMSE of 0206, the second is worse, not 
better, with an RMSE of 0-215. The source of the discrepancy is that the separability assumption 
imposes a large negative conditional correlation of —080 between z lj  and given z 1j_ 1  and 
zc j  which is not supported by the data. 

In order to validate the prediction equations using the immediately preceding and succeeding 
observations at the some site and synchronous observations at other sites, they were applied to 
the second year's data. As in Section 2, root-mean-square differences between log-transformed 
observations and their predictors were evaluated for a range of missing value sequences. Table IV 
gives the results, averaged over all sites. There is good agreement with the model-based RMSEs. 
The pattern is similar to that in Table II, but the values are between 8 per cent and 27 per cent 

Table IV. Root-mean-square error of prediction of the first three 
missing values in a sequence by a weighted average of log- 
transformed preceding and succeeding values at the same site 
and synchronous values at other sites. Weights are derived from a 
model fitted to the first year's data and root-mean-square errors 
are based on cross-validatory deletion of observations in the 

second year of data 

Number of consecutive 
10 minute values missing 	First 	Second 	Third 

1 O219 
2 0245 
3 0250 0275 
4 0253 0281 
5 0254 0284 	0287 

10 0255 0286 	0293 
20 0256 0287 	0293 
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less. These are the gains from giving greater weight to nearer sites and of using both within- and 
between-site data. 

5. DISCUSSION 

Cross-validation has been adequate to assess, and a simple modelling approach to modify, the ad 

hoc imputation rule. It was found to be better to interpolate sequences of up to four missing 
values, and the first and last missing values in longer sequences, using data from the same site, but 
otherwise it is better to average synchronous data from the other nine sites. A spatio-temporal 
model of the second-order moments of the data was identified and used to specify optimal linear 
predictors based on both within- and between-site data. These methods could also be used to 
derive predictors in other circumstances, for instance when values are missing for two of more 
sites simultaneously. 

The model could be further refined by, for example, basing the mean solar radiation on a 
physical model (Garg, 1982), so that jmg varies continuously through the year, rather than 
changing monthly, and using a STARMA process to model the error structure. Assumptions of 
stationarity in the errors could also be relaxed by fitting a separate model in each month, or 
possibly by extending the Kalman filter methodology of Ng and Young (1990) to handle spatio-
temporal data. 
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Abstract 

Series of hourly rainfall data are simulated which are consistent with recorded daily totals. A 
two-stage process is used. First, a long sequence of hourly data is simulated using the 
Rodriguez-Iturbe rainfall model (Rodriguez-Iturbe et al., Proc. R. Soc. London, Ser. A, 417, 
283-298, 1988). Then, comparisons are made in daily totals between all observed and all 
simulated 3 day sequences. For each observed sequence, the simulated rainfall which gives 
the best match is re-expressed on an hourly basis, and used as one possible realisation of 
hourly rainfall on those days. For Edinburgh, Turnhouse, for which hourly data are 
available, the agreement between observed and disaggregated series is good, in terms of both 
histograms of hourly rainfall and summary statistics. - 

1. Introduction 

Daily meteorological data are recorded by the UK Meteorological Office for a large 
number of locations, whereas hourly data are available for only a few sites, mainly 
airports. Daily data, which are recorded at 09:00 h GMT (10:00 h BST in summer), 
include instantaneous values at that time for some variates (e.g. temperature and 
humidity). However, for other variates, such as rainfall and windspeed, daily totals 
for the previous 24 h period are recorded. This difference can disguise some important 
features which are revealed in hourly data. 

Weather data are put to many uses, one of which is as input to mathematical 
models. Daily data are adequate for some applications. In other cases, features 
such as diurnal variation, daytime peak values, or timing of weather events can be 

* Corresponding author. 
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of importance. Meaningful simulation with such models can only be carried out using 
hourly weather data. 

Forage conservation modelling (McGechan, 1990a,b) is one example of the need 
for hourly data. Field drying of grass swaths is sensitive to the states of several 
weather variables during the middle of the day. Also, the precise times of occurrence 
of rainfall often determine whether the crop is damaged before it is brought into the 
store. The restriction of having hourly data for only a small number of airport sites 
places a limit on the value of forage models, as some important grassland farming 
areas are remote from such sites. Obviously, it is not possible to recover the exact 
times of rainfall from daily totals alone. The best that can be achieved is a population 
of possible rainfall sequences which can be used to generate a distribution of model 
outcomes. 

It is relatively easy to simulate hourly data for some variates. For example, 
temperature is well approximated by a sine curve if daily maximum and minimum 
temperatures are known. McGechan and Glasbey (1988) described a method for 
simulating hourly solar radiation from daily records of sunshine hours. In this 
paper we consider the disaggregation of rainfall, that is, the generation of typical 
hourly rainfall data which are consistent with daily totals. Hershenhorn and 
Woolhiser (1987) modelled the pattern of storms in a day, conditional on a daily 
total, but without taking account of rainfall in preceding and succeeding days. 
Econopouly et al. (1990) subsequently tested this model using data from other 
sites. Koutsoyiannis and Xanthopoulos (1990) proposed a more mathematical 
model for simulating hourly data from monthly totals. Rodriguez-Iturbe et al. 
(1987, 1988) developed an elegd -it point-process model of rainfall, based on a series 
of cyclonic storms associate2with  fronts. However, this model is not directly 
amenable to disaggn?il-oecause it is not possible to derive the distribution of 
hourly rainfall cr>xuonal  on a daily total. 

An alterne approach to disaggregation involves having access to a large data 
archive,(,  iistorical hourly rainfall for sites similar to the one under consideration. 
Then, rainfall data which are recorded only daily, the best matches to sequences 
of daily totals in the archive can be found, and the hourly data from those past events 
can be used to furnish disaggregated sequences. Unfortunately, this approach is 
limited by the lack of sufficiently large amounts of historical data, and the com-
putational costs of searching such an archive. In this paper, we modify the approach 
by using the Rodriguez-Iturbe point-process model to generate an archive instead. 

2. Model 

The point-process model has six parameters—.X, a, v, t, q and p, Rainfall is 
simulated as the accumulation of rain cells associated with storms, as follows: 

the start times of storms are a Poisson process with rate A h. (In other words, 
the elapsed times between the starts of consecutive storms are independent, 
exponentially distributed, random variables with mean 1/A.) 

Each storm has a label, i, associated with it, which specifies the storm intensity, 
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and the probability that some rain falls during the h hour period is 

1 - exp{-Ah - APT + [A/(q + #c)]B 1  + [)ic/(çb + i)JB2 }, 

where 

B 1  

and 

B2 	 + 3 k + 2 +h lc2 ) 

Cowpertwait (1991) illustrated the model and derived some further results, although 
it should be noted that his model is slightly different from that described above 
because it does not have a rain cell starting coincident with the storm. 

3. Disaggregation 

Model parameters were estimated for Edinburgh airport (Turnhouse) by matching 
observed and expected statistics from 10 years of hourly data (1968-1977), in the 
same way as was done by Rodriguez-Iturbe et al. (1988), by obtaining exact 
agreement for six statistics. Those workers also conducted a sensitivity study of the 
stability of this procedure. Table 1 summarises the results. Agreement is good 

Table I 
Summary statistics for rainfall at Edinburgh, Turnhouse, 1968-1977 

Level of 
aggregation 

Mean Variance Correlation 

Lag I 	Lag  Lag  

Proportion 
wet 

1 h Observed 0.068 0.110 0.55 0.38 0.28 0.110 
Expected 0 . 068a o.11oa 055a 0.33 0.25 0 . 1l0a 
Simulation 1 0.130 0.49 0.27 0.19 0.109 
Simulation 2 0.112 0.55 0.32 0.23 0.111 

6h Observed 0.41 1.89 0.35 0.14 0.08 0.262 
Expected 0.41 1.83 0.36 0.16 0.10 0.235 
Simulation 1 1.96 0.31 0.13 0.08 0.233 
Simulation 2 1.85 0.35 0.15 0.09 0.236 

24h Observed 1.63 12.9 0.19 0.08 0.04 0.529 
Expected 1.63 12.9a 0.22 0.07 0.04 0 . 529a 

a Statistics used to estimate model parameters (cs = 2.56, ,c = 0.455, A = 0.0268, j = 1. 10, v = 0.510, 
= 0.0751). 

Simulation I: based on the best match between each observed interval of rain and 1000 years of simulated 
data. Statistics are the averages of ten replicates. 
Simulation 2: based on the best match between 3 day periods in observed data and in 100 years of simulated 
data. Statistics are the averages of ten replicates. 
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as described below. The labels are independent, gamma-distributed random variables 
with mean a/v, variance c/v 2 . (Rodriguez-Iturbe et al. (1987) took ito be a constant.) 

Each storm consists of one or more rain cells. The first rain cell starts as the 
storm starts. Subsequent cells have start times which are drawn from a Poisson 
process with rate ic h, up to a time, exponentially distributed with mean 
h, after which no further rain cells begin. Start times of rain cells are a special case of a 
Bartlett—Lewis cluster process. 

Each rain cell is a rectangular pulse of rain, of exponentially distributed 
intensity, mean p mm h', and exponentially distributed duration, mean 1/ij h. 

Total rainfall is the sum over all storms, and all rain cells in storms. 
Various aspects of the model were chosen judiciously by Rodriguez-Iturbe et al. 

(1987, 1988) so that analytic results are available. They were able to derive 
approximate expectations of some summary statistics. Because the equations are 
spread throughout two papers, for ease of reference they are summarised here. For 
data aggregated over periods of length h hours, the mean rainfall over all rainy and 
rain-free periods is given by /I.X ILLTIIRII X , where 

V 
l )[l 

+ 	(ic + )(42  + 27K + 7202 )] 72 

and 

PR = 
PTc/(a — l) 

The variance in the rainfall in an h hour period is 

2A 1  [(& - 3)hv 2  - v 3  + (v + h)3 ] 

- 2A 2 [( - 3)hv2  - v 3  + (v + 

where 

Al = 
	

(2/-t_,, 2  
(a-1)(a  —2)(-3)+) 

A2=2 ( 2
1)(— 1)(-2)(-3) 

and 

lL c  = 1 + 

The covariance between aggregated totals hk hours apart (k > 1) is 

A i {[v + (k + 1)h]3  - 2( + kh)3  + [v + (k - l)h]3} 

- A 2 {[v + (k + 1)h]3 - 2(v + kh)3  + [v + (k - 1)h]3}, 
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between the remaining observed and expected statistics. However, neither the model 
nor the statistics take any account of trends in rainfall, whether it be diurnal, seasonal 
or over years. At Turnhouse, the data showed a tendency for the hours between 19:00 
and 21:00 h to be wetter than average, although the pattern was not consistent over 
years. Also, March and April were drier than average, as were the years 1971-1973. 
Islam et al. (1990) considered spatial and temporal variations in parameter values in 
this model for a region in central Italy. 

Because the model is to be used for disaggregation from daily rainfall totals, small 
seasonal and longer trends can be ignored: the disaggregated data will be constrained 
to follow the same trends in mean rainfall, although not necessarily in variance and in 
other features of the data. Diurnal trends cannot be ignored, but fortunately they are 
sufficiently weak at Turnhouse to be negligible. At sites where this is not the case, our 
method cannot be applied without modification. 

To disaggregate daily data, it is necessary to simulate series of hourly data from the 
rainfall model which are constrained to have the appropriate daily totals. 
Unfortunately, this is no simple matter, because there is no known expression for 
the distribution of hourly rainfall conditional on daily totals. An alternative approach 
is to simulate unconditionally from the model until a rainfall sequence is generated 
which has the correct daily totals. If the data can be partitioned into sections which 
can be assumed independent of one another, then each section can be considered 
separately. This is the motivation for the following matching algorithm. 

The rainfall model was used to simulate 1000 years of data Patterns of rain were 
then matched between observed and simulated daily totals, and hourly values for the 
best match were used for disaggregation. The matching was done by partitioning the 
data into intervals where every day had non-zero rainfall, but immediately preceding 
and succeeding days were rain-free. This produced 206 single days of rain, 122 pairs of 
days, and so on up to one period of 17 consecutive days of rain. (It should be noted 
that these intervals do not correspond exactly to storms as defined in the model, both 
because storms can run together to produce several days of continuous rain, and 
because it is possible to have a rain-free day in the middle of a storm. However, 
this latter event is extremely rare, so it is reasonable to assume that rainy intervals 
are independent of one another.) Only periods of exactly the same length were 
matched between observed and simulated data. The one with the smallest mean-
square difference was chosen to match each observed rainfall sequence. The daily 
difference was defined to be one less than the observed daily value divided by the 
simulated one, so that the days with heavy rainfall do not dominate the statistics. The 
difference is a measure of how much rescaling is needed on each day (see below). Each 
simulated sequence was used at most once. For illustration, Table 2 shows the best 
match to a sequence of seven rainy days in January 1968. 

Hourly values from the best matching sequences were rescaled in each day to give 
the correct daily total. For example, on 12 January 1968 the observed daily value was 
0.4 mm but the simulated value was 1.09 mm, so the simulated hourly values were 
multiplied by 0.4/1.09 before being used for disaggregation. A more drastic rescaling 
was necessary on 13 January. 

Nine more series of length 1000 years were generated, and used to provide further 
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Table 2 
Example of sequence of rainy days in January 1968, and matches to simulated data 

Day number 

11 	12 13 14 15 16 17 18 19 

Observed 
rainfall (mm) 0.00 	0.40 0.60 7.10 0.90 14.50 0.90 0.30 0.00 
Best match 
in 1000 years 0.00 	1.09 11.93 8.76 0.72 12.61 0.97 0.69 0.00 
Best 3 day 
matches in 
100 years 0.00 	0.39 0.60 

0.38 0.55 7.35 
0.49 7.34 1.08 

7.45 0.72 14.35 
1.03 16.89 0.79 

16.17 0.85 0.32 
0.95 0.29 0.00 

independent realisations of disaggregated rainfall data. Statistics evaluated for the 
simulations are compared with observed statistics in Table 1. Results are denoted as 
Simulation 1. Agreement is reasonable, although variances of hourly rainfall are 
larger than they should be. This is a result of the rescaling to ensure exact agreement 
in daily totals. For longer sequences, such as 17 days, there are few simulated 
sequences from which to choose, therefore considerable rescaling is necessary, 
which will inevitably inflate the variance. 

One way of overcoming the problem of inflated variances is to increase the number 
of simulations, for example until all sequences have been matched to within a 
specified tolerance. This greatly increases computer times. Therefore an alternative 
approach was taken where the matching was done only on 3 day intervals. This does 
not have the theoretical justification of the first algorithm, of independence between 
different sections, and is therefore more ad hoc. In the same way as already described, 
the best match was found to the first day of a rainy interval together with the 
immediately preceding and succeeding days. The simulated hourly data for the 
middle day were used to disaggregate Day 1, after some rescaling to obtain exact 
agreement in totals. Then the best match was found for Days 1, 2 and 3, but now with the 
additional constraint that the final hour in Day 1 of the matched sequence was in close 
agreement with the final disaggregated hour. (This prevents discontinuities in rainfall 
occurring more frequently at 9:00 h than at other times in the disaggregated data.) 
Matching of 3 day intervals is continued through each rain period, as illustrated in 
Table 2 for one such interval. Although only 100 years of simulated data were used, 
the agreement can be seen to be much closer than that achieved with 1000 years of data 
and the previous matching algorithm. Fig. 1 shows the original and one realisation of 
disaggregated hourly data for this 7 day period. They look qualitatively similar. 

Close agreement is also shown in the summary statistics in Table 1, based on ten 
repeats of the whole procedure, and in Fig. 2, which shows histograms of hourly 
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Fig. 1. Observed sequence of hourly rainfall in January 1968, and an example of a simulated sequence with 
the same daily totals, obtained by finding the best matches to 3 day sequences between observed data and 
100 years of simulated data from Rodriguez-Iturbe's model. 

observed and simulated data. Therefore, it would appear that with the refined 
matching algorithm, 100 years of simulated data are sufficient to disaggregate 10 
years of rainfall data. A FORTRAN77 program running on a Sun SPARCstation 
IPX took 15 s of CPU time to simulate a series of 100 years of data and 110 s to use 
this to disaggregate 10 years of daily data. 

4. Discussion 

A method has been presented for using Rodriguez-Iturbe's model for 
disaggregation of rainfall. Results are not strongly dependent on the appropriateness 



C.A. Glasbey et al. / Journal of Hydrology 165 (1995) 1-9 

C-, 

ow 

I- 

—2.0 	—1.5 	—1.0 	-0.5 	0.0 	0.5 	1.0 	15 	2.0 	2.5 	3.0 

log—rainfall (mm) 

Fig. 2. Histogram of observed hourly rainfall for Turnhouse, 1968-1977, and disaggregated simulation 
from daily totals, obtained by finding the best matches to 3 day sequences between observed data and 100 
years of simulated data from Rodriguez-Iturbe's model. 

of the model because simulations are constrained to have the same daily totals as the 
recorded series. However, the approach would have to be amended if there was a 
noticeable diurnal pattern in rainfall. The spatial variation in parameter values in the 
UK could be investigated, based on sites with hourly data, and used to interpolate 
values at other sites. Also, further assessment of the method is necessary before it can 
be recommended for routine use. 

The method is equally applicable to other rainfall models which simulate realistic 
hourly data, and could also be modified to disaggregate other meteorological variates, 
such as windspeed, for which daily cumulative totals are available. In particular, if 
hourly data are required simultaneously for several variates it is important to take 
account of associations between them to produce realistic data. If hourly rainfall data 
are available at a nearby site, then it may be possible to model the association between 
sites to recover the actual times of rainfall, possibly by building on the work of Cox 
and Isham (1988). 
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SUMMARY 

The Operational Research system model of forage conservation 
currently being developed simulates swath drying in the field according 
to Penman's equation, which requires hourly data for a number of 
meteorological parameters, including solar radiation. Radiation is 
recorded at only a very small number of Scottish sites, whereas the 
other meteorological parameters are recorded hourly at a larger number 
of sites. Methods of estimating hourly radiation from other, related 
meteorological parameters, in particular hourly cloud cover and daily 
sunshine hours, are explored. 	Estimates are tested against measured 
values for sites where hourly radiation has been recorded. 	Estimates 
based on sunshine hours were found to be satisfactory, while including 
hourly cloud cover did not produce a worthwhile improvement in the 
estimate for a large increase in data requirement. Simulations of swath 
drying using Penman's equation with radiation estimated from daily 
sunshine hours alone was only slightly less accurate than when using 
measured radiation, compared with swath drying measured in field 
experiments. 
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ESTIMATES OF SOLAR RADIATION BASED ON OTHER METEOROLOGICAL PARAMETERS 
FOR USE IN SIMULATION OF SWATH DRYING 

INTRODUCTION 

Operational Research (OR) studies of forage conservation are 
currently being undertaken at SCAE to complement experimental work on 
this topic. A comprehensive model of the whole process of forage 
conservation, from the growth of the grass crop, through all the 
conservation operations, to evaluation of forage for animal feeding, is 
now being developed. This includes a simulation using hourly historical 
meteorological data of the process of drying cut grass swaths in the 
field. Glasbey and McGechan (1986) have shown that the Penman (1948) 
equation provides a simple method of relating drying to meteorological 
parameters; it gives a closer fit to swath drying data than either 
vapour pressure deficit (previously used by Parke et al., 1978, 1979) or 
pan evaporation (previously used by Pitt, 1984). Smith (Smith, 1986; 
Smith et al. 1987) is currently developing a more detailed mechanistic 
model. In both the Penman equation and Smith's detailed model, 
radiation is a major driving force causing evaporation of moisture, so 
to use either of these it is essential to have hourly historical data on 
radiation. Unfortunately, although hourly data representing all the 
other necessary meteorological parameters have been recorded at a number 
of sites around the main agricultural areas of Scotland, radiation has 
been recorded at only a few of these sites. The purpose of the work 
described in this Note, therefore, was to explore methods of estimating 
hourly radiation from other recorded meteorological parameters, with a 
view to increasing the number of sites for which swath drying 
simulations could be run, initially using the Penman equation and later 
using Smith's detailed model. Data for the two sites for which 
radiation data have been recorded were used for testing alternative 
methods of estimating radiation from other parameters. 

A procedure for estimating daily radiation from recorded sunshine 
hours, is well established and has been used for various purposes, such 
as in a model of grass growth developed by Corrall (1984) and used as 
the crop growth sub-model in the forage conservation model (McGechan, 
1985). However, for estimating hourly radiation the Meteorological 
Office suggested that, of all the parameters measured at the hourly 
recording sites,cloud cover would give the best indication of radiation 
level. In this Note, estimates of hourly radiation based on both daily 
sunshine hours and hourly cloud cover have been tested against measured 
hourly radiation for sites where hourly radiation has been recorded. 

AVAILABLE METEOROLOGICAL DATA 

A body of hourly historical meteorological data was purchased by 
SIAE from the Meteorological Office over a number of years, initially 
for models of grain drying, and more recently for hay drying and silage 
wilting models. 	Details of sites, years, months and parameters are 
listed in Table 1. 	It will be noted that radiation data is available 
only for Dyce (Aberdeen Airport) and Eskdalemuir. Each hourly radiation 
value is the mean of 60 readings at one minute intervals in units of 



Table 1 	Hourly meteorological data held on magnetic tape 

leteorolagical paraeters 

REF SITE LNAME TAPE LABEL PROS YEARS RONTHS IT NTT RH PA PR MD MS N ITT 33N 01 NOTES 

I Abbotsinch-1 ES6077 P3,F856,1680 RDF 1963-83 Nay-Oct • + + 	' 
2 Abbotsinch-2 GLASGOW 333IAE 6 RDF 1984-86 May-Oct 4 

3 CArlisle-I CARLISLE 33SIAE 7 RDF 1973-79 May-Oct 4 

4 CArlisle-2 CARLILE 33SIAE 8 RDF 1979-86 May-Oct ' § I 	+ 4 * 
5 CLoudcover-Abbotsinch RENFREW.ABBOTSIN 33SIAE 1 RDR 1953-83 May-Oct + 
6 CLoudcover-Dyce DYCE 33SIAE 3 POP 1973-84 May-Oct 4 2 

7 CLoudcover-Eskdaleuuir ESKDALE 33SIAE 2 RDR 1967-84 May-Oct 

8 CLoudcover-Prestwick PRESTWIK 33SIAE 4 POP 1973-84 May-Oct * 
9 CLoudcover-Renfrew RENFREW.ABBOTSIN 33SIAE I RDR 1953-83 May-Oct 

10 Dyce DYCE ES6130 1 RDF 1973-84 May-Oct * I I 	* I 2 

Ii Eskdaleiuir ESKNUIR ES6130 2 RDF 1967-84 May-Oct 4 * G 	* I 

12 Kinloss C.HDATA.N1057.SIA ES5214 1 RDI 1957-78 All 1 	* • 	1 4 I 	3 

13 Leeunq C.HDATA.N2245.SIA E55212 1 RDI 1965-78 All I 	* 4 	* * I I 	3 
14 Prestwick PREST.WICX ES6078 1 RDF 1973-84 May-Oct I I I 	• * 
15 Turnhouse-1 C.HDATA.N1634.SIA ES5213 I RDI 1957-78 All I 	* * 	I I + • 	3 

16 Turnhouse-2 TURNHOUS 3351AE 5 RDF 1974-86 May-Oct I I I I I 

17 RAdiation-Aberdeen RADABER ES6I30 3 RDR 197314 May-Oct * 2 

18 RAdiatjan-Eskdaleiuir RADESK ES6130 4 RDR 196714 May-Oct 1 5 

19 REnfrew RENFREW E56078 2 RDF 1953-65 May-Oct I I 4 	* I I 

20 Sunshine-Abbotsnch HRLYABB 3351AE 9 RDR 1981-86 All I 

21 Sunshine-Eskdaleauir-1 HRLYESk 33SIAE 10 RDR 1981-82 All + 4 

22 Sunshine-Eskdale.uir-2 HRLYESL 33SIAE 11 ROR 1984-86 All I 

Notes: 
8 observations/day (3h intervals) 
'Aberdeen' is same as 'Dyce' 
Complete tape of all hourly data recorded by Met. Office, as Table IV in Dumont (1977), in Met Office format 
December 1982 missing 
Data missing for these dates: 

1/ 8/78 - 17/ 8/78 
26/ 7/80 - 17/ 7180 

13/ 8/80 - Ill 8/80 
20/ 8/80 
11/ 9/80 
15/ 9/80 - 17/ 9/80 
20/ 9/80 - 26/ 910 
1/10/80 - 6/10/80 
11/10/80 - 28/10/80 
12/ 9/82 - 31/10/82 

Codes for meteorological parameters (as used by Met. Office): 

IT 	Dry bulb temperature 	(°C) 

NIT Dry bulb temperature 	(0.1°C) 

RH 	Relative humidity 	() 

PA 	Rainfall 	 (I.) 

RR 	Rainfall 	 (0.14.) 

MD 	Mean wind direction 	' °ciocwie tr.:' Norn 
MS 	Mean wind speed 	(knot) 

N 	Cloud cover 	 (8ths) 

ITT Mean global irradiation 1W/i 1 ) 

SN 	Sunshine 
UT 	Other, as Taie i 	r [..ort 	i' 
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Table 2 	Daily meteorological data obtained from AFRC computer 

Sites and dates 

Site File name Years 

Turnhouse TURDW 1969-78 
TURDWL 1979-84 

Aberdeen (Dyce) DYCDW 1973-84 

Paisley PAIDW 1969-78 

Eskdalemuir ESKDW 1967-82 
ESKDWL 1983-84 

Bush House BUSHDW 1970-82 
BUSDWL 1984-85 

Auchincruive AUCHDW 1973-84 

Carlisle CARDW 1973-86 

Hurley HURDW 1968-82 

Parameters in each file 

MAX ( °C) maximum teperature 
MIN ( °C) minimum temperature 
DRYB ( °C) dry bulk temperature 
WETB ( °C) wet bulb temperature 
E30 ( °C),, 30 cm soil temperature 
RAD (MJ/m') radiation (daily total) 
SUN (h) 	sunshine hours 
RAIN (mm) rainfall 
RUN (km) run of wind 

Note: 	Eskdalemuir and Hurley are the only sites with any radiation 
data, but not for all dates even at these sites. 	Missing data is 
indicated by asterisks in file. 



Fig. 1. 	Path of solar beam through the earth's atmosphere 
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W/m2 . Hours in each day are numbered 0 to 23, where hour 0 runs from 
0000 to 0100 hours. Meteorological parameters which are point values, 
including cloud cover, are measured about 10 minutes before the start of 
the hour to which they refer, which for hour 0 is at about 23.50 hrs the 
previous day. All those data are stored on magnetic tape at ERCC for 
retrieval by the EMAS-3 mainframe computer. The formats of the tapes 
and the parameter lists for each site vary, making retrieval very 
complicated, so a suite of programs has been developed with a means of 
automatically selecting the correct program when only the site and dates 
are specified (Appendix 1). 

A body of daily historical meteorological data has been purchased 
by the AFRC, and is continually updated; it is held on the AFRC-D 
computer at the AFRC Computing Centre, Harpenden, for use in 
agricultural research work. Data files can be retrieved via PSSE and 
transferred to the EMAS-3 mainframe computer. Data for the sites, years 
and parameters which have so far been retrieved, mainly for use in the 
crop growth sub-model (McGechan, 1985) of the forage conservation .qiodel, 
are listed in Table 2. Daily radiation data (in units of MJ/m) are 
included only for Eskdalemuir and Hurley, and not for all days at these 
sites. However, sunshine hours are available for all sites and dates. 

3. 	CLEAR SKY RADIATION 

The level of incoming solar radiation with a clear sky is related 
mainly to the solar angle and to the path length of the sun's rays 
through the atmosphere, which in turn is also related to the solar 
angle. Strictly, it also affected by 'turbidity', the quantity of dust 
and non-cloud water vapour in the atmosphere, but this has been ignored 
for the current study. 

Solar angle a is given by the following trigonometric relationship 
(taken from Garg, 1982): 

sina = cos4 cosó CoSw + sin 	simS 	 . . . (1) 

where 'i = latitude 
6 = declination angle (0.41 radians (23.5 0 ) at summer solstice, 

-0.41 radians at winter solstice, zero at either equinox) 
w = hour angle from solar noon 

The relative path length of the sun's rays through the atmosphere m, for 
positive values of a, is given by (Fig. 1): 

m = ((R/H) sina )2 + 2(R/H) + 1)1/2 - (R/H) sina 	 .. . ( 2) 

Values of the radius of the earth R and of the height of the atmosphere 
H are given by Garg (1982) as 6370 km and 7991 km, respectively. 

Solar radiation is assumed to be proportional to (sinci )/rn, 
decreasing with higher values of m due to the longer path length and 
further decreasing with decrease in a since a beam of radiation is 
spread out over a larger area of ground surface. 
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4. 	ESTIMATING HOURLY RADIATION ON THE BASIS OF CLOUD COVER DATA 

In the first instance, analysis was carried out using three years' 
data (1982-84) for the six months May-October for Dyce, for which a 
complete set of hourly data was available for radiation, cloud cover and 
other meteorological parameters. All cloud cover data is expressed in 
'oktals'; values range between 0 (clear sky) and 8 (total cloud cover), 
with an occasional value of 9 representing fog. 

Radiation values have been plotted against cloud cover values in 
50 class groups for solar angle in Fig. 2. Mean values of solar 
radiation for each cloud cover value in the same class groups were also 
calculated (Table 3). The expected progressive decrease in radiation 
with increase in cloud cover and decrease in solar angle was observed, 
except that there was little difference between radiation levels at 
cloud cover values 0, 1, 2 and 3; in fact, radiation levels were lower 
with zero cloud cover than for cloud cover values 1, 2 or 3. When 
radiation values were multiplied by m/sinct, little variation with solar 
angle was observed (Table 4); 	this suggests that radiation is 
proportional to (sincL )/m as expected. 	Overall values of radiation 
multiplied by rn/sin were also calculated (Table 4). 

The first method to be explored for estimating hourly radiation 
from cloud cover was to take the mean value from Table 4 appropriate to 
the cloud cover value, and multiplying it by (sina)/m. Root mean square 
(RMS) errors for this estimate ('point estimate') compared with the 
recorded hourly radiation values are listed in Table 5 for 12 years for 
Dyce and 11 years for Eskdalemuir (May - October only), together with 
overall RMS errors for each site. RMS errors were higher for 
Eskdalemuir than for Dyce, which is perhaps not surprising since the, 
estimates for Eskdalemuir were based on point values (Table 4) for 
another site and other years. However, RMS errors for Dyce were not 
noticably smaller in the years on which the point values were determined 
than in the other years. 

For the second possible method to be explored, a series of 
multiple regression analyses was carried out for hourly radiation x 
m/sincz against cloud cover and other meteorological parameters, 
including relative humidity, vapour pressure deficit, temperature and 
rainfall. As well as cloud cover in the same hour as this radiation 
value, cloud cover values in a number of previous and following hours 
were also considered in the regression analyses. The relationship which 
was found to account for most of the variability related radiation (Rj) 
to cloud cover in the current hour (Ci), the previous four hours, and 
the subsequent five hours, plus the relative humidity in the current 
hour (RH 1 ), as follows: 



Table 3 	Mean solar radiation in cloud cover and solar angle groups 

Mein values 

Solar 	Cloud 	0 1 2 3 4 5 6 7 8 9 
anale 

- 2 1.7 5.7 5.8 5.8 
2•3 

6.2 5.4 4.1 1.2 1.2 
3 - 7 83.3 89.0 a3.9 74.0 57.8 57.9 54.9 3a.2 14.3 10.7 
8 - 12 110.1 136 .0 140.6 110.9 112.8 121.6 105.6 69.3 28.6 30.6 
13 	- 17 194.4 222.1 222.7 193.5 189.1 172.2 164.2 105.1 46.3 46.0 
18 - 22 283.7 287.7 287.7 280.9 250.8 222.5 208.5 142.5 53.8 59.0 
23 - 27 321.2 372.a 364.8 359.6 341.3 308.4 286.4 195.0 80.2 54.7 
28 - 32 406.a 475.6 438.6 431.6 360.7 365.7 336.1 231.1 93.7 141.0 
33 - 37 452.6 524.1 503.6 479.0 433.0 420.2 411.8 269.9 107.4 
38 - 42 529. 587.4 568.8 57e.8 498.5 505.3 455.0 317.8 148.7 135.0 
43 - 47 592.5 a57.6 617.8 a37.6 570.4 525.7 508.2 353.4 170.1 173.0 
48 - 52 865.4 710.1 881.2 660.5 a29.8 636.4 549.6 398.1 188.9 213.0 
53  - 57 19. - v 664.4 717.8 673. 11  668 .7 597.4 423.7 205.8 135 0 

Number of values from which mean calculated 

Solar 	Cloud 0 1 2 3 4 5 6 7 8 9 
anqie 
0 - 2 207 556 335 321 196 310 442 1550 1519 86 
3 - 7 8 b7 38 38 39 51 67 308 171 15 
8-12 7 68 42 50 30 38 71 336 184 10 
11-17 10 7 1 28 "7 "4 39 4' "8 1'9 6 
18-22 09 41 27 9 31 51 84 373 174 4 
23- 27 13 52 32  32 3b 34 89 339 195 3 
28-32 8 34 27 17 31 43 52 253 115 3 
33-37 10 38 28 27 24 50 86 321 164 0 
38-42 3 45 20 35 18 31 a3 222 110 1 
43-47 4 55 27 22 27 34 83 263 121 1 
48-52 14 46 31 37 21 43 84 285 136 1 
53  - 57 13 20 15 12 15 40 57 239 112 2 

Total (omitting 104 587 329 324 296 454 778 3217 1611 46 
solar angles 0 - 2) 



Table 4 	Values of radiation multiplied by m/sinof, in solar angle 
class groups and overall mean 

Means of radiation multiplied by /sin solar angle 

Solar /sina a Cloud 	0 1 2 3 4 5 6 7 8 9 
jnA  le  

0 - 	 2 0.0 784.9 24 1. 7 -78.3 -121.3 111.2 4468.3 -69.2 383.4 6.1 7.2 
3 - 	 7 17.702 1.543 1370.1 1280.3 1147.3 1452.4 1239.9 1144.6 1128.6 693.1 284.6 208.9 
8 - 	 12 8.513 1.478 987.6 1196.2 1165.8 900.6 986.1 991.2 886.9 573.2 235.4 251.2 
13 - 	 17 5.477 1.418 1066.8 1194.6 1156.4 1068.5 1029.4 935.3 869.2 563.4 251.1 237.3 
18 - 22 3.979 1.361 1064.7 1143.6 1066.6 1121.9 1041.9 906.1 836.2 577.0 220.5 233.0 
23 - 27 3.097 1.309 986.4 1141.3 1123.9 1109.7 1035.1 939.8 867.0 595.0 247.1 163.2 
28 - 32 2.522 1.261 1008.6 1184.7 1108.9 1092.9 917.8 912.5 851.9 590.5 236.4 364.3 
33 - 37 2.122 1.217 963.2 1129.6 1076.1 1014.1 934.6 894.8 815.2 572.9 230.7 ' 

38 - 42 1.833 1.178 943.6 1077.3 1047.4 1036.5 923.1 916.1 832.5 578.7 269.5 264.2 
43 - 47 1.616 1.143 979.1 1065.8 1008.6 1036.9 926.1 863.3 833.4 577.1 277.9 286.7 
48 - 52 1.452 1.112 979.1 1037.5 994.0 965.6 917.6 924.7 798.0 581.2 275.5 320.5 
53 - 57 1.325 1.085 966.6 978.7 384.7 970.5 899.8 894.5 797.7 565.8 275.5 180.7 

Mean (oiittinq 1023.0 1146.7 1085.0 1071.9 1005.0 942.6 869.1 588.8 253.0 235.1 
solar angles 0 - 2) 
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Table 5 	RMS errors and biases for hourly estimates of radiation 

&CE IABERDEENJ 

H:urii estimates (WI) 

FQIrt Regression Adjusted 
No. 	o estimate model Paint 	est Rean model sunshine 

ear points R1S error bias RMS error bias RNS error RMS error 
- 

RMS error 	bias 
1973 4416 52.87 -0.77 47.8 -9.73 54.80 49.39 -5.22 
1974 441e 55.19 -1.3.0 50.41 -8.50 54.72 48.95 
1975 441 10 51.04 - .61 45.33 -3.47 53.59 48.54 -5.76 
157 1 41a 54.0 -1.33 43.35 -.79 53.54 46.3 
17̀ 	7 4416 55.e -i.24 49.32 -14.04 52.lo 45 • c9 _IQ7 

1978 4416 51.53 -1.52 45.31 -10.34 53.52 47.76 -3.21 
1979 441e 54.83 1.6 1, 45.77 -9.93 54.22 49.43 -5.41 io 441a 53.27 :.sa 46.47 -3.73 51,98 48.00 -3.30 
1981 4416 52.35 4.92 48.19 -4.o 52.16 49.10 -2.54 
1982 441a 55.59 7.20 43.3á -0.44 50.56 5.47  
1983 4392 54.18 2.0 47.44 -9.35 50.33 44.82 -0.36 
1984 4416 54.95 0.87 47.73 -a.41 53.09 48.08 -4.32 

_Mean 52968+ 53.83 0.6e 48.00 -8.10 52.88 47.69 -.13 
Mean 	years 13324+54.90 3.56 47.98 -5.40 51.31 46.12  

ES.:DL EMU 1R 

Hourly estimates 	/(l 

Point Regression 4dusteo Daily 
No. 	o estimate codel Point 	est Regn model sunshine 

(ear points R1S srror bias RNS error bias RMS error PMS error RMS error bias 
1967 4176 79.48 3.82 69.47 -5.55 68.17 59.59 63.c:2 0.16 
1988 4128 87.14 7.59 7 6.45 -1.26 71.29 61.12 56.91  
19e9 4080 76.35 14.92 67.72 3.01 61.57 58.35 57.11 4.63 
1970 4296 34.54 5. 40 74.47 69.4 60.28 58.31 2.44 
1972 4416 32.99 7.38 2.a1 -2.65 i7.03 58.28 56.23 -0.30 
1976 4296 85.82 18.33 73.93 3.84 64.32 58.59 57..8  
1977 4308 31.14 3.87 71.69 -2.85 63.83 56.78 58.1  
1978 3363 37.27 8.18 30.43 -0.13 s9.35 61.95 60.32 -1.83 
1979 3840 66.40 14.10 76.05 1.28 64.99 58.76 62.33 2.33 
1980 2208 77.44 24.85 87.51 16.00 7.4i 60.81 61.86 -4.09 
1981 4224 51.81 14.9a 70.74 3.50 53.74 56.23 53.31 1.01 
Mean 43397* 34.00 11.02 74.10 0.54 66.49 58.70 59.08 4 

* Total 
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I 	 4 
C = (0.0256 C 15  + 0.064 C 4  + 0.16 C +3  + 0.4C 2  + C +1  

+C + 0.4C 1  + 0.16C 2  + 0.064C 3  + 0.O256C 4 )/3.2992 

Ri = 1400 - 0.21C' - 4.5RH 1  

with C values of 9 replaced by number 8. RMS errors for this estimate 
are also listed in Table 5 and are generally slightly lower than for the 
first estimate. Again, RMS errors were larger for Eskdalemuir than for 
Dyce, presumably because the regression model reflected characteristics 
of the Dyce site, and would be slightly different if fitted to data from 
a different site. 

5. 	ESTIMATING DAILY RADIATION FROM SUNSHINE HOURS 

Estimation of daily solar radiation from recorded sunshine hours 
is a standard procedure mentioned in various books (e.g. Garg, 1982). 
The formulae used for this procedure in this study are taken from the 
grass growth model developed by Corrall (1984) in collaboration with the 
Meteorological Office, and are similar to those described by Thompson et 
al. ( 1981). 

The procedure makes use of the solar angle equation (Equation 1), 
with all angles expressed in radians. The hour angle at sunset, U> , is 
first calculated, by setting the solar angle to zero in Equation 1. 

= - sin sinó 

cos4 cosó 

From which the night length, NL, and daylength, DL, (both in hours) are 
calculated: 

NL = 2 (24/27r)cos 	(it _Wt) 

DL = 24 - NL 

In fact, Corrall uses a slightly more complex formula for NL, the 
additional term making a slight further adjustment, of about 34' for 
diffraction plus about 16' for the radius of the sun (Thompson et al., 
1981): 

NL = 2(24/2ir) cos -1  (jr - 	0.0145/(co0cos6)) 

In order to calculate levels of extra terrestrial solar radiation, it is 
necessary to assume a value of the radiation at the top of the 
atmosphere, the solar constant S. 

Alternative values of the average solar constant, S, are iscussed in 
books, Garg suggesting 1395 or 1353, but a value of P360 W/m as used by 
Corrall and by Thompson et al. (1981) is used here. Instantaneous 
radiation at the top of the atmosphere, 5, is then calculated, adjusting 
for the inverse square law variation with variation in earth to sun 
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Table 6 	'Angstrom' coefficients for estimating daily radiation from 
sunshine hours 

January February Narcn Mpril May June July Auust 5eptember October November December 

Al 0.34507 0.33459 0.36690 0.3557 0.35057 0.35890 0.41234 0.3a243 0.394à7 0.36213 0.36680 0.36262 

A2 0.00301 0.00255 0.00303 0.00334 0.00245 0.00327 0.00369 0.00269 0.00338 0.00317 0.00350 0.00350 

81 0.34572 0.35533 0.36377 0.35802 0.33550 0.27292 0.27004 0.33162 0.27125 0.31790 0.31467 0.30675 

0. 00495 0,00457 Q. 0.00456 0.00485 0.00578 0. ri(58 00412 0.00564 0.01)504 0.00523 j. J J1 

Aberdeen ç '; 	1894 0.19419 u 19519 j 2 1 092 0.21251 12020 1 I  2u0 0201 019144 60 16 11 

lat 	C;7.n  b C1 . o[3 7 582 o_93 01794 0 . e115 6 028 59380 5646 5273 0.605 119 6 1 276 

I 	801 3j5> ao:ss 9ll3 > 	229 >91499 ss j 7944 v 79662 7 8008 ) 	B6 

Ekuir (a 0.17892 0.19383 0.19963 0.20120 0.21533 (.2 1 84(,  0.20865 0.21394 0.20809 0.18715 0.17360 0.i942 

lac 	55.2 b 0.61896 0.60757 0.62100 :;.o973 o.o0322 0.59198 0.58358 0.55904 0.59258 0.59611 0.a0337 0.b15 

1. a+b 0. 79788 0.80142 0.82063 .81093 0.81855 0.81037 0.77223 :. 77299 0. 790a7 0.39325 0.77697 0.33474 
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distance, which is at its maximum ('aphelion') on 4 July and minimum 
('perihelion') on 3 January; the following formula used by Corrall is 
mentioned as a useful approximate relationship by Iqbal (1983): 

S = S(1 + 0.0335 cos(2rrd/365)) 	W/m2  

where d = day of year. 

An initj,al estimate of extra terrestrial daily clear sky radiation, H 0 , 

(in J/mL)  is then calculated from the following formula, which allows 
for day and night lengths and the angles in Equation 1: 

H0  = 3600 S(sinósir, 4DL + (24/7r)cos6cos4sin((7r/24)NL)) 

Adjustment for cloud cover to give actual daily radiation, H, is then 
made according to a standard formula (sometimes called the 'Angstrom' 
formula): 

H = H0  (a + b(n/DL)) 

where n = sunshine hours. 

Corral] calculates values of a and b (the 'Angstrom' coefficients) in 
terms of latitude (LATIT, in degrees) 

a = Al - A2 x LATIT 
b = Bl + B2 x LATIT 

where different values of Al, A2, Bi and B2 are selected for each month 
of the year (Table 6). Daily radiation levels for zero sunshine hours 
(a) and for maximum sunshine hourse (a+b) are also illustrated for two 
latitudes in Table 6. 

RMS errors for the daily radiation estimated from sunshine hours 
compareq to the measured daily radiation (summed and converted to units 
of MJ/m ) are listed in Table 7 for all the years data, plus overall rms 
values for each of the 1io sites. Similar RMS errors for the total 
daily radiation (in MJ/m ) derived from hourly estimates of radiation 
according to the two methods described in Section 4 have also been 
listed; the RMS errors for these estimates are generally higher than 
for the estimates based on sunshine hours. 

6. 	ESTIMATING HOURLY RADIATION ON THE BASIS OF BOTH HOURLY CLOUD 
COVER AND DAILY SUNSHINE HOURS 

Further estimates of hourly radiation were made taking account of 
the estimate of daily radiation based on sunshine hours. In the first 
two, the previous estimates of hourly radiation, based on point values 
and on the regression model, were adjusted one day at a time by a factor 
such that the daily total radiation was equal to the daily radiation 
based on sunshine hours. RMS errors were lower for the adjusted 
estimates than for the corresponding estimates based on cloud cover 
alone, particularly for Eskdalemuir (Table 5); the adjustment appeared 
to some extent to have compensated for errors introduced by using for 
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Table 7 	RMS error and biases for daily estimates of radiation 

DYCE ABERDEEN) 

Daily estimates (MJ!m 3 ) 

Point Regression 
No. 	cf estimate model Sunshine 

Year points RMS error bias RNS error bias RHS error bias 
1973 185 1.35 -0.7 1.51 -0.84 1.58 -0.50 
1974 185 1.51 -0.11 1.44 -0.73 1.31 -0.29 
1975 185 1.28 -0.05 1.37 -0.73 1.58 -0.49 
1776 185 1.57 -0.12 1.62 -0.85 1.41 -0.08 
1977 185 1.70 -0.54 1. 7 1 -1.21 1.30 -0.17 
1978 185 1.29 -0.13 t.2 -.89 1.40 -0.23 
1979 135 1.57 0.14 1.5 -0.85 1.45 -0.47 
1980 185 1.52 0.22 1.39 0.75 1.41 -0.26 
1981 185 1.49 0.42 1.45 -0.40 1.48 -0.22 
1992 135 1.65 0.a2 1.55 -0.04 .32 -0.07 
1983 184 1.46 0.22 1.41 -0.80 .35 -0.03 
1984 185 1.44 0.09 1.42 -0.55 1.46 -0.41 
Mean 2208* 1.49 0.06 1.48 -0.70 1.42 -0.27 

Mean 	(years 554* 1.52 0.31 1.46 -0.47 1.37 -0.17 
1982-84 only) 

ESKDALEMU JR 

Daily estimates lMJj} 

Point Regression 
No. 	of estate model Sunshine 

Year paints RMS error bits RMS error bias RMS error bias 
1967 175 2.20 0.76 2.10 -0.48 1.41 0.01 
1968 173 2.96 0.65 2.52 -0.11 1.24 -0.04 
1969 171 2.31 1.23 2.16 0.26 1.31 0.40 
1970 180 2.37 0.46 2.28 -0.57 1.12 0.21 
1972 185 2.31 0.63 2.14 -0.23 1.09 -0.03 
1976 180 2.99 1.58 2.57 0.76 1.S0 -0.06 
1977 183 2.57 0.33 2.43 -0.25 1.30 -0.45 
1973 162 3.01 0.70 2.87 -0.01 1.23 -0.16 
1979 161 2.84 1.21 2.58 0.11 1.27 0.20 
1780 93 3.51 2.12 3.27 1.37 1.53 -0.35 
1981 177 2.60 2.27 2.34 0.30 1.22 0.09 
Mean 	1930* 	2.67 	0.95 	2.4o 	0.05 	1.30 - 	0.00 

* Total 
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one site the prediction methods derived with data from another site. 

ESTIMATING HOURLY RADIATION ON THE BASIS OF DAILY SUNSHINE HOURS 
ALONE 

Lastly, an estimate of hourly radiation was made based on the 
estimate of daily radiation from sunshine hours alone. Each daily 
radiation estimate was divided up to give the same value of radiation x 
rn/sin a for each hour of that day. This gave RMS error values (Table 5) 
almost as low as the best estimate based on cloud cover (using the 
regression model, adjusted for sunshine hours) and better than all the 
other estimates. Since this has a much lower requirement for 
meteorological data, it was concluded that it would be the most useful 
form of estimate of hourly radiation for use in simulation models of 
swath drying. 

ESTIMATE OF HOURLY RADIATION FROM HOURLY SUNSHINE FIGURES 

The hourly meteorological data includes two short runs (5 years 
each) of hourly sunshine for the sites Abbotsinch and Eskdalemuir. It 
would be possible to relate radiation to sunshine from the Eskdalemuir 
data, and use this as a means of predicting hourly radiation for 
Abbotsinch. However, for the small benefit of possibly slightly better 
estimates of hourly radiation for only 5 years at one site, this 
exercise was not attempted. 

TESTING THE PENMAN EQUATION WITH ESTIMATED HOURLY RADIATION VALUES 

Silage wilting and hay drying experiments were carried out in 1984 
and 1985 (designated S84, H84, S85 and H85), during which both drying 
rates and meteorological parameters were measured (Lamond et al., 1987). 
An almost linear relationship was found between the log-transformed dry 
basis moisture content and potential evaporation (Glasbey and McGechan, 
1986). The following meteorological parameters used to calculate 
potential evaporation were recorded by instrumentation in the vicinity 
of the swath 

Rs - solar radiation (W/m2 ), 
R - net radiation above the swath (W/m 2 ), 
u - wind speed 2 m above the ground (m/s), 
T - atmospheric temperature ("C), 
TD - dew point temperature ( °C). 

While net radiation measured immediately above the swath was used in the 
equation, it was recognised that incoming solar radiation would 
typically be the radiation parameter which would be available for 
simulations in OR studies. The following linear relationship between 
the two radiation parameters was identified, with a very low scatter: 

R = 20 + 0.63 Rs 	 (3) 

The 'albedo' (reflectance) coefficient of 0.63 is typical of those 
reported for similar vegetative surfaces, and he negative intercept 
represents a typical outgoing radiation of 20 W/m at night. 
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Table 8 	RMS errors for log transformed dry basis moisture content 
predicted by Penman's equation (averaged over four 
experiments) 

Source of net radiation 	Using rate parameters 	Using separately 
used in Penman's equation 	estimated from observed 	estimated rate 

net radiation 	 parameters in 
each case 

observed 0.045 0.045 

observed incoming solar 0.061 0.051 
radiation 

point estimate 0.113 0.049 

regression model 0.094 0.049 

adjusted point estimate 0.090 0.044 

adjusted regression model 0.091 0.045 

daily sunshine hours 0.089 0.041 

using vapour pressure deficit alone 0.137 	 0.045 
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The extent of errors introduced if potential evaporation according 
to the Penman equation is calculated using estimated rather than 
measured net radiation is now investigated. Daily sunshine hours are 
recorded for the Meteorological Office at Bush House, about 0.5 km from 
the experimental sites, and hourly cloud cover is recorded at Edinburgh 
(Turnhouse) Airport about 15 km distant. These data were used to 
estimate hourly values of incoming solar radiation according to the five 
methods described in Sections 4-7, from which net radiation was 
estimated from Equation 3. A sixth estimate of net solar radiation was 
made from measured incoming solar radiation (R 5 ) using Equation 3. 

RMS errors for the log transformed dry basis moisture content 
predicted by the Penman equation with all the above estimates of net 
solar radiation and with measured net solar radiation, compared with 
measured values, are listed in the first column of Table 8. As 
expected, the lowest RMS errors arose when using the measured net 
radiation; errors when using measured incoming solar radiation were 
about 35% higher, and errors using any of the predictors of radiation 
based on sunshine hours were about twice as high as when using measured 
net radiation. In all these cases, the rate parameter used was the same 
as that estimated from observed net radiation, reported by Glasbey and 
McGechan (1986). For comparison, the errors where moi:t'e content was 
predicted from vapour pressure deficits alone (during the period 10.00-
19.00 BST only) were about three times as large as the best predictor 
using Penman's equation. However, when a new rate parameter was 
estimated for each predictor in each experiment (Table 9), RMS error 
values (second column of Table 8) were very similar for all the 
predictors of moisture content, including that based on vapour pressure 
deficit (0900-1800 hrs GMT, 1900-1900 hrs BST only) alone. The lowest 
RMS errors of all were found using the predictor based on sunshine hours 
alone. 

Values of cumulative potential evaporation estimated from Penman's 
equation with radiation estimated by each method (less 1.5 x rainfall, 
as Glasbey and McGechan 1986) are listed in Table 10. This explains the 
discrepancy between the RMS errors in the two columns in Table 7: 
because cumulative potential evaporation varies with method, so a 
different rate parameter is needed to give a good predictor of moisture 
content. 

It is worth noting that vapour pressure deficits are often non-
zero outwith the hours 0900-1800 GMT, but these are offset by negative 
net radiation values to give almost zero mean evaporation during the 
overnight period according to Penman's equation. Hence, vapour pressure 
deficit alone can give reasonable predictions of evaporation, provided 
evaporation outwith the hours 0900-1800 is assumed to be zero even when 
the vapour pressure deficit is non-zero; although these limits, which 
were also used by Parke and Dumont (1979), are appropriate to the swath 
drying data analysed by Glasbey and McGechan (1986), there is no reason 
to assume that they will be appropriate in all situations, particularly 
at different times of year. 
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Table 9 	Separately calculated drying rate parameters for each 
experiment and each estimate of solar radiation 
(used in final 	column of Table 8) 

Source of net radiation Experiment 
used in Penman's equation 

S84 H84 S85 H85 

observed -0.07 -0.09 -0.09 -0.13 

observed incoming solar -0.07 -0.09 -0.10 -0.13 
radiation 

point estimate -0.06 -0.08 -0.06 -0.12 

regression model -0.06 -0.08 -0.07 -0.12 

adjusted point estimate -0.07 -0.10 -0.10 -0.14 

adjusted regression model -0.07 -0.10 -0.10 -0.14 

daily sunshine hours -0.07 -0.10 -0.10 -0.14 

using vapour pressure 
deficits alone 	 -0.005 	-0.004 	-0.005 	-0.008 
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Table 10 	Cumulative potential evaporation estimated by Penman's 
equation with different estimates of radiation (-1.5 x 
rainfall) 

Source of net radiation 
used in Penman's equation 

observed 

observed incoming solar 
radiation 

point estimate 

regression model 

adjusted point estimate 

adjusted regression model 

daily sunshine hours 

Experiment 

S84 H84 S85 H85 

9.5 18.3 2.8 13.5 

10.3 18.3 2.6 13.0 

11.1 21.4 4.2 14.2 

10.5 20.6 4.2 14.2 

10.5 17.2 2.4 11.9 

10.4 17.2 2.4 11.9 

10.7 17.1 2.7 11.8 
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10. 	CONCLUSIONS 

It was concluded that the best estimate of solar radiation for use 
in Penman's potential evaporation equation for grass swaths, for sites 
where no actual solar radiation has been recorded, is that based on 
sunshine hours alone, with the daily total partitioned among hours of 
the day using the (solar angle)/(path length) equations. It was further 
concluded that, for predicting evaporation, Penman's equation with 
estimated solar radiation would be preferable to vapour pressure deficit 
alone, since Penman's equation is based on physical principles and is 
more likely to give reasonable predictions in situations other than that 
in which experiments were carried out. Also, to make predictions based 
on vapour pressure deficit alone requires a somewhat arbitrary choice of 
a daytime period, outwith which evaporation must be assumed to be zero 
even when the vapour pressure deficit is non-zero. 
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APPENDIX 1 

Program for retrieval of hourly meteorological data from magnetic tapes 
held at ERCC 

Source programs are held in a partioned file 'MET', held on LIAE11 on 
the EMAS-A mainframe computer. 

Before running a retrieval, programs must be compiled as follows: 

IMP MET PREPMET,P,L (main routine) 
INSERT P 
FORTRAN MET_READFMET,RDF,RDFL (for later tapes) 
IMP MET_READIMET,RDI,RDIL 	(for earlier tapes) 
FORTRAN MET_READRMET,RDR,RDRL (for single parameter tapes) 

To carry out a retrieval, type 

READMETDATA startdate, enddate, met station, file extension. 

Dates are in format DD/MM/YY, e.g. 01/05/78. 

For met station only upper case letters shown in Table 1 need to be 
specified, e.g. CLoudcover - Dyce may be shortened to CL-D. 

File extension (a number) numbers the files created by the procedure, 
e.g. '3'. 

The command creates a detach file (e.g. DET3) which is run overnight to 
create a file containing the required meteorological data (e.g. OUT3) 
and a report of the job (e.g. REP3). 
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A model for variations in load on a 
simple soil-working implement 

C. A. Glasbey and B. B. Harra! 

The variations in load on an agricultural cultivator tine are modelled by a Gaussian 
process, plus a marked point process which represents the effects of stones and 
other soil inclusions. Observed series of loads are split into the two components, 
from which parameter values are estimated. Good agreement is achieved between 
observed and simulated data, as measured by predicted fatigue damage using a 
welded joint fatigue analysis. 

Key words: exponential distribution; Gaussian process; marked point process; 
outliers; simulation; welded joint fatigue analysis 

The common method of fatigue life prediction on engineering 
structures subject to random loading is to extract cycles from 
a stress or strain history, and calculate the damage by reference 
to a constant amplitude S—N curve. The problem for a designer 
is that the time domain cycle-by-cycle approach requires a 
time history on which to operate, and this does not exist in 
precise form at the design stage. 

Considerable effort has been put into probabilistic 
methods of characterizing and predicting loading, from which 
fatigue lives or stress histories can be derived. Frequency 
domain methods 1, 2 for both narrow and wide band random 
loading have received a great deal of attention in recent years. 
Designers of offshore structures use tables of sea states and 
wave spectra. 3, 1 Methods' of reconstructing sequences of 
peaks and troughs from spectral information which do not 
involve inverse Fourier transforms have also been devised. 

The frequency domain approaches usually require the 
data to be stationary and Gaussian, or nearly so. The purpose 
of this report is to describe a method of modelling load 
histories which have a significant non-Gaussian component. 
The load histories in this study are those experienced by an 
agricultural cultivator tine. A tine is a widely used soil 
cultivating component consisting of a vertical leg tipped with 
a simple share or flat blade. A typical tine would be 0.7 
long and fitted with a blade 75 mm wide. Normally, several 
tines are fixed to a simple frame and the soil is broken up by 
pulling the tines through the ground using an agricultural 
tractor. Agricultural soils can vary from obstacle-free to those 
containing large numbers of stones, roots, and, in some cases, 
subsurface outcrops of bedrock, and it is these obstacles that 
produce the non-Gaussian component in the loading. The 
tined cultivator is a simple agricultural machine in which the 
load path through the implement is clearly defined. As such, 
it has been used here as a convenient platform for collecting 
data and developing a model for use in fatigue design where 
non-Gaussian loading occurs, be it in agriculture or elsewhere. 

By modelling the essential features of a load history, as 
they relate to fatigue, extensive records can be discarded. When 
required, load histories can be simulated from parameters 
estimated by the model. Further, a model would offer 
possibilities for predicting load histories in new soil conditions, 
by relating parameter values to measurable soil characteristics. 
In the following sections, a model is identified, parameter  

values are estimated, and simulated loads are compared with 
observed loads on the basis of a welded joint fatigue damage 
analysis. The simulated and observed loads are equivalent if 
they produce the same fatigue damage in the structure. In a 
simple machine such as the tined cultivator, the response of 
the structure is static and strains everywhere are linearly 
related to the input load. Hence, simulated and observed load 
histories are compared by calculating the fatigue damage at 
an imaginary structural detail where the strain history is 
related to the input load history by a constant of 50 .t/kN. 
The frames of these implements are also welded structures 
which lend themselves to the type of welded joint analysis 
given in BS5400. 6  For ease of manufacture, the welds are 
typically fillet welds. The fatigue analysis has, therefore, been 
based on BS5400 mean life data for a class F2 weld. 

Data 
The tine load data  used in the development and verification 
of the model were obtained at two adjacent sites in Scotland, 
one of which was stony and the other almost stone-free. Nine 
series of horizontal loads were obtained at each site, each 
consisting of between 7000 and 18000 observations. 

Fig. 1(a) is a plot of 4 s (800 observations) from one of 
the series obtained in stony soils. The processes underlying 
the data appear to be nonlinear. Upon further examination, 
this was found to be of an intrinsic nature which cannot be 
overcome by applying a normalizing transformation to the 
load scale. Although it may be possible to build a nonlinear 
model, it was decided to decompose the data into Gaussian 
and outlier components, which are assumed to be independent 
of one another and are modelled separately. Of course, their 
effects on fatigue life are far from being independent of one 
another. This approach has the advantages that: (i) it is 
consistent with the physical processes generating the loads, a 
soil effect and an inclusion effect; and (ii) it enables attention 
to be concentrated on the outliers, which are the most 
important features of the data with regard to fatigue life. 

Partition of data 
The load process is continuous. It therefore seems reasonable 
for outliers to be innovative rather than additive in nature, 
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Fig. 1 A subset of strain series in stony soil plotted against 
time: (a) observed data, (b) cumulative partial sums of the 
outlier events, with time decay, identified by algorithm in 
Appendix 1, (c) Gaussian process which, when summed with 
the cumulative partial sums of the outliers, reproduces the data 

that is each outlier affects not only the observation when 
it occurs, but all subsequent observations by becoming 
incorporated into the evolving process.' Further, a first-order 
autoregressive process gives a reasonable approximation to 
the local correlation structure. Therefore, the ith measured 
load, denoted yi, is assumed to be related to y,_, by 

	

(y2 — ) = 4)(y, 1 —ji.) + e 1  + a 	for  = 2,. . ., n 

Here p. is the mean of the process, 4) is a constant (the 
correlation between consecutive loads), n is the length of the 
series and e is a normally distributed random variable with 
zero mean and standard deviation o-. The outlier process is 
specified by a,, a random variable, independent of e, which 
usually takes the value zero but occasionally takes values far 
greater in absolute magnitude than cr. 

The strategy adopted in analysing the data is jo isolate 
the non-zero values of a, leaving a cleaned, mean-corrected 
series a, defined by 

a, = 4)z 1 _ 1  + e, 

and the cumulative partial sums of the outlier events, with 
time decay, defined by 

= 4)w,_, + a wi  

These can then be modelled separately. Details of the algorithm 
used are given in Appendix 1. The approach evolved from 
the work of Kleiner, Martin and Thomson 1 9  but uses a hard 
rejection rule rather than their continuous function for 
downweighting outlying data. A threshold of 4cr was chosen 
to discriminate between e and a. This appears to work well 
in practice. The chance of a normally distributed random 
variable being identified as an outlier is I in 16 000, and 
consequent downward bias in the sum of squares estimator, 
o, is only 0.1%. 

Figs 1(b) and (c) show the partition into two components 
for the illustrated data. Overall, 4)  was estimated as 0.99 and 
or as 10 in stone-free soil and 15 in stony soil. There are very 
few outliers (0.03%) in the stone-free soil, but an average of 
2.7% in stony soil. There is no strong evidence for correlation 
between the cleaned and outlier processes, and they will 
therefore be modelled separately. 

Spectral model of the Gaussian process 

By examination of sample spectra, a parametric spectrum of 
the form 

S(w) = exp((3,e°'2 + 133) 

was identified as being appropriate to model the Gaussian 
process. Parameters 13  were estimated by maximizing the 
approximate log likelihood of: 

- [In P(i/n) + 5(j/n)/P(i/n)] 

(see, for example, Robinson' 0) using a numerical optimization 
technique. Here P(w) is the value of the periodogram of the 
z-series at frequency w. Average values of j3,, 132  and 33 were 
9.6, 31, 3.7 and 8.7, 20, 4.4 respectively for the stone-free 
and stony soil. Fig. 2 shows the smoothed sample spectrum 
and fitted spectrum, on a log scale, for one of the stone-free 
series. The spike at 62 Hz was ignored because it has only a 
marginal effect on fatigue life. The spike is at the engine firing 
frequency of the tractor attached to the cultivator. 

An alternative approach, which was adopted initially, is 
to model the spectrum of the input series (e). However, 
unless constraints are placed on the parameter values the 
output series will not necessarily have the same variance and 
first-order autocorrelation as z. Therefore this method was 
not pursued. 

Model of the outlier process 

The series of innovative outliers, that is the non-zero values 
of a, constitute a marked point process," the events being 
the occurrences of outliers and the marks being their 
magnitudes. It is evident from Fig. 1(b), where outliers appear 
as step changes in load, that events occur in clusters. Also, 
the magnitudes of outliers are not independent of one another. 
This is potentially a complex situation outside the standard 
theory on point processes. An ad hoc data-based approach 
has therefore been used, with a model identified from all nine 
runs in stony soil pooled together. 

The first stage was to find out if outliers could be grouped 
such that events in different groups were independent of one 
another. This makes physical sense; an inclusion in the 
soil may generate several outliers, but inclusions may be 
independently placed in the soil. Fig. 3 shows the spacings 
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Fig. 2 Smoothed sample spectrum (—) for a load series in 
stone-free soil, and the estimated parametric spectrum (- - - 
plotted on a log scale against frequency 
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Fig. 3 Spacing between outliers, for all load series in stony 
soil, plotted in rank order against exponential quantiles 

between outliers plotted in rank order against quantiles for 
an exponential distribution. If the point process were Poisson, 
then the spacings would be exponentially distributed and the 
plotted points would lie close to a straight line. It is evident 
from Fig. 3 that this is the case for longer times only. Detailed 
examination of the distribution suggested 0.5 s as a reasonable 
threshold. If outliers are grouped such that all internal spacings 
are less than 0.5 s and all external spacings exceed this 
threshold, then the occurrences of groups may conform to a 
Poisson process. The sample mean time between the start of 
one group and that of the next is estimated to be 2.1 s. 

Various summary statistics, which are discussed below, 
were extracted from each group of outliers. These, together 
with the spacings between groups, were examined for 
correlation between adjacent groups. No association was 
found, so we will proceed on the assumption that the events 
in each group can be considered to be independent of those 
in all other groups. 

The most important feature of each group, as it affects 
fatigue life, is the maximum departure from zero load which 
it generates in the cumulative partial sum, that is w. This may 
be in either a positive or a negative direction. Fig. 4 shows 
an exponential probability plot of the maximum departures 
for all the series in stony soil. The approximate linearity 
suggests that an exponential distribution is appropriate. (An 
extreme value distribution may have been expected to be 
theoretically more appropriate but this turned out not to be 
the case.) The mean of the distribution can be estimated using 
the sample mean, giving the value 310. However, this 
procedure is dominated by the small outliers whereas fatigue 
life predictions are highly sensitive to load cycles produced 
by the largest outliers. Therefore the mean was re-estimated 
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Fig. 4 Maximum departure from zero in each group of outliers, 
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Table 1. Calculated fatigue damage from observed and simulated tine load histories in stone-free and 
stony soils* 

Series number 1 2 3 4 5 6 7 8 9 Average 

Stone free 
Observed 10 	x 28 42 56 37 39 25 30 42 64 40 
Average of 10 10 	x 35 45 52 25 43 25 37 42 51 39 

simulations 
Range of 10 	x 26-46 34-52 44-62 20-30 28-59 21-28 31-44 38-51 42-58 

simulations 
Stony 
Observed 10 	x 150 226 116 76 184 61 27 34 106 109 
Average of 10 10 	x 266 225 55 41 140 70 26 39 163 114 

simulations 
Range of 10 10 	x 102-521 105-587 43-72 19-75 86-216 27-279 15-43 18-74 62-296 

simulations 

* Damage analysis based on procedure given in BS5400 and mean life data for a class F2 fillet weld 

by fitting a regression line to the probability plot, with the 
intercept constrained to take the cut-off value, that is 4o. 
This resulted in a slightly higher value for the mean of 330. 

The number of outliers in each outlier group, and whether 
the maximum departure was positive or negative, were related 
to the size of the maximum departure by regression models. 
These appear in steps (2) and (9) in Appendix 2. Further 
statistics were examined: the largest positive departure from 
zero, the largest negative departure, the sum of the outliers 
and their individual values. A method of simulating outlier 
groups, given in Appendix 2, was found to produce good 
agreement with all these statistics. 

Model simulation and assessment 

Although the outlier model was identified using all the series 
in stony soil pooled together, parameter values were finally 
estimated independently for each series. There were insufficient 
outliers in the stone-free series to repeat this procedure, so 
parameters were jointly estimated from all the data combined. 
Spectral parameters were estimated independently from each 
of the 18 series. 

Details have already been given about generating the 
outlier process, and it is a simple matter to generate normally 
distributed data with the appropriate spectral functions 3 , 
132 and 133,  to represent the cleaned process. For i = 1..... 
n12, v, and v2_1 are generated as independent normal 
deviations with zero means and variances S[(i-1)/n]. The 
inverse Fourier transform of the v-series is the required 
process. 

To assess the model, 10 independent series were simulated 
for each of the 18 sets of parameter values, and analysed for 
welded joint fatigue damage. Results are given in Table 1. 
On average, agreement with observed series is good, although 
for 5 series the observed results do not lie within the range 
of the 10 simulations. Simulation results for the stony series 
are more variable than those in stone-free soil because they 
are sensitive to the presence of occasional, large outliers. 
These features could not be represented by a Gaussian model 
alone; simulations from a spectral function alone fitted to the 
stony data gave predicted fatigue damage less than 60% of that 
observed. 

Conclusions 

The essential features of the load data, as they affect fatigue 
life, appear to have been captured in a model consisting of a 

Gaussian process and a marked point process. Further work 
is needed to check that it fits other data and whether any 
parts of the model are unnecessary. Relationships then need 
to be sought between parameter values and soil characteristics 
in order to predict fatigue life in new conditions. 
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Appendix 1 

(0) Estimate p. as median value of y and set z, = 	- 1 for 
i=1.....n. 

Estimate 4 as the sample correlation between consecutive 
values of z, 

=2 

Estimate if2  as the sample variance of z- - z_1, excluding 
outliers, by finding the minimum non-zero value of &2  which 
satisfies 

= 	

2 

x2 

where 

Xi = z - 	if 1z1 - z_ 1 	4& 
Xi  = 0 	 otherwise. 

This can be achieved by initially estimating o 2  from the 
smaller half of the values (z, - 4z_1) 2  for i = 2.....n, then 
progressively adding larger terms, in increasing order, until a 
term exceeds the current value of 4â-. 

Re-estimate 4 as 

ZziZi-11 V(Ez4Zz 2 
1 	_i) 

where summation is over values of i such that 

z + z_ 1  - 24z1 z_ 1  < 16& 2  
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Return to step (2) on first iteration, and on subsequent 	Note that the gaps between outliers in a group are ignored as 
iterations unless and Cr have reached stable values, in which 	the simulation places the outliers at consecutive observations. 
case go to step (5). 	 Therefore a particular feature of the original data is being 

Recalculate 

	

	 ignored because it will only have a marginal effect on the 
load cycles and it would be difficult to model. 

Zi  = 	+ e 1 	for I' = 2,.. 
e=(y 	) — (yi — Ct) 
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Evaluation of Load Cycles Generated 
on a Fixed Tine Working in Soil 

J. PALMER;' C. A. GLASBEYt 

Principles for specifying representative tine service load histories and the range of histories 
likely to be encountered are stated. Apparatus for collecting load histories was built and field 
experiments were carried out on many, various sites. Load histories were collected and 
corresponding fatigue lives were estimated by computer. Statistical analysis showed that soil 
cone index and estimated fatigue life were linked, and that increasing landspeed reduced 
estimated life. Load history simulations were built from population descriptors for soils with 
and without stones and shown to have similar fatigue vulnerability to real histories. 

1. Introduction 

This paper is about the economical collection of information on the cyclic, fatigue-inducing 
loads which fixed tine implements experience in work, and some analyses and simulations 
arising therefrom. It exploits computer estimation of fatigue life, but it is not concerned 
with physical life testing either in the field or the laboratory. 

Since the middle of the last century" it has been appreciated that metal fatigue exists 
and is caused by repeated strain cycles. For many years, designs for structures of very 
high cost or exceptional safety requirements, such as bridges and aircraft, have been 
physically tested by exposing their critically stressed components to repeated load cycles 
until failure occurred or life was declared adequate. More recently the principles of 
fatigue failure have been sufficiently understood for computer programs to have been 
written which, given the load history to which a structure is subjected, predict the number 
of times that the history can be repeated before there is a 50% chance of a fatigue crack 
of at least 25 mm length being formed. These have shown good agreement with mean 
results of physical life tests with the same history. 

As the cost of computation comes down, the value of engineering product for which 
fatigue life investigation is economic will fall too. If the design of implements allowed for 
fatigue it is likely that implement material would be saved, soil compaction caused by 
mounted implement weight would be lessened, development time would be reduced, and 
perhaps the most important point, reliability would be improved. Some implement 
manufacturers already recognize this and are collecting strain histories of vulnerable parts 
in the field for repeated application to the implement in bench physical life tests. 
Discussions with manufacturers show growing awareness of the need for collection and 
classification of a wide range of service loads for fatigue design purposes. 

2. Investigation strategy 

Many textbooks on detailed principles of fatigue engineering are available, e.g. Frost, 
Marsh and Pook. 3  Briefly, fatigue arises from strain cycles in loaded structures which cause 
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296 	 EVALUATION OF LOAD CYCLES 

local plastic deformation, particularly at stress concentrations around holes and notches; 
the damage is cumulative and is greater for large strain cycles than for small. It has long 
been known that rate of change of load is unimportant, so load histories can be shortened 
for computational or physical life-testing purposes to sequences of maxima and minima, 
defined as load cycles. It has also long been known that mean stress affects life too, for 
tensile plastic deformation is more damaging than compressive, probably because it tends 
to open incipient cracks. It follows that the sequence in which the load maxima and 
minima occur can itself affect life according to whether the more extreme load excursions 
cause tensile or compressive plastic deformation at the stress concentrations, thus 
modifying the damaging effects of subsequent lesser load cycles. A load history shortened 
to no more than the maxima and minima preserves this sequence, so in general histories 
are not further reduced to a statistical distribution of load cycles classified by size. (The 
exception to this is where pre-stressing is large and unknown, e.g. welded structures.) 
Thus describing a load history statistically is elusive, and it is difficult to assess how typical 
the history is. It is therefore common engineering practice to gather very extensive load 
histories in the hope that they will be more representative of the range of possible 
histories. 

Such an approach would be impractical for loadings generated by a tine moving 
through soil, for histories would be needed from a very large number of soil conditions. 
In addition each soil load history can be expected to be unique and unrepeatable, the 
sequence of loads depending not only on the variation of soil strength in the path of the 
tine and the chance presence of inclusions such as stones, but also on the direction in 
which it was worked; reversing the direction would largely but not entirely reverse the 
load sequence. Accordingly, in this investigation, special attention has been given to ways 
of assessing the typicality of load histories and their relation to each other. 

The assessment method adopted was to collect load histories from replicated 
experimental plots and use them as data for a standardized fatigue-life-prediction 
computer program; the length of life predicted would be the measure of the character of a 
load history. Thus, factorial experiments could be designed to identify relationships 
between soil conditions, operating conditions and computer-predicted fatigue life. 

Several workers have shown that mean implement draught can be predicted in terms 
of working depth, implement shape and dimensions, rake, landspeed and a soil strength 
measure such as the soil cone index. It was hypothesized that peak loads in homogeneous 
soil would prove to be predictable in a similar fashion, but that the effect of soil inclusions 
such as stones and tree roots would require that further terms be allowed for. Accordingly 
an arbitrary tine was adopted as standard, working at a constant depth and specific 
landspeeds, and a hand-held cone penetrometer 7  was operated to measure the cone index 
to beyond working depth or, if on some sites this repeatedly proved impracticable, to the 
distance that the cone could be inserted into the soil before meeting an inclusion large 
enough to load the instrument to full scale. 

Consideration of all these influences and factors gave rise to an underlying hypothesis, 
summarized in the following series of propositions, the testing of which was the 
background to all the formal experiments and analyses that were carried out. 

Tine load histories were imagined to be composed in the main of a population of soil 
load cycles on which was superimposed a different population of inclusion load 
cycles, generated by collisions with soil inclusions such as stones. 
The inclusion load cycle was rarer than the soil load cycle and was more damaging 
because it was more extreme. It also had a greater rate of change with time, and 
could be recognized because of this. 
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A particular history was one of a family of histories which could be generated, given 
a particular set of soil and working conditions. 
Conventional statistical techniques could be used to examine the distribution of 
members of a family of histories if each history was transformed to a computer 
prediction of fatigue life. 
If the character of the soil and inclusion load populations could be defined, it would 
be possible to model that family with a known precision and predict the range of the 
histories which more extensive field work would probably encounter. 

3. Apparatus 

3.1. Determination of specification 

The basic requirements of apparatus for collecting peak load information were as 
follows 

good resolution, 
enough strength to stand the largest shock loads without taking a permanent set, 
low noise level. 

The first and second of these compete, and can only be proportioned by compromise. 
The third is particularly important with peak signal investigations, for whereas large but 
brief noise pulses have little effect on smoothed signals they can dominate any analysis 
which examines only maxima and minima. 

A test rig with which to estimate the magnitude of forces generated in the field by the 
arbitrary standard tine referred to in Section 2 was built on a cultivator toolbar. The tine 
had a rectangular blade sloping back from bottom to top at 300  and it cut a groove 
125 mm wide and 250 mm deep (Fig. 1). It was suspended from a converted wheel torque 
dynamometer and the moment of the tine draught was recorded. The rig was tested under 
severe soil conditions, including collisions with boulders which halted the tractor abruptly. 
Dynamometer output was recorded by frequency modulation on magnetic tape with a 
potential resolution of 125 kHz, so that the magnitude of the peaks of fast-changing 
impact signals could be resolved. 

face 

Fig. 1. The standard tine 
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Field experience in these pilot trials together with examination of tine moment records 
led to the following specification for apparatus with which reliable load histories could be 
collected. 

The apparatus should tolerate tine loadings of up to 100 kN. 
It should be completely independent of the towing tractor, so that a tractor could be 
selected to suit the particular field circumstances. 
Means should be provided with which calibration of the dynamometer could be 
carried out quickly in the field, so that suspected dynamometer damage caused by 
overload could be checked at short notice and with minimum loss of experiment 
time. 
Depth of work should be set by depth wheels, not by the towing tractor's implement 
hitching arrangements. 
All instruments should be flexibly mounted so as to tolerate accelerations of 5 g for 
20 ms; accelerometer readings showed these limits were unlikely to be exceeded 
when the tine struck a buried boulder. 
The tine dynamometer should exploit proprietary internally-gauged clevis pins, 
oriented to measure horizontal and vertical components of forces. 
Depth of tine engagement should be assessed by means of a skid in the track to be 
followed by the tine. 
Landspeed should be measured by means of a light wheel trailed in the track of a 
tractor wheel or depth wheel. 
High resolution frequency modulation was, unnecessary. Instead, analogue load 
signals should be digitized at time intervals of 5 ms and stored; landspeed and depth 
needed less resolution so they should be digitized at one-tenth this rate. 

3.2. Building and development of apparatus 

A tine dynamometer fitted on a toolframe (Fig. 2), together with instrumentation, was 
built to the specification' in Section 3.1. The toolframe carried a LSI-11 minicomputer 

Fig. 2. Tine dynomometer 
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with 256 kilobyte random access store to manage the analogue-to-digital conversion and 
file the resulting data during a trial. Immediately after a plot was completed the data were 
transcribed to a rugged cartridge disc of 10 Mbyte capacity. When a convenient amount of 
data had accumulated the disc was demounted and taken to another LSI-11 minicompu-
ter, where the data were tabulated and checked before being transmitted to appropriate 
mainframe computers for the various analyses. 

The transients in load histories could be used to predict stress in the proposed designs 
of the tool only if the proposed tool was no stiffer than the tool on which the histories were 
recorded; while history readings can easily be degraded to suit a more springy tool by 
attenuating higher frequency components, they cannot be upgraded for one which is 
stiffer. Accordingly a very stiff structure was adopted, with a resonant frequency of 
oscillation of approximately 60 Hz. 

Particular attention had to be paid to both signal-to-noise ratio and the character of 
noise experienced. Average draught signals were of the order of 5 kN. Stone inclusion 
signals of up to 30 kN occurred. Electrical noise could be reduced by good installation 
practice to a level equivalent to ±100 N load on the tine but mechanical noise, 
transmitted from the engine via the tractor frame and the lift arms, introduced signal 
distortion over a narrow band of frequencies which, though no greater than that 
equivalent to ±250 N, could seriously disturb spectrally-sensitive analyses. The only 
practical way of reducing this was to choose "quiet" tractors, plot the power spectra 
generated by the mechanical noise over the useable range of engine speeds then restrict 
operation to those speeds around which the spectrum showed several small peaks of noise 
energy rather than a single, dominant one; on the tractor used for all formal experiments 
this was 1900 rev/mm. 

4. Experiments 

Formal experiments were carried out in the spring and autumn of 1985. The spring 
trials were held in East Lothian on Biel' land, a sandy clay-loam destined for turnips 
which had been ploughed just before winter and was about to be cultivated before 
seeding. At this time equipment development was incomplete and many minutes were 
needed at the end of each plot to store the data on magnetic tape cassette; plot length was 
therefore restricted to 30 m so that a nine-plot experiment could be completed in one day. 
Two experiments were carried out in one field, one on substantially stone-free soil and 
the other among an outcrop of large stones. On each site, ten soil cores to a depth of 
300 mm were taken in a V-pattern from corner to corner of the site for moisture 
determination and between seven and ten samples for soil field texture assessment by the 
USDA method. A total of 40 probings were made with the Bush cone penetrometer 7,10  in 
four rows normal to the direction of work and extending across the experiment territory. 
The experiments consisted of three blocks made up of three parallel runs at three speeds 
allocated randomly. The target speeds were 065, 112, and 1•56m/s. The target tine 
depth was 250 mm. Soil conditions were typical for the time of year. 

Autumn conditions were very atypical for that season. Exceptional rainfall throughout 
the summer and continuing until late September had saturated the soil, seriously weakening 
it. This was succeeded by a spell of intermittently fine weather until the end of October, 
during which data could be collected. There seemed little point in investigating the 
relationship between stone-free and stony soil in such atypical conditions, so attention 
was concentrated instead on studying the effects of stone inclusions. The range of size of 
stone sought when selecting experiment sites was from 50 to 800 mm, but no attempt was 
made to check this by measurement because it would have taken too much time. Trials 
were held at 18 sites on 14 farms in East Lothian, Midlothian and Peeblesshire. All but 
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Table 1 

Summary of site parameters 

Water 
Field 	content, % 	Logn(lifetime) 	Summary 

	

Soil 	texture 	 cone index, 
Site 	series9 	(USDA) 	Mean 	S. E. 	Mean 	S. E. 	Pa 

2509 Biel SaCL 25-0 1-84 52 02 1220 

2709 Cauldside SaL/L 38-5 5-13 37 0-2 3230 

2809 Kilmarnock SaCL/L 22-6 1-41 4-6 0-3 * 

2909 Macmerry SaCL 21-0 1-33 52 0-2 * 

3009 Biel L/SaCL 21-4 0-93 4-5 0-3 1270 

0310 Kilmarnock SaCL/CL 31-8 2-35 5-0 0-2 1420 

0910 Winton L 29-1 1-98 4•7 0-3 1460 

1010 Linhope L 36-4 6-71 3-4 0-2 2590 

1110 Largmore L 85-4 23-5 1-4 0-4 2910 

1710 Darvel L 40-1 3-75 36 03 1530 
2110 Aluvial SaL/L 47-5 3-25 3-5 0-3 2020 

2210 Aluvial SaL 36-4 3-76 4-0 0-3 1970 
2310 Darvel SaL/L 32-0 2-76 3-5 0-2 2180 

2410 Winton L 28-9 2-71 3-0 0-4 2260 

* = Missing value 

two were barley stubble, one was permanent grass prior to reseeding and one was 
recently-burnt heather. Details of site soils and moisture contents are given in columns 
one to five of Table 1. By then data collection equipment had been completed so plots 
were standardized at 60 m long, equivalent to 120 s run time at the slowest speed, which 
almost completely filled the computer memory. Design of the experiment was modified to 
suit the site, but the general aim was to mark out a 60 m square in which 27 parallel runs 
arranged as nine replicates of three landspeeds could be accommodated. The same 
landspeeds and tine depths were used as in the spring trials, and all trials were completed 
within the day. If, for local reasons, the site was restricted to a width of approximately 
30 m then the same procedure as in spring was used to collect cone penetrometer data and 
soil samples, but if it was the preferred 60 m then the sampling was repeated on the two 
halves. t . 

At the end of. the season the equipment calibration was checked and found to be 
unchanged. 

5. Analysis and simulation of load histories 

5.1. General 

About 40 Mbytes of data on tine loads were collected, together with data on soil cone 
index, water content and texture. The autumn trials accounted for 96% of the total'. The 
data will be directly useful to fatigue specialists and ultimately to implement designers 
who wish to expose their new designs to the soil conditions tested, so arrangements for 
access to them by the engineering community are being made. The data are very diverse 
but Fig. 3 is an example of a fairly common record of draught from a stony plot, while 
Fig. 4 shows its power spectrum. 

5.2. Analysis of load histories 

This work was done mainly on autumn data because there was much more replication 
on each site and the 60 m plots yielded twice as much data as the 30 m spring plots. 
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Fig. 3. Draught record of tine in stony ground 

Analysis was based on the potential of each run or load history for causing fatigue 
damage; this was summarized by estimating the number of repetitions of the history 
corresponding to a 50% chance of starting a crack at least 25 mm long in a mild steel 
structure member of arbitrary dimensions. A proprietary fatigue life computation program 
was used for this" (see Appendix). Since all load histories came from plots of 60 mm 
length, the number of repetitions, defined as the history "lifetime", was a direct measure 
of the amount of soil cultivation which the hypothetical steel member would bear before 
fracture initiation. The histories were further standardized by adding a zero load at the 
end of the history, to represent the unloading to which a real tool would be subjected 
when lifted from work at the end of a run. For initial simplicity, the relatively small 
vertical force component was ignored and only the horizontal component or draught was 
used. By these means the fatigue propensity of an entire plot load history, consisting of 
up to 24 000 sequential readings, was expressed as a single representative statistic which 
could then be the subject of conventional statistical analyses. 

Statistical distributions of history lifetimes were examined first. It was obvious from the 
examination of scatter diagrams that these were much more normal if the lifetimes were 
logarithmically transformed, so this was done for all subsequent analyses. Mean and 
standard error of the logarithm of history lifetimes at each site are listed in columns six 
and seven of Table 1. 

The effects of a range of changes of section such as a hole or notch in the testpiece were 
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Fig. 4. Power density spectrum of a draught history from tine in stony ground 

allowed for when computing lifetimes for plot histories from the first few trials. A notch 
or other change of section increases local stress and strain and thus shortens life. The 
severity of this effect is specified by a "notch factor". Notch factors of 1 (equivalent to no 
notch), 2-5 and 6 were assumed in successive lifetime calculations. The relationship at 
these notch factors between lifetimes less than 100 million (at which magnitude the 
proprietary life computation program abandoned further calculation) was examined next, 
by means of a conventional regression analysis applied to the lifetimes from the plots in 
factorial trials at four sites. A very close correlation was found between the log-
transformed lifetimes at the different notch factors (Table 2) so the amount of analytical 
work could be reduced without loss of generality by using only one notch factor. The 
notch factor 6 was chosen for all subsequent lifetime calculations because this had always 
revealed lifetimes less than 10 million, so data from all plots could be utilized. 

The influence of landspeed on lifetime was investigated. Randomized-block analysis of 
variance was applied to lifetimes from the plots in factorial trials at four sites (Table 3). 

Table 2 

Relationship between lives predicted with differing notch factors 

Notch 	Correlation 
factors 	coefficient 	 Equation 

1 & 6 	 0-95 	 logn (lifetimes at notch 1) 
= 5.5 + 1-4 logn (lifetimes at notch 6) 

2-5 & 6 	0-993 	 logn (lifetimes at notch 2.5) 
= 2•4 + 1-2 logn (lifetimes at notch 6) 



J. PALMER; C. A. GLASBEY 
	

303 

Table 3 

Influence of landspeed on lifetime 

Wheelspeed, 	Change in logn-lifetimes 	Lifetime as percentage of 
rn/s 	relative to slowest speed 	slowest speed lifetime 

065 000 	 100 
1-12 —031 	 73 
1-56 —0-44 	 64 
S.E. (0.11) 

For simplicity it was assumed that landspeed was directly related to tractor wheelspeed. 
Taking the mean log-lifetime of the lowest speed as the basis for comparison, it was found 
that mean log-lifetimes at the two higher speeds were smaller by factors of approximately 
three and four times the standard error, respectively. These factors are very significant. 
Since the lifetime reduction factors are differences between natural logarithms they are 
multipliers, and the antilog shows that, over the conditions tested, the mean effect of 
increasing speed from 065 to 1-56 m/s was to reduce lifetime by a third. 

5.3. Relevance of soil cone index 

The possibility of a relationship between soil cone index and fatigue life expectancy, 
analogous to that observed between soil cone index and mean draught (see Section 2), 
was examined. Since this work made use of the results from the analysis in Section 5.2., it 
too was restricted to the autumn data. The cone index readings (Pa), were summarized 
for each site as the "summary cone index" by taking the mean of all readings, which had 
been recorded automatically at 30 mm increments of depth, ideally to a depth of 270 mm 
i.e., slightly below tine working depth. At most sites all probings had been to the target 
depth of 300 mm but at some there were stony patches where even 270 mm was 
impractical. The summary cone index from those sites was the mean of the available 
readings to the lesser depths reached; it contained fewer contributions (since shallow 
probings generated fewer readings) and was slightly less representative of the whole soil 
profile. Site 2709 (Table 1) was particularly deviant because it was the only site with an 
underlying rock bed. This had two contrary effects; the tine slid along the flat, shallow 
rock with limited soil penetration so, except when the tine hit a rock edge, loadings were 
moderate, yet the continuous rock layer interfered with so many probings that the 
summary cone index was very high, most probings ending with a full scale reading at less 
than full depth. These characteristics were so different from those on all other sites that 
this site's data were omitted from further probe analysis. 

The relationship between site mean log-lifetime and summary cone index (Table 1) was 
investigated (Fig. 5). Conventional regression analysis gave the equation 

Logn life = 704-00017 (summary cone index), 	r = —089, p <0•001 

This means that, having found the fatigue lifetime of an implement in one field, life in 
another field can be estimated by means of their respective cone indices. Some 
relationship had been expected between cone readings and peak loads in stone-free soils 
(see Section 2) and it was thought likely that cone readings would be related to fatigue 
lifetime too. Relationships for stony - soils had been expected to be more complicated, 
perhaps involving additional terms, so it is surprising that such a simple a relationship is 
associated with so low a probability of error as p <0001. The relationship could be 
explained by postulating that the population of collisions that the probe made with small 
stones which were then displaced, together with the occasions when it could not be 
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Fig. 5. Mean log0  lifetime against summary code index. ® site 2709, omitted from analyses (see 
Section 5) 

inserted to full depth because it met too large a stone, were representative of the 
population of the larger stone loadings which reduced lifetime. However, the observation 
is so surprising and its effects so far-reaching that it must be confirmed under other soil 
conditions before it can be trusted. 

5.4. Modelling of load histories 

A modelling technique was developed from the study of a few histories then tested by 
application to the whole spring set (the autumn set was preferred because there were fewer 
discontinuities caused by loss of traction and there was a comparison of soil with few 
stones to soil with many). The technique developed will be described fully elsewhere . 12  

In essence, it relied on separating the time series of loads into two mutually exclusive 
populations, those normally distributed about a mean and the few "outliers" which were 
not. The demarcation between these populations was determined by an iterative process 
which estimated the correlation 0 between consecutive loads z1 _ 1  and z, after the mean 
load had been subtracted, then used this to calculate the expected variance a 2  of 
zi - 4z1 _ 1 . If 1z1 - z1_1I <4a, i.e., if the load was not changing exceptionally rapidly, it 
was taken to be part of the normal population, otherwise it was assumed to be an outlier. 
(Use of the factor 4a corresponded to a probability p < 10-4 , a very severe test of 
significance yet one which experience justified.) 

New values of z were then calculated with outliers excluded and the entire process was 
repreated until 4 and or reached stable values. Thus the demarcation between populations 
was largely determined by the data. This approach was inspired by that of Kleiner et al. 13  

to robust estimation in time series analysis. Examination of the outlier data showed that 
they included the extreme peaks previously assumed to be caused by stones, and it was 
concluded that the normally distributed or "cleaned" data corresponded to the soil loads 
which made up the vast majority of the loading readings. 
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Table 4 

Comparison of lifetime predictions for real and simulated histories 

Estimated repetitions of history 
for 50% chance of fracture 

Ten simulated histories 

Inclusions Real history 	Shortest 	Longest 
in soil Plot lifetime 	lifetime 	lifetime 

A4 2500 	2000 	2900 
B4 2200 	.2200 	2900 
C4 1800 	1800 	2500 

Very D4 3700 	3700 	5000 
few E4 1800 	1900 	3000 
stones F4 3000 	3100 	3700 

G4 3000 	2500 	3000 
H4 1900 	1900 	2500 
J4 1500 	2000 	2500 

A5 110 30 160 
B5 80 30 150 
C5 140 220 350 

Many 	 D5 200 190 750 
large 	 ES 100 70 190 
stones 	 F5 260 60 550 

G5 490 290 950 
H5 450 220 890 
15 140 60 250 

Simulation of load histories was attempted by creating a cleaned data sequence then 
superimposing outliers. The cleaned data were generated by Fourier transformation, 
based on the estimated spectrum of cleaned data from the run being imitated. Outliers 
were modelled as a marked point process, 14  that is a series of events each of which had 
additional information, in our case the magnitude of each outlier, attached to it. It was 
found that outliers occurred in groups and that the groups themselves occurred as a Poisson 
process. The maximum load within each group was well approximated by an exponential 
distribution. The number of outliers and whether they were positive or negative 
excursions were also modelled. 

Each of the load histories from the set of 18 plots in the spring data (nine plots from an 
area with few stones and nine with many) was analysed to determine its modelling 
descriptors. Ten simulated histories were then generated from the descriptors of each real 
history, using the real history descriptors together with different pseudo-random numbers 
to represent a statistical error term. Lifetime was then predicted by computer for the real 
and simulated histories (Table 4). The lifetimes of simulated histories of areas with few 
stones averaged about 10% greater than the lifetimes of real histories. When many stones 
were present, though all lifetimes were sharply reduced, the lifetimes of simulated 
histories were on average 30% greater than the lifetimes of real histories. Since fatigue 
life predictions are generally thought to be within a factor of two or more of real life 
duration, these models promise engineering utility. 

6. Conclusions 

The general applicability of conclusions may be limited because most of the data were 
collected in a very untypical season. 
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Notional estimated fatigue lifetime varied greatly from site to site. 
Landspeed affected estimated fatigue lifetime, reducing it by a third when speed 
increased about 2•4 times, from 065 rn/s to 156 rn/s. 
Estimated site fatigue lifetime correlated with the mean sum of all soil cone indices 
from surface to working depth. 
Load histories could be separated statistically into distinct populations, which 
corresponded to a soil loads population and a soil inclusions population (e.g., 
stones). 
Load histories simulated from statistical population descriptors which had few stone 
loadings on average had mean estimated log-lifetimes 10% greater than those of real 
histories. 
Simulated load histories which included many stone loads had average mean 
estimated fatigue log-lifetimes 30% greater than those of corresponding real 
histories. 
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Appendix 

Al. Objectives of simulation 

The events which a computer fatigue program must simulate are illustrated in Fig. Al. 
When a material such as mild steel is progressively loaded it undergoes first elastic strain 
then plastic. If it is then loaded in the opposite sense it first recovers that elastic strain 



Time 

Load history Cyclic stress and strain loops 

a 
0 
-J 

J. PALMER; C. A. GLASBEY 
	

307 

Fig. Al. Effects of cyclic loads on a material's stress and strain 

then undergoes elastic and plastic strain in the opposite sense. If this is done repeatedly 
the elastic and plastic stress and strain are determined by the material's cyclic stress/strain 
curve (which may differ from its monotonic stress/strain curve). Thus, if the load events 
in Fig. Al are repeated i.e., 1 to 7 followed by 1 to 7 and so on, point 1 corresponds to a 
compressive strained state in the stress/strain plane, and excursion 1, 2 recovers the 
compressive elastic strain and generates tensile elastic and plastic strain. Similarly, 
excursion 2, 3 recovers tensile elastic strain and generates compressive elastic and plastic 
strain. Excursion 3, 4 recovers compressive elastic strain and generates tensile elastic and 
plastic strain until it reaches the magnitude of point 2 and closes a hysteresis loop; 
thereafter plastic strain is resumed along the continuation of the 1, 2 curve as though 
there had been no interruption of loading from point 1 to point 4. Excursions 4, 5; 5, 6; 
and 6, 7 produce loop 5, 6 and close the outer loop. 

The fatigue damage done by the loops is a function of loop area and mean stress, 
tensile loading being more damaging than compressive. Thus loop 1, 4 is the most 
damaging, and though loop 2, 3 is the same size as loop 5, 6 it is more damaging because 
more of it is in the tensile domain of the outer loop. The program must simulate these 
events. 

Stress and strain are magnified where the material's dimensions change, notably about 
holes and notches. Thus the nominal stress and strain of a loaded machine component 
may be well within the elastic range of the material, yet plastic deformation may occur at 
such changes of section, causing fatigue damage. The program must simulate this too. 

Estimation of fatigue damage was done by a proprietary computer program. It 
estimated fatigue damage done by each complete loop, summed the damage for the entire 
history, and reported the reciprocal of this number as the fatigue life, that is the number 
of repetitions of the history corresponding to a 50% probability of starting a crack not less 
than 25 mm long. The program made use of some rules about material properties and 
employed some manipulative procedures which are outlined below. 
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Al. Material properties 

Computer simulation was based on mechanical properties measured during straining 
and fatigue tests done by the steel manufacturer. The properties are listed in Table Al, 
together with the values for the mild steel EN2 used in these analyses. 

Fatigue strength and ductile coefficients and exponents are found from the material's 
fatigue life curve (Fig. A2) which is based on a series of practical tests until the failure of 
EN2 specimen pieces under various cyclic loads occurs. 

• 	Table Al 

Fatigue descriptors of mild steel EN2 

Property Symbol Value 

Fatigue strength coefficient Of  827 MPa 
Fatigue strength exponent b —0.11 
Fatigue ductility exponent c —064 
Fatigue ductility coefficient e f,  095 
Elastic modulus E 200 000 MPa 
Cyclic strain hardening exponent n' 022 
Cyclic strength coefficient K' 945 MPa 

The cyclic strain hardening exponent and strength coefficient are found from the cyclic 
stress/strain curve, constructed by joining the extremities of hysteresis loops of specimens 
each repeatedly subjected to one of a range of cyclic loads (Fig. A3). The resulting 
sigmoid curve is symmetrical, so it can be described by only considering the half in the 
positive stress/strain quadrant. Exponent n' and coefficient K' are determined to give the 
best fit to this half of the curve by the relationship 

= Aa/2E + (Aa/2K') 11" 

where e is strain, a is stress and A means the difference between values at the extremities 
of the hysteresis loop under consideration. 
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Fig. A2. Material strain/life curve 
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Fig. A3. Cyclic stress /strain curve 

A3. Manipulative procedures 

A3.1. Rainflow 

This process identifies the discontinuous points in the stress/strain plane which occur 
when deformation of a smaller loop is completed and that of an enveloping loop is 
resumed, i.e., points 2' and 5' in the load history shown in Fig. Al. 

A3.2. Neuber's rule 

This is used to find the stress and strain which occur when the stress applied to a 
testpiece exceeds the material's elastic limit. Neuber 15  showed that, irrespective of 
whether deformation was elastic or plastic, 

Aa A  = constant 

where Au is a change of stress and Ar is the corresponding change of strain. This defines 
a hyperbola in the stress/strain plane which specifies the actual values of or and e where it 
intersects the cyclic stress/strain curve of the particular material (Fig. A4). 

One point on the hyperbola gives the values of or and e which would be found if the 
material's elastic limit had been too great to have been exceeded, so Neuber's rule can be 
used by the following steps to convert nominal strains to local stresses and strains at a 
stress concentration such as a notch, the effect of which is described by a multiplicative 
notch factor. 
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The material's stress/strain curve is used to find the nominal stress s,, corresponding 
to the nominal strain e (Fig. A4). 
If the elastic limit has been exceeded, the nominal stress 5e  and strain ee  that would 
have been found had the material behaved elastically are located at the intersection 
of an extension of the material's elastic range and the hyperbola generated by 
Neuber's rule cc = 
Assuming deformation at the notch to be elastic too, the local stress 0e = KtS e  and 
the local strain e = K t ee  where K is the notch factor. 
The point Oe Ce  lies on another hyperbola in the stress/strain plane which intersects 
the cyclic stress/strain curve at the point 	these being the sum of the elastic and 
plastic stresses and strains to be found at the notch, if deformation is plastic. 
Since aE = 0e Ee  = Kseee  = Ksn en  steps 2 to 4 are omitted in practice and a 	is 
calculated directly from Ks n e n . 

A3. 3. Smith, Watson and Topper" damage assessment 

This is based on a relationship between, on the one hand, the material's fatigue 
strength and fatigue ductile coefficients and exponents (see Section A2) together with the 
number of repetitions of a particular hysteresis cycle for failure to occur and, on the other 
hand, the hysteresis cycle's maximum stress and its change of strain from one extremity to 
the other. 16  In execution the program calculates a function of (7max  Ac), relates this to 
the corresponding lifetime Nf  found from the Smith, Topper, Watson relationship 

Gmax  E = J;2(2Nf)2b/E + a;c;(2Nfy1c 

and records the reciprocal of that number as the damage that the cycle has done. 
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A3.4. Miner's rule 

Miner's cumulative damage law"' states that the damage done by a sequence of 
hysteresis cycles is equal to the sum of the damage done by each one, defined in Section 
A3.3 above. There is a 50% probability that failure will occur when total damage equals 
unity. 

A4. Execution 

FATIMAS, the life computation program, required a strain history as data. The 
experiment load histories were converted to strain histories by assuming that, given elastic 
conditions, a 10 N load generated 1 microstrain in a notional EN2 mild steel member. 
Since it could not be assumed that nominal loading was exclusively elastic, in early 
calculations Neuber's rule was used to allow for nominal plasticity; this made so little 
difference to the lives ultimately found that the step was omitted and elastic nominal 
strain was assumed. 

The program first reduced the strain history to a series of maxima and minima or 
"turning points" (corresponding to points 1, 2, 3 etc. in Fig. Al), to economize on file 
storage and processing time, then found the maximum value in the sequence; computa-
tion started from this point and progressed through the history, continuing from the end 
of the history to its beginning and was completed when the largest maximum was again 
reached. 

The program applied a rainflow routine to identify the hysteresis loops. It then found 
the maximum stress Gma,, and range of strain ie at the extremities of the loops by 
applying Neuber's rule to the material's cyclic stress/strain curve, and calculated the 
damage done by reference to the Smith, Watson and Topper fatigue damage curve for the 
material. The total fatigue damage for the complete history was summed according to 
Miner's cumulative damage law and the inverse of this number was reported as the 
history "lifetime", i.e. the number of repetitions of the history for failure. 
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SUMMARY 

When stones prevent the measurement of cone resistance, and missing values below the 
stones are ignored, then averages can be seriously underestimated. Methods are con-
sidered for correcting this bias and an algorithm is proposed in which missing observations 
are replaced by their expected values. A numerical example gives results in close agreement 
with those obtained using the optimal, but computationally expensive, method of maxi-
mum likelihood estimation. It is recommended that data from incomplete penetrations 
should not be discarded but should be used, preferably with the proposed algorithm, to 
reduce the bias in estimates of mean values. 

INTRODUCTION 

Cone resistance is an empirical, easily recorded, measure of soil strength. A standard cone is pushed 
vertically into soil and the force required is recorded at set depths. O'Sullivan et al. (1987) review the 
use of such data in assessing the compacting and loosening effects of agricultural machines. 

Stones may influence cone resistance directly, by deflecting the cone or by increasing friction on 
the shaft, and indirectly by increasing the confining stresses on the soil between stones. Occasional 
extremely large values due to stones may be detected and removed (O'Sullivan et al., 1987). How-
ever, the effects of stones on cone resistance cannot be eliminated from data collected in stony soils. 
Such effects may be considered to be an integral component of soil strength, in which case it is 
undesirable to eliminate them. The presence of stones may prevent the full depth being reached in all 
penetrations, either because the operator cannot push hard enough or because the instrument 
cannot measure forces accurately above a particular threshold. Average soil strength may be ser -
iously underestimated if such missing values are ignored, because the weaker parts of a field will be 
over-sampled. The magnitude of this bias will depend on the content and size distribution of stones, 
and the strength and compactability of the soil. One consequence of such bias is that treatment 
effects may be underestimated. 

In this paper we consider ways of taking account of the missing observations in penetrations 
interrupted by stones, using data from a subsoiling experiment. 

DATA 

Fifty-seven penetrations were made with a digital recording penetrometer (Anderson el al., 1980), 
fitted with a 12.8 mm diameter cone, in each of four plots which had been subjected to different 
subsoiler treatments. Within each plot, 19 measurements were made at 100 mm intervals along each 
of three transects. The transects were one metre apart and aligned at right angles to the direction of 
travel of the subsoiler. 

The soil was Winton series (Ragg & Futty, 1967), which is developed on till and consists of 
a sandy-clay loam topsoil overlying an imperfectly-drained clay loam subsoil. The topsoil 
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Table 1. Percentage of missing values at different 
depths (mm) for four subsoiling treatments 

Treatment 

Depth none shallow 	deep 	intense, deep 

30 0 0 	0 0 
60 0 0 	0 0 
90 0 0 	2 0 

120 0 0 	2 0 
150 0 0 	2 0 
180 0 0 	2 0 
210 0 0 	2 0 
240 0 0 	4 0 
270 0 0 	5 0 
300 0 4 	7 2 
330 5 7 	7 2 
360 9 12 	12 4 
390 19 19 	21 5 
420 30 30 	23 9 
450 33 33 	30 II 

(0-270 mm) and subsoil contained about 20% and 30% (v/v) stones, respectively. The percentages 
of missing values at each of 15 measurement depths are given in Table 1. 

ANALYSIS 

The analysis was performed in units of kg force, as output by the penetrometer. Although the largest 
value recorded was 65 kg force, it is likely that a few smaller values were missed because the operator 
limit will vary to some extent. Partial censoring of an unknown degree is difficult to handle, so once 
50 kg force was exceeded, data below this depth in a penetration were regarded as missing. This 
threshold has the additional feature that it is about the limit of instrument reliability. 

A mathematical model for the data was identified. Correlations were found to be negligible 
between observations at the same depth in different penetrations, so it was assumed that obser-
vations in each penetration were independent of those in others. The effects of lateral position within 
a transect were small. The distribution of cone resistance at each depth was positively skewed, a 
feature which is common in data which cannot take negative values. To improve the approximation 
to normality, the data were logarithmically transformed, after adding a unit constant to cope with 
the occasional zero values. The transformation has the further advantage that the mean on the 
logarithmic scale is a better measure of average soil strength than the mean on the original scale 
which can be unduly influenced by a few large values. Therefore, although the effects of stones are 
being considered as an integral feature of soil strength, stone encounters do not dominate the 
statistics. 

The best way to estimate mean logarithmic resistances, at those depths where some values are 
missing, is to maximize the log-likelihood expression given in Appendix I. This has to be done using a 
numerical optimization algorithm and is a large task, even on a computer, because variances and 
covariances between observations at different depths must also be estimated. Matters are improved 
if the number of covariance parameters can be reduced. Examination of the data suggests that a 
simplification is appropriate in which correlations arise only from associations between obser-
vations at adjacent depths. Correlations between observations separated by one or more depths 
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are assumed to be equal to the product of individual nearest-neighbour correlations. This is a 
Markov-type structure with a parameterization given in Appendix 1. 

The large amounts of computer time required for maximum likelihood estimation make it 
desirable to consider alternative ways of estimating average cone resistance. Five methods were 
chosen, as follows: 

A discard incomplete penetrations; 
B use all observed data; 
C replace only the first missing observation in each penetration by the threshold (i.e. the 

maximum measurable) value; 
D replace all missing observations by the threshold value; 
E replace missing observations by their expected values, as estimated by a proposed simple 

algorithm. 

0 
0 

a) 
0' 
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C 
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Fig. 1. Variation with depth in the soil of estimated percentage biases, averaged over results from four plots, of 
various estimators of average (mean on a log scale) cone resistance, on the assumption that the maximum 
likelihood estimator is unbiased, plotted against depth in the soil: (A) using only data from complete pen-
etrations, (B) estimation based on all observed data, (C) the first missing observation in each penetration 
replaced by the threshold value, (D) all missing observations replaced by the threshold value, (E) missing values 
replaced by their expected values, using an EM-type algorithm. 

Fig. 1 shows estimates of the percentage bias at each depth, averaged over the four plots, for each of 
the estimators. Bias is calculated as the difference, in kg force, between an estimate of resistance and 
the maximum likelihood estimate, divided by the maximum likelihood estimate. This is based on the 
assumption that the above maximum likelihood estimator is unbiased, which will be approximately 
the case provided that the model is correct. 

In methods A and B, mean logarithmic resistance is taken to be the average of the observed 
values in each plot. In method A, which is traditionally used, the resulting downard bias increases 
approximately linearly with depth, to reach 8% at 450 mm. In method B, bias appears only beyond 
200 mm, the depth below which values were lost. With method A, these missing values are seen to 
have an effect even at the shallowest depths. The size of the bias in these two methods would 
probably be greater than shown in Fig. I if more data had been lost at shallower depths. 

Bias can be reduced further if the first missing value in each penetration is replaced by the 
threshold value, as shown by method C in Fig. 1. However, if all missing values are replaced by the 



590 	 C. A. Glasbey & M. F. O'Sullivan 

Table 2. Values of the model parameters at two depths and missing 
values in the seventh penetration during iterations of the EM algorithm. 
The units are natural logarithms of kg force 

Model parameter 	 Missing values 

Iteration 	J 1 4A IS 	 0 4 	Y( 7 ) 14 	Y( 7)15 

3.46 3.43 0.16 0.23 0.35 3.99 3.70 
3.47 3.45 0.15 0.22 0.41 3.98 3.75 
3.47 3.45 0.15 0.22 0.43 3.98 3.77 
3.47 3.45 0.15 0.22 0.44 3.98 3.78 
3.47 3.45 0.15 0.22 0.44 3.98 3.78 

threshold value, method D, then the resulting estimate of cone resistance is upward biased (Fig. 1). 
Because only the first missing value need exceed the threshold value, many missing values will be 
over-estimated. 

An alternative approach is to replace each missing value by the value it would be expected to 
have, based on observations at shallower depths, estimate the model parameters by maximizing the 
likelihood, and then re-estimate the missing values. Because missing values have been removed, 
maximum likelihood estimation simplifies to the use of sample statistics. After several repetitions of 
this procedure the parameters converge to stable values. Details of the calculations are given in 
Appendix 2. For illustration, Table 2 shows values taken, in the course of iteration, by the model 
parameters at two depths and the missing values in the seventh penetration in the data set. This is an 
EM-type algorithm, so called because of the alternation between expectation and maximization 
Dempster etal., 1977). Such algorithms can be used to obtain exact maximum likelihood estimators 
(see for example Harter & Moore, 1966), but we have restricted ourselves to a simplified version 
which can give biased results. However, it can be seen in Fig. 1 (method E) that the bias is negligible. 
Standard deviations are under-estimated, by up to 12% in the example. If more than 50% of 
penetrations are incomplete, then biases in means and standard deviations may become a problem. 
The number of iterations necessary will depend on the data and the required precision, but 20 are 
usually sufficient. The proposed procedure was about 1000 times faster than the full maximum 
likelihood method of Appendix 1 and the difference would be greater if more than 15 depths were 
involved. 

DISCUSSION 

Although strong assumptions have been made in analysing the cone resistance data, results may be 
expected to be insensitive to their violation. It is almost inevitable that methods A, B and C will 
underestimate average resistance, and bias will increase with depth, with method A being worst and 
method C best. Method E will estimate a greater cone resistance than method C, and therefore, may 
be expected to compensate for this bias. 

Robustness of the EM-type algorithm was assessed by re-analysing the illustrative data after 
applying a lower threshold value, which doubled the number of missing values. Downward bias was 
less than I %, except at the greatest depth where it was 2%. Sensitivity to normal distributional 
assumptions was checked by analysing untransformed data. Although average resistances differ 
from before, because different statistics are being estimated, the pattern of percentage biases is 
almost identical to Fig. I. 

In the example it was assumed that average cone resistance did not vary with position along a 
transect. However, if cone resistance does vary with position, such location effects may be estimated 
easily, provided that variance and correlation parameters do not vary with location, by calculating a 
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separate value of the mean, f i, for each depth and position, rather than for each depth only as in 
Appendix 2. 

The number of penetrations required when using the EM algorithm is no greater than the 
number of attempts made to collect a target number of complete penetrations when the traditional 
method (A) is used. 

CONCLUSIONS 

When analysing cone resistance data with missing observations below stones it is recommended that 
the data in incomplete penetrations, rather than being discarded, are used in estimating mean 
resistance. Discarding incomplete penetrations causes mean values to be underestimated. Bias can 
be further reduced by replacing the first missing value in each penetration by the maximum measur-
able value. If computing facilities are available, then the EM-type (expectation and maximization) 
algorithm, given in Appendix 2, should be used to minimize bias. A program, written in Fortran 77, 
is available from the first author. 
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APPENDIX I 

Suppose that there are N cone penetratioris in a particular plot and denote the log-transformed 
(after the addition of a unit constant) ni  observations made in the ith penetration by the vector Y(i) = 
(Y()I' Y(I)2' ....Y(j),,). If n, is less than the maximum number of observations, n say, then censoring has 
occurred. Let c denote the censoring threshold on the log-scale. On the assumption that before 
censoring they's are multivariate normally distributed, all with the same mean ,,t=(i.t an 

n-vector, and n x n variance matrix V
, 
the log-likelihood of observations, to within a constant, is 

{ -  21   () _t(fl) ) V (fl.) (Y) — L(fl) — llnI Y (01)1 + lnP} 

Here, p0  denotes the first n 1  elements on t, 	denotes the n 1  x n1  matrix from the top-left corner of 

V, superscript T denotes a matrix transpose, superscript - I a matrix inverse, 11 a determinant and P 

is the probability that the (n 1 + 1)st observation in the ith penetration exceeds c. If no censoring 
occurred in the ith penetration, that is n= n, then In P, is zero. If n 1  = 0, then P i  = [{p.t 1  - c}/\/V11 ], 

otherwise 

P = [{t0+  + ,I (n 
	(fl 1)  c~ W—k(fl) —c}/{ V010 + 1  - (o)  
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where T is the column vector consisting of the first n 1  elements in the (n,+ I )st column of V, 
V,,+ l,n1 + I is the (n 1 + 1)st diagonal element of V and cI denotes the standard normal integral, 

i.e. I(z)=j 	exp(z 2/2)kJ(21c) dz. 

If errors have a Markov-type structure, then V hasjth diagonal element CJ2  and 

Vi, =crpk  II p, fork >j, 

where parameters 	are positive and p 1 ,..., p 	are less than one in absolute magnitude. 
Evaluation of the likelihood is simplified because 	'is tridiagonal. 

APPENDIX 2 

The EM-type algorithm, in which missing observations are replaced by their expected values, 
proceeds as follows for N penetrations and n depths. Symbols are as defined in Appendix 1. 
Step 1: Distributional parameters are estimated by 

= 	 forj=l.....n 

= 	(y(I) - 
	

forj=1.....n 

and 	(y1 - )(y(),I - 	1 )/(Nôô, ) 	 forj = I...... - 

Missing observations are omitted on the first iteration through the algorithm and replaced by their 
estimated values on subsequent iterations. 
Step 2: Missing values are estimated as follows. The first missing observation in the ith penetration, 
which must exceed c, is estimated as 

Y(i)n+I =+ 3e"2/(l —D(y))/(21t)), 

where a= li+ + P,(y(I) - )a +  I/an , 

13=an+i /(l —p) 

and y=(a—c)/13, 

unless n = 0, in which case a =g,and 3 = a. Subsequent missing observations are then estimated by 

Y(I)—,1J+Pl(Y( I )J_ l —.t_ I )aJ/aJ _ I  forj=n1 +2,...,n, 

with parameters replaced by their estimated values from Step 1. 
Step 3: Return to Step I unless all the estimated parameters have changed in value by less than iO 
(say) between iterations through the algorithm, in which case stop. 
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Summary 

Assessment of gas diffusivity in situ gives a direct measure of the ability of soils to exchange gas 
with minimal soil disturbance. A versatile, readily portable probe for measuring the diffusion of a 
tracer gas through soil in situ is described. The radioactive tracer 85  is injected into a cell 
located at the end of the probe. The change in activity within the cell as the gas diffuses out is 
measured by a Geiger—Muller tube in the cell. The probe can be used by insertion either directly 
into an auger hole (buried-probe mode) or into a chamber pushed into the soil surface. A method 
to simulate diffusion numerically using Fick's equation for both methods of insertion is presented. 
In the tests reported, diffusivity was estimated by expanding or contracting the time axis of the 
simulation until it matched the observed count rates. A goodness-of-fit was attached to each 
diffusivity estimate. The probe was generally effective, giving diffusivities comparable to those 
measured in the laboratory on cores taken near the cell (buried-probe mode) or linked to the 
surface chamber. Poor fits were found for some diffusivities measured in the buried-probe mode 
on coarsely structured soils. These were attributed to non-uniform distribution of porosity and 
possible upward leakage of tracer when used at shallow depths in the buried-probe mode. 
However, the in situ diffusivities may be more representative than those measured in cores in the 
laboratory because of the greater sample volume. We show how the probe can be used to detect 
soil layers that restrict gas diffusivity and differences in aeration status between tillage treatments. 

Introduction 

Early methods of measurement of diffusion in situ used probes 

buried in the soil with openings at the tip, e.g. Raney (1949). 
The advantage of a probe is that it can be used to assess 
diffusion at specified depths below the soil surface. This 

facilitates the identification of layers where diffusivity is 
restricted. McIntyre & Philip (1964) criticized probe methods 
because the geometry of the diffusion path is irregular and the 

boundary conditions are unknown. They proposed a technique 
involving the measurement of gas exchange at the soil surface. 
A, closed chamber was placed over a cylinder driven into the 
soil and diffusion of oxygen through the soil in the cylinder 

was measured. The advantage of this surface-chamber method 
is that the diffusion rates relate to gas fluxes at the surface and 

measurements can be repeated at the same location. Rolston et 

al. (199 1) modified McIntyre & Philip's technique by using a 
fluorocarbon tracer instead of oxygen as the diffusing gas, 

Received 28 May 1993; revised 20 August 1993; accepted 28 September 
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thereby avoiding any changes in oxygen concentrations caused 

by soil respiration. A third type of in situ method involves the 

injection of gas into soil through a buried needle to form a 

spherical source (Lai et al., 1976). This method is influenced 

by a relatively small volume of soil. 
A drawback of most current methods is the disturbance 

caused by withdrawal of samples of the diffusing gas at 
regular intervals for subsequent analysis in a gas chromato-
graph. The withdrawal of samples may influence the rate of 
diffusion and the concentration of samples of the gas may 
change before analysis due to leakages. The test may depend 
on an accurate initial estimate of gas concentration (Rolston et 
al., 1991). In addition, during the test no indication is given of 
the likely magnitude of the diffusion coefficient to help 
determine the frequency and duration of sampling. These 
problems can be overcome by using a non-destructive method 
of assessing the concentration of the diffusing gas, e.g. 
measurement of the radioactivity of a tracer (Robertson, 
1969). 

To determine the diffusion coefficient, Fick's equation has 
to be solved. An analytic solution is possible only if unrealistic 
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Fig. 1. Apparatus to measure gas diffusion in situ (buried-probe 
mode). 

assumptions are made: for example, that the gas escapes from 
a sphere which is filled with soil rather than hollow (Lai et al., 
1976). In practice this can give a reasonable fit to the time-
decay curve of diffusing gas, but such approximations will 
inevitably give biased estimates of the diffusion coefficient. 
Also, in applying the method of Lai et al. (1976), Jellick & 
Schnabel (1986) used a numerical finite-difference model to 
allow the initial concentration profile within the sphere to 
vary. 

4 B.C. Ball et al. 

Inflatable rubber 
membrane 

Finally, in situ techniques suffer from a lack of adequate 

investigation and testing (Rolston, 1986). The validity of 

diffusion coefficients obtained by in situ methods is usually 

assessed by comparison with measurements made in the 
laboratory on soil cores. This is best achieved with the surface-
chamber method by removing the soil enclosed by the 
chamber as a core (Rolston et al., 1991). 

Here we describe an apparatus which can be used either as a 
probe capable of sampling several soil layers in succession or 
as a surface chamber. Our method uses as diffusing gas 85 

the activity of which is monitored continuously and non-
destructively using a Geiger—Muller tube. We describe a 
novel numerical method to calculate the diffusion coefficient 
in the Fick's equation using these concentrations. These 
diffusion coefficients are compared with laboratory measure-
ments on cores of the same soil. Finally, we show how our in 
situ method can contribute to the calculation of nitrous oxide 
fluxes and to the assessment of the effects of tillage treatments 
on soil aeration. 

Materials and methods 

Apparatus design 

The apparatus consists of a probe (Fig. 1) based on the design 
of Robertson (1969). The probe is inserted either directly into 
an augered hole in the soil (buried-probe mode) or into a 
cylindrical chamber on the soil surface (surface-chamber 
mode, Fig. 2). The probe consists of a metal frame attached to 
a cylindrical gas cell. The frame supports an inflatable 
neoprene-rubber membrane used for sealing the hole above 
the gas cell, thereby isolating the gas cell in the access hole. 
The gas cell contains a Geiger—Muller (G—M) tube detector 
with an effective length and diameter of 45 mm and 10 mm, 
respectively. The tube is sealed at the upper end of the gas cell. 
The wall of the gas cell is perforated with 48 holes, 11 mm in 
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diameter, to allow unhindered diffusion into the surrounding 
soil. The membrane covered frame is 380 mm long and the gas 
cell is 70mm long with a base plate 10mm thick, giving a 
total probe length of 460 mm. The external diameter of the gas 
cell is 64mm resulting in a cell volume of approximately 

240 cm3 . The external diameter of the probe is equal to that of 
the gas cell base and is 66 mm. A co-axial cable from the G-
M tube and a hypodermic needle pass within the probe frame 
from the gas cell to and through the top plate of the apparatus 
(Fig. 1). A small aluminium shield runs within the probe frame 
to protect the hypodermic needle when the membrane is not 
inflated. The top plate contains a valve for inflating the 
membrane, a luer syringe hub for the hypodermic needle and a 
socket to link the cable from the G—M tube with a small 
portable scaler (Mini Instruments Model 6-90, Burnham-on-
Crouch, Essex). The scaler provides a voltage output which is 
connected to a data logger (Squirrel 1200 Series, Grant 
Instruments, Cambridge). The G—M tube is powered by the 
scaler. Optimization of the voltage supply was carried out 

using 137Cs as a source instead of the 85  Kr gas as it was much 
easier to handle. A suitable voltage setting was obtained by 
measuring the energy response spectrum. The 137Cs source 
was placed adjacent to the detector and a series of counts was 
obtained. The voltage supply to the detector was then adjusted 
via a 20-turn potentiometer and a further set of counts 
obtained. This procedure was repeated for a progressively 
increased voltage over the entire voltage supply range. The 
whole procedure was repeated in reverse with a decreasing 
voltage supply. The response plot described the alteration of 
the detector's sensitivity with supply voltage. Ideally, a 
plateau should be highlighted and the supply voltage set to 
the mid-point of this plateau to minimize the effect of any 
slight voltage differences on count rate. Count rates are read 
directly off the scaler display after a fixed period (usually 10 
or 30s). Alternatively, the output voltages sampled by the 
logger (usually over periods of 10 or 20 s) are converted to 
count rates using a calibration obtained by comparing scaler 
voltage over a range of count rates. 

Two cylindrical adaptors (small and large) were made to 
allow use of the probe in surface-chamber mode (Fig. 2). 

Adaptor and probe fit together to produce a surface chamber 

50 mm high with integral gas cell. The lower edge of the 
adaptor is chamfered to facilitate penetration of the soil to a 

depth of 25 mm, and to fit snugly over a buried core sleeve of 
corresponding diameter (73 mm or 150 mm). The dimensions 
of the adaptors were chosen to permit linkage, if required, to 

buried core sleeves. The close fit (Fig. 2) ensures that the gas 
diffuses from the surface chamber into the core only. The 
small core sleeve is normally 50 mm long and the large core 
sleeve 100 mm long. In order to detect the effect of core length 

on diffusion, some half-length sleeves were employed in the  

field. However, laboratory measurement of diffusion was 

made on cores of normal length only. 

Use in buried-probe mode 

The dimensions of the probe and its gas cell dictate its use to 
sample a 70-mm thick soil layer to a depth of 420 mm. An 
access hole is prepared to the required depth using a Dutch 
auger with an effective cutting diameter of about 60 mm, 
which is slightly smaller than the diameter of the gas cell. If 
stones are encountered while augering a new position should 
be chosen, because any displacement of the stones may either 
distort the access hole or increase the void surrounding the gas 
cell. The probe is inserted into the access hole with the base in 
position and used to compact the soil at the bottom of the hole 
in order to minimize any voids below the base plate. The gas 
cell is then isolated in the soil by inflating the rubber 
membrane which seals against the sides of the access hole. 
The 2-mm thick membrane is flexible enough to mould into 
the shape of the soil face. However, it may also be stiff enough 
to enlarge the access hole slightly in weakly structured soils. If 
the probe is used at less than its full working depth, one or 
more restrictors must be placed over the part of the rubber 
membrane protruding above the soil surface. 

When the probe and seal are in place, the background count 
rate is measured. An aliquot of radioactive-tracer gas (85  Krin 

air, at a specific activity of 37 kBq cm 3 ) is then injected into 
the gas cell via the hypodermic needle. The top of the 
hypodermic needle is sealed using a simple syringe lock. As 
the krypton diffuses from the gas cell into the soil the count 
rate decreases. Normally count rates are measured until they 
decrease to one-half or one-third of their original value. If 
further tests are to be made at greater depths, the membrane is 
deflated, the probe is withdrawn from the hole and the hole 
made deeper by augering as required. The probe is then re-
inserted and the measurement procedure repeated. 

Use in surface-chamber mode 

As the volume enclosed by the adaptor above the soil surface 
must be known, a flat surface is preferred. If used on its own, 
the adaptor is pushed into the soil to a depth of 25 mm. If a 
core sleeve is used, the sleeve is inserted into the adaptor and 
the two are pushed together into the soil until the top edge of 
the core sleeve is flush with the soil surface. The probe is used 
withthe base plate removed. The probe is inserted into the 
adaptor until the base rim of the gas cell is within 10 mm of the 
soil surface. This position is determined by aligning a mark on 
the rubber membrane with the top of the adaptor. The gas cell 
is then isolated in the adaptor by lightly inflating the rubber 
membrane. The background count and diffusion rates are 
measured as described above for the buried-probe mode. 
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Radiological protection 

As indicated above, the tracer gas 85 is used at an activity of 
about 37 kBq cm 3. In order to provide an initial count rate of 
about 150 s -1  , injection volumes of 1-1.5 cm 3  are required 
for the buried probe or for the small surface chamber and 
3 cm3  for the large surface chamber. This tracer is sufficiently 
active to require handling in accordance with local radi-
ological protection guidelines. In the United Kingdom, each 
test site needs to be registered with Her Majesty's Government 
Pollution Inspectorate. Each test must be constantly super-
vised until most of the krypton has diffused into the soil. The 
gas is taken from a small cylinder stored in a laboratory and 
transported to the test sites in gas-tight syringes which are 
carried in a locked, sealed and padded box. 

Laboratory measurement of diffusion 

Cores of soil from near the probe (buried-probe mode) or from 
the location of the surface adaptor (surface-chamber mode) 
were taken for comparison with the in situ measurements. 
Diffusivity was determined by measuring the diffusion of 85  Kr 
between gas chambers attached to both end faces of the core 
sample (Ball et al., 1981). In this procedure, 85  Kr concentra-
tion in the chambers is determined by regular counting of 3 
radiation at a plastic scintillator-photomultiplier tube assem-
bly. The counts are used in a non-linear regression technique 
to estimate diffusivity. Air permeability was also measured in 
the cores in the same apparatus used to measure diffusion. 
This allowed detection of highly continuous flow paths which 
can help explain why some core diffusivities are unusually 
high. Air pressure difference and flow between gas chambers 
were measured by a micromanometer and a soap film bubble-
meter (Ball et al., 1981). 

Soils and experiments 

Three experiments were made consisting of in situ tests and 
laboratory measurement of diffusivity and other physical 
properties on cores. Experiments 1 and 2 involved assessment 
of the probe in buried mode on different soils and tillage 
treatments. Experiment 3 mainly involved assessment of the 
surface chambers. The main soil type was a freely-draining 
sandy loam of the Darvel series, a eutric cambisol. This soil is 
stone free and allows accurate augering and easy insertion of 
core sleeves and adaptors. Other soils were imperfectly 
drained barns and clay barns of the Rowanhill Association 
which are mainly gleysols. The gleysols were within traffic 
and tillage experimental sites where aeration has been reported 
as a factor limiting crop growth in wet seasons (Dickson & 
Campbell, 1990); they contained occasional stones. 

Experiment 1 involved use of the probe in buried mode only 
and was made at two sites. One site, on sandy loam, was part  

of a potato field. The other site, on clay loam, was part of a 
field traffic-systems experiment (Dickson & Campbell, 1990). 
In situ measurements were made shortly after potato harvest 
when the soils were wet and compacted and when significant 
concentrations of nitrous oxide up to 200 ppm were detected 
below 200 mm soil depth. These concentrations were greater 
in the sandy loam where there were also surface fluxes of 
nitrous oxide of up to 450gN ha -  d- 1 . Diffusivities were 
measured at depths of 200-270mm and 350-420 mm. Soil 
cores were taken from near the probe locations for laboratory 
measurement of diffusion. The cores were taken vertically 
and, in the gleysol, also horizontally to detect any direction-
dependent effects of the coarser structure. 

Experiment 2 also involved use of the probe in the buried 
mode only and was located on loam-clay loam at the site of a 
long-term tillage experiment (Ball et al., 1989). The probe was 
inserted to a working depth of 100-170mm as this was the 
shallowest position at which the membrane seal appeared to 
remain effective and where the surrounding air-filled porosity 
was likely to be uniform. The field site was sown to winter 
barley. Three tillage treatments were tested, namely ploughed, 
direct-drilled (long-term) and direct-drilled (short-term) (Ball 
et al., 1989). Two in situ measurements were carried out in 
each of four replicate plots located mainly on gleysols. A 76-
mm diameter core was taken horizontally in the 90-160mm 
depth interval from two of the plots. Diffusivity, air-filled 
porosity, volumetric water content and dry bulk density were 
measured on these cores in the laboratory. 

Experiment 3 involved mainly the surface-chamber mode 
and was located at a fallow site on sandy loam. The soil was 
cultivated to 150 mm and compacted by a tractor and roller to 
produce a uniform, flat surface layer. Both surface adaptors 
were used, linked to soil cores of both normal and half-normal 
length. After making an in situ test linked to a core of half the 
normal length, the surface adaptor and core sleeve were 
removed taking care to minimize soil disturbance. The longer 
sleeve and adaptor were then inserted in the same position, and 
another test was made. The core was then extracted and 
diffusion measured in the laboratory. The soil surface was too 
loose to allow satisfactory removal of complete cores so, 
before subsequent comparisons of this kind, the soil was 
compacted further by stamping on a board laid on the soil 
surface. Gas diffusion is highly dependent on air-filled 
porosity which is itself dependent on the relationships 
between dry bulk density, volumetric water content and 
matric potential. Hence, we measured these properties four 
times in soil adjacent to the in situ tests. Since gas diffusivity 
near the surface is particularly influenced by changes in air-
filled porosity with depth (Rolston et al., 1991) we took 
50-mm deep cores from the top 150 mm at staggered intervals 
of 25 mm. We also measured diffusivity in the laboratory in all 
four 0-50mm cores and in two each of the cores from lower 
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0 M 

M 0 a,-  
Fig. 3. Vertical cross-section through centre 

of gas cell and surrounding soil showing 
changes in gas concentration (represented by 
darkness of shading) with time. From an 
initial, nominal concentration of 255, values 
in the gas cell at the nine displayed times are 
223, 207, 186, 159. 127,91.57,30 and 12. 

depths. At a nearby location, we also assessed the suitability of 
the buried probe for making measurements at progressively 
increased depths in the same auger hole. The shallowest access 
hole which allowed a good seal at the top of the probe was 
about 190 mm. After an in situ measurement had been made in 
this hole, it was extended for two further measurements first to 
230 mm depth and then to 260 mm depth. 

Numerical simulation of diffusion 

Diffusion was simulated on a computer by representing the 
soil as a three-dimensional array of cubes. At every time step. 
5% of the radioactive gas in a cube migrates to each of the six 
neighbouring cubes. Therefore, each cube loses 30% of the gas 
it had, but simultaneously receives gas from its six neighbours. 
This is a standard method for numerically integrating Fick's 
equation (see, for example, Crank. 1975. pp. 141-142). From 
any initial distribution of gas, the simulation will predict how 
the gas diffuses through the soil over time, until eventually the 
concentration is uniform. Note that the diffusion rate is 
assumed to be constant everywhere. 

The Appendix gives an algorithm for how this can be 
implemented to represent diffusion in the buried-probe mode. 
Initially, the gas is concentrated in a cylindrical volume. At 
each time step, gas diffuses as described above, then the gas  

concentration in the cylinder is re-equalized, to simulate 
diffusion within the gas cell being much more rapid than in the 
soil. We assumed that the position and the perforation of the 
cylindrical gas cell wall gave zero resistance to gas diffusion. 
The changes in gas concentration in the surrounding soil at 
nine times in a geometrically increasing progression are shown 
in Fig. 3. The simulated change of gas concentration within 
the gas cell is shown in Fig. 4. In this Figure, the measured gas 
concentrations relate to count rates for one diffusivity 
assessment at Location I, at 200-270 mm depth in sandy 
loam. 

A similar algorithm was used to simulate diffusion in the 
surface-chamber mode. 

The rotational symmetry of both the buried probe and 
surface chamber can be used to simplify the three-dimensional 
arrays to only two dimensions. However, the transfer rates 
have to be adjusted, which makes the mathematics more 
complicated, so details have not been presented in this paper. 

Estimation of diffusion coefficient from count-rate data 

Immediately after injection, the gas concentration increases as 
the gas fills the gas cell. We cannot represent this in our 
numerical simulation, so counts recorded during this initial 
period were ignored. The period was short, typically about 
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1 min for the buried probe and the small surface chamber, and 
2 min for the large surface chamber, so we think the distortion 
to the results will be minimal. Let y denote the Geiger count 
over n, seconds, centred on a time t, seconds after the start of 
the experiment, for i= I . . . N. Approximately, y, has a Poisson 
distribution with mean naf(t 1Ib) where a denotes the initial gas 
concentration (measured in Geiger counts). f is the decay 
curve obtained by numerical integration and b is a time- 
scaling parameter. 

A simple way to estimate a and b from v 1  ....N is by 
minimizing the scaled deviance: 

= 	1 	Lye - 

N - 2 	n 1 aflt 1 /b) 

where the divisors are to compensate for Poisson counts 
having variances equal to their means. For a given value of h. 

Therefore, to minimize S simply requires an optimization 
search on possible values for h. 

In the numerical simulation of diffusion (see Appendix), 
one spatial unit corresponded to 2.5 mm. and 5% of the 
gas leaked into each neighbouring cell. Therefore, a 
value of h= I corresponds to a diffusion coefficient of 
0.05 x (2.5 mm) 2  s 1  0.3 125 mm2  s 1 . Diffusivities are ex-
pressed relative to those in free air adi sted to the temperature 
of measurement using a formula ci.d by Currie (1960). The 
diffusion coefficient of 85  Kr in free air is approximately 
15.1 mm' s - at 20°C. S is the scaled sum of squares of the 
deviances of the numerically simulated data from the 
measured data and provides a measure of the goodness-of-fit 
for each diffusion coefficient. Deviances should be unity if the 
only variation in the data about the simulated curves is due to 
the Poisson sampling properties of the Geiger counter. Higher 
values of S mean poorer fit, i.e. goodness-of-fit decreases with 
the extent to which S exceeds unity. 

0 1000200030004000500060C)070008000 
Time since injection of tracer/s 

Fig. 4. Count rates from numerical simulation of diffusion from a 
hollow cylinder (solid line) fitted to measured count rates from the 
buried probe (crosses). The data refer to Experiment I. Location 1. 
200-270mm depth where S. the goodness-of-fit, was 2.9, a 
reasonably good value. 

Results 

In Experiment 1, the in situ relative diffusivities from the 

buried-probe tests on the sandy loam (Table 1) have better 

goodness-of-fit values than those from the clay loam. In situ 
and laboratory core diffusivities also agree better in the sandy 

loam (correlation coefficient 0.73) than in the clay loam 

(correlation coefficient 0.27 with in situ measurement of 0.170 

omitted). In the sandy loam, differences in relative diffusiv-

ities between depths (Table I) were associated more with 
differences in dry bulk densities than moisture status (Table 

2). In the clay loam, differences in soil physical properties 

between depths were much smaller than in the sandy loam 

(Table 2). 

240 

220 

200 

Cs 

180 
0 

C) 

60 

140 

Location I Location 2 

Depth/mm 200-27() 350-420 200-270 350-420 

Sandy loam 
In situ 0.000912 (2.9) 0.0232(1.0) 0.0239 (1.2) 0.0161 (2.0) 
Laboratory (vertical) 0.0112 0.0332 0.0345 0.0183 
cores 0.00166 0.0381 0.013 0.0048 

0.00185 0.0325 0.0214 0.0044 
Table 1. Relative diffusivities in sandy loam Clay loam 
and 	clay 	loam 	soils 	in 	Experiment 	1. In situ 0.00142 (14.9) 0.00121 (29.0) 0.170(8,8) 0.00206(6.2) 

determined in situ (buried-probe mode) and Laboratory (vertical) 0.00146 0.0024 0.00157 0.0021 

in 	cores. 	Goodness-of-lit 	statistics 	in 	par- cores 0.0016 0.0049 0.00151 0.0154 

entheses. Cores were centred on either 225 or Laboratory (horizontal) 0.000656 0.0017 0.00237 0.001 13 

375 mm depth cores 0.00102 0.0034 0.00098 0.00086 



Direct-drilled Direct-drilled 
long-term short-term 

0.0209±0.011 0.0126±0.0059 
(6.5) 	 (5.1) 	 Table 3. Relative diffusivities in loam/clay 

0.0121 	 0.00393 	 loam soils in Experiment 2 determined in Situ 
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Location 1 	 Location 2 

Depth of core centre/mm 

Sandy loam 
Air-filled porosity/M 3  m 
Dry bulk density/Mg in- 3 

Water content/M 3  rn 3  
Matric potential/kPa 

Clay loam 
Air-filled porosity/M 3  m 3  
Dry bulk density/Mg m- 3 

Water content/M 3  m 3  
Matric potential/kPa 

225 375 225 375 

0.174 0.264 0.238 0.197 
1.46 1.32 1.41 1.5 
0.27 0.23 0.22 0.23 

-54 -31 -25.5 -9.4 

Table 	2. 	Mean 	air-filled 	porosites, 	bulk 
0.115 0.108 0.09 0.099 densities, water contents and matric poten- 
1.37 1.37 1.35 1.43 tials in the cores used for the laboratory 
0.36 0.37 0.4 0.36 measurement 	of 	the 	relative 	diffusivities 

-41 -33 -30 43 given in Table I from Experiment 1 

Ploughed 

Relative diffusivity 
In situ 0.0676±0.026 

(9.7) 
Cores 0.0151 

Other measurements (on cores) 
Air-filled porosity/M 3  m 3  0.15 
Dry bulk density/Mg m- 3 1.31 
Water content/M 3  m 3  0.34 

In Experiment 2, the in situ relative diffusivities from the 

buried probe tests on the loam-clay loam (Table 3) had high 

values of S indicating poor fit, particularly from the ploughed 

soil. (In all cases where the fit is poor, it corresponds to a 
global lack of fit through an apparent discrepancy, between 

early and late parts of an experiment, in the value of the 

diffusion coefficient.) Since the replicate data approximated a 

(buried-probe mode) and in laboratory cores 
from 100 to 170 min depth. The in Situ means 

	

0.097 	 and attached standard deviations were calcu- 

	

1.58 	 lated according to the UMVUE method (see 

	

0.29 	 text). Averages of the goodness-of-fit statistic 

log-normal distribution, the means and standard deviations 
given in Table 3 were calculated according to the uniformly 

minimum variance unbiased estimator (UMVUE) method of 

Finney (Parkin et al., 1988). Analysis of variance of the log-

transformed data indicated that treatment differences were 

significant (P0.01). As in Experiment 1, differences in 

relative diffusivities between treatments were related to dry 

0.17 
1.39 
0.29 

Table 4. Relative diffusivities in compacted sandy loam in Experiment 3 determined in Situ (surface-chamber mode) and later in the laboratory on 
cores linked to the surface chamber. Numbers in parentheses below in Situ diffusivities indicate goodness-of-fit 

Relative diffusivity (surface-chamber mode) Laboratory cores from 0-50mm Laboratory cores from 0-100mm 

Small adaptor linked Large adaptor linked Relative Air-filled Matric Relative Air-filled Matric 
to core at depth: to core at depth: diffusivity porosity potential diffusivity porosity potential 

0-25mm 	0-50mm 0-50mm 0-100mm /m 3 m 3  /kPa /m3 m 3  /kPa 

23 July 1992 0.252 	0.194 - 	 0.0262 0.128 0.38 -132 0.0585 0.29 -61.5 
(1.8) 	(0.9) (1.4) 

30 July 1992 0.162 	0.153 - 	 - 0.118 0.37 -21 - - - 

(after rainfall) (0.8) 	(1.3) 

20/21 August 1992 0.119 	0.149 0.151 	0.0886 0.0967 0.31 -14.3 0.108 0.32 -11 

(after compaction (1.0) 	(1.8) (2.9) 	(1.1) 
by board) 0. 147a 	0.112 0.079 	0.0407 0.116 0.36 -15 0.058 0.21 -12 

(1.0) 	(1.1) (1.1) 	(1.4) 

'Location adjacent to 0-50 mm core 
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Table 5. Mean relative diffusivities, air-filled 
porosities, bulk densities, water contents and 
matnc potentials in laboratory cores of 
compacted sandy loam, 20-21 August 1992 
for Experiment 3. Means are of four or a  two 
samples. The standard deviation is averaged 
over all depths 

Depth /mm 0-50 25-75 50-100 75-125 100-150 
Standard 
deviation 

Relative diffusivity 0.107 0.069a  0.0519a  0.0227a 00205a 0.0105 
Air-filled porosity/m' rn 3  0.36 0.3 0.29 0.26 0.23 0.023 
Dry bulk density/Mg rn 3  1.18 1.23 1.25 1.3 1.36 0.051 
Water content/M 3  m 3  0.19 0.23 0.24 0.25 0.25 0.007 
Matric potential/kPa -23.8 -12.5 -10.8 -15.8 -13.9 4.2 

bulk density: diffusivities were lowest in the most compact 
soil. 

In Experiment 3, the in situ relative diffusivities from the 
surface-chamber tests on the sandy loam (Table 4) generally 
decreased as the length of the linked core sleeve increased. 
The numerical solution takes into account the core length, so 
the differences in diffusivity are likely to be real. This is 
confirmed by the laboratory-core estimates of relative 
diffusivity (Table 5) which decreased with increasing depth. 
This decrease in diffusivity is probably caused by the sharp 
decrease in air-filled porosity with depth in the top 100 mm of 
soil (Table 5). Both small and large adaptors gave similar 
diffusivities when attached to 50-mm cores (Table 4) 
indicating that the differences in geometry between adaptors 
was accounted for adequately by the algorithm. The in situ 
diffusivities in normal length cores were generally lower than 
diffusivities measured in the same cores using the laboratory 
technique. This difference is attributed to decreased diffusivity 
below the core when in situ. In situ diffusivities measured 
below 100 mm using the buried-probe mode in Experiment 3 
(Table 6) also decreased with increasing depth. Thus in both 
the buried-probe and surface-chamber modes the probe can 
detect changes in diffusivity with small changes in soil depth. 

Figure 5 is a plot, on a log scale, of in situ diffusivity against 
laboratory diffusivity for data from all three experiments, with 
the 1:1 line superimposed. The correlation is 0.94 if the four 
circled values are omitted. The log-ratio between the methods 
has a mean of 0.01 and a standard deviation of 0.82. 

Discussion 

In situ relative diffusivities are in broad agreement with those 
measured on laboratory cores. This shows that the probe is 
generally effective, in particular the membrane seal, the 
detection of counts and the calculation of coefficients using 
numerical simulation. 

In the buried-probe mode, goodness-of-fits of the in situ 
relative diffusivities were poorer in the clay loam than in the 
sandy loam in Experiment 1 (Table 1) and were poorest in the 
ploughed treatment in Experiment 2 (Table 3). The topsoils of 
the clay loam and the ploughed treatment contained 
aggregates which were more distinct and more loosely 
combined than in the sandy loam (Ball & Robertson, 1993). 

In addition, the depth and surface relief of the clay loam 
topsoil varied considerably. These are likely to have caused 
variation in the air-filled porosity of the soil around the gas 
cell, a deviation from the uniformity assumed in the numerical 
simulation. The depth-related decrease in porosity recorded 
for the sandy loam in Experiment 3 (Table 5) appeared to have 
less effect on goodness-of-fit. 

In the clay loam and loam soils, some of the in situ relative 
diffusivities were greater than in the cores. This is possibly 
because in these structured soils the greater soil volume 
sampled by the in situ probe is likely to include continuous 
pores and cracks which are interrupted in the cores, thereby 
restricting diffusivity. The structural variability may contri-
bute to the lack of relationship between air-filled porosity and 
relative diffusivity in cores of the clay loam (Fig. 6). For 
example, the high value of relative diffusivity at 0.12 m 3  m 3  
air porosity was accompanied by an unusually large air 
permeability, indicating the presence of a continuous pore or 
crack. Finally, high in situ diffusivities may have resulted 
from escape of gas up the auger hole past the rubber seal 
because the auger access hole tended to be wider near the 
surface in the presence of stones or loose soil. 

The in situ buried probe allows sequential diffusivity 
measurements at increasing depth with considerably less 
disturbance than does core sampling. This is particularly 
useful in identifying layers where diffusion is limiting. For 
example, the low diffusivity at 200-270mm in Location 1 on 
the sandy loam (Table 1) may indicate a restricting layer, 
possibly helping to explain the very high concentrations of 
nitrous oxide measured at that depth. 

In the surface-chamber mode, in situ relative diffusivities 
measured using the small adaptor linked to a 0-25-mm core 
(Table 4) are probably more representative of soil very close 
to the surface than those measured using either adaptor linked 
to a 50-mm core; the latter gave results more representative of 
the top (0-100 mm) layer. However, the small adaptor 

Table 6. Relative diffusivities in a compacted sandy loam in 
Experiment 3, 21 August 1992, determined in situ using the 
probe (buried mode) in a progressively deepened hole 

Depth /mm 	110-180 	150-220 	180-250 

Goodness-of-fit 	0.93 	1.2 	1.1 
Relative diffusivity 	0.0243 	0.0100 	0.0081 
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Fig. 5. The relationship between relative diffusivities measured in the 
field and in the laboratory for Experiments 1-3, with the 1:1 line 
superimposed. The numbers denote the experiments. Circled values 
were omitted from the final calculations. 
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Fig. 6. The relationship between relative diffusivity and air-filled 
porosity in cores from depths of 200-250 mm and 350-400 mm in 
Experiment 1; 0  sandy loam, • clay loam. 

sampled less soil and was more difficult to insert and support 
without cracking or otherwise disturbing the soil surface. The 

diffusivity in the layer very close to the surface could be 

estimated using the large adaptor by pushing it in to 25 mm 

depth only without a core sleeve attached. Use of the large 

adaptor linked to the 50-mm core sleeve probably provides a 

good estimate of diffusivities within the layer of greatest 
microbial activity where the reactions of the denitrification 

pathway occur (Arah et al., 1991). However, the marked 

variability of diffusivity near the soil surface is likely to 

restrict measurement accuracy because of violation of the 
assumption of uniform diffusivity within the algorithm. 

Measurements can be made more quickly in the buried-
probe mode than in the surface-chamber mode. In situ 
measurements in the probe mode are faster than the 
laboratory core method due to differences in sampled 
volumes, each position taking between 30 min and 3 h instead 
of 1-36 h. However, laboratory measurements do not require 
the constant supervision required for the field tests in order to 
comply with radiological safety regulations. The replacement 
of the 85Kr/Geiger—MUller counter system by a non-radio-
active gas and non-destructive detector system would 
overcome the radiological protection problems. Such systems 
are being investigated. 

Conclusions 

Use of the in situ probe and numerical simulation of diffusion 
is generally effective in providing estimates of relative 
diffusivity both near the soil surface (in conjunction with an 
adaptor) and deeper in the profile. A surface measurement and 
a series of buried-probe measurements at increasing depths 
can be made at one access hole. Although the goodness-of-fit 
of relative diffusivities measured in the probe mode in loams 
and clay barns was poorer than of those in sandy barns, the 
values may be more representative than those measured in 
laboratory cores because of the greater sample volume. Poor 
goodness-of-fits when used at shallow depths in the probe 
mode were thought to be because of non-uniform porosity. 
Lack of agreement between in situ and laboratory tests when 
used in the surface-chamber mode was attributed to non-
uniform distribution of air-filled porosity with depth. These 
will be tackled in future by improving the augering system for 
the access hole and by modifying the numerical simulation of 
diffusion to include vertical gradients of air-filled porosity. 
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Appendix 

Numerical simulation of diffusion 

Define C to be the set of integer triplets (i,j, k) such that 

i2 +j2 )14, 

IkI < 15. 

Hence C represents a cylinder, as approximated by an integer lattice. This is scaled to match the experiment, with one unit 

representing 2.5 mm. 

Initialize values in a three-dimensional array, for -40 < i,j, k < 40 

i if(i,j,k)EC 
Y,k = j 0 otherwise. 

y represents the concentration of gas at time zero and subsequent times. 

In one time unit, let 5% of gas at location (i,j,k) move to the six adjacent sites: (i± 1,j, k), (i,j* 1,k) and (i,j,k+ 1). 
Therefore: 

Y)k 	0. 7Yijk+ 0 . 05 (Yi+I,jk+Yi_1,jk+Yi,j+1,k+Yi,j_1,k+YJ,k+1 +yj,k_1), for -39i,j,k39. 

Note: (a) All sites are updated simultaneously. In the computer program this was achieved by using two arrays, one for even 

times and the other for odd times. 

Boundary sites, i.e. i,j or k= ±40, act as sinks, they receive gas but do not release it. Arrays were made sufficiently 

large that such edge effects were negligible. For example, using limits of 40 and 50 produced almost identical results. 

Transitions were modified to allow only five neighbours for sites at the top and bottom of the cylinder, to prevent 

diffusion into the shaft of the probe and through the cell base. 
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Calculate the average gas concentration in the cylinder 

= - E E E Yuk  where V is cylinder volume 
(jfk) C 	C 

and equalize the gas concentration in the cylinder by 
setting all such sites to the mean value 

Yjk —9if (i,j,k) E C. 

This assumes that diffusion in air is much faster than in 
soil. 

Increment time by one unit and return to step 3 
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Summary 

The mass, length, breadth and depth were measured for each of 6000 potatoes. Samples of 
approximately 200 tubers of each of the 10 most commonly grown UK maincrop cultivars 
from three locations in UK were used. Multivariate log-normal distributions fitted the data 
well. This result has been used to assess grading methods based on mass, one-dimensional 
measurements of size, or estimates of riddle size. Prediction of mass using the product of the 
three principal tuber dimensions shows an error of 10% or less, against 30% for the current 
riddle method of sizing. 

Introduction 

Machines for size grading potatoes usually have to handle a broad range of sizes 
from small potatoes, which just fail to pass through a 25-mm square mesh screen, 
to large potatoes of around 90 mm for baking and chipping. The largest potatoes 
within these limits may be seventeen times as heavy as the smallest. 

In addition to ranging widely in mass and volume, potatoes display considerable 
diversity of shape including concavities. The development of efficient commercial 
weight grading or optical sizing equipment would benefit by a better understanding 
of the relationships between tuber linear dimensions, volume and mass. 

The aim of sizing is to produce a sample of uniform appearance which is accepta-
ble for its intended use, for example seed for planting or ware for chipping or roast-
ing. 

Uniformity has sales appeal and simplifies packing and filling count boxes for 
produce such as citrus fruit. The average purchaser has a surprising ability to gauge 
the size of produce accurately. Peleg & Ramraz (1975) found that errors of less than 
10 % in the size of nominally 50 mm diameter fruit and less than 5 010 in 100 mm 
diameter fruit could be detected visually. Kaser (1965), again with citrus fruit, found 
that sizing by eye gave an error of 3.4 % compared to hand riddling. There appear 
to be no comparable figures for potatoes, but it is probable that a similar order of 
accuracy would be obtained. In most countries some form of sizing scheme has been 
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adopted and standards set. The Potato Marketing Board (1985) in the UK issues an-nually a ware prescription which permits only up to 5 % of the sample to pass 
through a specified minimum size of square mesh riddle. An upper maximum size 
is included in the standard. 

Many systems of produceizing are used though some are accepted only for cer-
tain types of produce. Perhaps the most basic type is the parallel bar, or roller sizer, 
in which the gap between the rollers may be fixed or adjustable. A variation on this 
design is a sizer with non-parallel sloping rollers giving a progressively increasing gap 
- an arrangement favoured for carrot grading. The efficiency of any type of sizer 
can be gauged by the percentage of the sample which is correctly classified when 
passed through it. 

Tests at the Scottish Institute of Agricultural Engineering (SIAE) (Hutchison & 
McRae, 1980) with a variable aperture parallel roller grader, with a parallel bar hand 
riddle for comparison, showed the design to be efficient. When compared with a 
square mesh hand riddle the sizing error exceeded that specified in the PMB ware 
prescription (Table I). Moving screen mesh graders typically have an efficiency of 
95 % (NIAE, 1965). 

The square mesh aperture as a sizing device for potatoes may not necessarily be 
the most useful and it is now being challenged by developments in electronics which 
offer the prospect of high speed mass or optical volume sizing. 

The suitability of mass as a sizing criterion was realised by Goryachkin (1936). 
Assuming that tubers tend to approximate in shape to an ellipsoid he found that: 

V=kabc 

where V = volume, a = length, b = breadth, c = thickness and k = 0.56-0.65 
for the potatoes used. The use of a single dimension, or two dimensions was found 
to give less accurate results than the combination of three dimensions. Koichin & 
Smekhunov (1975) reached similar conclusions about the value of mass as a sizing 
criterion. 

Houston (1957) described a new criterion for sizing based on viewing potatoes, 
resting on a horizontal surface, from three points disposed at 120° to each other and 
inclined to the horizontal plane at 350  16'. He compared the measured volumes of 
tubers over a range of sizes with the sum of the three observed projections which he 
termed the 'criterion area'. He found the relationship: 

A c  = 1.35 W3 

where V = volume and A c  = criterion area. 
He calculated a mean probable error for potatoes of 8.3 % between the measured 

and the estimated volume, a result that indicates the potential value of optical sizing 
given further knowledge of how the principal dimensions are related. 

To examine the relationships between the length, breadth and thickness of tubers, 
and their mass, we decided to carry out experiments at SIAE with large samples of 
tubers, numbering 6000. A subsidiary experiment was done to determine the errors 
found in a range of cultivars with an apparatus based on Houston's optical sizing 
method; the results will be published in another paper. 
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Table I. Accuracy of grading of a parallel roller grader expressed as °lo of tubers correctly 
graded compared to hand grading through a square mesh screen (Hutchison & McRae, 1980). 

Cultivar 	 Throughput t/h 

Pentland Dell 	 4 
8 

12 

Mans Piper 	 4 
8 

12 

Overall grading efficiency 

84.6 
84.1 
86.9 

87.0 
91.2 
85.0 

Tabelle 1. Die Klass:fizierungsgenauigkeit eines Paralleiwalzen-Sorrierers in % der korrekt 
kiassierten Knollen im Vergleich zur Handklassierung mittels eines Quadratmaschensiebes. 
Tableau 1. Precision dun calibreur a rouleaux parallèles exprimEe en % de tubercules cor-
rectement ca/ibrés par rapport a un calibrage manuel a partir dune maille carrée. 

Materials and experimental methods 

Samples of the ten most commonly grown UK maincrop cultivars, taken from 
three potato growing regions, were used in the experiment. Since there could be 
regional shape variations due to climatic and soil factors, the samples were drawn 
from Yorkshire, the Scottish Borders and Fife. 

The potatoes were dry brushed to remove any adhering soil and weighed. Their 

Fig. 1. Modified digital read-out caliper and data printer. 

A bb. 1. Mod(fiziertes digitales Dickenmessgerat mit Datenausgabe und Datendrucker. 
Fig. 1. Pied a coulisse modiflé a lecture digitale et enregistreur de données. 
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Table 2. Variables in multivariate normal distributions of tuber dimensions for different cultivars in 1983 

Cultivar 100 x means (standard deviations) 100 x correlation coefficients 

In m (g) in 1 (mm) in b (mm) in d (mm) rn/i rn/b rn/d I/b lid bid 

Pentland Deli 502 (45) 223 (21) 175 (14) 155 (13) 94 93 87 78 69 85 
Pentland Hawk 487 (49) 207 (21) 175 (15) 157 (15) 95 93 92 80 78 88 
King Edward 485 (43) 206 (18) 179 (15) 155 (14) 92 95 89 82 71 84 
Pentland Ivory 484 (40) 204 (18) 174 (13) 158 (12) 91 93 90 73 68 90 
Cara 481 (41) 200 (16) 177 (15) 156 (15) 91 96 90 81 68 89 Pentland Squire 477 (45) 200 (18) 175 (16) 157 (15) 94 96 92 85 77 88 Record 469 (43) 196 (17) 175 (15) 151 (14) 93 96 91 84 75 87 
Désirée 463 (44) 199 (17) 172 (16) 150 (16) 87 94 88 75 61 83 
Pentland Crown 459 (48) 194 (19) 171 (17) 150 (16) 94 97 93 89 80 89 
Mans Piper 458 (43) 192 (16) 171 (16) 150 (15) 93 95 94 82 79 89 

Combined 476 (46) 202 (20) 174 (16) 154 (15) 91 93 89 75 69 86 

Tabelle 2. Parameter der Knolienmasse fir verschfedene Sorten für 1983 in mehrdimensionalen Normaiverteilungen. 
Tableau 2 paramEtres des distributions normales a variables multiples pour les dimensions des tubercules de djffdrentes  varldtds en 1983. 

I 
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length (1), breadth (b) and depth or thickness (ci) were measured with a Jocal digital 
read-out caliper, with an accuracy of ± 0.05 mm, mounted in a housing as shown in 
Fig. 1. The dimensions of each tuber in cm and its mass (m in g) were recorded on 
a calculator with a printer. 

Results and discussion 

The distributions of m, 1, b and d were found to be well approximated by a mul-
tivariate log-normal distribution, irrespective of cultivar or site The sample means, 
standard deviations and correlation coefficients are given in Table 2 separately for 
each cultivar and for all cultivars combined. These values provide a summary of the 
data and may be used to answer questions about grading systems based on weight 
or unidiinensional measures of size. The mathematical theory has been developed by 
Glasbey & McRae (1986), here we restrict ourselves to examples. 

The mass of an individual tuber of unspecified cultivar may be predicted if its 
length is known, by predictor P = 1.69 P'°. In 95% of cases the weight will lie be-
tween e 037  P and e037  P. approximately within 37 °lo of P. Table 3 gives similar 
results for other predictors, including the riddle size R which has been approximated 
by b06  d 4. Breadth is a better predictor than either length or depth because it is 
more highly correlated with mass, having a coefficient of 0.93, as compared with 0.91 
and 0.89 for length and depth respectively. The riddle size combines breadth and 
depth information and performs better than either alone. Of course, if I, b and d are 
all known, then mass can be predicted more precisely with 95 % of tubers within 
10 % of prediction. Fig. 2 is a plot of In m against in I for the King Edward sample 
from Yorkshire. Fig. 3, a plot of in m against in (Ibd), shows the closer association 
between m and Ibd than between m and F. 

More precise estimators can be obtained if the cultivar or source of a tuber is taken 
into account. For example, if a tuber is known to be Pentland Hawk, then 0.59 lbd 
is a better predictor of mass, with a 9 Wo range. Further, if the tuber is from the York-
shire site, then 0.57 lbd is the best predictor, with a range of only 7 01o. If a different 
predictor is used for each cultivar and site, then the average range is 8 °lo, compared 
with 10 % when a common predictor is used. 

The approximation to the riddle size may be used to calculate mass distributions 
for tubers between specified values of R. Table 4 gives means and 95 % ranges. It 

Table 3. Predictors of mass, averaged over all cultivars for tubers in 1983. 

Sizing criterion Predictor °lo range for 95 % of tubers 

Tuber depth ( 1.63 d278  41 
Tuber length (1) 1.69 12.10 37 
Tuber breadth (b) 1.00 b273  34 
Riddle size (R) 0.91 R2  30 
Product of tuber dimensions (lbd) 0.58 lbd 10 

Tabelle 3. Die Prädiktoren des Gewichtes, gemittelt über a/Fe Sorten, far Knollen für 1983. 
Tableau 3. Variables prédicatives du poids des tubercules en 1983 en moyenne pour toutes les 
variétés. 

Potato Research 29 (1986) 	 ..481  
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Fig. 2. Ln rn/In 1, cv. King Edward from Yorkshim 
In rn 

5 

4. 

4. 

LIN 

In 1 
Abb. 2 Ln rn/In / der Sorte King Edward aus Yorkshire. 
Fig. 2. Poids log/Iongueur log variété King Edward de Yorkshire. 
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Fig. 3. Ln rn/In (lbd), cv. King Edward from Yorkshire. 

in rn 

E 

5 

5 

4 

4. 

3. 

x 

x * 
x 
x 

x 
WC  

xx x  

6.5 

In (lbd) 

Abb. 3. Ln rn/In (lbd) der Sorie King Edward aus Yorkshire. 
Fig. 3. Poids log/(longueur x hauteur x largeur) log varidté King Edward de Yorkshire. 
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Table 4. Distribution of weights, averaged over all cultivars, for tubers in specified ranges of 
riddle size in 1983. 

Riddle limits (cm) 	Proportion of tubers Mean in (g) 95 % limits 

—4.0 	 0.03 48 32— 66 
4.0-4.5 	 0.12 67 46— 93 
4.5-5.0 	 0.23 91 64-126 
5.0-5.5 	 0.25 121 85-167 
5.5-6.0 	 0.19 157 111-215 
6.0-6.5 	 0.10 199 142-272 
6.5-7.0 	 0.05 249 178-339 
7.0-7.5 	 0.02 307 221-417 
7.5-8.0 	 0.005 373 269-506 
8.0— 	 0.002 448 324-606 

Tabelle 4. Verteilung der Gewichie, gemittelt über alle Sorten, fir Knollen in bestimmten In- 
tervallen des Siebungsmasses fur 1983. 
Tableau 4. Distribution du poids des tubercules en 1983 pour chaque calibre, en moyenne 
pour toutes les variétés. 

is apparent that there is a large overlap in the distributions of tuber masses in adja-
cent riddle ranges. More comprehensive sets of results are given by Glasbey & McRae 
(1985). 

Analysis of the results to obtain a quadrivariate log-normal distribution describes 
the variability in tuber masses, lengths, breadths and depths. The prediction of m 
from 1, b, d, lbd and riddle aperture dimension, R has shown the value of these meas-
ures against the true mass (and allowing for small variations in mass density, the 
true volume) as the principal sizing criterion. The product of dimensions Ibd clearly 
gives a good approximation to the mass. Single measures such as 1, b or d show large 
variations when related to mass. 

In the substition of one grading method for another or in the introduction of a 
parallel standard to be operated alongside the traditional screen sizing system, the 
relationship between mass and riddle size is important when making a first attempt 
to set up a mass sizing system. The weight distribution within estimated riddle sizes 
shown in Table 4 requires consolidation with data from riddling experiments and this 
is presently being done. 

The analysis of linear dimensions and mass of a large number of tubers of differ-
ent cultivars from different sites has shown that apart from direct weighing, a sizing 
method which uses the principal dimensions of the tuber in combination, or a deri-
vation of these, is likely to achieve a good level of accuracy against mass as the sizing 
criterion. The accuracy of the predicted mass can be slightly improved with a knowl-
edge of the cultivar and a further improvement can be gained if the site is known. 
These improvements however seem slight against the magnitude of the gain over rid-
dle sizing methods and may not warrant the additional complication of taking into 
account cultivar and site in the sizing operation. 
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Zusammenfassung 

Methoden zur Grössenklassierung und We Beziehung zu den Massen Gewicht und 
Volumenmerkmalen der Kartoffelsorten 

Es wurden die Ziele und die Leistungsfähig-
keit von Methoden betrachtet, die zum Kar-
toffelvermessen angewandt worden sind. Die 
Tabelle 1 zeigt die Leistung der einfachsten 
Eindimensional-Messeinrichtung. Es wird 
ein Bezug hergesteilt zum Gewicht und zu op-
tischen Klassierungskriterien. 

Mit 6000 Knollen wurde eine Untersu-
chung der Beziehungen zwischen Knollen-
mass, Gewicht, Volumen und Siebungsgrösse 
durchgefUhrt. Die Knollen stammten aus 
Proben der zehn wichtigsten UK Sorten, von 
denen jede in 3 Gebieten des Landes ange-
baut worden war. Die in den Versuchen ver-
wendete Messeinrichtung wird in Abb. I ge-
zeigt. 

Die Analyse der Ergebmsse (dargesteilt in 
Tab. 2) weist darauf hin, dass sich die Vertei-
lung von Gewicht, Lange, Breite und Tiefe 
gut einer mehrdimensionalen log. Normal-
verteilung nähert, unabhängig von Sorte oder 
Anbaugebiet. 

Die aus den Messdaten erhaltenen Werte 
können verwendet werden, urn Klassifizie-
rungssysteme zu vergleichen, die auf Gewicht 
und lineare Grossenmessungen basieren. 

Man kann zum Schätzen des Fehlers Prä-
diktoren erhalten, wenn zu Gewichtsvoraus-
sage Einzel- oder Mehrfachmasse verwendet 
werden, die als zuverlãssigste Kriterien zur 
Grössenbestimmung gelten. Die Tabelle 3  

zeigt die Werte der Prädiktoren bei der Schät-
zung des Gewichtes. Die Ergebnisse zeigen, 
dass die Breite ein besserer Prãdiktor für das 
Gewicht ist als Lange oder Tiefe, und das Sie-
bungsmass ist jedern Einzelmasskriterium 
überlegen. Das Siebungsmass ist dem Pro-
dukt aus den Massen Lange, Breite und Tiefe 
unterlegen in Beziehung zum Knoilengewicht 
mit einem Fehier von 30 r7o gegenuber einem 
von 10 % beim Letzteren. Bei Berücksichti-
gung des geschatzten Gewichtes verringert 
sich der Fehier auf 9 %, hingegen bei Anrech-
nung der Sorte und Herkunft auf 8 °lo. 

Die Tabelle 4 zeigt die Verteilung der fiber 
alle Sorten gemittelten Gewichte für Knollen 
in den bezeichneten Bereichen des Siebungs-
masses für 1983. 

Die Abbildung 2 zeigt für eine Sorte die 
Beziehungen zwischen log. Gewicht und log. 
Lange und Abbildung 3 die viel engeren Be-
ziehungen zwischen dem log. Gewicht und 
dern log. Produkt aus Lange, Breite und Tie- 
fe. 	 -• - 

Im Hinblick auf den beim Sieben entste-
henden viel grösseren Fehier erscheint es glei-
chermassen moglich, dass optische Klassifi-
zierungssysteme, die die drei wichtigsten 
Knollenmasse oder eines von diesen benut-
zen, ebenso erfolgreich sein werden, ohne 
dass Angaben Ober Sorte und Herkunft ge-
macht werden müssen. 

...-.--.-.-.. ., 
WO '0000. 

Résumé 

Méthodes de calibrage et leurs relations avec les dimensions, le poids et le volume 
des pommes de terre de djfférentes variétés 

L'objectif et l'efficacité des méthodes utilisées 
pour le calibrage des pommes de terre sont 
examines. Le tableau I montre la perfor-
mance du plus simple calibreur a une seule 
dimension. Les critères pour un calibrage au 
poids ou optique sont mentionnés. 

Une étude sur les relations entre les dimen-
sions, le poids, le volume et le calibrage a été 
réalisée sur 6000 tubercules des dix principa- 

les variétés de pommes de terre cultivées en 
Grande Bretagne, chacune issue de trois loca-
lités. Le materiel de mesure utilisé est pré-
senté (figure 1). 

L'analyse des résultats (tableau 2) montre 
que la distribution du poids, de la Iongueur, 
de la largeur et de la hauteur des tubercules 
se rapproche assez bien d'une distribution 
log-normale a variables multiples, indépen- 
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damment du lieu et de la varieté. Les valeurs 
issues de ces résultats peuvent ëtre utilisées 
pour comparer les systèmes de calibrage 
bases sur le poids ou les mesures linéaires de 
calibrage. Des variableprédicàtives peuvent 
être données pour estimer l'erreur de poids a 
partir dune ou plusieurs dimensions, en con-
sidérant les critères de calibrage les plus fia-
bles. 

Le tableau 3 regroupe les variables pour 
l'estimation du poids. 

Les résultats montrent que la largeur est un 
meilleur indicateur de poids que la longueur 
ou la hauteur et le calibrage est supérieur a 
tout critére dimensionnel pris séparement. 

Le calibrage est inférieur au produit des 
dimensions longueur, largeur et hauteur pour 
la determination du poids avec une erreur de  

30 % au lieu de 10 %, dans le deuxième cas. 
Si Ia variété est prise en compte, l'erreur nest 
plus que de 9 % et elle est réduite a 8 °lo en 
considérant la variété et le lieu. Le tableau 4 
montre la distribution des poids moyens de 
toutes les variétés pour différents calibres en 
1983. La figure 2 présente pour une variété le 
poids-log contre la Iongueur-log et la figure 3 
indique que la relation entre le poids-log et le 
produit-log de la longueur, largeur et hau-
teur est nettement plus piche. 

Etant donné l'erreur plus grande par le 
calibrage, il semble que les systèmes optiques, 
a partir des trois dimensions principales du 
tubercule ou d'une certaine mesure de celles-
ci puissent être utilisées avec succès sans tenir 
compte de la variété ou de l'origine. 
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SUMMARY 

The weight, length, breadth and depth were measured for each of 10 000 potato 
tubers. These were samples over 3 years of the 10 most commonly grown UK 
maincrop varieties. Volume, square-mesh riddle size and average projected area 
were also measured in the final 2 years. A multivariate log-normal distribution 
was found to give a good fit to the data. Illustrations are presented of how this 
distribution can be used to assess grading schemes. 

INTRODUCTION 

After harvesting or storage, potato tubers are graded into size categories to suit their 
intended use, whether for planting as seed potatoes, for direct domestic use, such as boiling, 
baking or chipping, or for the production of a range of processed products. The most common 
types of grader use square mesh riddles or screens. There is a specified series of mesh sizes and 
a potato is graded by the smallest aperture through which it passes. 

Developments in electronics offer opportunities for other grading schemes such as high-
speed weighing or optical sizing. The potential benefits are more uniformity within a grade, 
ease of selecting the required grades, less damage to the tubers and faster throughput of 
potatoes. However, to achieve consistency in grading it is important to understand the 
relationships between different methods. 

Any measurement of size varies over the population of potato tubers. The spread of values 
can be described by a statistical distribution, which can be used to predict the proportion of 
tubers in a particular grading category based on the size criterion, for example. In a similar 
way, joint distributions of several measures of size specify the relationships between the 
corresponding grading schemes. Further, if a standard multivariate distribution is found to be 
appropriate, then existing statistical theory can be used to simplify comparisons. 

MATERIALS AND METHODS 

In 1983, 6000 potato tubers, a mixture of the 10 most commonly grown UK maincrop 
varieties, were obtained from Yorkshire, the Scottish Borders and Fife. Each tuber was dry 
brushed and weighed on a gravimetric balance. (For the rest of the paper the weight in grams 
is denoted W). The maximum length (L cm) of each tuber was measured using an electronic 
caliper. The maximum breadth (B cm) approximately at right angles to the length was 

© 1988 Association of Applied Biologists 
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similarly measured. Finally, the maximum depth (D cm) orthogonal to the length and breadth 
was measured. By this definition L > B D. 

In 1985 and 1986, samples were reduced to 2000 tubers and measurements were increased to 
include volume (V cm 3 , riddle size (R cm) and optical size (A cm 2). Volume was estimated as 
the difference between the suspended weights of each tuber in air and totally immersed in 
water. The riddle size was taken to be the smallest mesh, which were multiples of 05 cm, that 
a tuber would pass through, less 025 cm. Projected areas were measured using photo-electric 
cells as tubers were illuminated, in turn, from three mutually orthogonal directions (Houston, 
1957). These were then averaged to form A. 

DISTRIBUTION OF VARIATES 

As an initial exploration of the data, variates were plotted pairwise. Fig. 1 gives as an 
example weight plotted against length for the 1986 data. From such plots, and those of 
individual varieties, some outlying observations were identified. They were too few to be of 
practical significance and may occasionally have been recorded in error. Because they would 
have exerted an undue influence on the subsequent analysis, they were discarded. 

36 250 
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Fig. 1. Weight plotted against tuber length for the 1986 data. 
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The plots of the full data sets revealed non-linear relationships between weight and the three 
other measures and long upper-tails for all four variates. These features are not surprising 
because weight is likely to increase as the product of length, breadth and depth, and the 
variates take only positive values which tend to give rise to upward skewed distributions. 

The variates were all transformed to logarithms to base 10 in an attempt to linearise the 
relationships and make the distributions more symmetrical. The scatter plots then looked 
approximately like samples from a multivariate normal distribution, as can be seen in Fig. 2, 
which shows the same data as Fig. 1, but on log-scales. If this is the case then the best 
estimates of the parameters in the distribution, that is the means, standard deviations and 
correlation coefficients, are their sample values. These are given in Table 1. Glasbey, 
Fleming & McRae (1988) give details of how data from different years were amalgamated. 
For variates W, L, B and D this is simply a matter of summing. For V, Rand A, relationships 
were established with the other variates using the 1985 and 1986 data, and then extended to 
incorporate the observed variability in 1983. This approach ensures that the resulting 
variance matrix is positive definite. 
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Fig. 2. Weight plotted against tuber length for the 1986 data. 
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It is possible for a sample from a multivariate normal distribution to violate the order 
restriction L B > D. However, the probabilities based on the parameter values in Table 1 
are small: there is a 3% probability that L < B and a 07% probability that B < D. There are 
ways round the problem such as using a truncated distribution, or regarding the observations 
as an ordered sample so that when the breadth exceeds the length the two values are 
interchanged. Unfortunately these modifications introduce a lot of complications into 
parameter estimation and use of the distribution to assess grading schemes. Since the 
probabilities involved are small, the problem has been ignored. 

Table 1. 	Estimated parameters in multivariate normal distribution of log-transformed tuber 
dimensions 

log W (g) log V (cm 3 ) log L (cm) 	log B (cm) log D (cm) log R (cm) 	log A (cm 2) 

Mean 2-1218 20913 08950 	07771 0-6837 0-7377 	15077 
Standard 

deviation 01765 0-1747 00766 	0-0646 00631 0-0632 	01228 
Correlation 

coefficients with 
log V 0-9994 
log L 08318 08313 
log B 0-9068 09063 06025 
log D 08556 0-8551 0-5050 	08215 
log R 0-9000 08995 05551 	09487 08984 
log A 09917 0-9918 0-8249 	08994 0-8485 08926 

Some understanding of the correlation structure of the data can be gained by finding 
combinations of the variates which are independent of one another. Principal components 
analysis provides these. The first component is that combination of variates which has 
maximum variance, the second component has the maximum remaining variance, and so on. 
(See, for example, Mardia, Kent & Bibby, 1979, pp, 213 —254). It turns out that the principal 
components of W, V, L, B and D approximate, within a scaling constant, to 

log W + log V+J log L + - log B + - log D, 

log L— log B—flog D, 

logB — log D, 

- log W - log V+2  log L + 2 log B + 2 log D, 

and log W — logV. 

On average, the difference in direction between these approximations and the estimated 
principal components is 5°. The components may be interpreted respectively as measures of 
overall size, prolateness, oblateness, ellipticity and density. The two remaining variates, A 
and R, have been omitted because they are potential grading criteria rather than fundamental 
measures of size, and therefore confuse the above structure. 

Multivariate normality can be tested by examining the approximate principal components 
for univariate normality. (Gnanadesikan, 1977, pp.  161 - 195, gives a general discussion of 
tests for normality). Ranked values of each principal component are plotted against quantiles 
of the normal distribution in Fig. 3. The plots are approximately linear, and therefore 
consistent with normality. This maybe checked using D'Agostino's test (1971), although with 
such large data sets normality is often rejected. For the fourth principal component the test 
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Fig. 3. The five approximate principal components for the 1986 data, individually scaled and plotted in 
descending order against normal quantiles. 

statistic is highly significant, although visual assessment shows that the lack of normality is 
not severe. 

The two remaining measurements are related to the others by 

log R = - 0005 + 063 log B + 037 log D, 
and 

log A = 0033 + 035 log W + 035 log V, 

with standard deviations of 0015 and 0016 respectively, obtained using methods analogous to 
those in the next section. 

We conclude that the weight, volume, length, breadth, depth, riddle size and projected area 
of a potato tuber can be regarded approximately as a sample from a multivariate log-normal 
distribution. Therefore the parameter values in Table 1 provide a summary of the data, which 
can be used to answer any question about grading schemes based on these measures of size 
subject to an important proviso: no great emphasis is placed on tail probabilities. 
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APPLICATIONS 

Prediction of weight from length 

One type of optical sizer measures the lengths of potatoes. From these the weights of tubers 
can be predicted using the preceding results. The best unbiased predictor of log-weight, given 
a tuber's length, is 041 + 192 log L, with a standard deviation of 010. This is obtained by 
substituting the values from Table 1 into the equations given in Appendix 1. 

This expression can be back-transformed to obtain 256 L' 92  as a predictor of weight with a 
multiplicative standard deviation of 10 0 . 10 , that is 125, which means that 95% of tubers of 
length L have a weight between 64% and 157% (±7 x 100.10 X 1.96) of the predicted one. 
However, weight is log-normally distributed and this predictor estimates the median value 
rather than the mean. An unbiased predictor of weight is obtained by multiplying the median 

by 10o1o21{2log(e)}  to give 262 L' 92, where e denotes the base of natural logarithms (Johnson & 

Kotz, 1970, P.  115). 

In some circumstances it may be preferable to use the dimensionally more intuitive L 3  
rather than L raised to a non-integer power. Equations are again given in Appendix 1. For 
the values in Table 1 this results in - 056 + 3 log L with a standard deviation of 01 3, which 
is larger than 0.10, previously obtained for the best predictor. 

Further, the expectation and standard deviation of log-weights of potatoes for a particular 
range of lengths can be derived. Equations for these are given in Appendix 2. The 
distribution of log-weights is not normal but, provided the range of lengths is small, the normal 
distribution provides a good approximation. For example, tubers with lengths between 7 cm 
and 8 cm have a distribution of log-weight which is close to normal with a mean of 208 and a 
standard deviation of 0.10. However, the log-weights of tubers whose length exceeds 10 cm 
have an upward-skewed distribution which has a mean of 239 and standard deviation of 0.11. 

These are all standard results in multivariate theory. They may be generalised to predict 
any variate when values of several other variates are known (Mardia, Kent & Bibby, 1979, pp. 
62-65). 

Probability of misclassification 
To obtain exact probability levels, bivariate normal integrals have to be used. These can be 

illustrated by considering probabilities of misclassification. 
Suppose that tubers are to be graded into two categories with riddle sizes below and above 

65 cm. If weight is used as the classifier, then 210 g is an appropriate choice of threshold to 
minimise the number of misclassifications. The general relationship is 

low W = 24 	
01765

218 + 	(log R - 0.7377), 
OO632 

and equivalent rounded thresholds are given in Table 2. Unlike in prediction, the correlation 
coefficient is not used in this equation. The probability that a tuber will not belong in the 
correct weight category is 

P(R< 65 and W> 210) + P(R> 65 and W< 210). 

The evaluation of these terms requires bivariate normal integrals, but tables exist, based on 
computer algorithms such as that due to Donnelly (1973). The probabilities in this example 
are 4% and 3% respectively. They sum to a misclassification probability of 7% if grading is 
done by weight but grades are defined by riddle size. 
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Table 2. Parallel weight grading and mesh criteria 

Mesh size (cm) 	Weight (g) 

3.5 40 
4 55 
4.5 75 
5 100 
5-5 130 
6 170 
6-5 210 
7 260 
7•5 320 
8 380 
8-5 450 

Varietal differences 

The proportion of grading errors of the two types varies with variety. For example, with 
Pentland Dell the percentages are 7 and 1. The total number of misclassifications could be 
reduced by using a slightly different weight threshold for each variety. 

Table 3 summarises the varietal differences in terms of the means and standard deviations 
of the shape statistics. These summarise and characterise varietal differences as observed in 
our samples of tubers. Sizes do not accord too well with expectation for different varieties, 
and may be a result of our samples being atypical. However, Pentland Dell is more prolate, 
i.e. sausage-shaped, than the others and Record has the highest density, as expected. 

Table 3. Means (standard deviations) of approximate principal components for all years 
combined 

Variety Size Prolateness Oblateness Ellipticity Density 

All 5-0(0-4) 0-16(0-06) 0-09(0-04) 0-50(0-04) 0-031 (0-006) 
King Edward 4-9(0-4) 0-16(0-05) 0-10(0-04) 0-51 (0-05) 0-035 (0.005) 
Pentland Dell 49 (0-5) 0-23 (0-07) 008 (0.03) 048 (0.04) 0-031 (0-005) 
Record 5-0(0-4) 0-15 (0-05) 0-11 (004) 0-50(0-05) 0-035 (0.006) 
Desiree 4-9(0-4) 0-18 (0.07) 0-10(0-04) 0-52(0-04) 0-029 (0-004) 
Pentland Ivory 5-1 (0-3) 0-14 (0-05) 008 (0.03) 0-49(0-04) 0-030 (0-005) 
Pentland Squire 5-0(0-4) 0-14(0-05) 008 (0.04) 0-50(0-04) 0-031 (0-005) 
Pentland Hawk 5-1(0.4) 0-18 (0-07) 0-08(0.04) 0-50(0-04) 0-032 (0.003) 
Pentland Crown 5-0(0-4) 0-16 (0-05) 0-11 (0-04) 0-50(0-04) 0-026 (0-008) 
Mans Piper 4-9(0-4) 0-15 (0-06) 0-10(0-03) 0-50(0-04) 0-030 (0.004) 
Cara 5-1 (0-5) 015 (0-05) 0-09(0-04) 0-49(0-04) 0-027 (0.008) 

Size = log W + log V + -- log L + -- log B + -- log D 

Prolateness = log L - - log B - -- log D 

Oblateness = log B - log D 
Ellipticity = —log W -  log V + 2 log L + 2 log B + 2 log D 
Density = log W - log V 

The overlap in distributions is sufficient for varietal differences to be ignored for almost all 
practical purposes. 

DISCUSSION 

Morris & Currah (1983) regarded weight as a variate dependent on other grading variates 
when considering onions and carrots. The approach in this paper, treating all the variates in 
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the same way, is more general in permitting any variate to be predicted from any other ones. 
Multivariate distributions may be used to characterise variations in size and shape of other 
crops, and thereby relate grading variates, for example. Sample sizes need not be as large as 
reported here, but must represent all sources of variability in the population which is being 
studied. The use of normal distributions is to be preferred, where possible, because they are by 
far the most well understood. This paper illustrates how normality may be achieved through a 
log-transformation. In other situations power transformations and shifts of origin may be 
useful. 

A multivariate log-normal distribution has been shown to describe the variability in tuber 
weights, volumes, lengths, breadths, depths, riddle sizes and projected areas. The usefulness 
of this result in studying potato grading schemes has been demonstrated. Other sources of 
grading error, such as a tuber failing to pass through a riddle even though it is small enough, 
have been ignored. Therefore misclassification probabilities should be thought of as lower 
bounds on the actual error rates to be expected. Further experimentation is needed. 
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APPENDIX 1 

The best unbiased predictor of log-weight, given a tuber's length, is the following linear 
expression 

11 w  + - p w, L(log L - 101 
CL 

with a standard deviation of 

- Pv,L) 

Here jz, and o, denote the mean and standard deviation of log W, and Pw, 1. denotes the 
correlation coefficient between log W and log L. 
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Another predictor of log-weight is given by 

/1w + 3(log L -IL), 

which is unbiased for the population of tubers, but not necessarily for tubers of a particular 
length. It has a standard deviation of 

,J(4 - 6cr, a1 PW.L  + 9a). 

APPENDIX 2 

Tubers that have a log-length between L, and L 2  have a log-weight distribution with 
expectation 

zI — z2 
aWPWL ,  P2  - P1  

and standard deviation 

17W I{ 1 + fv L 	

- 	 - 

P2 	_Pv.LLp_p]. 

Here Y 1  = (L - 

Z, = 
,J(2ir) 

and 
Y 	

Y212 1 

/(2R) f_.O 
ed. 

Similarly, Y 2, Z2  and P2  are functions of L 2 . These results are derived by Johnson & Kotz 
(1970, pp.  81-83 and 1972, p.  112). 
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SUMMARY 

A bivariate normal model is proposed for the joint distribution of potato tuber size and weight. 
Parameters in the model are estimated from the yields and numbers of tubers in a range of riddle-
size categories. The method is illustrated using data from a field experiment; parameters are estimated 
for each plot, and subjected to analysis of variance. The result is a more succinct summary of 
treatment effects than that produced in the traditional analysis, where data from each riddle size are 
analysed separately. 

INTRODUCTION 

In potato field trials, the yield and number of tubers 
are often recorded in discrete riddle-size categories. 
Conventionally, each category's yield and tuber count 
are treated as separate variates in subsequent analysis. 
The motivation for this paper is to find a succinct 
method of analysis which combines information from 
all size categories. 

By the separate analysis of each category, the 
conventional approach generates a large volume of 
results and ignores correlations among yields/ 
numbers in different riddle classes. Seemingly in-
consistent results may be obtained when data from 
riddle sizes are aggregated to create wider classes. By 
fitting a bivariate distribution to tuber size and 
weight, these problems can be circumvented. 

The distribution of tuber weight was modelled 
using a truncated normal curve by Sands & Regel 
(1983). Marshall & Thompson (1986) evaluated this 
model, and found it appropriate to their data. Travis 
(1987) fitted a normal model to tuber size data 
grouped in four to ten riddle-size categories. He 
showed that this benefited the analysis of field 
experiments, the prediction and physiological study 
of tuber size distribution, and the economic analysis 
of management decisions. Glasbey etal. (1988) found 
that a multivariate log-normal distribution accurately 

* Now Mrs J. E. Abbotts, 14 Melville Street, 
Pollokshields, Glasgow G41 2LW, UK. 

t To whom correspondence should be addressed.  

modelled tuber weight, volume, length, breadth, 
depth, size and projected area. MacKerron et al. 
(1988) used the univariate log-normal to model the 
distribution of tubers among fifteen riddle classes, 
having found that the mean tuber weight and mean 
tuber size in each riddle class were linearly related on 
a logarithmic scale. 

This paper describes the use of the bivariate normal 
distribution to model tuber size and weight jointly; 
where the data are recorded in discrete riddle-size 
categories. The data used for illustration come from a 
field trial run by ADAS at Gleadthorpe Experimental 
Husbandry Farm in 1989. The aim was to study the 
effects of harvest date, nitrogen application and 
sprouting on the yield of tubers. The experiment was 
arranged in a split-plot design with three complete 
blocks. Harvest date was the main-plot treatment, 
with five successive harvests 2 weeks apart. Tubers 
were sprouted (chitted) at either 75 or 275 day °C. 
Nitrogen was applied at either 150 or 250 kg/ha. The 
yield and number of tubers in the size groups 
<40 mm, 40-45 mm, 45-55 mm, 55-65 mm, 
65-75 mm, 75-85 mm and > 85 mm were recorded 
from each of the 60 experimental plots. Figure 1 
illustrates data from one such plot, together with 
fitted curves to be discussed later. 

In the sections which follow, graphical methods are 
used to find the appropriate distribution, an algorithm 
is proposed for estimating the parameters of the 
distribution from grouped data for each plot, treat-
ment effects are identified by analysis of variance of 
functions of these parameters, and the results are 
compared with those from a traditional analysis. 
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Fig. I. (a) The number of tubers in each riddle size with fitted 
density curve. (b) The yield in each riddle size with fitted 
yield by size model. 

EXPLORATORY METHODS 

Graphical methods were used to identify the bivariate 
normal as an appropriate model for the joint 
distribution of tuber size (R) and weight (W). 
Following the precedent set by previous workers in 
this area, we entertained the normal and log-normal 
as possible distributions. For each experimental plot, 
each riddle size was plotted against the normal 
quantile appropriate for the proportion of tubers 
smaller than that riddle. Let N denote the number of 
tubers in the riddle size range R to R 1, 1 , for i = 
0..... n, and let N be the total number of tubers 
harvested from a plot, that is N = N. Then R 
was plotted against 

0 -1
J  N

1/N) 

for i = 1 .....n, where 1i' is the inverse of the 
cumulative normal distribution, that is the inverse of 

normal distributioft. Figure 2(a) shows the plot for 
the illustrative data from Fig. 1. 

To see whether a log-normal model is more 
appropriate for the tuber size distribution, a similar 
plot was produced, but with R replaced by log R. This 
is shown in Fig. 2(b). These graphs are typical of the 
results obtained from the rest of the data, and suggest 
that although little difference is observed between the 
two distributions, the untransformed normal is 
slightly better. 

To check for bivariate normality between tuber 
weight and size, mean tuber weight in each riddle size 
class was plotted against mid-riddle size. So, if 1 
denotes the total tuber yield in the riddle range R, to 
R 1, , then }/N was plotted against (R + R 1)12, for 
= 0..... n, provided that N > 0. For these plots, the 

outer limits of riddle size were set, arbitrarily, to R 0  = 

25 mm and R, = 95 mm. These data should lie close 
to a straight line for a bivariate normal distribution to 
be appropriate. Fig 2(c) shows the results for the 
illustrative data. 

For comparison, Fig. 2(d) shows a plot of the log 
of mean weight against the log of the mid-riddle size, 
which should be linear if W and R are instead 
bivariate log-normally distributed. For these data, the 
log-transformation seems better, mainly on the basis 
of the left-most point in the figure. However, there is 
little to choose between (c) and (d), and when 
combined with (a) and (b) we opted to use an 
untransformed scale. This is supported by data from 
other experimental plots, which are not shown here 
for the sake of brevity. Of course, it would be 
impractical to use an untransformed scale for some of 
the 60 plots and a log-transformed one for the others. 

The plots were also useful in identifying a few 
recording errors in the data. These were corrected 
before further analysis. 

ESTIMATION PROCEDURES 

The bivariate normal distribution has five parameters: 
the mean tuber size; the standard deviation of 

tuber size; V, the mean tuber weight; o,, the 
standard deviation of weight; and p, the correlation 
coefficient between size and weight. The probability 
density function is as follows: 

1 	

{

—1 
2 
 exp 

21ro R o w  /(l — p9) 	2(1 _p2)\ 
O.  ) 

- 2p (R n)  (w w ) + (W w ) 2]} 

(z) 
=/(2) J e2/2 dx 

If the plotted points lie close to a straight line, then 
this is indicative of the data having come from a 

Parameter estimation was complicated by the lack of 
size and weight data from individual tubers. 

The EM (Expectation—Maximization) algorithm 
(Dempster et al. 1977) was used to estimate the mean 
and standard deviation of tuber size from the grouped 
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Fig. 2. (a) Normal probability plot of riddle size. (b) Normal probability plot of log riddle size. (c) Mean tuber weight 
against mid-riddle size. (d) Log mean tuber weight against log mid-riddle size. 

data in each plot.The same initial estimates of the where Z 0  = (R-ji R)/ ° R O(Z) = ( 1//(2 ii ))e_Z'I 2  and 
mean (J.'R = 50) and standard deviation = 11) of tD has already been defined. This is a standard result 
tuber size were used as the starting values for all plots. (see, for example, Johnson & Kotz 1970, pp.  81-83). 
The E-step required the evaluation of the first and Similarly 
second moments of the size distribution (E(R) and 	E(R 2  I N, ... , N, , 
E(R 2)), assuming an underlying normal distribution 
with mean j.t and standard deviation o-R: 	 = . N, E(R 2  I R 	R R 01 , ARI o,0) 

E(R IN0.....N, [1 R , UR) 	
N_0 

95(Z 1) - cb(Z + ) 
= 	NE(RIR I  R Rj,i,R,R) 	

= i Ni 
 tg2 +29ROR 

N_ 0  

Z 0  ç(Z 1) - Z",çb(Z1+1) 1 	
N1 

N10 I PR+GR (D(Z, +,) - (D(Z,)l 	
+ 	

(Z11)-(Z) )} 
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In this section of the paper, the outer limits of riddle 
size were set sufficiently wide to encompass the full 
range of the normal distribution without truncation, 
namely R 0  = — 50 mm, R 1  = 150 mm. The M-step 
of the algorithm involved the calculation of maximum 
likelihood estimates of M, and o from the estimated 
moments obtained above, as follows: 

lR = E(R) 

= E(R 2)—i 

These estimates were then substituted in the next E-
step, and the M-step was repeated. This process 
continued until convergence, i.e. until js and o-
changed by < 10 -  between iterations. The curve in 
Fig. 1(a) shows the fitted distribution for that 
experimental plot, namely 

Ncb(R ) 

plotted against R for various riddle sizes. 
Regression of mean tuber weight (}/N) in each 

riddle class on 

E((R—ji)/aIR 	R R 1, 1 ) 

provided estimates of 	(intercept) and o- p 
(gradient). This follows because 

E(WR < R R 1, 1 ) = 
where 

= (E(R I R R zc R,1) - 

- ç(Z) - 

- t(Z 1+1) - 

Again this is a standard result (see, for example, 
Johnson & Kotz 1972, p. 112). The regression was 
weighted by the number of tubers in each riddle size, 
by minimizing 

Ni (_ w _o w PXi) 

In theory, the regression mean square error gives an 
estimate of the variance of tuber weight, which could 
be combined with the slope estimate to obtain separate 
estimates of o- w  and p. This was not done because the 
value of the mean square error is dominated by the 
slightest lack of fit of the bivariate model. Therefore, 
essentially, cr, and p are unestimable from such 
grouped data. The curve in Fig. 1(b) shows the fitted 
yield-by-size model for that experimental plot, namely 

E(WIR)Nq5 (R) 

/ 
jJ.tjq +O v P 

o_R I 	\ o-,)  

plotted against R for a range of riddle sizes. This 
looks like a normal density curve, but it is not one; 
the upper tail is slightly heavier than the lower one. 
Therefore, it should be noted that a bivariate normal 
distribution for yield and size does not imply a 
normal model for yield-by-size. 

RESULTS 

The parameter estimates for the illustrative plot are 
given in Table 1, together with an important fifth 
statistic, N, the total number of tubers in this plot. 
Corresponding results were derived for each of the 
other 59 experimental plots. 

To see whether the treatments (harvest date, 
nitrogen and sprouting) affected these parameters, 
five separate analyses of variance were performed. 
However, the results were dominated by size effects; 
a treatment which increased mean size (P.R)  also 
increased mean weight (j.t)  and the standard 
deviations 0R  and o,. Therefore, to make for more 
informative analyses, six new variates having bio-
logical meaning were calculated from combinations 
of the original five parameters. These were: total 
weight, number, mean weight, sphericity, coefficient 
of variation of tuber size and correlation coefficient 
between size and weight multiplied by the coefficient 
of variation of weight. Total weight of tubers was 
derived from the mean tuber weight (,.t)  multiplied 
by the number of tubers harvested (N), and converted 
to an estimate of the yield in t/ha by dividing by plot 
size. It is close to, but not precisely the same as, the 
observed total weight in each plot, because it has been 
derived in a more complicated way by fitting a 
bivariate normal distribution to the data. Sphericity 
(tR/l.t) is a measure of shape, which relates size to 
weight; it is greatest for spherical tubers, and decreases 
as tubers become more elongated (or possibly as 
density increases). The coefficients of variation (o, ? / J.tR  
and o-/p)  give dimensionless measures of variation, 
in proportion to the mean tuber size and weight. 
However, the correlation between weight and size (p) 
had to be left in the formula for the coefficient of 
variation for weight, because it could not accurately 
be separated from the standard deviation. 

A split-plot analysis of variance was performed on 
each of the new variates, to examine the effects and 

Table 1. Estimates of parameters for plot data of 
Figures 1 and 2 

Number of tubers, N 	 801 
Mean riddle size (mm), j.i 	 524 
Standard deviation riddle size (mm), o- 	 1329 
Mean tuber weight (g), p.t. 	 137-8 
Standard deviation of weight x correlation (g), 	8858 

Tw P 
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Table 2. Estimated treatment effects for six summary statistics 

Total weight 
of tubers 

Nl11106 AS 
(t/ha) 

Number 
NI 1 03 A* 
(thou/ha) 

Mean 
weight 

Pw 
(g) 

Sphericity 
b1?/lw, 

(mm/g)s 

C.V. of 
size 

O'R/PR 

(%) 

Correlation 
x c.v. weight 

P°w/lw 
(%) 

Harvest date 
15 Aug 556 559 1 100 1039 195 661 
29 Aug 601 536 112 10-17 1 2351 669 
12 Sept 6551 552) 119 10181 2291 651 
26 Sept 652 508 % 

5261 
129 % 1013 1 240 I 645 

10 Oct 681 J 1291 1023) 234) 604 
(s.E.D.) (185) (131) (20) (0042) (046) (151) 

Nitrogen 
150kg/ha 615 517 119% 1021% 226% 642 
250 kg/ha 64-2 556 1171 10231 2281 650 
(sEa) (065) (9-7) (1-9) (0.019) (029) (092) 

Sprouting 
75 day °C 	61-2 	 560 	110 	1030 	22-0 	643 

275 day°C 	646 	 512 	126 	1014 	233 	649 
(s.E.D.) 	 (065) 	 (97) 	(1-9) 	(0019) 	(029) 	(0-92) 

Bracketed terms are not significantly different at the 5% level. 
* A = plot size = 00014332 ha. 

Table 3. Estimatedsprouting effect for original variates 

Riddle size limits 

Sprouting 

75 day °C 	275 day °C S.E.D. 

Number (thou/ha) 
<40 116 	> 	99 6 

40-45 86 	> 	69 4 
45-55 191 	> 	156 5 
55-65 128 	 132 3 
65-75 33 	< 	50 16 
75-85 54 	< 	93 07 
>85 013 	 005 006 

45-65 319 	> 	288 6 
65-85 39 	< 	59 2 
45-85 358 	 347 5 

Yield (t/ha) 
<40 29 	> 24 01 

40-45 51 	> 4-3 02 
45-55 19-6 	> 170 0-5 
55-65 223 	< 239 05 
65-75 85 	< 13-3 04 
75-85 20 	< 34 03 
>85 006 002 003 

45-65 419 40-9 07 
65-85 104 	< 167 06 
45-85 523 	< 576 0-7 

Symbols < and > denote differences significant at the 5% 
level. 

interactions of the treatments on the distribution of 
tuber weight over the riddle sizes. The main effects are 
summarized in Table 2, only a couple of interactions 
having been statistically significant. 

Total weight of tubers increased with successive 
harvests until date 3 when it stabilized. However, it is 
evident from the second and third columns in the 
table that this was due to heavier tubers. The first 
three harvest dates produced more tubers, but weights 
increased through the first four dates. Nitrogen level 
250 kg/ha produced a greater total weight than a 
level of 150 kg/ha. This is simply due to there being 
more tubers with the same average weight. Sprouting 
treatment 275 day °C produced a greater weight than 
75 day °C. Here, the higher temperature produces 
fewer, but heavier, tubers. 

The second set of three variates shows further effects 
of the treatments. The first harvest date and lower 
sprouting temperature produced tubers which were 
more spherical (or maybe had lower density) and had 
a lower coefficient of variation in tuber size. Tubers 
harvested on the final date had a lower coefficient of 
variation in weight (or a lower correlation between 
weight and size). 

For comparison with this analysis, some results 
from the conventional analysis are presented in Table 
3. For brevity, attention has been restricted to the 
sprouting treatment. The higher sprouting tempera-
ture produced fewer tubers in riddle sizes < 55 mm, 
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but more between 65 and 85 mm. Over the ware grade 
(45-85 mm) the effects just about cancelled out, 
leaving no detectable difference in numbers. Similarly, 
total weights for the high temperature were less for 
riddle sizes < 55, but more between 55 and 85 mm. 
Overall, the higher sprouting temperature produced a 
greater weight in the ware grade. 

Computer programs, written in GENSTAT 5, which 
performed these analyses are available from the 
authors. 

DISCUSSION 

Dissatisfaction with the traditional approach to 
analysing potato yield trials, where the data from 
each plot are recorded in several riddle sizes, has led 
to the development of the present method. The 
separate analysis of many highly correlated size classes 
has been shown to be unnecessary. The new method of 
analysis overcomes the problems of finding spurious 
significant effects in single size classes and obtaining 
seemingly inconsistent results when size classes are 
combined into wider groups. Results for the new 
method can be more succinctly presented. In this 

example, six analyses have replaced a former 18, 
where originally the yield and number of tubers in six 
10 mm wide riddle categories and various aggregates 
had been analysed as though they were independent 
variates. The new variates can reveal more subtle 
effects, such as changes in sphericity or coefficient of 
variation, which were hidden in the original analyses. 
However where the analysis of specific size grades, 
such as the ware grade (45-85 mm), is important for 
the market, these can be analysed after the six new 
variates. As such, the new analysis complements, 
rather than replaces, the traditional one. 

The method of analysis proposed is likely to have 
wide applicability for size-grouped data. Analogous 
estimation procedures can be devised for data where 
a bivariate log-normally distributed model is found to 
be more appropriate. 

We thank ADAS for allowing the use and pub-
lication of their data, and J. W. McNicol for en-
couraging and advising on the work. The research 
was funded by the Scottish Office Agriculture and 
Fisheries Department. 
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Graphical displays are used to study open- and closed-time durations of a single ion-channel. 

CUSUM plots, in conjunction with Komogorov-Smirnov type tests, provide checks for changes in 

channel behaviour. Distributional properties are examined by means of Q-Q and P-P plots. The 
methods are illustrated using GABA-activated channel records from Ascaris suum. 

Introduction 

Graphical displays of data can be very informative, both before and after any 
statistical analyses. Exploratory plots can suggest an appropriate model or reveal 
unexpected features of a data set. After a model has been fitted, confirmatory, or 
diagnostic, plots can provide better general assessments Sf goodness-of-fit than can 
be achieved by specific tests. 

In this paper cumulative sum (CUSUM) plots are defined and illustrated; they 
are used to check for changes in behaviour of a single ion-channel. Quantile (Q-Q) 
plots and probability (P-P) plots are used to investigate the appropriateness of 
mixtures of exponential distributions for durations of open- and closed-times. Q-Q 
plots are used to see whether the data have the form of a single exponential or a 
mixture of exponentials. P-P plots are used to confirm the goodness-of-fit of 
estimated mixtures of exponential distributions. 

" 	
These methods are illustrated using a particular data set, which showed evidence 

of non-stationarity, from GABA-activated channel records from Ascaris suum. A 
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cell-attached patch-clamp technique was used with 3 jtM GABA in the pipette; th 
data come from one of the experiments reported by Martin (1985). 

Methods 

Cf/SUM plots 

CUSUM plots have been described by Woodward and Goldsmith (1964). A 
CUSUM plot of a series of observations x 1 , x ...... x,, can be obtained as follows: 

Calculate the mean value of the x's, that is 

= 	x,; 

Calculate the cumulative sum 

=(Xi  — i) 	for j=1..... 

(this may be obtained recursively by 

S, =0 

S'S_ 1 +(x—) 	for j=1..... n;) 

Plot S, against j for  j= 	n. 

If If the x's are a permutation of the integers I to n then the hypothesis that these 
are in a random order can be tested using a Kolmogorov—Smirnov (K—S) type test, 
see for example Pettitt (1979). The standard K—S test statistic is the maximum 
deviation of the CUSUM from zero. This is particularly sensitive to systematic 
differences between the first and second halves of the series, but will often fail to 
detect non-randomness near the start or finish of the series. However, other K—S 
type statistics exist which can be used to test for non-randomness at the ends of the 
series. For the theory see Hajek and Sidak (1967, p. 182). For any positive value of 
a there exists a test statistic 

1 
D=maximumvalueof{( 

IsP 	J 	for j=1 

where I S. I denotes the absolute value of S1 . (The value a = 1 gives the standard 
K—S statistic.) The probability of obtaining a D,-value greater than this if the x's 
are the integers I to n in a random order is approximately 

2exp 
—24aD2 

n 2 (n + I) 11 
or 1 if this is smaller. A small probability for a particular value of a indicates that it 
is unlikely that the x's are in a random order. 
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Q-Qplots 
If observations x,, x _  x, are a random sample from an exponential distribu-

tion with a mean of unity, then the ith smallest value has an expected value close to 
the ith quantile which is - log,(] - (i - )/n). Even when the exponential distribu-

tion has a mean value other than unity, or a censoring boundary because observa-

tions below a certain threshold are not recorded, the ith smallest observed value will 

still be approximately linearly related to this ith quantile. Therefore, if the ordered 

observations are plotted against the quantiles and lie approximately in a straight 

line, then this is evidence for the x's being exponentially distributed. The slope 

corresponds to the mean of the uncensored distribution and the intercept is the 

censoring threshold. This is an example of a quantile (Q-Q) plot (Wilk and 
Gnanadesikan, 1968). 

P—P plots 

When a distribution has been fitted to data the goodness-of-fit can be assessed 
using a probability (P—P) plot (Wilk and Gnanadesikan, 1968). The estimated 

probabilities of observations being less than certain values are plotted against the 

proportions of data that are less than these same values. The points should lie 

approximately on a 45° line between (0,0) and (1.1). If the distribution is discrete on 
an integer scale and m distinct values are observed: 

X (>> <X (2) ... <xl ,,, > , 

with respective frequencies N> . N......N,,, summing to n. then the P—P plot for a 
particular fitted distribution simplifies to a plot of 

P(.x :s x > , > ) and P(x :5  x > , +  - 1) against 	N1 	for i = 1..... n. 

The significance of any departure from the 45° line can be tested using a K—S 

statistic. (See, for example. Siegel, 1956, pp. 47-52.) The test will be conservative, 

that is it will reject the fit less often than it should, because parameters in the 

distribution have been estimated using the data that are being tested. The test 
statistic D is the maximum vertical displacement of the slope-corrected P—P plot 
from the 45° line. The probability of a more extreme value if the distribution is 

correct is approximately 

2 exp[— 2nD 2 J, 
or 1, whichever is less. 

Results 

CUSUM plots 
Fig. IA shows the log-duration plotted against observation number for 185 

consecutive open-times from the GABA-activated channel record. Times have been 

log-transformed to enable short and long times to he viewed on the same scale. 
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Fig. 1. A: log-transformed open-times plotted in observed order. Ordinate, log e  times (ms); abscissa, 

observation number. B: CUSUM of ranks of open-times. Ordinate, CUSUM; abscissa, observation 

number. 

Similarly, Fig. 2A is a plot of the log-transformed closed-times which interlace with 
the open-times in Fig. IA. If the behaviour of the ion-channel has remained 
constant then we would not expect either plot to have any striking features such as a 
drift in mean value or a grouping of very long or short times. Examination of Figs. 
IA and 2A does not reveal any strong evidence for non-stationarity. 

Fig. 2B shows the CUSUM plot of closed-times with the zero line marked on for 
reference. Some features of the data are shown more clearly in this figure than they 
were in Fig. 2A. The downward slope over the first 25 observations indicates that on 
average they are less than the mean closed-time. The large upward jump about 
observation 88 is caused by 3 long closed periods. This is followed by a run of 
below-average closed-times up to observation 125. There are two long closed-times 
about observation 170 which are again followed by below-average times. By its 
definition the CUSUM ends back at zero because S. = 0. 

To reduce the dominance of a few long times, CUSUM plots could be obtained 
using log-transformed times, or any other transformation for that matter. An 
alternative approach is to rank the data, so that for instance the duration of the ith 
open-time 0, is replaced by k if 0, is the kth largest open-time. Figs. lB and 2C 
show the CUSUM plots of the ranks of the open- and closed-times respectively. In 
Fig. I B it can be seen that the first 80 or 90 open-times tend to be shorter than those 
which follow. The most distinctive feature of Fig. 2C is the sequence of short 
closed-times between observations 90 and 100 which cause the CUSUMs to de- 
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crease rapidly. It is informative to compare Figs. 28 and 2C; Fig. 2B emphasises the 
long times whereas Fig. 2C emphasises the sequence of short times. 

Although a lot of useful qualitative information can be extracted from CUSUM 
plots it is difficult to assess whether the fluctuations are arising by chance or 
because of some change in behaviour of the ion-channel. This is where ranks prove 
very useful because the hypothesis that they are in a random order can be tested 
using a K—S type test, as described in the previous section. If the ranks are in a 
random. order then the process is stationary. However, the converse is not true 
because if a stationary process has correlation between successive observations then 
the ranks will not be in a random order. This is precisely the situation encountered 
with some ion-channel recordings, for example a channel may make slow transitions 
between two modes of gating. Therefore the durations of successive openings or 
closings may be positively correlated, but the correlation is often small. The rank 
correlation coefficients for the open- and closed-times are 0.19 and 0.05 respectively 
for this data set. So, although the test may be used to give some indication of 
non-stationarity it should be interpreted with caution. 

The probabilities obtained for the CUSUM of the ranks of the open-times 
plotted, in Fig. lB were 0.08, 0.006 and 0.28 respectively for a = 9. 1 and 1/9. In 
order, these values of a provide tests for non-stationarity at the start, middle and 
finish of the recording period. The value of 9 was chosen rather arbitrarily to 
measure departures from zero in the first few observations, and the value of 1/9 
produces the equivalent statistic for the last few observations. Therefore, there is 
strong evidence, even bearing in mind that consecutive times are correlated, that the 
behaviour of the ion-channel changes, and this appears to he between observations 
80 and 90. The probabilities for test statistics based on the closed-times are 0.36. 
0.18 and 0.35 using the same values for a. This result shows that the CUSUMs 
plotted in Fig. 2C do not depart significantly from the zero-line. However this 
should not preclude examination of more local details in the CUSUM plots As has 
already been commented on, there are three closed-times of long duration about 
observation 88 followed by a sequence of short times up to observation 100. Before 
this event the open-times are oil average shorter than afterwards. Combining these 
pieces of evidence together, there are grounds for believing that the behaviour of the 
ion-channel changes between observations 85 and 100. Therefore, for further 
analysis, we pro pose to divide the data set in two, taking the first-half up to 
observation 85, the second-half after observation 100 and discarding the centre 
portion. However it is important to realise that the change in channel behaviour 
may not be permanent, and if the record had been longer then the channel may have 
reverted to its original mode of gating. Short-term, apparent non-stationarity may 
simply be a local feature of a stationary process. 

The CUSUMs so far discussed have been used to detect changes in mean 
duration times. They can also be used to detect other departures from assumptions, 
such as non-constant variability in durations. For example, Fig. 2D is a plot of the 
CUSUM of the ranks of Ilog C, - log C1 for the first-half of the data, where log C! 
is the mean value of log C1  for i = 1..... n, C, is the duration of the ith closed time, 
n is now 85, and I I denotes absolute value. The downward slopes at the start and 
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finish of the series are evidehce for the closed-times being more variable in, the 
middle of the series than at the ends. The probabilities associated with K—S type 
tests are 0.74, 0.22 and 0.04. Therefore there is some evidence for less variability 
after the 70th observation. However, it should be borne in mind that correlations in 
the data make the 0.04 probability less significant than it appears and there are risks 
of data-dredging, because if enough tests are performed on a set of data then 
something unusual will always be found. Therefore, we will take no action to rectify 
this possible flaw. 

Q— QPlots 
Fig. 3A is a Q-Q plot of the open-times in the first-half of the data. Times of less 

than I ms have been omitted because the response time of the recording equipment 
meant that some short openings were missed. A notable, and sometimes notorious, 
feature of Q-Q plots is that they emphasise tails of distributions at the expense of 
the centre portion. On occasions this can be useful, although not in this instance. 
Although the plot looks linear it .is dominated by the largest few open-times and 
tells us only that these are approximately exponentially distributed. To examine the 
distribution of shorter open-times we have to magnify the lower part of Fig. 3A. 
This is plotted in Fig. 3B and displays very marked curvature. Therefore there is 
clear evidence that the open-times are not distributed as a single-exponential. 

No comparable Q-Q plots exist for identifying mixtures of exponential distribu-
tions unless some of their parameters are known. However some information can be 
extracted from the Q-Q plot for a single-exponential distribution. If the trend in 
the data is anywhere concave, that is has a negative second derivative, then it cannot 
be a sample from a mixture of exponcntials because Q-Q plots for mixtures of 
exponentials are convex. Further, if the exponentials have sufficiently different 
mean values then the Q-Q plot will be piecewise-linear, that is a series of straight 
lines joined together, one for each distribution in the mixture. In particular, for a 
mixture of two well-separated exponential distributions the single-exponential Q-Q 
plot will be bilinear. We conclude from Figs. 3A and 3B that the open-times are not 
inconsistent with a sample from a mixture of exponential distributions, but at least 
two exponentials are required. The general slope in Fig. 3A of about 30 ms is an 
indication of the mean open-time in the slowest exponential component in the 
mixture distribution. 

Figs. 3C and 3D show comparable Q-Q plots of the closed-times in the first-half 
of the data. Once again there is evidence that there are at least two exponential 
distributions present in the mixture. 

P—P plots 

The observed times were on a discrete, rather than a continuous, scale, so discrete 
analogues of mixtures of exponential distributions have been used. These were fitted 
to the open- and closed-times in the first- and second-halves of the data by 
maximum likelihood estimation, as described by Martin (1985). The best-fitting 
single exponential distribution for the open-times in the first-half of the data has a 
mean value of 22 ms. Fig. 4A shows the corresponding P—P plot which has been 
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exponential distribution. C: Q-Q plot of closed-times. First-half of data. Ordinate, closed-times (ms); 

abscissa, quantiles of exponential distribution. D: Lower portion of Fig. 3C. Ordinate, closed-times (ms): 

abscissa, quantiles of exponential distribution. 

modified by subtracting the 45 0  slope. Therefore, if the distribution fits well, the 
points should lie close to the zero-line which is also shown. The large negative 
departures up to a probability of 0.6 show that the fit to the first 60% of the data is 
poor, essentially because the single exponential distribution is fitting the longer 
open-times. There are more very small times observed than would be expected from 
an exponential distribution. In compensation, between probabilities 0.4 and 0.6 
there are fewer observations than expected. For Fig. 4A the K—S type test gave a 
probability of 0.002. We conclude that a single-exponential distribution gives an 
inadequate fit to the open-times in the first-half of the data. Ticis confirms the visual 
impression we had already drawn from Fig. 4A, and also from the curvature in the 
Q-Q plot in Fig. 3B. 
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ability. 

Fig. 4B shows the slope-corrected P—P plot for the best-fitting mixture of two 
exponential distributions fitted to the open-times in the first-half of the data. The 
deviations from the zero-line are substantially smaller than those in Fig. 4A, 
indicating a much better fit. The probability of the K—S statistic is 0.75 which 
indicates a satisfactory fit. Of course it cannot be thus concluded that a mixture of 
two exponentials is adequate. For this type of data there are strong reasons to 
believe that the distribution of open-times is a mixture of exponentials, so a specific 
likelihood ratio test of two exponentials against three exponentials is more powerful 
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than the portmanteau K—S test. However the improvement in fit of 3 expoñentials 
over two is negligible in this case and so we are safe to conclude that a mixture of 
two exponential distributions is sufficient. 

A mixture of two exponential distributions also gave a good fit to the open-times 
in the second-half of the data, but with different estimated parameter values. In the 
first-half of the data the means of the fitted exponential (and standard errors) are 
2.4 (0.7) and 34 (6), with proportions 0.47 (0.08) and 0.53. In the second-half of the 
data the means are 1.8 (0.7) and 50 (7), with proportions 0.31 (0.08) and 0.69. These 
sets of values are substantially different from one another as can be seen in Fig. 4C 
which is a slope-corrected P—P plot of the distribution estimated from the second 
half of the data plotted against the first-half of the data. There are more small 
open-times in the data than are predicted by the distribution. The K—S statistic has 
a probability value of 0.006. This confirms the evidence in the CUSUM plots that 
the ion-channel changes its behaviour in the middle of the recording period. 

Discussion 

The statistical analysis of patch-clamp data has been discussed by Colquhoun - 
and Sigworth (1983), Horn et al. (1984) and Horn and Vandenberg (1984). For 
example Colquhoun and Sigworth (1983) illustrated the use of histograms and 
probability density functions, and the methods of the minimum x 2  and maximum 
likelihood for fitting exponential distributions. Horn et al. (1984) used runs analysis 
to test for non-randomness between records. Horn and Lange (1984) used cumula-
tive histograms and Pearson's x 2  test for parallel samples to test for non-stationar-
ity. Gration et al. (1981) tested for a specific form of randomness, that is for a 
Poisson process, although it is evident from their Fig. I that their data also exhibited 
local non-stationarity. 

None of these authors however have illustrated the use of informal procedures 
such as CUSUM, Q—Q, or P—P, plots for patch-clamp data. The advantages of 
these techniques, as we have illustrated, is that they produce a relatively simple 
visual display of the structure of the data and allow subsequent confirmation after 
the fitting of exponentials. With these techniques it is possible to identify the 
position of any deviation from expected patterns; this can then provide a rational 
basis for editing and selecting data for further analysis. The use of the plots does 
not preclude the use of more formal statistical tests which are still required for 
confirmation. 
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Assumptions inherent in use of the binomial distribution are relaxed in order to identify alternative distributions with different 
variances, for fitting to the frequency distributions of numbers of open channels in multi-channel patches. The variance is less than 
that for the binomial distribution with the same expectation when either there is a negative interaction between channels or channels 
have different probabilities of being open. When the variance is greater, this may be because of positive interaction between channels 
or non-stationary behaviour. Use of the distributions and lack-of-fit statistics is illustrated. 

Introduction 

A record from a multi-channel patch can show 
how many channels are open at a given time, but 
not which ones they are nor the number which are 
closed. By averaging over time, a distribution is 
obtained of the frequencies with which different 
numbers of channels are open.. When the binomial 
distribution fits well to this, it provides a simple 
explanation and summary of important features of 
channel behaviour. This paper addresses the prob-
lem of what to do when the binomial fit is poor. 

Assumptions inherent in the use of the bi-
nomial distribution are identified. By relaxing each 
of these in turn, generalized binomial distributions 
are found. A similar approach in a different area 
of application is followed by Edwards (1960). 

Correspondence: C.A. Glasbey, Scottish Agricultural Statistics 
Service, University of Edinburgh, The King's Buildings, May-
field Road, Edinburgh EH9 3JZ, U.K. 

Properties and methods of fitting are considered. 
The distributions are illustrated using a set of 
observed frequency counts of numbers of open 
channels in a multi-channel patch at different 
transpatch potentials. The binomial does not de-
scribe the frequency distributions of the number 
of channels open (Thorn and Martin, 1987). 

Methods 

In the following account the data are treated as 
idealised in that the frequency of response of the 
recording system does not affect them. 

If there are n channels under a patch, and each 
has a probability p of being open, independent of 
the state of all other channels, then the probability 
of i channels being open at a particular time is 

Pi =
___________ 

I p(1—p) 	fori=0,1,...,n 

where n! denotes n factorial, that is n X (n - 1) 
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x ... x2 x 1. This is the binomial distribution; 
see for example, Johnson and Kotz (1969, pp. 
50-86). The number of open channels has an 
expected (mean) value of np and a variance of 
np(1 — p), which is always of smaller magnitude 
than the expected value. Given observed frequen-
cies x 0 , x1 ,..., Xm,  summing to 1, of 0, 1,..., m 
channels being open in a particular experiment, 
parameters n and p can be estimated by maximiz-
ing the scaled log-likelihood 

>2.x, logP, 

using a numerical optimization routine. However, 
if p is small and n is large, then the binomial 
distribution approaches the Poisson distribution 
and n becomes indeterminate (Sachs et al., 1982). 
More simply, if n is assumed to be known, then 
the estimator of p is simply 

Y_ ix i  

Three important assumptions which underly the 
use of the binomial distribution are: (a) all chan-
nels have the same probability p of being open, 
(b) channels behave independently of one another, 
and (c) the value of p remains constant over the 
course of the experiment. We will consider the 
effect of relaxing each assumption in turn. 

Consider a population of channels under the 
patch, which all have the same conductance, but 
where each channel has different kinetics: this 
might arise, for example, if the channels could 
exist in different long-lasting states of phosphory-
lation (Spruce et al., 1987). If the jth channel has 
probability qj  of being open, then the probability 
of i channels being open is the coefficient of t' in 
the probability generating function 

[(1 - q1 ) + q1 1] x [(1 - q2 ) + q2 t] 

x ... x[(1—q)+qt] 

For example, if n equals 3, then this expression 
equals 

[(1 - q1)(1 - q2)(1 - q 3 )] t 

+ [q1(1 - q2)(1 - q3 ) + (1— q1)q2(1 - q 3 ) 

+ (1— q1)(1 - q2) q 3 1 t 1  + [q1q2(1 - q3 ) 

+ q1 (1 - q2 )q3  + (1— q1)q2q3] t2 + [q1 q2 q3 ]t3  

and the probability of no open channels is the 
coefficient of t 0 , that is [(1 - q1 )(1 - q2)(1 - q3)], 
one open channels has a probability given by the 
coefficient of t', that is 

[q1 (1 - q2)(1 - q3 ) + (i - q1)q2(1 - q 3 ) 

+(1 - q1)(1 - q2) q31 

and similarly for coefficients of t 2  and 13  . This is 
called the generalized binomial distribution of 
Poisson. (See for example, Johnson and Kotz, 
1969, p.  80.) The number of open channels has an 
expected value of nq, where 4 is the average 
q-value, that is 

- i 
q 

= q 
j=1 

and a variance of 

Therefore the variance of the generalized binomial 
distribution of Poisson is less than that of the 
binomial distribution with the same mean value, 
unless all the q-values are equal, in which case the 
distributions are identical. Samuels (1965) proved 
that, whatever the q-values, the distribution has 
the same form as the binomial, that is it is uni-
modal and has a characteristic bell shape except at 
the boundary constraints of 0 and n. Values of q 
can be estimated from data by numerically maxi-
mixing the scaled log-likelihood, as for the bi-
nomial distribution. 

A channel may interact with one or several of 
its neighbours as proposed in the "lattice model" 
of Changeux et al. (1967). The dimer model is the 
simplest and can be based, for example, on the 
nicotinic receptor of the electric organ which can 
be found in a dimeric form joined by disulphide 
bonds between adjacent 6 subunits (Reynold and 
Karlin, 1978). From a statistical perspective, 
Kupper and Haseman (1978) and Altham (1978) 
considered a generalization of the binomial distri-
bution which allows the binary variables, channels 
in our case, to interact with one another. The 
simplest generalization is where there are only 
pair-wise interactions, which are all equal. For 
example, if a channel has a probability p of being 
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open, but there is a correlation of c between pairs 
of channels, then the probability of two channels 
both being open is p 2  + cp(1 — p), rather than p 2  
as in the binomial distribution when channels 
behave independently. The probability of neither 
channel being open is (1 _ P)2 + cp(1 - p), and 
the probability of one open and one closed chan-
nel is 2p(l —p) - 2cp(1 —p). This has been 
termed the additive generalization of the binomial 
distribution by Aitham (1978), and for n channels 
leads to 

= 	n! 	p'(l _p)fl_I 

- 

X [i + 
2p(i—p) 

	np)2 

+i(2p _l)_ np 2 }] 

Values of c need to be restricted to ensure that F 
does not take negative values. The number of 
open channels has an expected value of np, as for 
the binomial distribution, but a variance of 

np(i —p)(1 + (n - 1)c} 

When c equals zero the distribution reduces to the 
binomial. For c greater than zero the distribution 
has greater variance than the binomial, and for c 
less than zero it has smaller variance than the 
binomial. Again, values for p and c, and n if 
required, can be estimated by maximizing the 
scaled log-likelihood, as for the binomial distribu-
tion. 

Altham (1978) also considered a multiplicative 
generalization of the binomial distribution which 
allows for more extreme interactions but is more 
difficult to interpret and has the undesirable prop-
erty that if a subset only of a group of interacting 
channels is under the patch, then this will not 
have the same form of distribution. Kupper and 
Haseman (1978) set their choice of additive pair-
wise interactions within the framework of a more 
general model which allows for interactions be-
tween triplets, quadruplets, etc. of binary variables 
over and above that resulting from pairs inter-
acting. 

The third generalization of the binomial distri-
bution is that which arises from allowing p to  

vary. Mathematically, the simplest assumption is 
that p follows a beta distribution, which is a 
continuous distribution between 0 and 1 with two 
parameters, and leads to a beta-binomial distribu-
tion (Johnson and Kotz, 1969, pp.  78-79). How-
ever, this does not necessarily make any physical 
sense. In the case of ion channels, any drift over 
time in the probability p of a channel being open 
will manifest itself as non-stationarity in the time 
record. The effect will always be to inflate the 
variance of the frequency distribution over that 
for a binomial distribution with the same expec-
tation. 

In summary, relaxing assumption (a) will de-
crease the variance, (c) will increase it and (b) may 
do either. 

Illustration of lack-of-fit statistic 

Idealised frequencies (portions of time) with 
which channels are open in a patch may be esti-
mated from current-density histograms (Thorn and 
Martin, 1987). An example at 4 hyperpolarised 
potentials from an inside-out patch in which 0, 1, 
2 and 3 high conductance Cl channels were open 
is shown in Table I. Binomial, correlated binomial 
and generalized binomial distributions were fitted, 
in each case by maximizing the scaled log-likeli-
hood with n set to 3, the maximum number of 
channels which were ever open. Table I sum-
marizes the results, giving estimated parameter 
values and fitted frequencies for the data. 

In the Table is also given a lack-of-fit statistic 

1000 x {xi (log e xi _log e Pi )} 

which takes the value of zero when the fit is 
perfect, that is P = x, for all 1, and is otherwise 
positive. The statistic is the scaled difference be-
tween the maximized value of the log-likelihood 
for a particular distribution and the maximum 
possible. If the data consisted of independent 
counts then a formal likelihood-ratio test of sig-
nificance could be performed using this statistic. 
However, this is not the case, but it does not 
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TABLE I 

PARAMETER ESTIMATES, OBSERVED AND ESTIMATED FREQUENCIES OF OPEN CHANNELS AND LACK-OF-FIT 
STATISTICS FOR 3 DISTRIBUTIONS FITTED TO DATA AT EIGHT TRANSPATCH POTENTIALS WITH n SET TO 3 

B denotes the binomial distribution, aB the additive generalization of the binomial distribution and gBP the generalized binomial 
distribution of Poisson 

Transpatch 	Distribution 	% 	 % 	 % frequencies of 	lack-of-fit 
potential 	 probability 	correlation 	(0, 1, 2, 3) 	 statistic 
(mY) 	 channel open 	 channels open 

(observed values 
bracketted) 

-46 (11,38,40,11) 
B 51 12, 37, 38, 13 3 

aB 51 	 -5 39, 40, 11 0 
gBP 30, 55, 67 38, 40, 11 0 

-36 (0,16,51, 33) 
B 72 2, 17, 43, 38 32 

aB 72 	 -13 0, 15,52,32 0 
gBP 46, 70, 100 0, 16, 51, 33 0 

-26 (0,34,64, 	1) 
B 55 8,33,41,17 256 

aB 55 	 -30 0, 45, 52, 	3 35 
gBP 2, 66, 99 0, 34, 64, 	1 0 

-16 (7, 36, 57, 	0) 
B 50 13, 38, 37, 12 182 

aB 50 	 -28 4,53,43, 	0 63 
gBP 0, 75, 75 6, 38, 56, 	0 1 

invalidate the use of the statistic to measure lack 
of fit. 

The observed distributions have smaller vari-
ances than the binomial distributions with the 
same means. Poisson's generalization achieves a 
near perfect fit in all four cases. The correlated 
generalization also fits well at potentials of -36 
mV and -46 my, by assuming a negative associ-
ation between channels, but cannot achieve a suf-
ficiently severe reduction in variance at the two 
other potentials of -16 mV and -26 mV. 

Discussion 

We have suggested a treatment for data pro-
vided that they are not limited by the frequency 
response of the recording system. This is more 
likely to occur when the channel currents are large 
and have long dwell times but not when currents 
are small and/or brief. 

The frequency distribution of multi-channel 
patches has been assumed to be described by the 
binomial distribution (e.g. Barrett et al., 1982). 
More recently several accounts have appeared 
where the binomial fails to predict the frequency 
distribution (Benham and Bolton, 1983; Spruce et 
al., 1987, Thorn and Martin, 1987). 

The lack of fit of the binomial distribution to 
an observed frequency distribution of open chan-
nels under a multi-channel patch may be due to 
channels having different probabilities of opening, 
channels interacting or channels changing be-
haviour over time. If the latter possibility can be 
eliminated by examining time records, then the 
choice is between the other two. 

In cases where the observed variance is less 
than that for the binomial distribution there are 
two contending explanations. The results may be 
explained either by channels interacting negatively 
or by channels having different probabilities of 
opening. In the data set used here the generalised 
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binomial distribution fits more closely but uses 
more parameters to do so. 

If the variance is greater than that for a bi-
nomial distribution with the same expectation, 
then this can only be explained by positive inter-
action between channels, i.e. when one channel 
opens the probability of others opening increases, 
and conversely with closures. 

It may be possible to use other features of 
channel records, such as transition probabilities, 
to distinguish between competing theories. Re-
cords may even show evidence of channel interac-
tion without the frequency distribution being af-
fected (Yeramian et al., 1986). 
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The acceptance-rejection algorithm is slow to simulate from mixture distributions when the acceptance 
probability is small. For a mixture of exponential distributions, reformulation as a mixture of general 
Erlang distributions may increase efficiency. The reformulation which maximises acceptance probability 
can be found by linear programming. An example is given in which reformulation reduces the average 
simulation time by a factor of 15. 

KEY WORDS: Simulation, mixture-distribution, acceptance-rejection algorithm, acceptance prob-
ability, reformulation, general Erlang (GE) distributions, linear programming. 

INTRODUCTION 

Computer simulation provides a useful tool for studying models which contain a 
random component. Efficient generation of the pseudo-random variables can 
considerably reduce the cpu time required for such investigations. We present a 
way of decreasing the time taken to simulate from a mixture of exponential 
distributions when some components have negative weights. Such mixtures arise 
naturally in compartment models (Woodbury and Manton, 1982). 

The composition-rejection method is suitable for simulating from a mixture 
distribution with some negatively weighted components (Bignami and de Matteis, 
1971). For the mixture with probability density function (pdf) f(x)= w 1f(x), each 
f(x) being a pdf, the steps of the algorithm are: 

select f(x) from among the positively weighted components with probability 
wi/+ Wi, 

simulate a random variable X = x from fi(x), 
accept x as coming from the mixture with probability 1 - 

w.f1(x)/ 	wf,.(x),  otherwise reject it and return to (A), 

where 	- denote summation over components with positive, negative weights 
respectively. When all components of the mixture have positive weights, step (C) is 
redundant. Conversely, the average acceptance probability, 1/ w 1 , may be 
arbitrarily close to zero and the algorithm unacceptably slow. 

For a mixture of exponential distributions, the efficiency of the acceptance- 
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rejection algorithm can be increased by reformulating the pdf as a mixture of 
general Erlang (GE) distributions. GE distributions have three properties which 
make them particularly suitable. Firstly, GE random variables can be simulated 
rapidly as sums of exponential random variables. Secondly, GE pdfs are them-
selves linear combinations of exponentials. Thirdly, these linear combinations have 
some negatively weighted coefficients and so may be used to increase acceptance 
probability by absorbing some of the negative weights in the initial mixture. We 
describe below how to make useful reformulations and then give an example 
which demonstrates both the gains to be made and some computational difficulties 
encountered. 

INCREASING ACCEPTANCE PROBABILITY 

Any mixture of exponential distributions can be reformulated as a mixture of GE 
distributions in the following way. If K 1  . . . X, have exponential distributions with 
pdfs g1(x) = A i  exp ( - ),x), x ~ 0, and (distinct) parameters ,, i = 1 ... r, then Y, = Xi  
has a GE distribution with pdf h(x) = wgx), where w, =  fl,, 2/(2 - 2), (see 
e.g. Johnson and Kotz, 1970). Furthermore, if F 1 ... f are the 2'— 1 (distinct) 
non-empty subsets of {2 ... 

,}, 
the GE pdf corresponding to the sum of 

exponential random variables with parameters in F is given by 

hx) = Y C,g1(x). 

Here 

1 if r={)} 

C= 	 if 21 eF{A} 

0 otherwise, 

where the product is over all 1 I with 2 e F. By equating coefficients of gj(x), 

= 1 . . . r, the mixture of exponentials 

f(x)=wg1(x) 	 (1) 

can be reformulated as any mixture f(x) = 	v3h(x) of the above GE pdfs 
provided the weights v satisfy the linear constraints 

CV = w, 

where C is the matrix with elements C. Note that such a reformulation is always 
possible since, for each i (i = 1 . . .r), g,(x) = hx) for some j. 
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The reformulation which maximises acceptance probability can be found rapidly 
by linear programming. Although the acceptance probability, 1/ 	v, is not linear 
in v 1  ... v, it is monotonic in 	v i  which is itself linear in v, under the constraints 
v ~! 0. Thus if two sets of weights are used, constrained so that one (v"

) is positive 
and the other (v) is negative, acceptance probability can be maximised by linear 
programming with constraints 

CV ,  +Cv =w, 

V >0 

V -  <0, 

and objective function 

v i+  

to be minimised. 
Further increases in acceptance probability can be achieved by making more 

GE distributions available for use in the reformulation. To do this, note that the 
initial formulation (1) can be written more generally as 

f(x) = 	wjgx) ± > w1g,.(x), 
ir+1 

where, for i = r + 1 . . . r + n, w, = 0 and the parameters 2, of the exponential pdfs 
gj(x) can take any positive value providing all the parameters 1, i = 1  . . . r + n, are 
distinct. Thus GE distributions involving g, 1 (x) . . . g, + (x) can also be used. We 
call the additional exponentials "ghost exponentials" and their parameters "ghost 
parameters". Inclusion of n ghost exponentials increases the number of- GE 
distributions available by (2' n 

- 1)— (2'— 1) = 2(2fl 
- 1). Finding the values of the 

ghost parameters for which the acceptance probability can be maximised by the 
linear programming method described above is a non-linear problem which can be 
solved numerically (see Example). 

Brief discussion of some reformulations of the mixture with pdf 

3.37 (0.9e_° 9X) 
- 7.90(e_x) + 5.52(1.1 e 1.1X) 

clarifies the above methodology. With no ghost parameters, reformulations must 
be in terms of the seven GE distributions given in Table 1. Since acceptance 
probability for any given reformulation is l/V1 = 11(1 —V1) the aim of 
reformulating is to remove, as far as possible, negatively weighted components. 
The pdf {10(0.9e_O9x)_9(e_x)}  is helpful in this respect, as it can be used to 
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Table 1 Probability density functions of general Erlang distributions to be 
used in reformulating the mixture 

3.37(0.9e°9) - 7.90(e) +5.52(1.1 e"'),  

GE distribution Coefficients in GE density 
simulated by summing functions of 
simulations from exponential 
distributions with density 0.9e 09  e 1.1e 1 ' 

functions 

0.9e- 0.9 1 0 0 
e 0 1 0 

l.1e 0 0 
0.9e 09 ,e 10 —9 0 
0.9e 09 , 	1.1 e -  5.5 0 —4.5 

e, l.1e'' 0 11 —10 
0.9e 09 ,e, 1.1e 	'• 55 —99 45 

combine the positive weight of 0.9 e _O 9 x with some of the negative weight of ex, 
leading to the reformulation 

	

0.337{10(0.9e9x)_9(e) 	} 

—4.86 
{ 	

ex 	
} 

+5.52 { 	 1.1e_1} 

for which the acceptance probability is 0.171. Better still is the reformulation 

0.0798 {55 (O.9e_O9x)  99  (e_x) + 45(1.1 e 1.lx)} 

-1.012 { 	0.9e_09x 	 } 

+ 1.932 { 	 1.le_llx } 

which increases the acceptance probability to 0.497. The second reformulation is 
an improvement on the first because of the more negative ratio of coefficients of 
e _x and  0. 9 e _ 09 x .  When one ghost exponential with ghost parameter 1.3 is 
included, a further eight GE distributions become available for use in reformula-
tions. These prove to be sufficient to increase the acceptance probability to one, 
leading to the reformulation 

0.0189 {178.8(0.9e_09)_429.0(e_x)+292.5(1.1e_lx)_41.3(1.3e_13x)} 

+0.004251 	 47. 7(e _x)_ 65 .0(1 . le_llx)+ 18. 3(1 . 3e_l 3 x)} 

+0.0425 { 	 6.5(1.1e 1 )— 5.5(1.3e- 1 . 3x)) 

+0.934 	{ 	 1.3e-' - 3x } 

having only positive weights. The importance of the ghost exponential is seen by 
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its pdf having non-zero weight in all of the GE pdfs. Note also that simulation 
from the reformulation will involve a large proportion (over 93%) of simulations 
from an exponential distribution with parameter 1.3. 

REDUCING SIMULATION TIME 

The time taken to simulate from the mixture decreases as the inverse of the 
acceptance probability provided that other factors remain constant. Hence the 
interest above in increasing the acceptance probability. However, simulations from 
a GE distribution are obtained by summing simulations from exponential 
distributions, so the time taken to simulate from the mixture increases with the 
number of terms in the sums. Thus the maximum acceptance probability solution 
is not necessarily the minimum time solution. 

A good approximation to the minimum time solution can be obtained by 
finding the maximum acceptance probability solutions for restricted sets of sums of 
exponentials. These restrictions are imposed by deleting the columns of the 
constraints matrix C and the elements of v, v corresponding to ineligible sums. 
In general, different restrictions may be placed on the sums with positive weights 
from those with negative weights. Of particular interest are the solutions obtained 
using the sums with least terms. 

EXAMPLE 

To illustrate the advantages of reformulation, consider simulating from the 
exponential mixture with pdf 

f(x) =7.73 {e_09x_2.8e_x  +2e 1.1X} 

Simulating from the mixture as written is inefficient because there is a 95.6% 
rejection rate at step (C). Hence, after reformulation, the algorithm may be up to 
23 times faster. 

We have investigated this problem with up to 3 ghost parameters and a variety 
of restrictions on the GE distributions used in the reformulations. The restrictions 
placed 

an upper bound p (for plus) on the number of exponential components in a 
GE pdf with positive weight, 

an upper bound m (for minus) of 1 or p on the number of exponential 
components in a GE pdf with negative weight. 

Our method involved using the NAG Fortran subroutines (NAG, 1988) E04NCF 
(linear programming) to find the best set of weights for given ghost parameters 
1r + i .. . 	 and E04CCF (Nelder—Mead) to maximise acceptance probability over 
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1.0 

0.8 

acceptance 
0.6 probability 

0.4 

0.2 

0.0 
C.--- 

Figure 1 Maximum acceptance probability after reformulation of f(x)=7.73{e - 0 . 9x-2.8e - x + 
2e +0 x as a mixture of GE distributions when (a) no restrictions are placed on the 
reformulation; (b) reformulations are restricted to having negative sums containing just one term. 

Acceptance probability, regarded as a function of the ghost parameters, is not 
necessarily unimodal and may have discontinuous derivatives. Hence no numerical 
technique can be guaranteed to find the maximum and a derivative-based 
technique may encounter problems. For example, with n=1, p=4 and m=1 
(Figure 1, b), the first derivative has a discontinuity at ) 4 =4/3 where the accep-
tance probability is maximised. Note that when m =4  the acceptance probability is 
uniformly greater (Figure 1, a), but still has discontinuities in the first derivative. 
These discontinuities correspond to changes in the set of GE pdfs given non-zero 
weight in the reformulation of the mixture. Also, the exponential parameters must 
be distinct, so the range of values which each ghost parameter can take is divided 
into contiguous open intervals. Our iterative optimisation procedure often ended 
with each ghost parameter in the same interval as its starting value: this was 
overcome by repeating the optimisation procedure with starting values from each 
combination of intervals. 

For each restriction, we have calculated the maximum acceptance probability 
and the average over 30 runs of the cpu time taken by a Prime 550 mini-computer 
to make 100 simulations from the reformulated mixture (Table 2). Random 
variables from a uniform (0, 1) distribution were generated by the NAG subroutine 
G05CAF (which uses a congruential method), whilst exponential random variables 
were generated by the NAG subroutine G05DBF (NAG, 1988). The latter 
subroutine takes the log of a uniform (0, 1) random variable. 

A copy of the Fortran 77 computer program used is available from the authors 
on request. 

Clearly, enormous increases in acceptance probability can be made, and these 
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Table 2 Maximum acceptance probability and corresponding mean cpu time per 
simulation for reformulations of the mixture 

f(x) = 7.73 {eo9a2.8e + 2e 	+ 	Ox Aje- Aix 
 

with n =0.. .3. Each time was calculated from 30 runs of 100 simulations, the ratio 
se/mean being roughly constant at 0.01 

P (m=1) 

1 2 3 4 5 	6 

Acceptance probability (%) 
O 4.4 6.7 23 - - 	 - 

1 4.4 6.7 33 60 - 	 - 

2 4.4 6.7 33 74 77 	- 

3 4.4 6.7 33 74 87 	87 

cpu time (10 - 	sec) 
0 65 41 13 - - 	 - 

1 a a 11 5.5 - 	 - 

2 5 a  5.3 5.0 	- 

3 a a a a 5.0 	b 

P =M 

2 3 4 5 	6 

Acceptance probability (%) 
O 44 64 - - 	 - 

1 44 84 91.4 - 	 - 

2 44 86 93.2 96.2 	- 

3 44 86 95.8 97.3 	98.1 

cpu time (10 	sec) 
0 6.9 4.6 - - 	 - 

a 4.1 3.7 - 	 - 

2 a  45 4.3 4.0 	- 

3 a a 4.6 4.5 	4.6 

n=number of ghost exponentials. m=maximum number of components in a sum which has negative weight. 

p = maximum number of components in a sum which has positive weight. 

Acceptance probability not increased by increasing a. 

'Acceptance probability not increased by increasing p. 

In both these cases, Cpu time depends on which member of a family of solutions is reached by the computer 

algorithms. 

are matched by reductions in cpu time per simulation. Although the acceptance 
probability can be increased to 98.1 % (n =3, m = p = 6), there is no dramatic 
decrease in simulation time once acceptance probability has passed 60%. In fact, 
minimum simulation time is achieved when the acceptance probability is 91.4% 
(n= 1,m=p=4) at a value of 3.7 x iO seconds cpu per simulation. This 
compares with a value of 65 x iO seconds cpu per simulation for the original 
mixture: thus 98.6% of the potential gain has been achieved. 

Two further points are worth noting. Firstly, the time taken to maximise 
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Table 3 Goodness of lit tests for conformity of sets of 10
5  

simulations with the distribution with pdf f(x)=7.73 {e_o9a 

2.8e+2e' 1 }. Simulations are drawn from the original for-
mulation and the maximum acceptance probability reformula-
tions with (n,p,m)=(1,4,4) and (3,6,6) where n is the number of 
ghost exponentials and p.m are the maximum number of compo-
nents in a sum with positive, negative weights respectively 

Reformulation Acceptance Kolmogorov-  Anderson- 
(n, p, m) probability (%) Smirnov Darling 

statistic statistic 

4.4 0.17 0.92 
(1,4,4) 91.4 0.47 0.36 
(3,6,6) 98.4 0.61 0.40 

The Kolmogorov—Smirnov and Anderson—Darling statistics are positive-valued with 

upper 10% points 1.2 and 1.9 respectively. 

acceptance probability increases rapidly with the number of ghost parameters. 
Averaging across the examples in Table 2, the mean setting-up times before 
simulation began were 0.44, 14.9, 60.7 and 194 seconds cpu for reformulation with 
0, 1, 2 and 3 ghost parameters respectively. Thus it is not worthwhile using the 
simplex algorithm to find the values of the ghost parameters unless a massive 
number of simulations are required. Secondly, there was a large number of 
occasions when increasing the number of ghost parameters did not increase the 
acceptance probability. In these cases, there is a degree of arbitrariness on the 
reformulation, hence no attempt has been made to estimate simulation time. 

Simulated values from some reformulations were tested for conformity with the 
target distribution using the Kolmogorov—Smirnov and Anderson—Darling statis-
tics (see e.g. Pearson and Hartley, 1976, pp.  117-119 and Table 54). Tests were 
performed on three independent sets of iO simulations, drawn from the original 
formulation (n = 0, m = p = 1) and the maximum acceptance probability reformula-
tions with n= 1,m=p=4 and n=3, m=p=6. The values of the test statistics are 
given in Table 3. There is no evidence to suggest that the algorithm breaks down 
and leads to simulations from the wrong distribution. 

DISCUSSION 

The detailed example has f(x) proportional to e_ 09x_2.8e_x+2e_t 	and was 
chosen as it cannot easily be reformulated to give an acceptance probability of 1. 
This is because functions of the form e _ 0 Oe_ ae_x+2e _ 1 t) are positive for all 
x ~! 0 if and only if a <2/ and a = 2.8 is close to this limit. In our example, we 
were unable to increase the acceptance probability to I even with 5 ghost 
exponentials. However, in the less extreme case with a = 2.7 two ghost exponentials 
are sufficient to give an acceptance probability of 1. The corresponding reduction 
in cpu time is from 37 x iO to 3.8 x iO seconds per simulation. 

The technique of rewriting a mixture of exponentials as a mixture of GE 
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distributions is both useful and intuitively appealing. Although other combinations 
of the components of an exponential mixture may be considered, GE densities are 
attractive both because they are easy to simulate from and because they are 
known to be pdfs. (The difficulties of showing that a general linear combination of 
exponential pdfs is itself a pdf are discussed by Bartholemew, 1969). 

We have demonstrated that substantial savings in computer time can be made, 
even when the acceptance probability remains below 1, although these savings 
may not be realised unless large numbers of simulations are required. As 
mentioned above, further reductions can be expected if the rejection step is missed 
out. However, we have no way of identifying those mixtures for which the 
acceptance probability can be increased to 1. 
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ABSTRACT 

Forms of variation which arise within system models are considered, using 
as an example a model for energy requirements in growing cattle. Problems 
encountered include the need to summarize groups of lines and to satisfy 
logical constraints on values of variables. Effects of Gaussian variation on 
prediction of weight gain of cattle are found to be substantial, with biases 
of up to 20% of the deterministic model outcomes, and standard deviations 
ranging from 20% to 150%. In some cases the distribution of predicted 
values is far from Gaussian. 

1 INTRODUCTION 

Mathematical modelling is a way of testing quantitative understanding of 
interacting systems. If successful, the model will provide an aid in system 
management. The modelling process may, alternatively, highlight areas 
of relative ignorance which need further investigation (Dent & Blackie, 
1979). 

Modelling starts with a logical analysis of the system, aided by flow 
diagrams (Forrester, 1968). The system is split into a number of distinct 
submodels, each of which is then modelled separately. Finally, the sub-
models are combined to form the system model. 

Estimation problems inherent in building system models require much 
* Present address: Scottish Agricultural Statistics Service, Macaulay Land Use Research 
Institute, Craigiebuckler, Aberdeen AB9 IQJ. UK . 
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more attention (Curnow, 1984). It should be borne in mind that it is the 
model predictions, rather than the parameter estimates, which are impor- 
tant (Wallach & Goffinet, 1987). Although standard statistical methods 

• are adequate for estimation within submodels (for example Ross, 1990), 
transformations when submodels are used for prediction lead to corn-
plications. As a simple example, Fig. I shows data relating weight gain 
(D kg/day) of cattle, over 2-weekly periods, to feed intake (I MJ/day). If 
D is regressed on I, the fitted model is 

D = 0018I - 0•9 

However, if this model is used to predict the intake to achieve a target 
weight gain, the result is 

I = (D + 0.9)10.018 = 54D + 49 

which is a very poor predictor of I. It greatly overestimates the necessary 
intake for each kilogramme of weight gain. The best predictor is ob-
tained by regressing I on D, giving the quite different 

1= 10•6D+71 

This paper examines sources of variation which arise in a simple 
model of the energy requirements for growing cattle, as described in an 
Agricultural Research Council working party report (ARC, 1980). The 

0!0 	 iob.o 	 15b.0 

Fig. 1. Observed weight gains (D kg/day), over 2-weekly periods, plotted against feed 

intake (I Mi/day). Lines denote regression of D on I, and of Ion D. 
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consequences of variability upon the model predictions of weight gain 
are considered and they are compared with the model performance re-
ported by an interdepartmental ADAS/SAC/UKASTA working party 
(ADAS, 1986). This working party compared energy model predictions 
of weight gain with those observed in a range of experiments and found 
that, on average, the model overpredicted gain by 15%. Individual ani-
mals showed substantial variation about the average: the standard devia-
tion was 20% of the mean. 

2 ENERGY MODEL 

The ARC (1980) model is deterministic. It uses empirical physiological 
functions to relate animal growth to energy intake, based on the equation 

M DV 
k m 	k 9  

where: 

I is the daily metabolizable energy intake (MJ/day); 
M is the daily maintenance requirement (MJIday); 
km  is the efficiency of utilization of energy intake for maintenance; 
D is the rate of liveweight gain (kg/day); 
V is energy value of weight gain (MJ/kg); 
kg  is the efficiency of utilization of energy intake for weight gain. 

The model has one state variable, liveweight W (kg), and one dimen-
sionless auxiliary variable, metabolizability of the energy content of the 
feed, q. There are three submodels, describing (i) maintenance require-
ment of fasting animals, through an equation for M as a function of W; 
(ii) energy requirement for growth, leading to an equation for V in terms 
of W and D; (iii) efficiency of use of feed energy to meet the maintenance 
requirement, k m , and for growth, k g , which are related to q. We shall 
consider sources of variation between animals for each submodel in turn. 

2.1 Maintenance submodel 

The maintenance submodel consists of one equation, namely 

M = a W06 7  + 00043 W 

The first term is the energy cost of basic metabolism, incorporating a 
well established exponent of 067, whilst the second is an adjustment for 
walking when animals are outside. From a single observation on each of 
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88 animals in 8 calorimeter experiments, the constant a was estimated as 
053 (ARC, 1980). Variation of observations about fitted values for the 
equation comes from three sources: between experiments, between ani-
mals within experiments, and measurement error. The last two forms of 
variation cannot be separated because there is just one observation per an-
imal. Therefore we can only reliably estimate between-experiment vari-
ability. If we regard the exponent of 067 as fixed, then each experiment 
provides a separate estimate of a. The standard deviation among them is 
003, which we will use in later simulations. The assumption of a fixed ex-
ponent of 067 is not critical, because the variation between experiments in 
predicted values of M is fully represented in different values for a. 

2.2 Energy requirements for growth 

The energy content of weight gain was estimated from serial-slaughter cx-
periments (ARC, 1980). A partition of body tissue into protein (P gfkg) 
and fat (F g/kg), leads to the equation 

vo •= 393 	236 dP 

where V. is the energy value of gain at a growth rate of 065 kg/day. This 
is adjusted for other growth rates by 

- 	09035 	
V. —01475D 

The energy values of fat and protein, namely 393 and 236 Mug are sub-
ject to uncertainty. However, for simplicity, and lack of more detailed infor -
mation, we will consider them fixed and concentrate on estimating dF/d W 
and dP/dW. 

Results from 41 experimental groups were available as log—log regres-
sions. For example, in group i, 

log F= b, + c1  log W 

for estimated constants b, and c1 , and W in the range L 1  to U1 . These data 
contain no information about the growth of individual animals, which 
will have to be assumed to follow the group average. The problem is to 
find a way to estimate V, by combining the results from different groups, 
which takes account of the range of W in each equation, and allows esti-
mation of between-group variability. 

The derivative dF/d W, and not F itself, is of interest. This can be ob-
tained either by relating F to W and differentiating, or by differentiating 
each experimental curve and averaging them. In general, these methods 
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will not give the same results. Because use of the derivative of the 
average does not allow good estimation of the variability about the 
derivative, we opt to average all the separate differentiated curves. 

From experimental group i we obtain 

dF jj = ciexp(b i )WCH 	for L1<W<U 

We seek a function dF/d W = G( W which has minimum mean-squared 
distance from the experimental results, that is it minimizes 

41 	 Ui 

U - L
(c exp (b) Wi - G(W)) 2  dW 

I fL i  
In practice, this can be implemented simply by replacing each experimen-
tal curve by a set of (say) 10 points equally spaced in W between L and 
U, and fitting G( W) using a standard least squares algorithm. 

A straight line appeared adequate for G( M, and similarly for dP/d W 
as a function of W. These results combine to produce 

V0  = 556 + 0030W 

with standard deviation 0013 W. The multiplying factor of W is included 
in the expression for the standard deviation to account for variation in-
creasing with body weight. 

2.3 Efficiency factors 

Information about efficiency of energy use is contained in the linear 
equations (ARC, 1980) 

k m  = 035q + 0.503 	(SD 0064) 
k f  = 078q + 0.006 	(SD 0097) 

where k f  is the efficiency of utilization of energy for weight gain when 
intake is exactly twice that needed for maintenance. From this 

k f  I - (k i/k m )t 1 	 1k m  

kg = L - 1 1 (ki/km) 	
where L = 

M 

Efficiency factors must lie between 0 and 1, and further, for the expres-
sion for k g  to make sense, k f  must be less than k m . The inclusion of vari-
ability in the equations for k m  and k f  must not cause these constraints to 
be violated. For the above levels of variability, and q between 04 and 
08, only k 1  < k m  is ever violated. In simulations this occurred up to 5% 
of the time, and they were discarded. 
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A further difficulty in introducing variability is that deviations from 
the two lines will not be independent; some of the variability will be due to 
the properties of the feed quality being inadequately described by a single 
variable, q. Lacking further information, we simply consider the extreme 
cases, namely correlations of zero and one, in simulations which follow. 

3 EFFECT OF VARIATIONS ON PREDICTIONS 

The model proposed by the ARC working party is deterministic. As we 
have seen, the relationships are subject to substantial variation between 
groups of animals. This variability can be incorporated directly into the 
equations to build an equivalent stochastic model. We shall investigate 
the relationship between errors in the submodels and the corresponding 
distributions of predictions of weight gain, based on 

ME 
	1_ M/k 

09Vo/k g  + 0.1475(1— M/k m ) 

Table 1 reports biases and standard deviations of predicted weight 
gains when Gaussian variability is introduced into one, or all three, sub-
models. Eight sets of values of (W, q, I) are considered which are at the 
extremes of realistic values. Summary statistics are based on 1000 inde-
pendent simulations in each case, generated using the NAG Fortran sub-
routine library (NAG, 1987). 

Variation in maintenance requirement appears to be relatively un-
important; mean predictions are almost unbiased, and the distribution of 
predictions has only a narrow spread. Variation in energy value of weight 
gain, however, has a much bigger effect. Mean predictions are consist-
ently upward biased. For animals weighing 600 kg, biases are substantial 
and standard deviations are over 35% of the predicted weight gains. The 
effect of variation in the two efficiency factors depends on the presence of 
correlation. With complete correlation, mean predictions are approximately 
unbiased and standard deviations are large. However, with zero correlation 
the mean predictions are downward biased and standard deviations are 
slightly smaller. 

Simultaneous variation in all three submodels can lead to either positive 
or negative bias, similar to the sum of the biases caused by variation in 
each submodel alone. Biases are found to be as extreme as —10% and 
+20% of the deterministic model outcome. Standard deviations are also 
close to those obtained by simply combining the components, by sum-
ming the squares of the separate standard deviations, then square-root-
ing. They range between 20% and 150 1/6 of the predicted weight gains. 
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TABLE I 
Summary Statistics for Predicted Weight Gain. Derived from 1000 Simulations of Model 

with Random Variation Included in One or All Submodels 

Liveweight. W (kg) 

Feed quality. q 

Intake, I (Mi/day) 
Predicted weight gain. D (g/day) 

Bias in weight gain (giday) from 
variation in 

Maintenance 
Energy of gain 
Efficiency factors (cor = 0) 
Efficiency factors (cor = 1) 

(i)-(iii) (cor = 0) 
(i)-(iii) (cor = I) 

SD in weight gain (g/day) from 
variation in 

(1) Maintenance 
Energy of gain 
Efficiency factors (cor = 0) 
Efficiency factors (cor = 1) 

(i)-(iii) (cor = 0) 
(i)-(iii) (cor = 1) 

100 	 600 

04 	0-7 	0-4 	0-7 

22 	38 	18 37 	74 114 	61 111 
250 750 250 1250 250 750 250 1250 

-2 -2 -2 -1 -2 -1 1 -1 
7 11 4 11 54 93 40 90 

-10 -32 -8 -28 -15 -32 -7 -36 
6 6 6-17 2 -9 1 -5 

-11 -17 -9 -28 19 64 50 88 
5 -4 -1 21 50 91 30 120 

50 10 70 20 60 20 80 30 
40 100 40 130 220 400 170 440 

110 210 1.10 190 120 210 130 200 
130 220 130 220 150 230 160 230 

130 230 130 240 270 420 380 550 
150 250 150 270 280 440 300 590 

The interdepartmental ADAS/SACIUKASTA working party (ADAS, 
1986) reported a bias of —15%, and a standard deviation of 20% of 
predicted weight gain. Overall, the results presented here show positive 
biases and larger standard deviations. Setbacks in growth, such as sick-
ness, may explain the negative biases observed in practice. The differences 
in standard deviations may result from associations between parameter 
values in different submodels, about which the authors have no informa-
tion. The magnitudes of these variations, in either case, are sufficient to 
have serious consequences for animal husbandrymen who feed cattle 
solely on the basis of the deterministic model. 

A probability density function (pdf) provides full information about 
the distribution of predictions. In the case of variation in a single vari-
able in one submodel, the pdf of the predictions can be calculated using 
standard transformation theory. Suppose X is the variable, with a Gauss-
ian pdf denoted f(X). Let Z = h(X) be the model outcome, where h is a 
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(a) 

 

 

Fig. 2. Probability density functions for predicted weight gain, when variation is 
included in one submodel: (a) maintenance submodel varied, with W = 100 kg, q = 07, 
I = 18 MJ/day; (b) energy of gain submodel varied, with W = 600 kg, q = 04, 
1 = 74 MJ/day; (c) maintenance submodel varied, with W = 100 kg, q = 0•4, 1 = 38MJ/day. 
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monotonic function and h-' is differentiable. Then the associated pdf 
g(Z) is 

dh-'(Z) If W l (z)) dZ 

where the derivative can be calculated numerically if necessary. Note that 
the monotonicity condition can be relaxed to one of piecewise mono-
tonicity, in which case g(Z) is the sum of contributions from each root of 
the equation I = h-'(Z). 

For the energy model, the estimated pdf of weight gain takes many 
different forms, as shown in Fig 2. The one-tailed distribution (c) is of 
particular interest. It occurs because the function relating D to M 
(denoted h above) reaches a maximum at D = 0757. 

The pdfs in Fig. 2 can be classified by the shape of the curve defined 
by h. Symmetric pdfs arise from local linearity. Skewness results from h 
being convex or concave. When h is not monotonic, the pdf will contain 
at least one singularity. This may also lead to truncation of one or both 
tails. 

4 DISCUSSION 

The three submodels of the energy model each illustrate a different aspect 
of variability. Estimation in the maintenance submodel is straight-
forward, and the variation between groups leads to relatively small 
variability in predictions. The energy value of gain submodel, however, 
needs a non-standard estimation procedure for fitting a line to data which 
are themselves lines. The large errors associated with this lead to large 
variation in model predictions, some of which may be attributable to 
known differences between groups of animals. For the efficiency factors 
submodel, the estimates given by ARC (1980) are used, and note the 
effect of correlation between variations in the two equations. In none of 
the submodels have the authors been able to consider variability between 
individual animals, instead of variability between groups. 

Relationships between values of parameters in different submodels 
have been ignored, as is usually the case in systems modelling. O'Neill et 
al. (1980) give an example where simulations from the sampling distri-
bution of parameter estimates give rise to model predictions which are 
incompatible with the real system. The problem could, in theory, be 
overcome by estimating all parameters simultaneously, but there will 
rarely be sufficient data to allow this. 

All models of biological systems are subject to substantial variability 
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of the kinds described above, whether it is purely variation between 
individuals or imperfect knowledge of parameters. Variability, though 
difficult to incorporate into models, is an essential part of real systems 
which may be crucial when models are being used, for example in system 
management. 
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Fish Shape Analysis Using Landmarks 
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Summary 

Landmarks are used to summarize the shapes of ten haddock and nine whiting. Error variance 
models, after generalized Procrustes analysis, are compared using simulation tests. The power to 
discriminate between fish species is shown to be increased by permitting non-affine transformations 
that correct for fish curvature. 

Key words: Bias; Linear discrimination; Eigenvectors; Generalized Procrustes 
analysis. 

1. Introduction 

Shape is defined to be that which remains after differences in location, orientation 
and scale have been removed from figures. What remains is often complex in 
nature. Therefore, perhaps not surprisingly, no consensus has yet emerged on the 
best form of analysis. Competing methods include the use of outlines (ROHLF and 
ARCHIE, 1984), landmarks (BOOKSTEIN, 1986), moments (MARDIA and HAINs-
wORTH, 1989) and wavelets (MALLAT, 1989). 

In some applications the boundary of an object is all that can be discerned 
unambiguously. Matters may be further simplified if a few key points on the 
outline serve to characterize it, as do the vertices of a polygon. However, 
landmarks may also be defined on features internal to the boundary. Moments 
and wavelets permit an object to be summarised in its entirety, by integrating 
a variate such as brightness. 

STRACHAN et al. (1990) used outlines to discriminate between seven species of 
sea fish. The poorest discrimination was between haddock and whiting. Two 
examples of each are shown in Fig. 1. In this application, with dead fish, outlines 
are sensitive to disposition of ventral and dorsal fins. We chose to use an 
alternative set of descriptors, landmarks, and in particular to explore the metho-
dology proposed by GOODALL (1991). His paper is rather technical, so we 
thought that an example of its use would be illuminating. Also, by studying the 
statistical properties of landmarks we hoped to gain insights into their use as 
discriminators between fish species. 



ERN 
	

C. A. GLASBEY et at.: Fish Shape Analysis 

6 

Fig. 1. Two haddock (numbers 6 and 7) and two whiting (6 and 9), together with 7 landmarks. 
Numbers denote landmark number. 
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The seven landmarks we identified are marked as crosses in Fig. 1. These are 
a rather sparse representation of the fish shapes, but they were the only 
landmarks that could be reliably identified, given the variations in fin positions 
and the subtlety of marking patterns on the fish. Such data were collected from 
ten haddock and nine whiting (STRACHAN et al., 1990). 

In this paper we study the variation in the landmark positions, with a particular 
view to discriminating between the two species. This study is in two parts. In the 
first (section 2), Goodall's proposed error variance models, after generalized Pro-
crustes analysis, are explored. Because a tractable model can not be fitted to the 
data, we turn instead (section 3) to Bookstein's edge-superimposition coordinates. 

In practice, a working system for sorting fish would also sort fish of different 
sizes. The fish used in this study varied little in size. Although there was an 
association between size and shape, it is important to investigate what discrimi-
nation can be achieved using shape alone. 

2. Error Models 

We adopt Goodall's notation in this section. Let X 1  denote the N x 2 matrix of 
(x, y) coordinates of the N ( = 7) landmarks for the ith haddock, i = 1,..., L. Also, 
let I denote the identity matrix of order N, and let I E 0N  denote the vector 
whose components are all unity. Generalized Procrustes analysis (GPA) (GOWER, 
1975) finds a 2-vector translation, y, a 2 x 2 rotation matrix, Ti , and a scaling 
parameter, /3, so that 

IIXl-x11 2  
i=1 

is minimised, subject to 

11(1 - 11 T/N)X 112 =y 11  (I - 11 TIN) X'Ij 2 , 

where the transformed landmarks x; = f3 XL  Ti  + 1 yT,  the mean shape 

X, and 11A1I2=y  Y, A for any matrix A. 

GPA has the effect of removing location, orientation and size effects from the 
landmark data, leaving shape information alone. We performed the calculations 
using GENPROC, a procedure in the Genstat 5 computer package (PAYNE et al., 
1987). This algorithm is not entirely appropriate for shape analysis because it 
permits reflections of the data, as well as rotations. However this did not present 
us with a problem; all fish were viewed from the same side so reflections never 
improved the fit. Fig. 2 shows the transformed landmarks of the 10 haddock. The 
whiting data were analysed similarly. In GENPROC, following GPA all figures 
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are transformed uniquely to a coordinate system whose basis vectors are the 
principal components of the set of mean-shape landmarks. Thus, for example, the 
first column of X' contains the components of the landmarks of the ith haddock 
in the direction of maximum variance. For the fish data, Figs. 1 and 2 demon-
strate that this first axis is oriented along the fish's length. 

-0.2 	 0 	 0.2 	 0.4 

First coordinate 

Fig. 2. Transformed landmarks of 10 haddock after generalized Procrustes analysis, num-
bers denote fish number. 

Goodall proposed 

vec(X)".N(u, i'), 

independently for each i, as an error model. (We use "vec" to denote the vector 
form of a matrix, obtained by stacking its columns.) To reduce the number of 
parameters he suggested that Z could be further structured, such as 

or 

where "®" is the Kronecker product operator. We denote these as models 0 and 
1, with model 2 representing an unstructured 1. The models all have simple 
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expressions for their maximum likelihood estimators, in terms of the residuals 
from the transformed landmarks 

R. =X'—X, r1 =vec(R 1 ), 

namely 

=r•r" 
L 	I 

RTR, NL 

(±2) R t L trace  

and 	P _'>rTr 

Table I shows f, in a more informative layout. The second components of trans-
formed landmarks exhibit considerably more variability between fish than the first 
components. This is also apparent from Fig. 2 where the transformed figures X 1', 
= 1,..., L, are plotted, with vertical components scaled to improve clarity. The 

largest correlations are 97% between elements (4, 2) and (5, 2), and - 98% between 
elements (1, 2) and (3, 2). These features appear to be inconsistent with model 0. 
However, some structure in will be due to distortions to the residuals through 
having estimated 4L (=40) translation/rotation/scaling parameters and 10 para-
meters in X (2 N, less 4 for an arbitrariness in position, orientation and size). 

Table I 

Maximum likelihood estimate of 2 from generalized Procrustes residuals of haddock landmarks 

Standard deviations x 1000 
(1, 1) 	(2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (7, 1) (1,2) (2,2) (3,2) (4,2) 	(5, 2) 	(6,2) 	(7,2) 
3.5 	2.7 2.8 4.4 7.2 6.3 2.6 13.7 3.6 16.8 9.2 	8.6 	19.0 	8.6 

Correlations % 
(2, 1) 	—69 
(3, 1) 	—31 	—26 
(4,1) 	40 	—70 3. 
(5, I) 	—65 	33 —3 —1 
(6, I) 	23 	17 —12 —47 —75 
(7, 1) 	23 	7 —4 —36 —33 7 

(1,2) 	27 	—55 35 28 —39 15 5 
(2,2) 	49 	—3 —70 —4 —31 53 —24 —26 
(3,2) 	—32 	58 —23 —33 30 —4 —8 —98 23 
(4,2) 	—34 	9 15 18 63 —87 28 —10 —71 —2 
(5,2) 	—30 	7 6 16 62 —83 30 —4 —66 —9 97 
(6,2) 	30 	—22 —8 —9 —58 75 —16 51 53 —44 —82 	—78 
(7,2) 	—1 	9 14 8 15 —29 —7 —57 —20 59 26 	19 	—74 
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Goodall suggests the use of likelihood ratio tests (and an appeal to asymptotic 
properties) to test between models. Leaving aside the hope of asymptopia, this is 
impossible because E 2  and 'EN ® 2 are not of full rank. Instead, we propose 
that likelihoods are evaluated in subspaces spanned by eigenvectors of 1(2)  and 

N ® Z2 corresponding to non-zero eigenvalues. The partial log-likelihood in the 
space of the first k eigenvectors is 

 k t 	I L 
(riTvj) 2 } ,  

J=1 	 J i—I 

where 	is the jth largest eigenvalue of £(m)  and v is the corresponding eigen- 
vector. The null distributions of the test statistics were generated by simulation. 

From the data, 62  in model 0 was estimated as 87 x 106.  100 independent 
data sets were generated, with ith landmark matrix 

+ E1 )T1T —l(fl/) T  

E—N(0, g2 I ) .  

After GPA, 62  was estimated from the residuals. Values ranged between 39 x l0_ 6  

and 77 x 106,  with a mean of 57 x 106.  Thus the maximum likelihood estimator 
is downward biased, by about 35%. If the divisor of NL(= 140) in the expression 
for ê 2  is replaced by 90, the number of observations less the number of estimated 
parameters, then the bias disappears. Simulations were repeated, using 

= 136 x 10-6.  All 3 variance models were fitted to the residuals after GPA, and 
partial log-likelihoods were calculated. Table 2 gives statistics for comparing mo-
dels 0 and 1. In all the simulations, 2L't 1  had 12 non-zero eigenvalues. Therefore 
L was evaluated only in the range k = 1,..., 12. It is clear that model 0 is rejected. 

Table 2 

2(L— L) 	 Number of 
simulations below 

k 	 Observed 	Range from 100 simulations 	Observed value 

—1106 —1151, —1048 36 

2 —1036 —1068, —973 20 

3 —945 —986, —895 47 

4 —855 —897, —829 78 

5 —757 —812, —752 97 

6 —662 —736, —672 100 

7 —551 —643, —589 100 

8 —473 —553, —502 100 

9 —420 —462, —415 98 

10 —284 —371, —325 100 

11 —194 —240, —189 97 

12 —118 —104, —48 0 
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Table 3 shows fN ® f2 for the data. To test whether this model is adequate, 
100 independent data sets were again generated, but now with this error variance 
matrix. For the simulated data, the average diagonal element in 21)  was 
76 x 106,  whereas it was 87 x 106  for the data (=t12),  a downward bias of 13%. 
A bias of only a third that observed for ê 2  is probably attributable to the GPA 
not having used generalized sums of squares. Simulations were repeated with 
appropriately inflated values of 1(1).  Table 4 gives statistics for comparing 
models I and 2, based on the 9 non-zero eigenvalues which £(2)  had in all 
simulations. Although there is evidence of lack of fit in the space of the 9th and 
10th eigenvectors, otherwise the fit looks good. The largest discrepancy between 
Table I and 2) from the simulations is the correlation between elements (1, 1) 
and (3, 1). For the original data this is —31%, whilst for the simulations it 
ranged between —99% and —73%. Implicit in model (1) is the constraint that 
the correlation between elements (j, 1) and (k, 1) is the same as that between 
elements (j, 2) and (k, 2) for all values of j and k from I to N, and we have 
already observed that elements (1, 2) and (3, 2) have a high, negative correlation. 

The analysis could have been repeated for the whiting data, but we thought 
that it would yield little extra insight into the models. Further, Goodall proposed 
a test of significance between a pair of mean shapes, based on the assumption of 
common error variance matrices. We have not done this because the extent to 
which the distributions of haddock and whiting landmark data overlap has much 
more practical significance than any difference in the population means. There-
fore, in a change of tack, in the next section we apply discrimination methods to 
the haddock and whiting data. 

Table 3 

Maximum likelihood estimate of Z7 ® 2:2 from generalized Procrustes residuals 
of haddock landmarks 

Standard deviations x 1000 

	

(1,!) 	(2,1) 	(3,!) 	(4,I) 	(5,1) 	(6,1) 	(7,!) 	(1,2) 	(2,2) 	(3,2) 	(4,2) 	(5,2) 	(6,2) 	(7,2) 
4.9 	1.5 	5.9 	3.5 	3.9 	6.9 	3.1 	13.3 	4.2 	16.0 	9.6 	10.5 	18.8 	8.4 

Correlations % 
(2, 1) 	—31 

(3,1) 	—95 	16 
1) 	—4 	—70 	1 
1) —13 	—28 	—7 	67 
1) 	49 	13 —42 —77 —72 

1) —51 	—14 	55 	8 	8 —66 

(1,2) 34 —11 —33 —1 —5 17 —18 
(2,2) —II 34 —24 —10 15 —5 —24 —31 
(3,2) —33 5 34 0 —2 —14 19 —95 16 
(4,2) —1 —24 0 34 23 —26 6 —4 —70 	—1 
(5,2) —5 —10 —2 23 34 —25 3 —13 —28 	—7 	67 
(6,2) 17 15 —14 —26 —25 34 —23 49 43 	—42 	—77 	—72 
(7.2) —18 —5 19 6 3 —23 34 —51 —14 	55 	18 	8 	—66 



488 
	

C. A. GLASHEY et al.: Fish Shape Analysis 

Table 4 

2(L—L) 	 Number of 
simulations below 

k 	m 	Observed 	Range from 100 simulations 	Observed value 

1 	1 0 —4, 0 16 
2 	2 —1 —4, 0 38 
3 	3 —6 —8, 6 4 
4 	4 —3 —13, 15 49 
5 	5 —5 —13, 19 8 
6 	6 6 —7, 30 19 
7 	7 8 —10, 48 12 

8 	8 52 —12, 65 90 
9 	9 129 9, 126 100 

9 	10 —7 —96, II 99 
9 	11 —96 —237, 12 92 
9 	12 —172 —365, —62 83 

3. Discrimination between Haddock and Whiting 

To study possibilities for discriminating between haddock and whiting on the 
basis of the landmark data for the 19 fish, we used the BOOKSTEIN (1986) 

edge-superimposition approach to removing position, scale and orientation. After 
selection of two landmarks, all figures are translated, rotated and scaled so as to 
map the selected landmarks to two fixed points, say (0, 0) and (1, 0). Then, if 
discrimination performs best on one or two transformed landmarks, the results 
are interpretable in terms of a subset of three or four of the original landmarks. 
This will not be so after GPA, as the position of a transformed landmark is 
related to the positions of all other landmarks. Accordingly the discrimination 
algorithm would be unlikely to choose only one, or two, of the transformed 
landmarks after GPA. 

We chose landmark I (the tip of the nose) and the mid-point between 
landmarks 4 and 5 (the narrowest part of the tail), which we denote as landmark 
8, to be mapped to the coordinates (0, 0) and (1, 0) respectively. Fig. 3 shows the 
images of all the figures under these transformations. 

The best single discriminating feature is the vertical position of landmark 
2 (the eye). If classification is effected by applying a threshold of 0.035, say, to this 
feature, then only one fish, a haddock, is misclassified. If the threshold is selected 
using standard linear discriminant analysis, i.e. assuming a normal distribution 
for each landmark position, then using the vertical position of landmark 2 produ-
ces three misclassified fish. (Two whiting with high eyes are also misclassified.) If 
the vertical position of landmark 7 (the lower end of the tail) is included as 
a further feature then a 100% accurate classification results. These accuracies are 
based on cross-validation: which involves fitting the classifier to the features of 
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Fig. 3. Landmark positions for haddock (h) and whiting (w) after Bookstein transformation 
based on landmark I and midpoint between landmarks 4 and 5. 

all the fish, save one which is used for testing, and repeating the procedure 
omitting each fish in turn. Using the spread of the data, and assuming a normal 
distribution, misclassification rates of 11% for landmark 2 alone and 4% for 
landmarks 2 and 7 are predicted. The inclusion of additional landmarks increases 
the cross-validated misclassification rate. 

Shape analysis is best suited to analysing differences between rigid bodies. 
Some of the misclassification predicted above may well have arisen from the 
differing degrees of flexion imposed on individual fish when being photographed. 
To test this hypothesis, a nonlinear mapping was constructed which aimed to 
transform images so as to remove these differences of flexion. 

A variety of nonlinear mappings of shape coordinates have been discussed in 
the literature (see BOOKSTEIN, 1991, § 7.4). These have generally been motivated 
by differences in growth patterns between individuals, and so are not suitable 
here. For the fish, we constructed a mapping to model the bending of an 
individual fish. This was done by selecting three landmarks - the tip of the nose 
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(1), the base of the fin (3), and the mid-point of landmarks 4 and 5 (8) - and 
assuming that these three landmarks are collinear when the fish is in an unflexed 
state. We then consider flexion to be a transformation, 45, under which the 
straight line, S, containing these unflexed landmarks, is mapped to the arc of 
a circle. On a neighbourhood of the image we can specify the mapping 0 by the 

following rules. 

(S) g C, where C is a circle whose radius determines the degree of flexion 
applied. 

If x, yES are distanced apart then 4(x), 4(y) are separated on C by an arc 

of length d. 

For x 0 S, if y E S is the point in S closest to x, then (y) is the point in 
C which is closest to 4(x), and 114(x) - 0(y)II = Ix —yj. 

Given the image of a flexed fish, we can then "straighten" it by constructing the 
inverse mapping ofi `  (modulo position and rotation) and applying it to a neigh-
bourhood of the flexed image. This is achieved via the following steps: 

MOMPMEJ 

• - -=-_I • _.1 
Fig. 4. Construction of flexion mapping 0 and straightening mapping 	' 
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Identify the circle C containing landmarks 1, 3 and 8 and parametrise it by 
arc-length in the region of interest as a locus of points {c(z)j, such that 
landmark 1 is (x (0) and landmark 8 is a(D) where D>O is the length of the 
arc joining 1 and 8. 

For x l2,  we define 	, by ç 1 (x)=(z, ± IIx—c(z)ID, where c(z) is the 
point on C which is closest to x. The sign of the y-component of 4 1 (x) can 
be specified by insisting that the y-component of landmark 4 in the 
straightened image be positive. Clearly this fixes the sign of the y-compo-
nent for the images of all other points in the flexed image. 

The construction and effect of applying /' is illustrated schematically in Fig. 4, 
while Fig. 5 shows the image of a whiting before and after application of this 
straightening process. Note that for this fish, the centre of the circle lay above the 
fish. The white lines on Fig. 5(b) are "stretch marks", pixels in the image to which 
no pixels in Fig. 5(a) were mapped. It can be seen that the mapping stretched the 
top half of the fish. 

Algebraically, the straightening together with Bookstein's transformation can 
be implemented as follows. Let x, y and z denote the initial coordinates of 
landmarks 1, 3 and 8. They all lie on a circle which has a centre with first 
coordinate given by 

x(z 2 —y 2 )+y(x 2 —z 2 )+z(y2 —x 2 )—(z 2 —y 2 ) (x 2 —z 2 )(y 2 —x 2 ) - 

1 	
x1(z2—y2)+y1(x2—z2)+z1(y2—x2) 

Fig. 5. 
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An expression for the second coordinate, c 21  can be obtained by exchanging 
subscripts I and 2 above. 

The mapping which transforms x to (0, 0), z to (1,0) and all arcs of circles 
centred on c to straight lines, transforms an arbitrary point v to v': 

1 (tan-' 
x2-c2  

v 	-tan'
a X, _C I 	v 1 -c 1 ) 

v'2 =_-(vi -c 1 ) +(v 2 -c 2 ) - - , 
where 

x 2  -c 2 	z 2 -c2  
a=tafl' 	-tan 

x 1 -c 1 	z 1 -c 1  
and 

r=V(xi -c 1 )2+(x2 -c2 )2. 

Table 5 

V 2  

a 2  x variance of v 
V 1  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1.0 7.6 5.2 3.5 2.3 1.5 1.3 1.5 2.3 3.5 5.2 7.6 
0.9 6.9 4.7 3.1 2.0 1.4 1.2 1.4 2.0 3.1 4.7 6.9 
0.8 6.2 4.2 2.8 1.8 1.2 1.0 1.2 1.8 2.8 4.2 6.2 
0.7 5.4 3.7 2.4 1.6 1.1 0.9 1.1 1.6 2.4 3.7 5.4 
0.6 4.6 3.2 2.1 1.4 0.9 0.8 1.0 1.4 2.1 3.1 4.6 
0.5 3.8 2.6 1.7 1.1 0.8 0.7 0.8 1.1 1.7 2.6 3.8 
0.4 3.0 2.1 1.4 0.9 0.7 0.6 0.7 0.9 1.4 2.1 3.0 
0.3 2.3 1.6 1.1 0.8 0.6 0.6 0.6 0.8 1.1 1.6 2.3 
0.2 1.6 1.1 0.8 0.6 0.5 0.5 0.5 0.6 0.8 1.1 1.6 
0.1 1.2 0.9 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.9 1.2 

0.0 1.0 0.8 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.8 1.0 

a2  x variance of v 

1.0 2.9 3.0 3.1 3.2 3.3 3.3 3.3 3.2 3.1 3.0 2.9 

0.9 2.5 2.5 2.6 2.8 2.9 2.9 2.9 2.8 2.6 2.5 2.5 

0.8 2.1 2.2 2.3 2.4 2.5 2.5 2.5 2.4 2.3 2.2 2.1 

0.7 1.8 1.8 1.9 2.1 2.2 2.2 2.2 2.1 1.9 1.8 1.8 

0.6 1.5 1.5 1.6 1.7 1.8 1.9 1.8 1.7 1.6 1.5 1.5 

0.5 1.3 1.2 1.3 1.5 1.6 1.6 1.6 1.5 1.3 1.2 1.3 

0.4 1.1 1.0 1.1 1.3 1.4 1.4 1.4 1.3 1.1 1.0 1.1 

0.3 1.0 0.9 0.9 1.1 1.2 1.2 1.2 1.1 0.9 0.9 1.0 

0.2 0.9 0.7 0.8 0.9 1.1 1.1 1.1 0.9 0.8 0.7 0.9 

0.1 0.9 0.7 0.7 0.8 1.0 1.0 1.0 0.8 0.7 0.7 0.9 

0.0 1.0 0.6 0.6 0.8 0.9 1.0 0.9 0.8 0.6 0.6 1.0 
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Therefore, the mapping from v to v '  is expressible as a complicated function of 
x, y and z. 

The stability of the transformation can also be analysed. For example, if x, y. 
and z are subject to errors which are independent and isotropic with common 
variance a 2 , then to a first-order approximation the variance of v is given by 

2 1 aV  ävT äv 3vT 3v 3vT äv ävT C9V 3V 	3 3v 
a - —+--- —+-- —+-- —+-- —+--- 

3x 1  3x 1  0x2  3x2  3y1  41 3y2  3y2  3z 1  0z 1  3z 2  3z 2  

Algebraic forms of these variances are very messy. Therefore it is much simpler to 
evaluate them numerically using difference methods. To illustrate, if x, y and 
z have expected positions of (0, 0), (0.5, 0.05) and (1, 0) respectively, then the 
variances of v '1 and v for a range of values of v are given in Table 5. 

The straightening transformation was applied to the image of each fish, after 
which Bookstein edge superimposition was applied to the straightened land-
marks. The resultant figures are shown in Fig. 6. The position of the eye 
(landmark 2) is now sufficient to classify all the fish correctly. A zero misciassi- 
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Fig. 6. Landmark positions after Bookstein transformation of straightened fish. 
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fication rate is obtained from linear discriminant analysis, and the assumption of 
normality leads to a predicted misclassification rate of 2%. This represents 
a considerable improvement in performance, reducing by half the previous best 
misclassification rate. Essentially, this latter technique can be viewed as a non-
linear discriminant function applied to four of the original landmarks. Adding 
further landmark positions in classifying the straightened fish did not produce 
a significant improvement in predicted misclassification rate. These results 
suggest that the use of the straightening transformation allows some of the error 
arising from differing degrees of flexion to be eliminated. 

4. Discussion 

Construction of a statistical model for a group of objects by using points on each 
object which are known to correspond is a natural approach, provided that such 
landmarks are available. The use of a shape model is most appropriate when the 
objects differ by translation, scaling and rotation added to a small, random 
perturbation. While the fish data clearly do not come into this ideal category, as 
they are also subject to non-affine flexing, we have shown that a shape model can 
provide useful insight. 

Having extracted a suitable set of landmark data from the fish images, we 
attempted to fit the various shape models proposed by Goodall. This brought the 
following problems to light: 

I. Maximum-likelihood estimation of the covariance matrix is seriously biased 
because transformation parameters have to be estimated for each fish. 

The MLEs for covariance matrices are not of full rank because of redundancy 
in the model: the same variation can be explained by either a Procrustes 
transformation or stochastic perturbation. 

Appealing to asymptotic results may not be justifiable, given the smallness of 
the data set. 

In comparing models (0) and (1), the method of comparison on the non-singular 
eigenspaces of X 1  is natural, and simulation can be used to indicate if model (0) 
is seriously deficient. In comparing models (I) and (2), simply comparing corres-
ponding eigenspaces (as ordered by the eigenvalues) is somewhat arbitrary but 
ensures that the resultant calculations are manageable. We concluded that model 
(1) offered a good fit to the data in general, although it was not completely 
satisfactory. Comparing 2),  as estimated from the data, with 1(2)  from the 
simulations enabled us to identify those coordinates causing the major deviations 
from the model. 

Finally we designed a technique which was particularly aimed at the fish data, 
although it has potential for greater applicability and for use of curves other than 
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arcs of circles. Much of the observed variation between the fish arises from the 
varying degrees of flexion applied to them. Attempting to model this flexion 
using an error-variance structure with complexity intermediate to those of 
models (I) and (2) is difficult since there are no simple formulae for MLEs. Our 
approach involved first selecting three landmarks which were assumed collinear 
in an unflexed fish. Flexion was then modelled as a mapping under which the line 
containing these landmarks was mapped to a circular arc. Given the landmarks 
of a flexed fish, these were then "straightened" by constructing the inverse 
mapping and applying it to the landmarks. By using this nonlinear preprocessing 
the ability to classify haddock and whiting using linear discrimination methods 
was considerably enhanced. 
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1 INTRODUCTION 

Geologists have long recognized that 
permeability varies in sedimentary 
rocks. This is, in part, a result of varying 
sediment particle size and depositional 
processes. Well-sorted sediments lacking 
structure generally have low variability, 
while well-developed sedimentary struc-
tures with large contrasts in grain size 
usually exhibit large variations in perme-
ability. These small-scale variations can 
have significant effects upon the displa-
ce ,-.f ,-,1 i-rn 	(Rinc,- 
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rose  et al., 1993), which is a common 
method of recovering oil. At a larger 
scale, many hydrocarbon reservoirs 
comprise intervals of rock of contrasting 
variability. This can lead to the oil being 
entrapped in unconnected compart-
ments and, therefore, reduce the recov-
ery of oil and gas (Van de Graaff and 
Ealey, 1989)- For effective characteriza-
tion of a reservoir, account may need to 
be taken of permeability variation at 
many scales. 

Oil industry practice has been to take 
samples for permeability measurement 
at 25-30 cm spacings on subsurface  

cores, irrespective of the geology or the in-
tended application for the data. Cylindri-
cal plugs approximately two to three cm 
diameter and of similar length are drilled 
out of the core and tested (API, 1960). This 
practice often leads to destruction of the 
core while obtaining a permeability mea-
surement with a poorly defined geologi-
cal scale resting somewhere between the 
lamina and lamina set levels. For homoge-
neous reservoirs, core plugs have been 
adequate but, for more complicated situa-
tions, they have been an expensive source 
of frustration. 

An alternative method of small-scale 
permeability measurement, the probe 
permeameter (Fig. 1), has recently seen 
widespread development (Sutherland 
et al., 1993) and use (e.g. Halvorsen 
and Hurst, 1990; Robertson and 
McPhee, 1990). It has two attractive fea-
tures: it is a non-destructive test and, de-
pending on the orifice size, it can make a 
measurement more appropriate to the 
scale of variation. Unlike permeability 
measurements on core plugs, however, 
the probe has a poorly defined flow geo-
metry and resolution. 

The volume of investigation for the 
probe permeameteris an issue of much in-
terest to engineers and geologists. Nu-
merical solutions of the gas flow 
equation have been used to examine the 
measurement characteristics of the probe 
device (Goggin et al., 1988b). The solu-
tions (of non-linear differential equa-
tions) require many assumptions, but, 
nevertheless, indicate that the depth of in-
vestigation is relatively localized. Some 
observations from simple experiments 
also indicate the investigation to be lim-
ited to a few injection radii, but nothing 
more precise has been established. 

The purpose of this paper is to report 
on a statistical analysis of a probe per-
meameter data set. The •probe data 
consist of two grids of measurements in 
each of three sections in a well in a 
North Sea Middle Jurassic field. Section 

N2  
gas 

tube (-6mm id) 

seal 	111 
Irocki 

Fig. 1. A schematic view of the probe 
permeameter tip in position for a 
measurement. The rock permeability is 
related to the gas flow rate and pressure, 
and the tip and seal sizes. Most of the 
pressure drop across the sample occurs near 
the injection area. 

ABSTRACT 

Sedimentary rocks exhibit small-scale (mm) permeability variations 
which can be detected with a probe permeameter. The structure of the 
laminations may provide evidence about the characteristics of the 
measurement device. The statistical interpretation of these 
measurements using averages and variograms is enhanced when the 
geological character of the rock is taken into consideration. The three 
aspects of rock characterization, namely geology, measurement, and 
statistical analysis, are best assessed in concert. This theme is illustrated 
using probe data taken from sections of the Rannoch and Etive 
Formations, Northern North Sea. 

Terra Nova, 6, 397-403, 1994. 
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the Statfjord Field in the Northern North 
Sea (Roberts et al., 1987), 3800 m below 
sea level. The sampled intervals covered 
4 m from the Etive Formation and 8 m 
from the Rannoch Formation, represent- 

-f 1,—,,4- 10 

formation. Slabs were cut lengthwise 
from the cores, and mounted on epoxy 
resin beds for long-term preservation. A 
probe permeameter (Halvorsen and 
Hurst, 1990) was used to sample the 
rock (Fig. 1). Permeability of the rock 
was measured over a grid of positions, 
10 mm spacing along the slab and four 
columns at 20 mm spacing across the 
slab, by measuring the pressure re-
quired to force nitrogen gas out of the 
end of a circular probe (aperture 
diameter 5.9 mm, external diameter 
10.5 mm) pressed against the slab face. 

Measurements were omitted where core 
plugs had been removed or no satisfac-
tory seal between the probe and the 
rock could be achieved. Fifteen areas of 
slab were singled out for more detailed 

....4 	 : 	 __.......0 	t.._ 
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vations (2 mm, 3 mm, or 5 mm) were 
collected using a probe with a 3.6 mm 
aperture diameter, 7.9 mm external 
diameter. A preliminary analysis, and 
comparison with permeability measure-
ments using core plugs, is given by 
Corbett and Jensen (1992). 

- 

3 ANALYSIS OF COARSE GRID 
DATA 

A variety of graphical methods was 
used to explore the distributional prop- 
erties of the data and, in particular, the 
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Fig. 2. Histograms of Etive Formation coarse grid data on (a) untransformed, (b) square-root transformed, (c) Napierian log-transformed and 
(d) negative inverse scales. 

2 describes the data and measurement 
schemes for the coarse and fine grids. 
Section 3 illustrates the statistical beha-
viour of the arithmetic and harmonic 
averages and the semivariogram for one 
00ClChrfl ,sf 
r-  
Section 4 considers the fine grid data 
and, in particular, examines the effective 
area over which a probe measures 
permeability. This report demonstrates 
the role that geology plays in the 
assessment of statistics and the mea-
surement response of the probe. 

2 DATA SOURCE AND 
DESCRIPTION 

Rock cores were obtained from 12 m of 
the Lower Brent reservoir in a flank 
water injection well (at 58° to vertical) of 
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relationship between observations. Fig-
ure 2 shows histograms of the Etive 
Formation data on the original and 
three transformed scales. The cluster of 
observations at 20000 mD represents 
censored data, where the rock had such 
a high permeability that the probe 
permeameter pressure had failed to 
stabilize before a 30 s time limit was 
reached. These data were included in 
the analysis rather than omitted as there 
were sufficiently few that a more 
sophisticated analysis seemed unneces-
sary. It is clear that the distribution is 
positively skewed, and a transformation 
between square-root and log gives the 
best approximation to normality. This is 
also indicated by the inverse transfor -
mation being more severely skewed 
than that on the original scale. This is 
in accord with permeability data from 
other fields, and other types of measure-
ment (Jensen et al., 1987). 

The coefficient of variation (the stan-
dard deviation divided by the arith-
metic average) is 0.95. Similar patterns 
were observed in the Rannoch Fdrma-
tion data sets, but with different coeffi-
cients of variation. Even when a 
transformation was found which gives 
marginal normality to permeability 
measurements, the data did not appear 
to be multivariate normally distribu-
ted. Figure 3 illustrates this point, with 
a plot of normalized measurements 
against those at the next depth. 
Although most data are within the ex-
pected ellipse of bivariate normal devi-
ates, there are several points [e.g. 
(-2.5, 1.7) and (0.2, —2.2)1 where the 
permeability has changed dramatically 
between adjacent readings. 

The semivariogram is a commonly 
used method for quantifying spatial 

OLLLSALCO 

(e.g. Goggin et al., 1988a; Dreyer et al., 
1990). It is defined as half the variance 
of the difference between permeabil-
ities a fixed distance apart, and there-
fore, for stationary processes, it is a 
function of the variance and autocorre-
lations (Davis, 1973). In essence, the var-
iogram is a measure of how weakly 
related a rock property is at two differ-
ent locations. As the distance between 
locations increases, the relationship 
strength usually diminishes and the var-
iogram value increases. 

Sample vanograms were generated 
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Fig. 3. Normalized Etive coarse grid data 
plotted against value at next depth. 
Normality was obtained using a normal-
scores transformation. 

for the lengthwise profiles. The vario-
gram for the Etive Formation data (Fig. 
4) shows behaviour typical of a spheri-
cal or exponential model (Journel and 
Huijbregts, 1978) with a correlation 
range of approximately 10 cm. This 
length roughly corresponds to the sizes 
of channels identified in the core. The 
variogram nugget (the vanogram y-
axis intercept) is not zero (about 
1.5 x 106 mD2) because of the small-
scale variation which was not ade-
quately sampled by the 1 cm spaced 
samples used to calculate Fig. 4. A fi-
ner-scale variogram (Corbett and Jen-
sen, 1992) shows some correlation at 
the 1-2 cm level as well, corresponding 
to the within-channel fining-up struc-
ture. With 1 cm sample spacing, this fi-
ner structure appears as random noise. 
Given the sample volume, this smaller 
scale of correlation (structure) would 
be unobservable with core plug data. 

In order to establish the influence of 
sample density on averages commonly 
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Fig. 4. Semivariogram of lengthwise profile 
of Etive coarse grid data. 

used in reservoir characterisation, a ser-
ies of data subsets at various sample 
spacings were generated. The coarse 
grid was considered as four lengthwise 
profiles. Probe permeameter subsets 
were produced by systematically skip-
ping a set number of samples (and also 
by varying the origin of the sampling) 
from each of the four profiles. For exam-
ple, ten subsets of 10 cm spaced data 
were produced from each profile. Arith-
metic and harmonic averages of per-
meameter data subsets at various 
spacings were then computed. The ar -
ithmetic and harmonic averages have 
been suggested for flow parallel (i.e. 
horizontal) and flow normal (vertical) 
to the layering, respectively (Muskat, 
1937). In homogeneous material, the dif-
ferences between the averages (and be-
tween flow in different directions) are 
small but, in heterogeneous media, the 
differences can be very significant. 

Figure 5 shows the variability of the 
probe- and plug-based sample 
averages. The 'true' average of the 
sampled intervals is assumed here to 
be the estimate derived from the com-
plete probe permeameter data set. A 
±20% permissible variation, which we 
consider to be an appropriate target for 
estimates from reduced sample sets, 
can also be defined either side of the 
true average. It appears that, for the ar-
ithmetic average of the probe data to be 
consistently within 20% of the true va-
lue, the Etive Formation core requires 
samples at somewhat less than 5 cm 
spacing. For the core plug arithmetic 
averages, the results suggest that ade-
quate sampling is achieved even at 60 
cm spacing. This is primarily because 
each plug sample volume represents 
about 20 probe sample volumes. For cal- 
uaii 	lilt aiitiuiieim. dve1dt, unit 

plug datum is worth about twenty 
probe measurements. This 'equiva-
lency' changes when other statistics are 
considered. The harmonic average (Fig. 
5) results suggest two things. First, the 
probe harmonic average needs more 
closely spaced samples than the arith-
metic average. Secondly, the plugs are 
not identifying the lowest permeability 
regions and, therefore, give an optimis-
tic assessment of the vertical permeabil-
ity. The probe/plug harmonic average 
contrasts have been found to be even 
greater - up to a factor of 3—in the 

- 
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Fig. 6. Grey-scale representation ofa fine grid, 2 nun spacing, from the Rannoch Formation. 
Higher permeabilities are represented by lighter shading. Each grey-scale square is 2 mm 
2 mm. 
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ciently than just described (see Appen-
dix 1). Nonetheless, for the Etive 
Formation data, the sample arithmetic 
and harmonic averages are 80% effi-
cient, as compared with maximum like-
lihood estimation under a log-normal 
model. Sample estimates have even 
higher efficiencies for the Rannoch For-
mation data. Further, the sample 
averages are unbiased and indepen-
dent of distributional assumptions, 
which makes them preferable, espe-
cially when the evidence in Fig. 2 is 
borne in mind. 

4 ANALYSIS OF FINE GRID 
DATA 

Figure 6 shows a grey-scale representa-
tion of one of the fine grids from the 
Rannoch Formation at 2 mm spacing. 
This grid has been picked out for special 

consideration because its finer struc-
tures, particularly the top-most diago-
nal lamina, are thinner than expected if 
the probe permeameter truly averages 
permeability to a distance four times the 
probe aperture radius (Goggin et al., 
1988b). 

This notion was tested using Fourier 
(spectral) analysis of the probe measure-
ments and found that the 90% extent of 
averaging is approximately 2.2 times 
the aperture radius. (Details of the ana-
lyses are given in Appendix 2.) This is 
lower than Goggin et al's (1988b) assess-
ment that 90% of the probe response was 
due to material within a range 4 times the 
probe aperture radius. Their findings, 
however, were made using a numerical 
model and assumed homogeneous rock. 
The same spectral analysis for the entire 
fine grid, rather than just a portion, pro-
duced similar results. Other fine grids 

20 	40 	60 	80 

Fig. 5. Arithmetic (upper) and harmonic 
(lower) averages of Etive Formation coarse 
grid data subsets, obtained by increasing 
spacings between samples. Probe estimates 
are filled circles, ois'ii  circle are core pliu - 
based estimates. 

more finely laminated intervals in the 
Rannoch Formation (Corbett and Jen-
sen, 1992). 

These standard errors, obtained by 
resampling or, more simply from the 
sample variances, are valid for an esti-
mator of the true average permeability 
of a slab of rock, provided that the sam-
pling re dn n0t coincide with 
odicity within the rock (for example 
Ripley, 1981, pp.  25-27). Standard er-
rors appropriate for an estimate of the 
permeability of the whole Etive Forma-
tion are more difficult to obtain. In this 
case, correlations between observations 
need to be taken into account, and 
these are likely to have been underesti-
mated within a single rock sample. 
Therefore, several widely-spaced rock 
samples would be required, i.e. cores 
from more than one borehole. 

If the exact distributional form of the 
permeabilities were known, true 
averages could be estimated more effi- 
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from the Etive or Rannoch Formations, 
however, did not give such good results 
(Appendix 2) because, we presume, of 
the nature of the underlying sedimen-
tary structures. That is, the Fourier spec-
trum of permeabilities was not as flat as 
our method assumed. 

5 DISCUSSION 

The combination of statistical analysis, 
and an appreciation of the geological 
character of the sediments sampled has 
addressed several issues related to the 
permeability variation. It is well known 
that measurements have an associated 
sampling volume (e.g. White, 1988). 
Hence, any permeability measurement 
will bean average of the permeabilities of 
all the regions of the sample. It follows, 
therefore, that the choice of measurement 
method should be dictated by the scales 
of geological variation present and the 
intended application of the data. It is the 
interplay of the geological features and 
the permeability variation that has been 
largely overlooked: Statisticians fre-
quently disregard the sedimentary archi-
tecture while many geologists avoid 
statistical characterisation. This study 
illustrates the importance that sedimen-
tary architecture plays when interpreting 
permeability data and derived statistics. 

Besides the interpretation of common 
statistical measures, the geology can in-
form the debate on probe permeameter 
resolution. To our knowledge, the ap-
proach of using regression modelling 
and Fourier analysis to examine the 
probe response to thin lamina has not 
previously been used. The results pro-
vide important supporting evidence for 
a very localised probe measurement 
of order two probe inner radii This 
feature has considerable importance in 
both the choice of probe tip size for 
measurements and in interpreting the 
probe response. 

The increased use of the probe per -
meameter has also raised questions 
about its suitability for determining 
'average' properties of the larger-scale 
geological elements (e.g. beds). That is, 
the level of the small-scale permeability 
and its variation must be somehow 
'condensed' for some applications. For 
example, the prediction of fluid flow in 
the subsurface typically requires com-
puter simulation models having a lim- 

ited number of relatively large (e.g. 
tens of metres) grid blocks, each of 
which could represent a region having 
many probe measurements. Compari-
sons with larger scale measurements 
(e.g. from core plugs or well pressure 
transient tests) also require 'average' 
properties. Under many circumstances 
(i.e. for the flow of a single fluid phase 
through a layered medium), easily-de-
termined statistical parameters, such as 
averages, can be used to achieve the 
scale-up. Since sedimentary rocks often 
have non-Gaussian permeability distri-
butions, it is useful to examine the statis-
tical properties of averages (Matheron, 
1967). This is the case in particular for 
the lesser studied averages, such as the 
geometric and harmonic averages. In 
some cases, such as the arithmetic aver-
age, permeability data by plug and 
probe methods give comparable re-
sults. Other statistics, however, show 
the value of measurements having smal-
ler volumes of investigation but at a 
higher sampling density than the core 
plug method is capable of. 

The practical application of statistical 
techniques to petrophysical measure-
ment and data analysis has given new 
insights and guidance for the use of 
such data. The value of the measure-
ments has thus been enhanced. Further 
important advances are expected in this 
field as the geology, measurement sta-
tistics, and flow properties are collec-
tively studied to address the challenges 
of reservoir characterization in the oil 
industry. 
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APPENDIX 1 

A knowledge of the permeability prob-
ability distribution function allows 
parametric methods to be applied to 
the estimation of the arithmetic and 
harmonic means (Agterberg, 1974). If 
the data are assumed to be log-normal, 
with mean j.i and variance cy2  on the log-
scale, then the arithmetic mean is 

M =exp( 4o2) .  

The variance of the sample arithmetic 
mean (i.e. the arithmetic average) using 
n observations is approximately 

M2—  1 
n 

The maximum likelihood estimator, 
obtained by estimating j  and a2  on the 
log-scale, has a smaller variance, ap-
proximated by 

M2 (1+ .  
n\ 	2 

Identical results may be obtained for the 
sample harmonic mean, but with a 
mean of approximately 

exp(i - 
I

cr2 ) .  

APPENDIX 2 

If a lamination, before blurring, is taken 
to be infinitesimally thin, straight with a 
quadratically varying permeability, and 
in a medium with constant permeabil- 
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Fig. 7. Data, and fit of blurring model, to 
the topmost lamination in Fig. 6. 

ity, then the permeability at location 
(x, y) is given by 

f(x,y) = a+(/3+'yx+(x2 )6(y—nj— kx), 

where a , 31  7, , r, K are parameters and 
is the Kroneker-delta function. The 

recorded measurements are assumed to 
be a convolution of f with a blurring 
function (Bendat and Piersol, 1986). If 
this is assumed to be Gaussian with 
variance t2, then the permeameter read-
ing at location (x,y) is 

f[f(u,v) 
g(x,y) 

= _L 

	

r 	i 
exp - - [(x - u) 2  + (y -  V)2 1 dudv. 
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Fig. 8. Estimated log spectrum in 
lengthwise direction from data in Fig. 6, 
together with fitted quadratic function. 

This can be approximated by 

g(x,y) = 'y+ (/3' +'y'x + ('x2 ) 

1 	1 	 2 

v 
exp 

[_ 

'~y

where 3', " and 
' are modified values 

of 3, ', , and 

V = r//1 + in2 ) 

This function was fitted to the data 
along, and on either side of, the lamina 
by iterative least squares to minimize 

vv1Yii _g(i,j)2 

ZTIZI_IL g(i,j) j 

the divisor being employed to account 
for observed variance heterogeneity. 
Figure 7 shows the fit for three columns 
of data. The blurring parameter, -r, was 
estimated as 1.56 mm. Therefore, in 
three dimensions, the 90% extent of 
averaging is 2.2 times the aperture 
radius (Jx2(90%)  x 1.56/1.8). 
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Fig. 9. Estimated log spectrum in lengthwise 
direction from afinegrid, 3 mm spacing,from 
the Etive Formation, together with the 
expected spectrum resulting from blurring. 
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Could this same information be ob-
tained from the whole grid, rather than 
a singled-out lamina? Figure 8 shows a 
lengthwise spectral estimate, on a log 
scale, smoothed over a window of 
width 10. Theory (Bendat and Piersol, 
1986) tells us that this is the sum of the 
log-spectrum of the permeability before 
blurring and of the log-spectrum of the 

blurring function. In the case of Gaus-
sian blurring, this is a quadratic with 
coefficient - t2 /22. The fact that the 
sample values in Fig. 8 look approxi-
mately quadratic suggests that, for this 
grid, the original spectrum is flat. Also 
shown in Figure 8 is the least squares 
fitted quadratic, which has coefficient 
—0.60, implying r is 1.55 mm. 

For other data, agreement is not so 
good, presumably because the spec-
trum of the preblurred permeabilities 
is not featureless. Figure 9 shows an 
Etive Formation grid at 3 mm spacing, 
and the Gaussian spectrum with 
=1.56 mm, obtained from the pre-

vious analysis. Agreement is good ex-
cept at the lowest frequencies. 
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Energetics of Group Foraging: 

Analysis of a Random-Walk Model 

G.D. Ruxton & C.A. Glasbey 

Scottish Agricultural Statistics Service 
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Summary 

Several recent publications present mathematical models of foraging by groups of individuals 

which assume (1) that the time taken to find food patches is inversely proportional to group size 

and (2) that the time taken for others to travel to a discovered patch is negligible compared to the 

time taken for its discovery. Implicitly, these non-spatial models consider that searching 

individuals and food patches are always homogeneously mixed. We present a spatially-explicit 

model, where individuals forage by performing a 2-D random walk. Using a mixture of 

simulation and analytic results, we suggest that the two assumptions above may often be 

unrealistic. For this reason, we argue for the greater consideration of spatial effects in future 

studies of group foraging. 

j1 

Key words: group foraging, random walk, optimal group size, spatial aggregation 
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1. Introduction 

Many organisms spend much, or all, of their lives in groups with other conspecifics. The possible 

advantages of group living have long been the subject of scientific interest (see Krebs & Davies, 

1993 for an overview). One commonly-held belief is that being in a group can be advantageous in 

obtaining food. One mechanism for this occurs when groups of foragers can obtain food which 

would be unobtainable to a single individual: for example, a single hyena cannot bring down an 

adult wildebeest but several hyenas working together commonly do. 

Another theory is that, when food is dispersed in concentrated but widely separated patches, a 

group of searching foragers can find food more effectively than an individual. This advantage to 

group living has been the subject of considerable theoretical study; three recent examples being 

Vickery et al. (1991), Ranta et al. (1993) and Valone (1993). Each of the last three papers present 

models which assume that each individual forager searches independently for a food patch. When 

one individual is successful, the others are able to share this patch until the group leaves the patch 

and the process begins again. All three papers also assume that the average time taken between 

leaving one patch and another being discovered is inversely proportional to a power of the 

number of individuals in the group. In this paper, we use a simulation model to probe the validity 

of this assumption for a simple random walk search strategy when the relative spatial positioning 

of individuals is modelled explicitly. A random walk is chosen because of its simplicity, its 

previous use in ecology (Skellam, 1951; Pielou, 1969; Edelstein-Keshet, 1988) and its 

accessibility to analysis. The simulation studies of Ruxton (1994) investigate related themes using 

a range of more complex search strategies which are not suited to obtaining analytic results. 

Another (implicit) assumption of previous studies is that the time taken for an unsuccessful 

individual to give up searching and move to a patch discovered by another is negligible compared 

to the time taken to find a patch. This too is investigated for a random walk search strategy. 



3 

2. The model 

A fixed number (m) of individual foragers search a 2000x2000 square lattice. In order to avoid 

edge effects, periodic boundary conditions are used with opposite edges of the lattice being joined 

so that the arena can be considered as the surface of a torus. A fixed fraction of the sites (p), 

uniformly but randomly distributed throughout the lattice, contain a food patch. At the start of 

each simulation, all the foragers are placed on the same, randomly chosen, site. At each timestep, 

each individual moves to one of the eight nearest-neighbour sites. Each site is equally likely to be 

chosen and moves are not correlated in time: i.e. the foragers have no memory. The choice of 

neighbouring site made by each individual is independent of the choices made by the other 

foragers on that site. Hence, by chance, two individuals on the same site may make the same 

move, although they also have a chance of moving in different directions. When an individual 

moves to a site (other than the initial one) which contains a food patch, it discovers the patch and 

stops moving. Further, once a patch has been discovered, all the other individuals change the site 

selection part of their movement rule and always move to the nearest-neighbour closest to the 

discovered patch. Individuals continue to move at the same speed as before, making one move 

each timestep. This process continues until all the individuals reach the discovered patch. We 

record both the time taken to find the patch, and the average, over all foragers, of the total time 

taken to reach the patch. These values are averaged over 10000 simulations, each starting at a 

randomly chosen location. 

Implicitly, we assume that a discovered patch will be sufficiently rich that it will never be eaten 

out before all the foragers reach it, and that a forager's chance of discovering another patch whilst 

moving to join the others can be ignored. 
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3. Results 

3.1 A single forager 

We begin by considering the simple case where there is only one forager. The searching ability of 

the random walk is measured by the average of the number of different sites (Nd) that the forager 

has visited after making a given number of moves (N). In general, Nd  will be less than N because, 

since the forager has no memory of where it has been, it will often revisit sites. In fact, when N is 

large, Dvoretzky & Erdös (1950) show that 

icN 
Nd In (N) 

(1) 

As fig. 1 demonstrates, this expression provides a reasonable, but consistently high, estimate of 

the number of sites visited by a random walker even when the number of moves made (N) is 

relatively low. 

Equation 1 can be used to calculate the average number of moves it will take a lone forager to find 

a food patch. If each site has a fixed probability (p) of containing a food patch, then the average 

number of distinct sites that the forager must search in order to find a food patch is simply the 

reciprocal of p. Hence, the number of moves required to find a patch (N o) may be approximated 

by the solution to 

iN 
 -! 	 (2) 

In (NP) - p 
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Figure 2 compares this analytic solution with the average obtained from simulations. Both 

methods show a similar trend but, because Nd  is over-estimated in eqn. 1, the analytic value of N 

is consistently a little less than that measured from simulations. 

3.2 Multiple foragers 

We now hold the probability of a site containing a food patch (p) constant and investigate the 

effect of increasing the number of foragers on the number. of moves required for one of them, to 

find a patch. Figure 3 shows the results of simulations which demonstrate that the number of 

moves (per individual) required to find a patch (N 1,) decreases if several individuals search 

simultaneously. However, the number of moves required is not a simple inverse proportion of the 

number of foragers (m), or of any power of m. Instead, it can be seen that each individual added 

has less effect on NP  than the last. Indeed, ultimately as m -, oo, NP  saturates to a positive value 

greater than zero. This value can be obtained analytically. If the number of foragers is infinite, 

then every site which could be visited by a random walk of given length is visited, hence the 

number of moves (per individual forager) required is simply the average number of sites between 

a randomly chosen site and the nearest site which contains a patch. Appendix 1 demonstrates that 

this quantity is given by the simple expression 

(2i-1) 
	 (3) 

Zd 
i= 1 

where p is the probability that a site contains a food patch. For the simulations shown in figure 3, 

with p = 0.02, this series sums to 3.14. This can be seen to make intuitive sense since after 3 steps, 

an infinite number of foragers will have visited 72  distinct sites which is just less than 1/p. 

To understand the relation between the mean number of moves required to find a patch (No) and 
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the number of foragers (rn), we can draw on recent results from the physics literature (Weiss et al., 

1992; Havlin et al., 1992; Larralde et al., 1992a,b). As discussed in Larralde et al. 1992b, analytic 

results can only be obtained in the limit of a very large number of foragers (m), and a large 

number of moves per forager (N). The conclusions of the above work are summarized in Figure 4. 

We consider the random walk to be split into three phases. In the initial phase, i.e. for the first few 

moves, the number of sites that could be visited is much less than the number of foragers. Hence, 

in this phase, all sites that can be visited are visited, and the number of visited sites (Nd) is given 

by the area of a square of side 2N. Larralde et al. (1992a) show that this phase terminates after a 

time which increases linearly with ln(m). Practically, for the numbers of foragers considered in 

Fig. 3, this case could not be considered to last beyond the second step (N = 2) when 25 sites 

could possibly have been visited by, at most, 25 foragers. 

There then follows a phase where Nd increases linearly with ln(m). This phase lasts until a time 

which increases exponentially with m. Hence, even for the relatively small number of foragers 

considered in this paper, the phase can be very long lived.. 

In the final phase of the random walk, individual foragers have becomes so spatially dispersed 

that the probability of a site being visited by more than one forager is very low. Hence, from 

equation 1, we know that the number of new patches discovered during this phase is given by 

mEN 
Nd= 1n (N) 

(4) 

It is only in this final phase that the number of moves required to find a food patch (N o) decreases 

linearly with forager number (m). However, this phase only occurs after a very long time for all 

but the smallest numbers of foragers. This can be seen in Fig. 5 where, after each forager has 
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moved 2000 times, if m = 2 the difference between Nd  observed from simulations and calculated 

from eqn. 4 is approaching a constant; whereas with m = 25, the distance is still increasing. This 

means that the simulations with two foragers have reached the final phase but the ones with 25 

foragers have not. It is the prolonged duration of the second phase which explains why Nd  falls 

sublinearly with N, and that this effect becomes more pronounced with increasing N. 

In the simulations, once a food patch has been found all foragers perform a biased random walk 

always choosing the site closest to the discovered food patch. The simulation is continued until all 

the foragers have reached the patch. The average time taken for a non-discoverer to reach a patch 

is also shown in Figure 3a. This data is replotted in Figure 6 where it can clearly be seen that the 

longer it takes for a patch to be found, the more dispersed the foragers will be upon discovery and 

hence the greater time (on average) it will take non-discoverers to travel to the patch. Again, it is 

possible to generate an analytic estimate of this time. Assuming that the number of foragers is 

infinite and that the number of steps taken by each (N) is long, then the number of sites (D) 

between two randomly chosen foragers is shown in Appendix 2 to be given by 

D=J 
	

(5) 

Substituting the number of moves taken to find a patch (N o) for N allows an estimation of the 

J1uII1L,cr UI I11UV5 IUII 4VVIdJ L44UUU IVI 4 uuii-ui,Jvcici IV JULLI Ulu bUbIU1 ULU&VIUU4L. 

Notice from fig. 6 that this method tends to under-estimate the distance, and hence the number of 

moves required. The reason for this is that the individual which makes the patch discovery is not a 

randomly drawn individual but is likely to be towards the extremes of the spatial distribution of 

foragers where the probability of moving to a hitherto-unsearched site is highet The average 

distance of an individual on the periphery from other foragers is greater than that of a randomly 

chosen individual. 



8 

4. Discussion 

Models of group foraging which assume that the average time taken to find a patch decreases 

linearly with the number of searching individuals assume that all the individuals search 

independently and their searches never overlap. Models which assume that the time taken 

decreases as a fixed power of searcher number assume that the extent to which overlap of searches 

occurs between any two individuals is independent of the total number of searching individuals. 

In fact, the theory and simulation presented here suggest that the extent of search overlap 

increases with the number of searchers. A simple empirical expression which captures this effect 

is presented by Mange! (1990) who assumes that the average time taken to find the next patch (T) 

is related to the number of foragers (m) by 

- T1 (14-exp(—e)) 
l+exp(—cm) 
	

(6) 

where e is a positive constant. 

Although T decreases with increasing m, and the rate of change in T also decreases with m, so 

successively adding individuals has less and less effect on the search time. Notice, in the limit of 

very many foragers, simple inverse power formulations assume that the search time falls to zero, 

whereas Mangel's formulation saturates to a non-zero value independent of m. In most situations, 

even a large number of foragers will take a finite amount of time to find the next patch, because 

they start from the same location and are limited by their speed of movement (c.f. de Roos et al. 

(1990)). 

Figure 3a shows that the average time taken for other foragers to join the successful individual 

represents a significant fraction of foraging time. In general, we can see that a trade-off exists: the 

more dispersed the foragers become, the more effective their searching but the more time it will 

take unsuccessful individuals to join a successful one. Notice that this study assumes that speed of 



travel during searching is the same as speed of directed travel to a newly discovered patch. 

Increased speed during directed travel would reduce the effects discussed in this section, but 

would not remove them. 

The conclusions reached in this paper are based on simulations and analysis of the somewhat 

idealised situation where foragers search using a random walk strategy. However, the recent 

simulation study of Russell (1995) uses essentially similar simulations to those used here but 

considers six different search strategies. For almost all situations investigated in that paper, the 

predictions of the simulations were analogous to those shown in Fig. 3 of this work. Hence, there 

is evidence that the results obtained here are not specific to the choice of search strategy and so 

the insights obtained from study of random walks may be applicable to more general 

representations of foraging in a spatial environment. 

Although we suggest that future modelling work should take careful account of spatial effects, the 

predictions of previous non-spatial models should not be neglected. One conclusion of previous 

non-spatial work was foragers would exist in groups of a size which maximised either the average 

uptake per individual or which minimised the variance in uptake rate (McNamara & Houston 

(1992)). Such an optimal group size arises naturally in the model described in this paper. 

Averaged over many patches, the reward from each patch per individual will decrease linearly 

with the number of searchers. However, the rate at which patches are found will increase sub-

linearly with searcher number. Hence, the model predicts that there will be a unique number of 

searchers which maximizes individual reward rate. 

It seems likely that sharing patches discovered by other individuals may not always benefit a 

forager because of the cost (in time) of travelling to the discovered patch. Under some conditions, 

the forager might be better to ignore the discovery and continue its own search. Hence, we 

suggest that foragers which share each other's discoveries are unlikely simply to split up into 
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optimal sized groups. Instead the population should aggregate dynamically. When a patch is 

found, other foragers should decide whether to continue their own search or join the aggregation 

of foragers on the newly discovered patch. Relevant information on which to base this decision 

include the forager's state of hunger, place in a social order, expected time to find a patch if it 

continues searching, expected quality of the discovered patch, the number and position of other 

foragers and the time it would take to reach the discovered patch. The quality of information on 

these different aspects is likely to be variable. Hence an interesting and useful topic for 

mathematicians to address is the search for simple rules which foragers could apply in order to 

decide whether to respond to the discovery of another or not. 

Acknowledgments 

This work was supported by funds from the Scottish Office Agriculture and Fisheries Department. 



11 

References 

DeRoos A.M., McCauley E. & Wilson W.G. 1991. Mobility versus density-limited predator-prey 

dynamics on different spatial scales. Proceedings of the Royal Society B 246, 117-122. 

Dvoretzky A. & Erdos P. 1950. Some problems on random walks in space. Proceedings of the 2nd 

Berkeley Symposium of Mathematics, Statistics and Probability pp  353-367. Berkeley: 

University. of California Press. 

Edelstein-Keshet L. 1988. Mathematical Models in Biology. New York: Random House 

Ekman J. & Rosander B., 1987. Starvation risk and flock size of the social forager: when there is 

a flocking cost. Theoretical Population Biology 31, 167-177. 

Havlin S., Larralde H., Truflo P., KieferJ.E., StanleyH.E. & Weiss G.H. 1992. Number of distinct 

sites visited by N-particles diffusing on a fractal. Physical Review A 46, 1717-719. 

Krebs J.R. & Davies N.B. 1993. An Introduction to Behavioural Ecology (3rd Ed). Oxford: 

Blackwell. 

Larralde IL, Truflo P., Havlin S., Stanley RE. & Weiss GJL 1992a. Number of distinct sites 

visited by N-random walkers. Physical Review A 45,7128-7138. 

Larralde H., Truflo P., Havlin S., Stanley RE. & Weiss GIL 1992b. Territory covered by N 

diffusing particles. Nature 355,423-426. 

Mangel M. 1990. Resource divisibility, predation and group formation. Animal Behaviour 39, 



12 

1163-1172. 

McNamara J.M. & Houston A.I. 1992. Risk-sensitive foraging: a review of the theory. Bulletin of 

Mathematical Biology 54, 355-378. 

Pielou E.C. 1969. An Introduction to Mathematical Ecology. New York: Wiley. 

Ranta E., Hannu R. & Lindstrom K. 1993. Competition versus co-operation: success of 

individuals foraging alone and in groups. American Naturalist 142, 42-58. 

Russell D. 1995. Foraging in flocks: spatial models with travel costs. Ecological Modelling, in 

press 

Ruxton G.D., Hall SJ. & Gurney W.S.C. 1994. Attraction towards feeding conspecifics when 

food patches are exhaustible. American Naturalist, in press 

Skellarn J.G. 1951. Random Dispersal in Theoretical Populations. Biometrika 38, 196-218. 

Valone T.J. 1993. Patch information and estimation: a cost of group foraging. Oikos 68, 258-266. 

Vickery WI., Giraldeau L.-A., Templeton U., Kramer D.L & Chapman C.A. 1991. Producers, 

scroungers and group foraging. American Naturalist, 137: 847-863. 

Weiss G.H., Dayan L, Havlin S., Kiefer J.E., Larralde H. & Stanley H.E. 1992. Some recent 

variations on the expected number of distinct sites visited by an N-step random walk. Physica A 

191,479-490. 



13 

Figure captions 

Figure 1. The average number of distinct sites (Nd) visited during a random walk of N moves, 

calculated using eqn. 1 (_) and by simulation (......). The difference between values obtained 

from both methods is also plotted for each N (- - -). 

Figure 2. The average number of moves required for a single random walker to encounter a site 

containing a food patch, calculated from eqn. 2 (.....) and from simulations (..•..). Each site has a 

fixed probability (p) of containing a food patch. 

Figure 3. a) The average number of moves (per individual) required to find a food patch (•), and 

for a non-discovering forager to reach the patch (A) for various values of the number of foragers 

(m). b) The number of moves required (•) per individual for a fixed number of foragers (m) to 

find a patch, plotted on a log scale showing the departure from (log) linearity. (The probability of 

a site containing a food patch (p) = 0.02). 

Figure 4. Diagrammatic representation of the three phases characteristic of the growth in the 

number of distinct sites visited (Nd) by a fixed number (m) of random walkers after each has made 

N moves. 

Figure 5. The average number of distinct sites (Nd)  visited during a random walks of N moves, 

calculated using eqn.4 L)  and by simulation (......) by (a) 2 foragers and (b) by 25 foragers. The 

difference between the Nd  values obtained from the equation and from simulation is also plotted 

foreachN(-  --). 
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Figure 6. The average number of moves required by a forager to reach a food patch discovered by 

another for various values of the number of moves (N 1,), per individual forager, required to find 

the patch. Values are calculated by simulation (I) and using eqn. 5 (+). 
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Appendix 1. The number of moves required for an infinite number of foragers to find a 

patch 

Define p as the probability that any given lattice square contains a food item. 

Define P1  as the probability that the nearest food patch-containing square to the starting point is a 

distance i away. 

By definition P0 = p 

The probability that the nearest patch is not within one square of the original patch is (1-p) 9. 

Hence it should be obvious that P 1  = 1 - p - (1-p)9  

Similarly P2 = (1-p)9  - (1-p)25  

Hence generally 

Pi  = 0 —p) (21_1)2_ 
(1 —p) 

(2i+ )2  

Hence the expected average value of the distance to the nearest patch is 

T. 	
= 	

(1 —p) 
(2i-1)2 

Which is also the average number of moves required by an infinite number of foragers, all starting 

from the same position, to find a food patch. 
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Appendix 2: Derivation of the expected average distance (D) between a discovered patch 

and foragers other than the discoverer. 

If we label the original lattice position as x =0, y= 0, then after a large number of tiinesteps, the 

distance (in the x direction) between any two randomly chosen individuals could be approximated 

by the distribution 

(x 1 —x 2) - N(0,2na2), 

where n is the number of timesteps since the start of the simulation and c is the expected value of 

X2 (or y2) after 1 move: 

We wish to calculate 

D = E( [max  (Ixi—x21,Iyi—y21)]) 

Which, from the properties of the normal distribution, is given by 

2 
D 

= 	
fdYfxexP(")dx 

ltncN2  4ncy2  
0 y 

Straightforward evaluation of these integrals simplifies this to 

D=J. 
IC 
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Eleven histogram-based global thresholding algorithms are pre-
sented in a common notational framework. Relationships among 
them are identified from 654 mixtures of two Gaussian distribu-
tions, plus effects of mixed pixels. The iterated version of Kittler 
and Illingworth's minimum error algorithm (Pattern Recognition, 
19, 1986, 41-47) is found to be best. c 1993 Academic Press. inc. 

1. INTRODUCTION 

Image thresholding converts a gray-level image into a 
binary one. The two binary levels may represent objects 
and background or, more generally, two classes in an 
image. Pixels whose value exceeds a critical value are 
assigned to one category, and the rest to the other. The 
threshold is global if the same critical value is used across 
the whole image. Many algorithms have been proposed 
for automatically selecting the threshold appropriate for 
a given image (see, for example, Sahoo et al. [1]).  Some 
algorithms simply use the histogram of values in the im-
age, that is the numbers of pixels at each gray-level, 
whereas others use contextual information such as gray-
level occurrences in adjacent pixels. 

Global, histogram-based algorithms are the most com-
monly used, despite the benefits that can accrue from 
using contextual information and allowing the threshold 
to vary over an image. They are simple to understand and 
implement, and computationally fast once the histogram 
has been obtained. However, within this restricted class 
a plethora of algorithms have been proposed in the last 
decade, which present a potential user with a bewildering 
choice. Lee, Chung, and Park [2] compared three histo-
gram-based algorithms with two contextual ones. This 
paper attempts to be more comprehensive: 11 algorithms 
are presented in a common notational framework, and 
their results are compared in the simplest of applications, 
a mixture of two Gaussian distributions plus mixed pixels. 

2. ALGORITHMS 

The histogram will be denoted Yo' Yi 	, y5 , where y 
is the number of pixels in the image with gray-level i, and 

n is the maximum gray-level attained (typically 255). The 
threshold value is an integer, denoted t. All pixel values 
less than or equal to t are allocated to one category, and 
those greater than t are allocated to the other. 

Prewitt and Mendelsohn [3] suggested that t be chosen 
as the value of i at which yi  is minimized, in the valley 
between maxima of y. We denote this threshold MINI-
MUM. The algorithm assumes a bimodal histogram, 
which in practice will usually require the y's to be 
smoothed. A simple way to achieve this is to replace y 
by (y_ 1  + y + y +  )/3 for I = 0, 1,. . . , n, with y = 

I = 0, and repeat until the y's are bimodal. Then t is 
such that Y1-i > Y,+• A simple alternative, 
INTERMODES, finds the two maxima, say y and Yk 

and sets t = (j + k)/2. 
Subsequent algorithms can be computed efficiently if 

the following partial sums are obtained: 

A=>y1 , B, I iy i , CJ  = >;  ily i  forj=0,...,n. 

These can be derived recursively, for example A = 
A3 _ 1  + 

In the absence of information on relative proportions 
in the two binary categories, one possible approach is to 
choose t such that 50% of pixels lie in each. Thus t is the 
MEDIAN of the distribution of pixel values, a special 
case of Doyle's [4] p-tile method: t is chosen so that A/ 
A n  is as close as possible to 0.5. The MEAN pixel value 
is a similar statistic, calculated with t as the integer part 
of B5/A 5 . 

An algorithm due to Tsai [5] chooses t such that the 
binary image has the same first three MOMENTS as the 
gray-level image. The threshold is such that A ,/A,, is the 
value of the fraction nearest to x 0 , where 

I B5 1A 5  + x2 /2 5  D5  - B 	- 
 Xo=_y, 	XI_ACD2, 

n 

B5C5 —A 5D5  
= 	- B ' 
	D5  = i3 y,. 

n- 5  i=0 

532 
1049-9652193 $5.00 
Copyright © 1993 by Academic Press, Inc. 
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One of several maximum ENTROPY algorithms, due to 
Kapur et al. [61,  requires the partial sums 

=ylog(y) forj=O,. ..,n. 

The expression 

- logA 
+ E 	

- log(A - A) 
Aj 	A,,-4, 

is evaluated forj = 0, . .. , n - 1, and t is set to the value 
of j at which it is maximized. 

Ridler and Calvard [7] and Trussell [8] proposed an 
iterative scheme. From an initial guess for t, say MEAN 
defined above, the mean gray-levels in the two classes 
defined by the threshold, that is, below and above it, are 
calculated as 

	

B, 	B a  — B, 
f"t

= 
A' 	= A - A, 

The threshold t is recalculated to be half-way between 
these means, that is the integer part of (, + v,)12. Then 

and v are recalculated, and a new value oft is obtained. 
This is repeated until convergence, that is a repeat of the 
same value of t on two consecutive iterations. We denote 
the result INTERMEANS (I), where (I) denotes iterated. 
A closely related algorithm, INTERMEANS, due to Otsu 
[9], requires the between-class sum of squares 

AJ(A - A) (/L - 

to be evaluated for  = 0, .. ., n - 1. The threshold is 
set to the value off at which the expression is maximised. 
Although it is not immediately apparent from the algebraic 
formulation, this has the effect of positioning the threshold 
midway between the means of the two classes. 

Kittler and Illingworth [10] proposed a similar pair of 
algorithms, but which allow for possible differences in 
proportions and variances in the two categories when 
positioning the threshold. Additional statistics are re-
quired: 

A, 	 A r  — A, 
q,= A 

n 	 n 

Cf CnC 

	

a-j1L 	T= 
A - A t  

In the iterated version of the algorithm, denoted 
MINERROR(I), an initial guess at t is required (MEAN 
in our case, although Ye and Danielsson [11] suggested 

using the result of INTERMEANS(I)). The integer part 
of the larger solution of the quadratic equation 

x2j_l_2x1_ v  
cT - 	TJ0, 2 	T 	 (1) 

	

-' 	 2 	(2~2,) 

	

cr 	'r 

then provides a new value for t. Let W0, w1, W2 denote 
the three terms in curly brackets above, then t is reset to 
the integer part of 

[w 1  + \/(w--w0 w2 )]/w0 . 

This minimizes the number of misclassifications between 
two Gaussian distributions with means, variances, and 
proportions given, respectively, by p p a- 2  r 2 , p, and 
q. (It is equivalent to INTERMEANS(I) only when a-2 = 

r2  and p = q.) All terms are recalculated using the new 
value of t, and then t is rederived. This is repeated until 
convergence, or until the algorithm fails because a 
quadratic equation is encountered with no real roots. The 
uniterated algorithm, MINERROR, is more computation-
ally intensive and requires 

Pj  log 	+ q1 log(_L 

	

p 	 q 

to be evaluated for  = 0,..., n - I. The value off at 
which the expression is minimized is chosen for t. Again, 
the two algorithms are almost equivalent: they both posi-
tion the threshold to minimise the number of misclassifi-
cations. 

More complicated methods have been proposed for es-
timating the terms in Eq. (1). The above estimators are 
biased because they do not allow for overlaps in distribu-
tions from the two classes. Chow and Kaneko [12] and 
Nagawa and Rosenfeld [13] fitted mixtures of two Gaussi-
ans to the y's, while Cho et al. [14] employed bias correc-
tion factors. The EM algorithm (Dempster et al. [15]) 
is a simple, general method for fitting mixtures of distri-
butions. In this application, from initial estimates of 
the parameters A , v, a.2, T 2 , p, and q, say from the first 
iteration of MINERROR(I) with t obtained from 
MINIMUM, 

= exp 	
a- ]/

1— (1— )2] / 
a- 	[ 	2  

- 	 ('—)l + ci 	—(i—)-i 
exp 

) (a- 	[ 	
2a- 2  j 	r 	

[ 	
T 	j 

exp 	,, 	I 
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and -yi  = 1 - 	 for i = 0, - - - n 

	

F = 	o iy i, 	 G = 

p=F/A, 	 q=G/A, 

	

= 	
i O iy ilF, 	 v

= 	
i yy 1/G, 

	

= 	
i2  01. yl-IF - 	T2 

= 	
i 2  yy/G - 

This sequence of calculations is repeated until the parame-
ters reach stable values. Then Eq. (1) is solved to deter-
mine t, denoted MAXLIK. 

3. RESULTS 

Initially, results were obtained using noise-free histo-
grams, that is without any sampling variability. They were 
calculated for 972 different mixtures of two Gaussian dis-
tributions, together with some mixed pixels. Means were 
held fixed at 

A = 100, i. = 151, 

with n = 255. Standard deviations ranged over the values 

or, T = 1,3,5, 10, 15, 25, 

except that cases where o-  + T 10 were omitted, because 
in such cases the two categories are so well separated 
that thresholding is a trivial operation. The proportions 
of pixels in the two component distributions were set to 

p=p(1—r), q=(1—p)(l—r) 

where 

P = 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 
0.6, 0.8, 0.9, 0.95, 0.99, 0.995, 

and 

r = 0,0.1,0.2. 

The remaining pixels, proportion r, were allowed to be 
mixed and drawn from 

e
xp[

f
l 	 I 

o V(21r(zo.2  -+(I - Z)-r2)) 

_ (1 - zp. - (1 - Z)  V)2 
dz. 

2(z 2 +(1 _z)T 2)] 

Of the 972 distributions, 318 were unimodal because the 
two classes overlapped substantially, such as when o = 

TABLE 1 
Cases where MINERROR Failed to 

Find an Internal Threshold 

a- r p(%) r(%) 

I 25 0.5*, 	1,5 0, 10*,  20 
10 20 

3 25 1*, 5 0*, 10*, 20 

10 10, 20 
5 25 5,10 0,10,20 

10 25 10 0 
20 0, 10, 20 

15 15 40 20 
25 40 0, 10, 20 

Note. The other half of the cases are 
when a- and r are intercharged and p is 
replaced by I - p. 

* Cases where MAXLIK also failed to 
find a threshold. 

T = 25. These were excluded as being unrealistic to thresh-
old. The remaining 654 histograms were bimodal. 

The II algorithms from Section 2 were applied to the 
654 histograms. In 64 cases MINERROR chose t equal 
(or close) to 0 or 254, rather than an internal threshold 
value. Table I shows half the cases when this occurred, 
the other half, by symmetry, being when the values of a-  
and r are interchanged and p is replaced by I - p. To 
facilitate comparison with other algorithms, in these 64 
cases MINERROR was replaced by the result from 
MINERROR(I), which always converged to an internal 
threshold value from the MEAN start. In 6 cases, 
MAXLIK encountered parameter values for which Eq. 
(1) had no real solution. The cases are starred in Table 
1. Their thresholds were also set to the values from 
MINERROR(I). Results were always obtained from all 
other algorithms. 

ENTROPY generated the widest spread of thresholds, 
ranging between 73 and 177. All other algorithms gave 
results between 100 and 150. The least variable method 
was INTERMODES, for which 75% of the thresholds 
were exactly 125. All methods had an average threshold 
of 125, as would be expected from the symmetry in 
choices of a- , r, p, and q. 

Table 2 shows root-mean-square differences between 
the methods, averaged over the 654 cases, ordered so 
that adjacent methods are most similar. Figure 1 is a 
representation of 74% of the variation in the table. A 
minimum spanning tree has been added, which connects 
methods which are most similar. The figure was obtained 
by a form of reduced-rank regression due to Glasbey [ 1 6]. 
An eigenvector decomposition of the matrix of differences 
between the methods and the average of all 11 was fol-
lowed by a regression of these vectors on a- , T, p, q, r, 
and products of them. Terms in (a-  - r) and (p - q) were 
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TABLE 2 
Root-Mean-Square Differences between Methods 

I 	MINIMUM 
2 MAXLIK 6 
3 MIN ERROR 8 7 
4 	MINERROR(I) 14 12 11 
5 INTERMODES IS 15 14 15 
6 INTERMEANS 24 23 21 18 II 
7 	INTERMEANS(I) 25 23 22 19 12 5 
8 MOMENTS 28 27 26 24 15 8 8 
9 ENTROPY 29 28 27 27 19 17 17 15 

10 MEAN 26 24 23 20 16 13 11 13 	18 
ii 	MEDIAN 28 26 26 23 21 18 17 19 	22 	7 

I 2 3 4 5 6 7 8 	9 	10 

Note. Numbers below the columns correspond to those methods listed at left 

found to explain most of the variability, hence their use 
as the axes in the figure. For example, MINIMUM has 
bivariate location (0.60, 12), whereas MINERROR(I) is 
located at (0.46, 2). Therefore the differences between 
thresholds selected by the two algorithms is approxi-
mately 

(0.60 - 0.46) (cr - T) + ( 12 - 2) (p - q) 

Figure 2 shows two typical histograms, which illustrate 
the axes in Fig. I. In Fig. 2a standard deviations in the 
two Gaussians are different, but proportions are equal, 

15 

Difference 

between 

proportions 

(p-.q) 

-5 

-15 

-25 
-1.5 
	-1.0 	-0.5 	0.0 	0.5 	1.0 

Difference between a. d. ((0 -t) 

FIG. 1. A two-dimensional representation of the differences among 
the II thresholding algorithms, given in Table 1. Obtained by eigenvector 
decomposition and reduced rank regression. Lines connect most similar 
algorithms into a minimum spanning tree.  

whereas in Fig. 2b proportions are different but standard 
deviations are the same. The thresholds selected by the 
11 algorithms are ordered approximately the same as 
along the two axes of Fig. 1. 

The inclusion of sampling variability in the histograms 
has little effect on the previous results. Sampled versions, 
of size 10,000, were generated for each of the 654 histo-
grams. In one case, the smoothing used to determine 
MINIMUM and INTERMODES failed as the histogram 
changed from having three modes to having one in a single 
iteration. In five cases MINERROR(I) failed to converge, 
and was set to INTERMEANS. Table 3 shows the vari-
ability of each method about its noise-free estimate and 
the number of occasions on which each method other 
than ENTROPY gave a threshold outside the range 90 to 
160. In order that the standard deviations in Table 3 should 
not be unduly influenced by these cases, when they oc-
curred MINERROR was replaced by MINERROR(I), 
MINIMUM and MAXLIK were replaced by 
MINERROR, and INTERMODES was replaced by 
INTERMEANS. MEAN and MEDIAN show them-
selves to be least affected by noise, whereas MINIMUM, 
which is obtained directly from a smoothed histogram, is 
most sensitive. 

4. DISCUSSION 

Much of the pattern in Fig. 1 is as we would expect. 
INTERMEANS and INTERMEANS(I) are very similar. 
In fact, if the iterative process had been started at thresh-
olds other than MEAN, then some of them would have 
produced the same result as INTERMEANS. This is simi-
larly true for MINERROR and MINERROR(I), but in 
some cases that would have meant t = 0 or 254. MEDIAN 
and MEAN give similar results. INTERMODES gives 
results central to the others. MAXLIK is most similar to 
MINIMUM, but it is also close to MINERROR. 

ENTROPY and MOMENTS give results on the oppo- 
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FIG. 2. Histograms of mixtures of two Gaussian distributions, with means 100 and 151, chosen to illustrate the axes in Fig. 1: (a) standard 

deviations are IS and 5, proportions are equal, but 10% of values are mixed pixels; (b) standard deviations are both 10, proportions are 95% and 

5%. Also shown are the threshold values selected by the II algorithms, indexed as in Table 2. 

site side of INTERMODES to MINIMUM. Therefore, 
when MINIMUM lies above 125, they are below it, and 
conversely. To an extent, good thresholds are a matter 
for subjective judgement, but this characteristic seems 
undesirable. It would appear from Fig. 2a that ENTROPY 
and MOMENTS have chosen thresholds which are too 
low. Similar arguments would lead to the rejection of 
MEAN and MEDIAN in cases such as Fig. 2b when 
proportions are very unequal. INTERMEANS and 
INTERMEANS(I) tend to split the larger component 
when proportions are unequal, as noted by Kittler and 
Illingworth [171. Algorithms MINIMUM, MAXLIK, 
MINERROR, and MINERROR(I) all give very similar 

TABLE 3 
Variability of Thresholds for Sample Size 10,000 

results. MINERROR(I) would seem to be best. It is one 
of the simplest to compute, and appears to fail infre-
quently and to be relatively insensitive to the effects of 
sampling variability. 

In practice, image histograms may be far from being 
mixtures of two Gaussian distributions. However, it may 
be somewhat optimistic to hope that a method which 
performs poorly with Gaussian mixtures would perform 
well in more complicated situations. 

All methods, except MEAN, extend to the selection of 
two or more thresholds simultaneously. However, 
MINERROR and INTERMEANS become quite com-
puter intensive and so are best replaced by their iterative 
forms, possibly with multiple start values. MINERROR(I) 
can also be extended to multivariate images, where it is 
equivalent to an adaptive clustering algorithm of Maronna 
and Jacovkis [18]. 

Standard Number out 
deviation of range REFERENCES 

I MINIMUM 9.9 28 I. P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen, A survey 

2 MAXLIK 5.8 23 of thresholding techniques, Coinput. Vision Graphics Image Pro- 

3 MINERROR 3.2 65 cess. 41, 1988, 233-260. 

4 MINERROR(I) 3.4 2. S. U. Lee, S. Y. Chung, and R. H. Park, A comparative performance 
5 INTERMODES 5.1 8 study of several global thresholding techniques for segmentation, 
6 INTERMEANS 1.5 Comput. Vision Graphics Image Process. 52, 1990, 171-190. 
7 INTERMEANS(I) 11 3. J. M. S. Prewitt and M. L. Mendelsohn, The analysis of cell images, 
8 MOMENTS 1.7 in Ann. New York Acad. Sci., Vol. 128, pp. 1035-1053, New York 
9 ENTROPY 2.9 Acad. Sci., New York, 1966. 

10 MEAN 0.9 
0.5 

4. W. Doyle, Operation useful for similarity-invariant pattern recogni- 
11 MEDIAN 
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A Review of Image Analysis in 
Biometry 

C.A. Glasbey, Biomathematics and Statistics Scotland, 
M. Berman, CSIRO Division of Mathematics and Statistics 

1 INTRODUCTION 
Seeing is believing- sight is fundamental to our understanding of the world. This 
is as true in science as in everyday life. The collection of much biometric data 
is dependent on human vision. For example, the examination of samples under 
a microscope, observing animal behavior, and the identification and counting of 
plant species in a field are all forms of image analysis. We are superb at analyzing 
the images projected onto our retinas, using one third of our brains for vision. 
However, computers are being used more and more to automate and extend the 
potential of image analysis. Computers are better at extracting quantitative 
information from images than human observers: they can be more accurate and 
more consistent from day to day. Furthermore, computers may spare us from 
much tedious image interpretation. 

We see effortlessly, most of the time. Progress was expected to be rapid when 
research commenced in the 1960s on computer-based image analysis. The task, 
however, has proved to be far more difficult. At least in part, this is because we 
are not conscious of the processes we go through in seeing. Biological objects 
present an even greater challenge to computer interpretation than man-made 
ones, because they tend to be more irregular and variable in shape. 

1.1 Application Areas 
Images to be analyzed in biometry may come from microscopy, medical scanning 
systems, electrophoresis, remote sensing or simply from photographing illumi-
nated objects. Figure 1 shows several such examples. 

Figure la is a back-illuminated optical microscope image of cashmere goat 
fibers whose diameters were to be measured (Glasbey et al., 1994). Measurement 
is made more difficult because the microscope has a shallow depth of focus and 
some fibers are out-of-focus, producing either dark or light edges to the fibers, 
so-called 'Becke lines'. There is a danger of misinterpretion if the optics which 
produced a particular image are not correctly understood. For example, the bas-
relief type of images typical of differential interference contrast microscopy may be 
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mistaken for three-dimensional features. However, tailoring image processing al-
gorithms to particular forms of microscopy poses a considerable challenge. There 
are many optical microscope systems, including brightfield, darkfield, phase con-
trast, interference contrast, fluorescence and confocal systems (see, e.g., Slayter 
and Slayter, 1992). There are also many other types of microscope such as 
scanning electron microscopes and confocal microscopes. Also, the theory of 
microscopy is complicated and agreement with data ii less than perfect. 

Figure lb shows an example of an image produced by a medical imaging 
system, in this case an ultrasound image of a cross-section through a sheep's 
back, obtained in order to estimate body composition (Glasbey et al., 1995). 
The instrument sends a pulse of sound waves of very high frequency into a sub-
ject. When the ultrasound wave meets a boundary between two tissues, partial 
reflection occurs. The reflected sound is received by the instrument and displayed 
on a video monitor, with time delay interpreted as depth. The top-most approx-
imately horizontal white line is the transducer-skin boundary, below which are 
the skin-fat and fat-muscle boundaries. The backbone is on the bottom left, from 
which a rib can be seen sloping slightly upwards to the right. There are many 
other medical imaging systems, such as conventional radiology, X-ray computed 
tomography (CT), magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET) and single photon emission computed tomography (SPECT), each 
with their own characteristics which need to be taken into account in analysis. 
(See, e.g., the conference proceedings edited by Colchester and Hawkes (1991) 
and by Barrett and Gmitro (1993).) 

Figure ic is a remotely-sensed image, a synthetic aperture radar (SAR) 
image of an area near Thetford forest, England (Horgan, 1994). The interest is in 
identifying land usage from such images. SAR, unlike most other remote sensors 
such as Landsat, is an active sensing system: microwave -radiation is beamed 
down to the earth's surface, a sensor detects the reflected signal, and from this 
an image is constructed. There are many other forms of remotely-sensed data. 
The altimeter and scatterometer are two other types of active microwave in use 
in remote sensing, in addition to which there are passive microwave, visible, near-
infrared and thermal infrared sensors, together with various sorts of sonar for use 
underwater (Cracknell and Hayes, 1991): 

Figure id shows a type of electrophoresis gel, a DNA sequencing gel au-
toradiograph, produced as one stage in the DNA sequencing of gene fragments. 
About fifty mixtures of radioactively-labeled fragments are positioned as distinct 
spots along one side of the gel. Each mixture then migrates down the gel, and 
DNA fragments produced separate, approximately horizontal bands. Finally, a 
photographic plate is placed over the gel. This blackens in response to radioac-
tive emissions, thus producing an autoradiograph. Electrophoresis has many 
variants, including two-dimensional (2D) electrophoresis, electrofocusing, isota-
chophoresis and several forms of immunoelectrophoresis (Hames and Rickwood, 
1981). Various forms of chromatography and chemical assays also produce pic- 
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tonal information which can be interpreted by image analysis. 
Finally, Figure le is an image of illuminated objects, in this case of fifty 

wheat grains, obtained using a video camera. This was part of an experiment to 
see if it was possible to estimate flour yield by digital image analysis (Berman 
et al., 1995). Opportunities are almost limitless for digitally analyzing images 
of objects illuminated in many different ways. To name but a few, Strachan 
(1993) identified fish species, Crawford et al. (1993) studied the structure of 
soil cross-sections and of fungal hyphae growing on cellophane, Horgan et al. 
(1995) graded sheep carcasses and Vooren et al. (1991) discriminated between 
varieties of mushroom. See also the reviews by Price and Osborne (1990), of 
imaging applications in agriculture and plant science, and Sapirstein (1995) of 
cereal variety identification from grains. 

1.2 Types of Image 
Digital images are obtained via an appropriate image capture device, such as a 
video camera or scanner. A 2D digital image usually consists of a rectangular 
array of tiny squares called 'picture elements' or pixels for short. Often the 
number of rows or columns in an image will be a small multiple of 256; 512 x 512 
is very common. Associated with each pixel is a number, representing the average 
brightness of that part of the original picture covered by the pixel. Usually, the 
brightness will be discretized to 8-bit resolution, i.e., there are 256 = 2 8  shades 

of grey, with 0 representing black and 255 representing white. 
The pixel brightness may represent any variate which has been measured on a 

2D grid. Typically it is a measure of the intensity of reflected light, as in the wheat 
grains example (Figure le), or of transmitted light, as with the cashmere fibers 
(Figure la). However, it could alternatively depend upon reflected or transmitted 
radiation in another part of the electromagnetic spectrum (SAR, Figure ic) or, 
as in the other images in Figure 1, on emitted radiation after radioactive labeling 
(DNA sequencing gel, Figure id) or reflected sound waves (sheep ultrasound, 

Figure ib). 
The object being imaged may be essentially 2D, as with the DNA sequencing 

gel (Figure id), or 3D. In the latter case, the sampling procedure may involve 
taking a cross-section, either physically or by a computer reconstruction based on 
some physical property of the object (sheep ultrasound, Figure ib). Alternatively, 
an object could be imaged simply by viewing it from a particular direction. The 
object could have an opaque surface (SAR and wheat grains, Figures ic and e) or 
be semi-transparent (cashmere fibers, Figure la). Some sensors, such as confocal 
microscopes and magnetic resonance imagers, can collect 3D arrays of data. 
These can be analyzed using similar methods to those for 2D images. 

Although we shall only consider univariate, so-called greyscale, images in 
this paper, it is worth pointing out the increasing use of color and multispec-
tral image analysis. A color image actually consists of three greyscale images, 
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representing light at red, green and blue wavelengths respectively. The wheat 
grains image (Figure le) is in fact the green component of a color image. Multi-
spectral images are most widely used in remote sensing, starting with the Landsat 
Multispectral Scanner, an instrument first launched in the 1970's and consisting 
of four broad band detectors: one each at red and green wavelengths, and two at 
infrared wavelengths. Since then, there has been a profusion of satellite and air-
borne multispectral scanners, culminating in NASA's "IRIS instrument (Vane 
et al., 1993), which has 224 narrow bands. The aim of using such devices is 
to improve the ability to discriminate between materials using various forms of 
multivariate (as opposed to univariate) analysis. Because instruments such as 
AVIRIS are narrow band, they produce spectra at each pixel in the image, and 
so the aim is to carry out imaging spectroscopy. 

1.3 Methodologies 

The ultimate aim of image analysis is usually to extract quantitative information, 
which may be in the form of binary presence/absence categories, or of measures 
of object location, length or area, shape statistics etc. In some applications it 
may only be possible or desirable to automate some stages in an analysis, leaving 
the rest to human interpretation. For example, in medical diagnosis the radiol-
ogist will want to look at the X-ray image. Image analysis methods constitute 
an eclectic collection of techniques derived from many different theoretical stand-
points: 

The first, and probably most widely used, approach arose in the 1960s from 
the engineering discipline of signal processing, as typified by the books 
of Rosenfeld and Kak (1982) and Jam (1989). Methods include histogram 
transformations, linear and nonlinear filters and thresholding - techniques 
which we shall illustrate later. 

An elegant approach, termed mathematical morphology, emerged from 
the Ecole des Mines in Fontainebleau, France in the 1970s. It is based on 
the assumption that an image consists of structures which may be handled 
by set theory, leading to such highly-effective methods as openings, closings, 
skeletonization and watershed segmentation. The seminal works are Serra 
(1982, 1988). Soille and Rivest (1992) provide a useful introduction to the 
subject from an applications perspective. 

From artificial intelligence have arisen approaches such as syntactic pat-
tern recognition (Fu, 1982) and computer vision (Ballard and Brown, 
1982), but these methods have not often been applied in biometric contexts. 

The 1980s saw the development of Bayesian image analysis (Geman 
and Geman, 1984, and Besag, 1986). Prior information on an appropriate 
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model for an image is combined with data, imperfect information about 
the image (such as pixel values affected by noise), in order to derive the 
posterior distribution for the image. 

5. Yet another aspect of image analysis, that of extracting measurements 
such as lengths, areas, histograms etc, from images, is identified as a dis-
tinct approach by Serra (1988, plo).  These descriptors are subsequently 
interpreted using stereology, shape statistics or classification methods. 

Serra (1988, p11) acknowledges that although the different approaches to image 
analysis are somewhat contradictory they each have their place. He suggests 
that an analysis might first require linear methods, then morphological ones, and 
finally either measurements or syntactic methods. 

An associated area is that of image reconstruction from projections. The the-
ory of tomographic reconstruction and the filtered-backprojection algorithm 
are covered by Rosenfeld and Kak (1982, chapter 8), particularly for X-ray appli-
cations. Recent statistical interest has centered on emission tomography in PET 
and SPECT imaging, where the presence of Poisson noise means the filtered-
backprojection algorithm is suboptimal. Vardi et al. (1985) proposed a maxi-
mum likelihood reconstruction in these cases. Subsequent work has been con-
cerned with using the EM-algorithm and introducing regularization constraints 
to prevent the recovered image from being overly rough (see Kay, 1994). 

In the rest of this paper we shall consider in more detail the three major 
components of image analysis: enhancement, segmentation and taking measure-
ments, drawing on techniques from each of the above approaches and illustrating 
them using some of the images in Figure 1. Both authors are concerned with the 
application of image analysis. Therefore, in this review we emphasize methods 
which we have found practically useful. We are also conscious of only having 
space to present a subset from a very large field. 

2 ENHANCEMENT 

All images are subject to some degradation from their ideal forms, whether this is 
the presence of noise, of blurring or of a warping/distortion of the image frame. 
Image enhancement is a set of methods for modifying images to reduce these 
effects, both to aid human interpretation and as a precursor to segmentation or 
other digital methods of analysis. In some images, the degradation is relatively 
minor and image enhancement is unnecessary for the particular application. How-
ever, in many cases this will not be so. We will look at methods for correcting for 
warping, at filters and at deconvolution, using the DNA sequencing gel in Figure 
id for illustration. 
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2.1 Registration and Unwarping 

Unwarping of images is an important stage in many applications of image anal-
ysis. It may be needed to remove optical distortions introduced by a camera or 
viewing perspective (Tang and Suen, 1993), or to register an image with a refer-
ence grid such as a map, or to align two or more images. For example, matching 
is important in reconstructing 3D shape from either a series of 2D sections or 
stereoscopic pairs of images Much effort has been expended in developing algo-
rithms for registering satellite images with both geographic information systems 
and with other forms of remote sensing system, such as optical sensors and SAR 
(see, e.g., Richards, 1986, chapter 2). Recently there has been considerable in-
terest in registering images produced by medical sensing systems with body atlas 
information (Colchester and Hawkes, 1991, 3). 

There have been many approaches to finding an appropriate warp, but a com-
mon theme is the compromise between insisting the distortion is smooth and 
achieving a good match. In some recently published cases the warp seems un-
necessarily rough (Conradsen and Pedersen, 1992, Figure 8b, and Grenander and 
Miller, 1994, Figure 7f). Smoothness can be ensured by assuming a paramet-
ric form for the warp, such as the affine transformation, or by insisting that the 
warp satisfies partial differential equations such as Navier's equilibrium equations 
for elastic bodies (Bajcsy and Kovacic, 1989). Depending on the application, 
matching might be specified by points which must be brought into alignment 
(Bookstein, 1991), by local measures of correlation between images, or by the 
coincidence of edges (Burr, 1981). 

In the DNA sequencing gel, shown in Figure id, it is clear that bands are 
not aligned, because of a relative lengthening of the tracks near the center of the 
gel, known colloquially as a 'smile' on the gel. Interpretation of electrophoretic 
gels often involves making comparisons between tracks, or between spot positions 
on different gels. Distortions are common. Although a human interpreter can 
subjectively compensate for them, it would clearly be beneficial if the digital 
images could be manipulated to remove the distortions. Glasbey and Wright 
(1994) show how this may be done for images such as Figure id. Their approach 
assumes that the distortion may be described by a differentiable function, and 
that it can be estimated from the angles of the individual bands (Trubuil, 1993, 
uses a similar idea). Given a function A(x, y) in column index x and row index 
y, which specifies the angle that bands subtend with the x-axis in different parts 
of a gel, it is then a matter of numerically integrating to obtain: 

B(u, v) = v + 
IOU 

 tan A(x, B(x, v)) dx 

and transforming (x, B(x, v)) - (x, v) in order to bring the bands into alignment 
with the x-axis. Figure 2a shows the result of this unwarping operation. Com- 
parison of bands is easier in this image than in Figure id. Horgan et al. (1992) 



show how affine and thin-plate spline transformations can be used to align two 
or more 2D electrophoretograms. 

2.2 Filters 

Filters have two roles in image analysis, either to reduce noise by smoothing or to 
emphasize edges, i.e., boundaries between objects or parts of objects. Filters are 
linear if the output values are linear combinations of the pixels in the original 
image, otherwise they are nonlinear. 

Linear filters are well understood and fast to compute. They can be studied 
and implemented in either spatial or frequency domains. Linear filters can be 
categorized as low-pass or high-pass, according to whether they smooth by 
removing high frequency components in images, or emphasize edges by removing 
low frequency components. A third category, band-pass filters, remove both the 
lowest and highest frequencies from images. Use of the Fast Fourier Transform 
leads to efficient computation for filters larger than 5 x 5. Further details can be 
found in Glasbey and Horgan (1995, chapter 3). Note that smoothing filters are 
a form of kernel regression. See, e.g., Hastie and Tibshirani (1990, chapter 2) for 
a review of this and alternative statistical approaches to smoothing. 

In filtering to reduce noise levels, linear smoothing filters inevitably blur edges, 
because both edges and noise are high-frequency components of images. Nonlin-
ear filters are able to simultaneously reduce noise and preserve edges, but they 
have less secure theoretical foundations and can be slow to compute. The sim-
plest, most studied and most widely used nonlinear filter is the moving median. 
However, many other robust estimators of location have also been used (Fong 
et al., 1989). Multiresolution methods based on wavelets are a new approach to 
smoothing images (Donoho et al., 1995), which also offer great potential in other 
areas of image analysis. 

Morphological filters are a subclass of nonlinear filters, the simplest of 
which are based on 'max' and 'mm' operations. Substantial improvements in 
images can often be achieved using sequences of such filters. For example, another 
problem with Figure id is that the brightness in the background varies. This is a 
common problem in image analysis, and makes comparison of similar features in 
different parts of the image difficult. A morphological closing of the image can 
be used to estimate the background trend. The simplest closings are obtained by 
first replacing each pixel by the maximum local intensity in a region (e.g., using 
a structuring element which is a disc of radius B centered on each pixel), 
and then performing a similar operation on the resulting image, using the local 
minimum. Mathematically, the pixels, z, in the closed image will be given by 

zij  = min Xi+kJ+1 and xj = max Yi+k,j+1, where (k 2  + 12 ) 1 /2  <B 
kJ 	 kJ 

and y,,j denotes the original pixel value in row i, column ). If this filter is applied 
to Figure 2a, then only the small groups of pixels which are darker than their 
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surroundings will be substantially changed from Yij  to z,. These are the bands. 
By subtracting z from y, these bands will be made more distinct. Figure 2b shows 
the result using a disc of radius 10 pixels. This is known as a top-hat filter. 
Further morphological filters are discussed in Serra (1982, 1988) and Soille and 
Rivest (1992). 

2.3 Deconvolution 

If an image has been contaminated by noise and blurring of forms which are either 
known or can be estimated, then filters can be constructed which optimally restore 
the original image. There are both linear and nonlinear deconvolution methods 
(see, e.g., Rosenfeld and Kak, 1982, chapter 7). The fundamental linear method 
is the Wiener filter. Nonlinear restoration algorithms can do better than lin-
ear ones, but require substantially more computation. For example, maximum 
entropy restoration (Skilling and Bryan, 1984) is one method which exploits 
the constraint that the restored image is non-negative. However, as Donoho et 
al. (1992) point out, there are many alternative methods which are equally good. 
Here we will illustrate one such alternative, constrained least squares, using the 
DNA sequencing gel again. 

Examination of pixel values in Figure 2b shows the blurring to be well ap-
proximated by a Gaussian distribution with variance a 2 = 2. This suggests the 
following model, in which we only consider blur down columns: 

Yij 	Wk Xi+k,j +ejj 	for  = 1,...,M; 	j = 1,...,N7  

where 
1 

Wk 	
(27ro2)1/2 	

for k = —m,. . . , m, 

M and N are the image dimensions, m is the integer part of 3o, xii is an ideal 
unblurred version of the image, which is constrained to be non-negative, and e5 
is uncorrelated noise. For a more general approach to blur estimation see, e.g., 
Reeves and Mersereau (1992). 

We can use information about the nature of the degradations to design a filter 
which will smooth y and enhance the edges, so as to get as close as possible to 
restoring x. Deconvolution can be posed as a constrained optimization problem: 

MNI 	m 	
\2 

minimize S = 	f y - 	WkX+k,3 
i-1 j1 \ 	k-m 

	

with respect to x1j 	for i = 1,...,M;  

subject to xj > 0. 



In the absence of the inequality constraint, and provided that we can consider 
x to be the realization of a random process, the optimal solution is the Wiener 
filter: 

- 	 2 * 
- Y,i  

Xk, 	WZJ IwZ11 2  + S,/S,' 

where y' denotes the Fourier transform of y, and S, denotes the spectrum of x 
at frequency (Ic, 1). For a derivation, see, e.g., Rosenfeld and Kak (1982, 7.3). 
The constrained problem can be solved iteratively by gradient descent. Further 
details are given in Horgan and Glasbey (1995). Figure 2c shows the result of 
deconvolving Figure 2b. It can be seen that bands which are very close together 
have been separated in Figure 2c although they are indistinguishable in Figure 
2b. 

3 SEGMENTATION 

Image segmentation is the division of an image into regions or objects. This is 
often a necessary step before the desired quantitative analysis can be carried out. 
For instance, in the SAR image of Figure ic, the interest might be in identifying 
how much land is being used for particular purposes, and it is therefore natural to 
identify regions being subjected to different types of land use, and then to measure 
their areas. The wheat grains image (Figure le) was one of 38 such images, each 
consisting of 50 grains of the same type, with different images representing grains 
of different varieties or sites. The aim of the experiment was to see how well flour 
yield could be predicted from summary size and shape statistics obtained from 
each image. It is therefore natural to segment the images into individual grains, 
before measuring and accumulating relevant summary statistics. 

In some instances, of course, it is possible to estimate parameters of interest, 
without first resorting to segmentation. However, typically this requires strong 
model assumptions, upon which indirect inference can be based. Unfortunately, 
images are large data sets, e.g., a 512 x 512 image consists of more than 250,000 
pixels. Therefore. there is a large scope (as in other large data sets) for model 
assumptions to be violated. Often, this has the consequence that the optimal 
solution for the theoretical model is a poor solution to the real problem! Con-
sequently, in most problems, it is necessary to segment an image first, before 
measuring and analyzing the result. In this section, we will briefly examine four 
classes of segmentation: thresholding, edge-based segmentation, region-based seg-
mentation and Bayesian approaches. The wheat grains image will illustrate some 
of the techniques discussed. 
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3.1 Thresholding 

The simplest method of segmentation is thresholding, i.e., whenever a pixel's 
value is less than or equal to a certain number, t say, its value is replaced by 1, 
and otherwise given the value 2. Of course, when there are more than two types 
of object or region, and these can basically be distinguished on the basis of their 
brightness, the image can, in principle, be segmented by using several different 
thresholds. 

An obvious question is: how does one choose the threshold(s)? The simplest 
way is by applying some classification technique to the histogram of the pixel 
values. Glasbey (1993) reviewed 11 histogram-based methods for choosing the 
thresholds automatically, most of which are fairly naive. Perhaps the most sophis-
ticated is the minimum error thresholding technique of Kittler and lllingworth 
(1986), which models the histogram as a mixture of Gaussian distributions. The 
parameters are estimated iteratively, in such a way that the observed and esti-
mated means and variances are equated. Of course, this leads to biased estimates 
because it does not allow for overlaps in the mixture. This should not be too 
much of a problem if the brightness distributions of the individual objects are 
well separated. 

Figure 3a shows the histogram of the wheat grains image. Clearly, there are 
two identifiable groups of pixels: light ones largely belonging to wheat grains, 
with a mean a little above 100, and dark ones, predominantly associated with 
the background. Note the non-Gaussian shape of the part of the histogram rep-
resenting dark pixels, and especially the spike at zero due to the camera setting. 
Despite the fact that the histogram is not a mixture of Gaussians, we neverthe-
less applied the minimum error thresholding technique. It gave a value of t = 66. 
(Many other algorithms give a similar value.) Figure 3b shows the original wheat 
grains image, but with pixels whose values exceed 66 overlaid in black. This figure 
demonstrates a number of relevant issues. First, around each region overlaid in 
black is a grey halo. For the most part, these halos are 1 or 2 pixels wide. Mostly 
these represent 'mixed' pixels, which are not definitively grain or background, but 
a mixture of both, caused by camera blur and shadows. In any event, where these 
halos are narrow, the boundaries of the overlaid regions are close enough to the 
true grain boundaries for most practical purposes. However, note that the darker 
parts of some of the grains have not been properly classified. This is perhaps 
not surprising, because histogram-based thresholding takes no account of spatial 
context. The remaining classes of segmentation discussed in this Section attempt 
to account for spatial context in various ways. It is also possible to define an 
adaptive threshold which varies across an image (see, e.g., Breen and Peden, 
1994). 
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3.2 Edge-based Segmentation 

As the name implies, in edge-based segmentation an attempt is made to find 
edges in images, often by estimating a 'derivative'; see Glasbey and Horgan (1995, 
chapter 3) for a description of some of the more popular edge detectors. One of the 
simplest edge detectors is Prewitt's gradient filter, which implicitly assumes a 
planar surface in a 3 x 3 window centered on each pixel, estimates the surface by 
least squares, and computes its gradient in the x and y directions, or often more 
usefully, the maximal gradient and its direction. Figure 3c shows the maximal 
gradient for the wheat grains image. Most of the grain boundaries are apparent, 
although there are some obvious gaps. Figure 3d is the result of thresholding 
Figure 3c at t = 10. Less obvious gaps are now apparent, as are some spurious 
features. This highlights the fundamental problem of edge-based segmentation, 
namely the absence of parts of boundaries and the presence of spurious edges. 
Edge tracking methods have been proposed by Hueckel (1971), Martelli (1976) 
and Breen and Peden (1994), among others, but success is often only partial, 
especially in images which are more complex than the one analyzed here. 

3.3 Region Growing and Merging 

The basic idea behind region growing is the following. Suppose that one can 
find distinct points or clusters of points, such that each distinct cluster belongs 
to a distinct object in the image, and the number of clusters equals the number 
of objects. Such points are typically called seeds or markers. Now grow out 
spatially from each cluster of seeds according to some mechanism, allocating 
pixels to objects as they grow in a way which preserves the connectedness of the 
objects. This process will produce objects with complete boundaries, overcoming 
• problem with edge-based segmentation mentioned above. Fast algorithms for 
• number of important region growing algorithms have been developed in recent 
years by using data structures coming under the collective name of priority queues 

(Breen and Munro, 1994). In this subsection, we shall apply two important region 
growing algorithms to the wheat grains image. 

Seeded region growing (Adams and Bischof, 1994) first computes the mean 
greyscale of each cluster. Next, all neighboring pixels of clusters are examined, 
and the one whose greyscale value is closest to the mean of its neighboring cluster 
is assigned to that cluster, and the mean value of the cluster is updated. This 
process continues, one pixel at a time, until all pixels are assigned to a cluster 
(which by the end of the process is a complete object or region). It is easy to 
extend seeded region growing to deal with color or multispectral images by allo-
cating neighboring pixels on the basis of which one minimizes the Mahalanobis 
distance to the mean value of its neighboring cluster. Variable covariance ma-
trices can also be incorporated by using a Gaussian likelihood instead of the 
Mahalanobis distance. For the wheat grains image, we have chosen our seeds for 
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the grains to be all pixels with a greyscale greater than 80, and our seeds for the 
background to be all pixels with a greyscale less than 40 (see Figure 3a). Some 
of the pixels greater than 80 form small (spurious) islands near the bottom of 
the image (see Figure 3b). Any connected region of pixels less than 100 pixels in 
area is therefore removed as a seed for the grains. The result of applying seeded 
region growing using these seeds is shown in Figure 3e. Apart from the halos 
mentioned above, the segmentation appears to have found the grains very well. 
Seeded region growing appears to be quite robust to the choice of parameters; 
the important thing is to obtain a reasonable number of 'representative' seeds for 
each distinct connected region in an image. 

A point to notice in Figure 3e is that some of the grains are touching. It 
is important to separate these grains for subsequent measurements relevant to 
size and particularly shape. To do this we will employ a variant of a widely 
used region growing technique called watershedding (Meyer and Beucher, 1990; 
Vincent and SoilIe. 1991). However, first it is necessary to compute the distance 
transform of all pixels in Figure 3e classified as belonging to grains. As the 
name implies, this is the distance from each pixel to the nearest pixel classified 
as belonging to the background. In fact a fast, but good, approximation to the 
distance transform (Borgefors, 1986) is usually used. It will be convenient to 
consider the negative of the distance transform. Think of this as a surface. As 
we move away from the grain boundaries, the surface falls, ultimately producing 
valleys and basins. If the grains were perfect ellipses (or more generally convex 
objects), there would be a single group of pixels in each grain further away from 
the grain boundary than all other pixels. These are the regional minima of 
the surface. However, because of slight non-convexities in the grain shapes, the 
valleys tend to be bumpy with a number of local or regional minima. We shall 
return to this issue shortly. However, first we need to define watershedding. 

This can be viewed in terms of a flooding simulation. In the standard ap-
plication of the algorithm, holes are punched through the surface at its regional 
minima, although a subset of minima or other points could be used. Then the 
surface is slowly lowered into water. As the surface is lowered, the water floods 
through the holes into the catchment basins and where the waters meet, dams 
are built, i.e., watershed lines. An immediate consequence of this algorithm is 
that, at the end of the process, each regional minimum produces its own catch-
ment region. Although this procedure cuts touching grains at the right places, it 
also produces spurious cuts because of spurious regional minima along the above-
mentioned bumpy valleys. Creek (1991) suggested the following remedy, which 
usually works well. If a dam built between two neighboring catchment basins 
has a depth which is greater than a certain proportion (say 0.9) of the depth 
of the shallower of the regional minima of the two catchment basins, then the 
two catchment basins are merged into one. This modified watershed has been 
applied to the black regions in Figure 3e. The result, shown in Figure 3f, is a 
reliable segmentation of the wheat grains. The remaining 37 images were mostly 
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segmented as well and required very little manual intervention. 
Creek's idea is an example of region merging after an initial splitting of an 

image into too many candidate regions. There are many other split-and-merge 
algorithms in the literature, most of them more complex than the one presented 
above. Haralick and Shapiro (1992, chapter 10) discuss a variety of such algo-
rithms and Gordon (1995) surveyed methods for constrained classification. The 
Hough transform (see, for example, Leavers, 1992) can also be used for seg-
mentation, by identifying linear or curved features in images. 

3.4 Bayesian Approaches 

The Bayesian approach to image segmentation received its initial impetus from 
the pioneering papers of Geman and Geman (1984) and Besag (1986). Since then, 
there has been a large number of papers on the subject. However, in the authors' 
opinion, these techniques are still only applicable for a specialized class of images, 
in which the models used are good representations of the data. As pointed out 
earlier, there is plenty of scope for the relatively simple model assumptions used 
in the Bayesian literature to be violated, because images are such large data sets. 
However, because of its importance in the statistical literature, we will give a 
brief survey of the area. 

Many of the Bayesian approaches to image segmentation rest on variants of 
the following model as described in Besag (1986). Let S denote the set of all 
pixels in an image ,,and let n = MN be the number of pixels in S. Assume that 
all pixels in the image belong to one of c classes, labeled 1, 2, ..., c respectively; 
we do not allow for mixed pixels. Let Xi  denote the class to which pixel i 
belongs (double indexing of subscripts is unnecessary for the present discussion), 
and let X (X1 ,.. . , X). Let y i  denote the value recorded at pixel i, and let 

Y=(yi ,..., y). 
Let f(YX, 0) denote the conditional density function of Y given X, with 

parameter 0. Often (but not always, e.g., Kiiveri and Campbell, 1992) it is 
assumed that the observations are conditionally independent, i.e., f(YIX, 0) = 
[If (yi  JXi ,  0). Let g(X, /3) denote the prior distribution of X, with parameter 
In what follows, we will drop reference to 0 and P. It is common to model g 
as a locally dependent Markov Random Field (MRF) (Kinderman and Snell, 
1980). Often, but not always, the local dependence is on the immediate 8 neigh-
bors of each pixel. MRF's usually produce a relatively simple structure for g 
(apart from a normalizing factor); they are also appealing because they can be 
modeled as limits to (possibly inhomogeneous) Markov Chains. This means they 
can be approximately simulated via Markov Chain Monte Carlo (MCMC) tech-
niques (Besag and Green, 1993), and are therefore amenable to (computationally 
intensive) inference. 

The maximum a posteriori (MAP) estimator chooses X to maximize the pos-
terior likelihood, which is proportional to f(YX)g(X). Unfortunately, this max- 
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imization is usually difficult because of the normalization factor mentioned above. 
In special cases, exact maximization (e.g. Greig et al., 1989) or approximate max-
imization (Ferrari et al., 1995) is possible. However, to circumvent this, Geman 
and Geman (1984) used simulated annealing (an inhomogeneous MCMC tech-
nique) to find the global maximum of the posterior likelihood. Apart from being 
computationally intensive, this method sometimes produces gross mislabeling in 
certain classification problems and 'oversmoothing in related surface reconstruc-
tion and image restoration problems (Besag, 1986; Devijver and Dekesel, 1987; 
Marroquin et al., 1987). This phenomenon is most probably due to the method's 
strong dependence on the particular model chosen. 

Partly as a consequence of these apparent limitations, Besag (1986) introduced 
the iterated conditional modes (1CM) algorithm. Let h(X1 IXs1) denote the 
distribution of Xi conditional on the other X 3  's; this will usually have a simple 
structure for an MRF. Let X denote a provisional estimate of X. 1CM iteratively 
chooses X1  to maximize 

cx f(YIX,5( s\I )h(XIX s\I ). 

This simplifies in an obvious way when the ye 's are independent conditional on 
X. Besag shows that 1CM never decreases the posterior likelihood and so will 
usually converge to a local maximum. 

Variants of the above model include those of Geman et al. (1990), who im-
posed constraints on the shapes of class boundaries and Helterbrand et al. (1994), 
who used boundary closure constraints. A somewhat different and interesting 
approach is adopted by Baddeley and van Lieshout (1993). They used prior 
distributions on X more appropriate for objects of a given shape and size; for 
instance, in the wheat grains example, these might be ellipses with given radii. 
The centers of these objects were modeled as nearest-neighbor Markov point 
processes. An algorithm similar to 1CM was used to find a local maximum of 
the posterior distribution. One of Baddeley and van Lieshout's two examples in-
volved fitting circles to an image of (roughly) circular pellets. Their segmentation 
fitted reasonably well in most places, but not everywhere, in part because the 
circularity assumptions were not quite right. Similar discrepancies might occur 
if the wheat grains were modeled as ellipses. Rather than assuming a fixed size 
and shape, Grenander and coworkers (see Grenander and Miller, 1994, and refer-
ences therein) used deformable templates to define the boundaries of objects. 
This requires knowledge of the mean shape of objects, and variability about the 
mean. They also used jump-diffusion processes to model and simulate the pro-
cess of interaction between objects. The associated segmentation process appears 
to be extremely computationally intensive. A related method is where segment 
boundaries are constrained to be smooth, by including roughness penalties such 
as bending energies in an optimization criterion (Mumford and Shah, 1989). This 
is referred to as the fitting of 'snakes' (Kass et al., 1988). For further work in 
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this area and a range of applications, see, Aykroyd and Green (1991), Cootes et 
al. (1995), Phillips and Smith (1994), Qian and Titterington (1991) and Ripley 
and Sutherland (1990). 

We applied a form of 1CM (Besag, 1986, eqn. 7) to the wheat grains image, but 
the results were only slightly better than those produced by thresholding (Figure 
3b). It would seem that stronger prior constraints need to be incorporated. An 
appropriate Bayesian model and associated estimation procedure would almost 
certainly segment the wheat grains image as well as the region-based methods. 
However, it would require a lot of research (and probably data) to find the ap-
propriate model and the estimation procedure is likely to be computationally 
intensive. 

4 MEASUREMENT 
The extraction of quantitative information is the end-point of most image analysis 
in biometry. The aim may simply be to count the number of objects in a scene, 
or measure their areas, or it may be more complex, such as describing the shapes 
of objects in order to discriminate between them. 

It is a straightforward matter to count the number of objects in an image 
provided that the segmentation has successfully associated one, and only one, 
component with each object. If this is not the case, then manual intervention may 
be necessary to complete the segmentation. However, short-cuts can sometimes 
be taken. For example, if the mean size of objects is known, then the number 
of objects in an image can be estimated even when they are touching, through 
dividing the total area covered by all the objects by this average size. It is even 
possible to make allowance for objects overlapping each other provided that this 
process can be modeled, for instance by assuming that objects are positioned 
at random over the image and making use of the properties of Boolean models 
(Cressie, 1991, pp  753-759). For example, Jeulin (1993) has estimated the size 
distribution of a powder in such a way. Rudemo et al. (1995) used a marked 
point process model to obtain estimates of plant densities in images of field crops. 

Moments offer one method for summarizing segmented objects. If the object 
we are interested in is represented by all pixels (i,j) € A, then the (k,1)th 
moment is 

YkI = 	
kj1 	for k,l=O,1,2.... 

(i,j)EA 

In particular, the zeroth-order moment, jt, specifies the area of the object. 
First-order moments specify the location of an object. Higher-order moments are 
also mainly determined by an object's location. Central moments, defined by 

k 	 I 
I 

Pkz 	>i 	(_L! 	(_i'i 	for k+l>1, 
(i,j)EA 	\ 	Pool 	Pool 
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are locationally- but not rotationally- invariant. If orientation is an important 
feature of an object, as it will be in some applications, then it is probably desirable 
for the moments to be sensitive to it. However, in other cases orientation is 
irrelevant and moment statistics are more useful if they are invariant to rotation 
as well as to location. One such method is based on first specifying the direction 
in which the object has the maximum value for its second-order moment. This 
direction is: 

,= tan—' 
G02 

2i4 	
) 	

if i02 >/2O, 2 

and is otherwise this expression plus ir/2. Direction 0, the major axis of the 
object, has second-order moment: 

= 0  sin 2 + 2 cos2 +2t4 1  sin c cos q5. 

The direction perpendicular to qS, i.e., the minor axis, has the smallest second-
order moment, of 

= /20 cos + /A02  sin 2  4 - 24 sin cos 0. 

For a derivation, see Rosenfeld and Kak (1982, volume 2, pp  288-290). 
Perimeters of objects are also useful summary statistics. Let P denote the 

number of pixels on the boundary of object A, specified as follows. Pixel (i,j) is 
on the boundary if (i,j) E A, but one of its four horizontal or vertical neighbors 
is outside the object, i.e., 

(i+l,j)A or(i-1,j)A or(i,j+l).A or(i,j—l)A. 

This gives an 8-connected boundary, with pixels linked either horizontally, verti-
cally or diagonally. An unbiased estimator of the perimeter is given by 

4P 

provided that either all orientations in the boundary occur equally often or the 
sampling grid is positioned randomly on the object. This, and more complicated 
methods for estimating perimeters, are considered by Koplowitz and Bruckstein 
(1989). The use of scaling factors is part of stereology, a field which has tra-
ditionally been concerned with inference about objects using information from 
lower-dimensional samples - such as estimating volumes of objects from the ar-
eas of intersection with randomly positioned cutting planes (see e.g., Stoyan et 
al., 1987, chapter 11). In particular, the scaling factor of 7r/4 arises in two of the 
so-called 'six fundamental formulae' of classical stereology. However, the last ten 
years have seen a revolution in stereology, with the discovery of the disector (sic) 
and other 3D sampling strategies (Stoyan, 1990). Note further, that mathemati-
cal morphology can be used to study size distributions of objects in images. By 
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performing openings, using structuring elements at a range of different sizes, a 
granulometry can be obtained (Serra, 1982 chapter 10). 

Shape information is what remains once location, orientation and size features 
of an object have been dealt with. One commonly used shape statistic is a 
measure of compactness, which is defined to be the ratio of the area of an 
object to the area of a circle with the same perimeter. Another statistic often 
used to describe shape is a measure of elongation. This can be defined in many 
ways, one of which is as the ratio of the second-order moments of the object along 
its major and minor axes. 

Summary statistics of area, perimeter and major- and minor-axis lengths were 
obtained for the 50 wheat grains given by segmented regions in Figure 3f. To 
illustrate these results, a principal components analysis was performed on the 
log-transformed data. Table 1 gives the principal component coefficients. Fig-
ure 4 is a scatter plot of the first two principal components, which account for 
99.1% of the variation in the correlation matrix. Each point is represented by 
that grain's outline. Examination of Table 1 and Figure 4 reveals that the first 
principal component is an indicator of grain size, while the second one is a com-
posite measure of compactness and elongation. The third principal component 
discriminates between one unusual grain outline, that shown in bold in Figure 4, 
and the rest. Comparison with Figure le shows that this grain is not particularly 
unusual, but rather the segmentation has failed to recognize a particularly dark 
part of the grain. Berman et al. (1995) used these summary statistics, together 
with those from a further 37 images, to predict flour yield. They found that the 
average area of grains in each image, together with averages of Al, "2, an estimate 

of volume of a prolate ellipsoid proportional to .X 1 A, and grain weight explained 
65% of the variation in flour yield. 

The description of shape is an open-ended task, because there are potentially 
so many aspects to an object even after location, orientation and size effects have 
been removed. Other approaches include the use of landmarks (Goodall, 1991) 
and warpings such as thin-plate splines and other morphometric methods 
(Bookstein, 1991), which consider image plane distortions needed to move land-
marks to designated locations. Rohif and Archie (1984) and Mou and Stoermer 
(1992) compared alternative forms of Fourier descriptors to approximate ob-
ject boundaries, and applied Zahn and Roskies' (1972) method to describe the 
outlines respectively of mosquito wings and diatoms. Further methods are dis-
cussed in the reviews of shape analysis by Pavlidis (1978) and Mardia et al. 
(1991). 

5 FUTURE DIRECTIONS 

It seems likely that image analysis techniques will continue to grow in power 
and utility, and the achievements of human vision will gradually be replicated 
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by computers. At the same time, we hope to see a convergence in the disparate 
approaches to image analysis, and the emergence of a more systematic approach 
to replace much of the present empiricism. 

There are great opportunities for image quantification and comparison be-
yond the capabilities of human vision. For example, large databases of medical 
images currently being accumulated could be used to estimate the normal ranges 
of organ sizes and shapes, against which to judge new samples. Similarly, the 
vast archives of remotely-sensed images could be put to much greater use than 
currently. Further, new technologies will yield different types of images, for which 
new methodologies will be required. Color and multispectral images are two such 
examples. Also, there is increasing interest in integrating information from dif-
ferent imaging modalities, e.g., MRI, which provides soft tissue detail, and X-ray 
CT, which provides bone detail. 
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Table 1: Principal component coefficients and percentages of correlation 
matrix explained for log-transformed summary statistics from 50 

wheat grains given by segmented regions in Figure 3f 

component 1 2 3 4 
% variability 80.1 18.9 0.9 0.003 

area 0.55 —0.21 0.34 0.74 
perimeter 0.53 0.32 —0.78 0.06 

0.49 0.54 0.52 —0.45 
0.42 —0.75 —0.06 —0.50 
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CAPTIONS FOR FIGURES 

Figure 1 Examples of images: (a) microscope image of cashmere fibers, (b) 
ultrasound image of sheep's back, (c) synthetic aperture radar image, (d) 
DNA sequencing gel autoradiograph, (e) wheat grains. 

Figure 2 Enhancement of image of DNA sequencing gel autoradiograph: (a) 
after unwarping of Figure id, (b) after application of top-hat'transform to 
Figure 2a to remove background trend, (c) after constrained least squares 
deconvolution of Figure 2b. 

Figure 3 Approaches to segmenting the wheat grains image: (a) histogram of 
Figure le, (b) after thresholding Figure le at t = 66 (pixels greater than 
the threshold are overlaid in black), (c) after applying Prewitt's gradient 
filter to Figure le, (d) after thresholding Figure 3c at t = 10, (e) after 
applying seeded region growing to Figure le, (f) after applying a modified 
watershed transform to Figure 3e. 

Figure 4 A scatter plot of the first two principal components of summary statis-
tics from the segmented wheat grains (Figure 3f), with the first principal 
component along the horizontal axis. Each point is represented by that 
grain's outline, and the outline displayed in bold is an outlier in the third 
principal component. 
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FAST COMPUTATION OF MOVING AVERAGE 
FILTERS IN POLYGONAL WINDOWS 
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ABSTRACT 

A method is proposed for efficiently computing moving average filters in polygonal 
windows. In the case of regular octagons, used as approximations to circular 
windows, the algorithm is shown to be faster than existing Fourier-based and 
recursive methods for all but the smallest window sizes. 

1 INTRODUCTION 

The moving average is one of the simplest filters. In one-dimensional signal 
processing, it operates by replacing each data point by the arithmetric average 
of data values in an interval. It can be efficiently computed using a recursive 
algorithm: as the interval slides along the series, the average is updated by adding 
to it the next data point encountered and subtracting the data point at the 
trailing edge of the interval. Thus, only two additions and one division are 
required per observation, irrespective of interval length. In two-dimensional image 
processing the arithmetic average is computed within a window. If this window 
is square or rectangular in shape then the filter is separable into two orthogonal 
one-dimensional moving average filters: first the filter is applied along each row 
of the image using the one-dimensional algorithm, then it is applied down each 
column of the resulting image. Only four additions and one division are required 
per observation, irrespective of window size (see [7] and [4, p304]. Note that this 
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algorithm can be generalized to windows which are parallelograms, by computing 
the moving average in the direction of one of the sides and then in the direction of 
the other side. However, the resulting filter will only be approximately invariant 
except in a few special cases, because the pixel representation of the parallelogram 
is constructed from these sliding windows 

In some image processing applications, it is preferable to compute the moving 
average filter in a window which is neither a rectangle nor a parallelogram. For 
example, for a rotationally invariant (i.e. isotropic) filter, the window should 
be circular. Such filters are not separable and so take longer to compute. It is 
possible to use a recursive algorithm - a two-dimensional version of that above in 
which all pixels on the leading edge of the window are added to the average and 
those on the trailing edge are subtracted. However, the number of operations is 
not size invariant; it is twice the depth of the window. The direction in which 
the window slides can be chosen to minimize this depth. Ferrari and Sklansky [1] 
proposed an alternative method, which involves taking sums and differences of 
partial sums of pixel values. The number of operations is two greater than the 
number of corners in the pixel representation of the boundary of the window. 
This algorithm is faster than the sliding window if the window has few corners, 
such as being L-shaped, but will be slow if the window is circular or has diagonal 
edges on its boundary. 

Irrespective of the shape of window, moving average filters are linear filters. 
It is well known that linear filters can be computed in the Fourier domain by 
making use of the convolution theorem. If the image and the filter are both 
Fourier transformed and their element by element complex product is formed, 
then the inverse transform gives the required result. The algorithm complexity 
is independent of filter size and proves to be a faster algorithm than convolution 
in the spatial domain for computing general linear filters in rectangular windows 
of size in excess of 7 x 7 [3]. 

In this paper we propose a new algorithm for computing moving average 
filters in polygonal windows. In particular, regular polygons can be used to 
approximate circular windows. Because their sides are linear, pixel averages in 
the leading and trailing edges of a sliding window can be computed using one-
dimensional moving averages. Therefore the number of arithmetic operations per 
pixel is independent of window size. For example, for an octagon there are twelve 
additions and subtractions, together with one division. Details of the algorithm 
are given in §2, using the octagon for illustration. In §3 the CPU times for the 
new algorithm are compared with those for existing spatial and Fourier methods. 



2 DESCRIPTION OF THE ALGORITHM 

We define a lattice representation of a regular octagon centred at the origin and 
with radius r to be the set 

8= {(k,l): IkI,IlI 	r, Ik+lI,Ik - lI :5r+p}, 

where p is an integer chosen so that the Euclidean length of the vertical and 
horizontal sides of the octagon are approximately equal to the lengths of the 
diagonal sides, i.e. 

(2p+ 1) 	/(r+ 1 —p). 

Given an n x n image with pixel value fij  in column i, row j, the output from a 
moving average filter is given by 

1 
gij = > 	 for i,j = (r + 1),..., (n - 

x(S) (k,1)ES 

where x(S)  denotes the number of elements in the set S. The filter can be 
recursively computed along each row by: 

i 
gi,j+i = gi + 	

( 
j 	i: fi+k,j+r+p+k+1 + 	fi+,+r+i + E fi+k,j+r+p-k+1 

X( S) 	 k=-p+1 	 k=p 

-p 	 p-i 	 r 

- :ii: fi+k,j-r-p-k - : ii: fi+k,j-r - > fi+k,j-r-p+k 
k=-r 	 k=-p+1 	 k=p 

The first value in each row can be computed in an analogous way by sliding 
the window down a column rather than along a row. Speed is gained by noting 
that all of these six summations can themselves be computed recursively if further 
storage is available. Define three arrays as follows, for appropriate ranges of i 
and j: 

r-p 	 2p-i 
A•, 3  = E fi+k,j+k, B, 3  = E fi+k,j, 

k=O 	 kzO 

=
fi+k,-k. 

Then, if the A-array is computed in its first row and first column, the remaining 
elements can be computed as 

A+i,+i = 	+ fi+r-p+i,j+r-p+i - fi,j. 

Similarly, if the first row of the B-array is computed, the remaining elements are 
given by 

Bi+l,j = Bij + fi+2p,j - f,, 
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and the remaining elements of C can be computed from elements in its first row 
and final column 

Ci+1,j_1 = C1, + fi+r-p+i,j-r+p-i - 

These arrays can be used to recursively apply the moving average filter by: 

= 	 (Aj_ r,j+p+i  + Bj_p+i,j+r+i  + Ci+p,j+r+i - Ai_r,_p - Bi_p+i,j_r - Ci+p,j_r) 

The algorithm generalizes to any polygon. As for the parallelogram, the 
resulting filter will only be approximately invariant over the image except in a 
few special cases such as a regular octagon. 

3 EXPERIMENTAL RESULTS 

The Table below gives CPU times in seconds for the new algorithm, implemented 
in C running on aDECstation 5000/200, for a range of octagon sizes on a 1024 by 
1024 image. For comparison, times are also given for two alternative algorithms, a 
sliding window and the Fourier method. As expected, times for the sliding window 
increase linearly with window size whereas those for the Fourier approach are 
constant. Times for the new algorithm increase slowly with window size because 
of the time taken to compute the average in the first window on each row of the 
image. However it can be seen that the new algorithm is faster than both the 
other two for all but the smallest window sizes. Computer code for implementing 
this algorithm is available from the authors on request. 

Algorithm radius = 5 11 21 41 61 
Fourier transform 104 104 104 104 104 

sliding window 9 17 31 73 99 
new algorithm 11 11 12 12 14 

CPU times (seconds) for existing and new algorithms for applying a 
moving average filter in an octagonal window to a 1024 x 1024 image 

4 EXAMPLE 

To see the difference between moving average filters in octagonal and square 
windows, consider Fig 1. Fig 1(a) shows a log-transformed synthetic aper-
ture radar (SAR) image of an area near Thetford forest, England, obtained as 
part of the Maestro-1 airborne campaign (Joint Research Centre, Ispra, report 
IRSA/MWT/4.90), and previously analysed by Glasbey and Horgan [3]. This 
image was smoothed by the two moving average filters, and then the outputs 
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were rotated through 22.5°, and the results were compared with rotating the 
image through 22.5° first and then smoothing. The image was rotated in order 
to highlight differences between octagonal and square windows, and an angle of 
22.5° was chosen because this is the most challenging one for an octagonal window 
(because of the 45° rotational symmetry of a regular octagon). 

Fig 1(c) shows the result of applying a moving average filter in an octago-
nal window of radius 12 pixels to the SAR image and then rotating the output 
through 22.5°, with linear interpolation of pixel values. In order to avoid dealing 
with border effects, this and all remaining images in Fig 1 show only the area 
inside the black square which has been included in Fig 1(a). (For reference, Fig 
1(b) shows that part of the SAR image which is within the black square, after ro-
tation.) Fig 1(d) shows the result of applying a moving average filter in a square 
window of width 21 pixels (chosen to give the same window area as an octagon 
of radius 12 pixels) and then rotating the image through 22.5°. Some streaking 
artefacts at an orientation of 22.5° to the row direction can be discerned in Fig 
1(d) when it is compared with Fig 1(c). 

Differences between octagonal and square windows are made more apparent 
in Figs 1(e) and (f). Fig 1(e) shows the pixel-by-pixel difference between Fig 
1(c) and the image produced by first rotating the SAR image through 22.5° and 
then applying a moving average filter in an octagonal window. Similarly, Fig 1(f) 
shows the difference between Fig 1(d) and the image produced by first rotating 
the SAR image through 22.5° and then applying a moving average filter in a 
square window. (The greyscales have been stretched to the same extent in Figs 
1(e) and (f) in order to make differences more visible.) It is clear that a moving 
average filter in an octagonal window is much closer to being isotropic than that 
in a square window, and filtering artefacts along rows and columns are avoided. 

5 DISCUSSION 

We have presented a method for efficiently computing a moving average filter in 
a polygonal window. In particular, we have given a detailed algorithm for using 
a regular octagon as an approximation to a circular window, and shown that 
this is superior to existing algorithms. The same approach can also be used with 
hexagonal pixel lattices. 

The algorithm also has potential for use in other filters. Combinations of 
moving average filters can be used to generate more general linear filters. For 
example, Wells [8] approximated Gaussian filters as convolutions of moving aver-
ages, and Ferrari, Sankar, Shinnaka and Sklansky [2] used B-splines to construct 
recursive implementations of linear filters. In addition, many non-linear filters, 
such as Lee's [5, 61 adaptive filters, are based on the moving average filter. 
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Total and subcutaneous adipose tissue in women: the 
measurement of distribution and accurate prediction of 
quantity by using magnetic resonance imaging' -3 
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ABSTRACT 	Total and subcutaneous adipose tissue in seven 
lean and seven obese women were quantified using magnetic 
resonance imaging (MRD. The distributions of adipose tissues 
along the body were closely correlated: subcutaneous with total. 
both within and between lean and obese groups. Lean women 
had proportionally less adipose tissue in the lower thorax and 
upper abdomen than did obese women. Reducing the number 
of 'vlRl scans from 17 to 4 did not increase the residual SD of 
predicted body adipose tissue (2.9 percent) when body density 
was used as the reference measure. MRI gave an estimate of 
total-body adipose tissue significantly closer to the value for fat 
percent produced when the results from five other techniques 
(skinfold thickness. underwater weighing. 40K whole-body 
counting. isotopic water dilution, and tetrapolar bioélectrical 
impedance) were averaged than when any other technique was 
used alone. MRI-determined percent body adipose tissue in 
women is close to, and proportional to. estimates derived by 
underwater weighing. Am J Clin Vuir 199 1:54:18-25. 

KEY WORDS Magnetic resonance imaging, body adipose 
tissue, subcutaneous adipose tissue, prediction 

Introduction 

Reviews of methods for estimating body adipose-tissue content 
in vivo (1-3) concluded that no single technique will be optimal 
under all circumstances. Hayes et all (4) used magnetic resonance 
imaging (MRI) to determine subcutaneous-adipose-MRI tissue 
thickness and cc1uded that MRI. calipers, and ultrasound were 
unlikely to produce comparable results for the distribution of 
subcutaneous adipose tissue. McNeill et at (5) on the other hand 
showed in lean and obese women that of five different methods 
used to estimate total-body adipose tissue or fat [MRI, tetrapolar 
bioelecuical impedance (BEI), skinfold thickness (SFT), whole-
body counting (10K), and isotopic water dilution (H20)1, MRI 
produced results (percent adipose tissue) that agreed most closely 
with estimates of total body fat by underwater weighing (UWW). 
MRI produced the lowest individual residual SEs from analysis 
of variance (ANOVA) with MRI and IJWW being the most 
closely correlated techniques. The close correlation between MR.I 
and UWW is promising given the additional ability of MRI to 
describe the distribution of body adipose tissue in pre- and post-
dieting women (6). 

The study reported by McNeill et a! (5). which compared six 
methods. (including MRI) of estimating body adipose tissue or 
fat, also enabled the distribution of total and subcutaneous body 
adipose tissue to be examined in the same small group of clin-
ically normal lean (n = 7) and obese women (n = 7) by using 
MRI. Fowler et al (7) had already demonstrated that MR! (and 
the associated image-analysis techniques) were able to produce 
accurate estimates of tissue volumes in vivo. This paper describes 
in detail the MRI method used by McNeil et a! (5) and inves-
tigates differences in the distribution of total and subcutaneous 
adipose tissue and nonfatty tissue in lean and obese women. 
MRI-determined total-body adipose tissue compares well with 
the five other techniques used by McNeill et al (5) for estimating 
body adipose tissue or fat content. Therefore, a further aim was 
to establish how well MRI-determined total and subcutaneous 
adipose tissue can be used to predict body-fat content measured 
by UWW, which has been regarded as the technique of choice 
for estimating body fat in humans (2). 

In MR! the hydrogen nuclei of water and lipid molecules are 
excited by electromagnetic radiation in the presence of a mag-
netic field, resulting in a detectable signal. The magnitude of the 
signal and the subsequent relaxation to the preexcited state are 
measured. Magnetic-field gradients are used to allow this infor-
mation to be collected from spatially defined parts of the body. 
Water content varies between tissues whereas the motion of the 
water molecules themselves is constrained because of hydration 
layers around large molecules. The amount of water and lipid. 
and their freedom of motion, define signal size and nuclear-
magnetic-resonance (NMR) signal characteristics. This permits 
discrimination between tissues and the production of interpret-
able images of slices through the body. 
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The aim of this study was to compare MRI with five other 
techniques used to measure body fatness in common and to 
determine the accuracy and reliability of MRI. Based estimates 
and predictions of percent adipose tissue. 

Methods 

Fourteen women (5)  were studied (Table I). seven with a nor-
mat or low body mass index (BMI: in kg/m 2) (20.6 1.8; 

SD) and seven with a high BMI (31.1 ± 3.3). The study was 
approved by the Joint Ethical Committee of the Grampian 
Health Board and the University of Aberdeen. and informed 
c,nsent was obtained from all volunteers before the study began. 
The methods used to determine body adipose tissue or fat were 
BEI. SFT. K. H2O. and UWW. as described by McNeil! 

al (5). 
The MRI images were made with the University Aberdeen's 
-MHz (0.08 T) NMR proton imager by using an inversion 

recovery (IR) pulse sequence (repetition time 370 ms. interval 
0 ms). which gives good discrimination between adipose and 

lean tissues (8). Slice thickness was 12 cm. This sequence allows 
the collection of a high-contrast image within 47 s. Four ana-
:mical markers, which could be reliably identified by palpation 
in obese women. were selected: 1) sternal notch. 2) xiphisternum, 

iliac crest. and 4) top of patella. Seventeen MRI slices were 
rollected in relation to these markers, including one at each 
marker (Fig] i. In the last nine subjects a further II slices were 
added between the ankle and the iliac crest and along the raised 
arms. Test objects of known volume (164-1190 mL). containing 
CuSO4  solution in water to give a spin-lattice (TI) relaxation 
time of 250 ms. and a single test object comprising 1599 g fresh 
adipose tissue and 1155 g fresh muscle (caprine). arranged in 
ayers. were imaged to determine the accuracy of area and vol-
ume measurements based on the JR images. This test object was 
imaged at 37 C while in an insulated foam box. 

Image analysis was carried out with a minicomputer and a 
raster graphics emulating image display system. The approximate 
edges of the both and areas of adipose and nonfatty tissues (re-
cons of interest) were outlined automatically by the computer 
'y using a thresholding technique, and the outlines were then 

adjusted interactively by using an on-screen cursor to separate 
tissues precisely. The image-analysis software calculated data 
for each slice. which included the areas of regions of interest. 
Volumes were calculated from areas of successive pairs of tissues 
or test objects in adjacent slices by using a simple truncated cone 
model (7). The data from all subjects were analyzed by using 
the sets of 17 slices in which the arms were not included. The 

TABLE I 
Subject characteristics*  

Lean 	 Obese 

Age (y) 37 	± JO 37 	± 13 
Weight (kg) 57.3-- 4.4 81.8 ± 9.0 
Height (cm) 166.4 ± 5.8 162.1 ± 4.1 
Body mass indext 20.6 ± 1.8 31.1 ± 3.3 
Fat measured by UWW (%) 25.4 ± 6.1 42.4 ± 5.1 

Data from reference 5.1± SD. UWW. underwater weighing. 
t Expressed in kg/m. 

Mean 
ice No. lntersllce ANATOMICAL 

distance 	MARKER 
(Cm) 

03 	4.0±0.4 
04 
05 	 Sternal 
06 	 Notch 
07 
08 	4.0±0.4 
09 
10 	 Xiphistemum 
11 

12 
3.7±0,8 

13 

14 Iliac 
Crest 

16 

18 

9.9 ± 0.5 

20 

22 

24 Top of 
Patella 

FIG I. Diagram of the four markets and locations of I7 slices used. 
In 9 subjects II additional slices were collected between the ankle and 
iliac crest and along the arms (slice number relates to the slice numbers 
for the 28-slice protocol, but only slice numbers for slices collected in 
the 17-slice protocol are shown). 

data from the subjects with the extra II slices were then rean-
alyzed as sets of 28 slices, including the arms. The erros of MRI 
volume calculation were determined by subtracting the MRI-
calculated volume from the known volumes of test objects and 
were expressed as percentages of the known volumes. The re-
pealabilty of the methods was determined by analyzing the same 
set of images four times, calculating the volumes and expressing 
the results as a percentage deviation from the known volume. 
The fat and muscle test object was used to determine the rela-
tionship between MRI-calculated muscle and adipose tissue 
volumes and actual weights of muscle and adipose tissue present. 

The Minitab program was used for the statistical analyses 
(Minitab Inc, State College, PA). The distributions of tissues, 
including the sum of fatty and nonfany tissues (total body), total 
adipose tissue (including subcutaneous adipose tissue), subcu-
taneous adipose tissue, and all other tissues (nonfatty tissues) 
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from each slice along the body were compared between the obese 
and lean subjects by using the linear correlation coefficient (r) 
and paired t test. ANOVA was used to compare location effects 
on tissue distributions. To compare the relative proportions of 
tissues in the two groups, the ratios between lean and obese 
subjects were calculated. Volumes of adipose tissue were cor-
rected to 78.3 percent lipid in lean women and 83.2 percent 
lipid in obese women (9). Tissue volumes based on the truncated 
cone model were used to calculate percent of tissues. In our 
hands MRI was used to determine percent adipose tissues. 

McNeill et al (5) compared percent adipose tissue by MRI 
and percent fat by the four other techniques used; that by UWW 
involved use of the method described by Bland and Altman 
10). Additional statistical analysis in the present study was aimed 

at comparing percent body adipose tissue by MRI with the es-
timates of percent adipose tissue or percent fat by the other four 
techniques. UWW, and the average of all six techniques in the 
same subjects. Root mean square differences (RMSD) were used 
as a general measure of differences between pairs of methods. 
Principal component analysis was carried out and a minimum 
spanning tree was constructed to give a graphical representation 
of the interrelationships among the six methods. Residual stan-
dard deviations(RSD) were used to compare equations by using 
combinations of methods to calculate body adipose tissue: a 
smaller RSD indicates a better preditor. RSDS were also used 
to examine changes in both the accuracy of MRL when the num-
ber of slices was reduced and the consequence of inadvertent 
displacement of a slice. Estimates of percent fat produced by 
LWV were used as the measure of actual percent fat in most 
equations. Unless stated otherwise, data are presented ±SD. 

Results 
The error of volume calculation determined from test objects 

was - 5.7 ± 1.3 percent and the relationship between MRI-
derived and known volumes was linear and proportional. Re-
teazed MRI volume estimations on the same test objects showed 
that successive estimations were within 4.3 ± 2.7 percent of the 
known volume indicating that repeating the whole MRI process 
on the same subject would be expected to yield results within 5 
percent of the known volume. MRI underestimated the weight 
of fat by 9.2 3.1 percent when the layered fat and muscle test 
object was used, and all estimates of adipose tissue content were 
corrected by this quantity. There was no significant difference 
ANOVA. F> 0.05) between percent adipose tissue estimated 
v MRI when 17 or 28 slices were used. 
As shown in Figure 2, the pattern of changes in tissue areas 

through the body in the seven obese and seven lean subjects was 
similar (r = 0.55. percent subcutaneous adipose tissue; r = 0.60, 
percent total adipose tissue; and 4 = 0.74, total body area, all P 
<0.001), as was the distribution of proportions of total and 
subcutaneous adipose tissue (Fig 3) in the two groups (r = 0.52 
and 0.56, respectively; both P < 0.001). In terms of the average 
quantities of tissues and slices, obese subjects had 165 percent 
more subcutaneous adipose tissue and 151 percent more total 
adipose tissue (Table 2). There was no difference between the 
two groups in the quantities of nonfatty tissues (Fig 4), although 
obese subjects had 155 percent greater mean total body area 
than did lean subjects. The distributions of total and subcuta-
neous adipose tissue were correlated in both groups (r = 0.94 
in lean and r = 0.96 in obese subjects. P < 0.001). Compared 
with the obese subjects, lean subjects had less adipose tissue  

around the xiphisternum (ration of lean to obese <0.35) and 
also had more nonfatty tissue in the upper neck and between 
the xiphisternum and iliac crest (ration of lean to obese> 1.1). 
Obese subjects, however, had more nonfatty tissue in the upper 
thorax and lower thighs (ratio of lean to obese <0.9). Lean 
subjects had significantly smaller total body cross-sectional areas 
in all slices (t test. P < 0.05-0.001), particularly between the 
xiphisternum and top of the patella. 

Dividing the data into neck (slices 3 and 4), thorax (slices 5-
10). abdomen (slices 11-16). and thighs (slices 17-24), clarified 
differences between lean and obese subjects. In lean women there 
was significantly more total and subcutaneous adipose tissue in 
the thighs than in the abdomen (ANOVA. P < 0.05 and P 
<0.001) whereas in obese women there were no such significant 
differences (ANOVA p> 0.05). The smallest difference in per-
cent subcutaneous adipose tissue between lean and obese women 
was in the thighs, with a ratio between lean and obese subjects 
of (:1.3 compared with 1:1.7-1:2.0. with a similar relationship 
holding for total adipose tissue 11:1.3 compared with 1:1.6-
1:1.9). The close correlation between lean and obese women was 
most evident with respect to percent nonfatty tissue: the ratio 
between obese and lean subjects was 1:1.07 at the neck, thorax. 
and thighs and 1:1.06 at the abdomen. 

The other methods for estimating body adipose tissue (total 
adipose tissue) tended to be closer to NIRI than to each other. 
and indeed MRI produces by far the closest estimate of body 
adipose tissue to the mean estimate resulting from averaging the 
data from all six methods. A 2-dimensional plot of the 14-di-
mensional points of predicted percent adipose tisue. by the six 
methods, produced by principal-component analysis and in-
corporating a minimum spanning tree and Euclidean distances 
between the most similar methods, was used to display the com-
parisons of these methods visually (Fig 5). This figure clearly 
shows that the estimate of percent adipose tissue by NI RI occupies 
a central position and suggests that MRI produces the closest 
measure of the true adipose tissue percentage. It should be noted 
that because this figure is a two-dimensional representation of 
the fourteen-dimensional relationship between the methods. 
there is some distortion of the relationships between methods 
and UWW. and SFT are, in fact further apart than they appear 
to be. The closeness of MRI to the averaging estimate of percent 
fat resulting from the six methods can be demonstrated by using 
UWW as a baseline from which to consider the accuracy of 
prediction of percent body fat by the other methods. Restricting 
the predictive variables to age (y). weight (kg). and height (cm). 
the best linear predictor of percent fat by UWW is 

UWW = 	68 	f 0.20 age + 0.59 weight 

(SE = 33) (SE = 0.09) (SE = 0.07) 

- 0.50 height P <0.001, 

(SE = 0.19) RSD = 3.6 (1) 

If the other five measures of percent body fat are included as 
possible predictive variables, then not only is MRI the only one 
to improve the prediction in equation I significantly (RSD re-
duced from 3.6 to 2.9. P <0.05). but also age. weight, and height 
are no longer needed. The best predictor of UWW percent fat 
Is 

UWW = 	-6 	+ 1.09 MRI P < 0.001. 

(SE = 3.0) (SE = 0.09) RSD = 2.9 	(2) 
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FIG 2. Distribution of (A) total body, (B) total adipose tissue, and (C) subcutaneous adipose tissue in seven lean (0) 
and seven obese (•) subjects. I ± SD of tissue in each slice. The four anatomical markers are shown by arrows to the 
y axis. 

As shown in Table 3, subcutaneous adipose tissue. which was 
not reported by McNeill et al (5), does not correlate any more 
strongly with the other measures of body adipose tissue and 
correlates more weakly with 40K than with total adipose tissue 
(MRI). Using the full 28 slices to estimate body adipose tissue 
did not produce any significant changes in estimation of per- 

centage adipose tissue or correlation with other measures (P 
> 0.05). As a further test, only the four slices at the anatomical 
markers (MRI4) were used to estimate percentage adipose tissue 
(Table 3). The percent adipose time predicted by MRI 4  is higher 
than that predicted by MRI or any of the other five methods 
but correlates very closely with MRI (r = 0.98, P < 0.01) and 
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almost as closely with the other measures as does MR!. Fur-
thermore. the RSD (2.9 percent) is identical with that produced 
ny MR!. For predictive purposes it is necessary to scale the mea-
sure derived from four slices: 

UWW = 0.8&MRI4  P <0.001. RSD = 190 (Fig 6) 

(SE = 0.02) (3) 

The intercept terms in equation 3 and the two equations below 
were close to zero and were therefore omitted as superfluous. 
When compared with the average of the six techniques or with 
17-slice MRI, MR!, produces predictions with lower RSDs 

Average measure = 0.88 MR14  P < 0.001, RSD =2.27 

(SE = 0.01) 	 (4) 

MRI= 0.91 MR1 3  P<0.00l. RSD= 1.80 

(SEO.01) 	 (5) 

The robustness ofMRI-predicted body adipose tissue was also 
tested. If one of the four slices in MR1 4  was displaced by _-5 2 
cm, then the RSD above increased by --. 7 percent. The best  

single slice was slice 12 (Fig I) giving an RSD of 4.8 whereas 
the best two slices were slices 3 and 12, giving an RSD of 3.0, 
but there was no improvement by adding a third slice. Although 
the use of four slices further reduced the RSD to 2.9, selecting 
more than four slices did not result in any further reduction in 
error. The close relationship between body adipose tissue esti-
mated by MR4 and by UWW is shown in Figure 6. 

Discussion 

MRI offers the possibility of determining the quantities of 
tissues in the living body. X-ray computed tomography (CT) is 
another major in vivo imaging technique and has been used in 
a number of studies of body adipose tissue and other tissues in 
humans (11-14) and animals (15). Unlike most other techniques. 
CT may also be used to measure the distribution of body adipose 
tissue in vivo, which is also true of MR! and ultrasound. Ashwell 
et al (II). using CT, demonstrated that waist-to-hip circumfer-
ence ratios were associated with intraabdorninal adipose tissue. 
Kvist et al (16) also demonstrated good correlation between 
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FIG 4. Distribution of nonfany tissue in seven lean (0) and seven obese (•) subjects. i SD of tissue in each slice. 
The four anatomical markers are shown by arrows to the y axis. 

simple anthropometric measurements and total and visceral 
adipose tissue volumes determined by CT in both men and 
women. MRI can also be used to determine tissue quantities. 
as was demonstrated in a number of studies, such as the close 
orre!ation between MRI-estimated and dissected tissue volumes 

:n goats and pigs (7; CA Glasbey, PA Fowler, unpublished ob-
servations, 1989). 

MRI. as used in the present study, is a relatively rapid tech-
nique. taking -30 min to image and store 17 slices in one subject 
and another 30 min to analyze the images and calculate the 
results. The subject is simply required to lie still. Additionally. 
MR] provides information about the spatial distribution of tissue 
n vi-o. One drawback in the study of tissues is the poor dis-
rimination between mesenteric adipose tissue in particular and 

gut contents in abdominal sections. This is due to the partial 

TABLE 2 
Tissue areas and volumes for lean and obese subjects from combining 
all 1' slices 

Lean Obese 

Tissue area 
Subcutaneous adipose tissue 

(cm 2 ) 101.3 = 54.3 268.0 ± I 16.Ot 
Total adipose tissue (cm) 143.2 ± 69.7 359.0 ± 147.7t 
Nonfany tissue (cm 2 ) 249.2 ± 94.4 249.8 ± 99.8 
Total body (cm) 392.0 ± 117.0 608.0 ± 179.Of 
Percent subcutaneous adipose 

tissue (%) 25.9 ± 11.1 43.5 ± 	10.9t 
Percent total adipose tissue (%) 37.1 ± 14.6 58.5 ± 	13.2t 

Total volume (L) 
Subcutaneous adipose tissue 11.5 ± 2.5 28.2 ± 	6.9t 
Total adipose tissue 16.1 ± 3.7 37.2 ± 	8.7t 
Nonfatty tissue 25.2 ± 2.7 24.6 ± 	0.7 
Total body 40.1 ± 4.0 61.8 ± 	9.1t 

. a SD. 
t Significantly different from lean value: tP < 0.001, tP <0.05.  

volume effects resulting from water, digesta, and alimentary 
mobility, which confuses contrast between tissues in the abdo-
men. This is not a problem with CT in which image collection 
time is so rapid as to preclude significant partial volume effects 
arising from alimentary motility. Although CT and MRI ranked 
the same subjects according to their adipose tissue areas in similar 
order, the absolute values for adipose tissue areas produced by 
the two techniques are different (17). In this study (18). MRI 
produced estimates of total and visceral fat that were 94.7 percent 
and 86.4 percent, respectively, of those produced by CT although 
estimates for subcutaneous fat were very similar. 
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FIG 5. Diagram of the relationship between estimates of percent adi-
pose tissue produced by six methods. The most similar methods are 
linked by lines upon which Euclidean distances are superimposed. The 
smaller the Euclidean number, the closer the relationship between two 
methods. 
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TABLE 3 
Summary statistics of the correlation of MRI itotal adipose tissue). 
subcutaneous adipose tissue, and total adipose tissue derived from 

lour slices (MRI 4 ) taken at the anatomical markers with the other five 

measures of body adipose tissue 

Subcutaneous 
M R I 	adise tissue 	MR14  

percent adipose tissue 36.2 = 9.1 270 = 7.9 39.7 t 10.4 

percent correlation with 
SFT 93 93 91 

UWW 96 96 97 

40K 85 79 81 

HO 87 86 89 

BEI 94 95 92 

MR[ - 98 98 

- Average 99 97 97 

• Data from reference 5. MRI. magnetic resonance imaging; SF!', 

infold thickness: °K. whole-body counting: H :O. isotopic water di-

:ution: and BE!. bioe!eczrical impedance. 

Despite the very clear differences in the weights of the lean 

and obese subjects (Table I). three features of tissue distribution 

:n the present study are striking. First, the changes in tissue areas 

aiong the body were similar in lean and obese subjects. Second, 

:ne distributions of total and subcutaneous adipose tissue be-

:ween the two groups were closely correlated. Third. although 

much lighter, the lean women had greater quantities of nonfatty 

:issues in some body slices (Fig 4). Adipose tissue distribution 

:n the body, determined by MR.! in the present study. was similar 

:0 that estimated by CT (12). This finding is encouraging and 

.upports conclusions of the accuracy of both methods, given the 

jifficulty in definitively calibrating in vivo techniques in humans. 

Because of the difficulty of discriminating visceral adipose tissue 

.vhen our method oIMRI is used. the relationship between total 

and visceral adipose tissue (13. 18) is not discussed in the present 

study. However, obese women had a greater proportion of ab-

aominal adipose tissue than did the lean women (Fig 2), sug-

zesting that problems in measuring abdominal adipose tissue 

with MRI may be partly overcome by rigorous standardized 

:mage analysis routines and by limiting the measurement of 

abdominal tissue to obvious depots, such as perinephric adipose 

aads, rather than including apparent mesenteric adipose tissue. 

The present study clearly demonstrates that MRI produces 

an estimate of body adipose tissue that is very close to the average 

jroduced by the techniques compared by McNeill et a! (5), and 

:ndeed. was the only technique in the present study that produced 

a measure of percent adipose tissue that was closer to the esti-

mated percent fat determined by UWW than that provided by 

neight and weight alone. It must be borne in mind that UWW 

does not determine percent fat but rather determines the relative 

t,roportions of fat and fat-free mass. However, the poorer rela-

tionship of IJWW and MR.! to the methods based on the esti-

mation of fat-free mass (H 20. 10K, BE!) may partly be because 

of errors involved in the estimation accumulating into the final 

t,stimate of percent adipose tissue or percent fat. An additional 

source may be because of differences in the various techniques 

with relation to the resulting estimate being percent adipose tissue 

r percent fat. It is probable, however, that this difference is not 

significant given the resolution of the techniques available. In  

addition, our final percent adipose tissue values by MRI include 

corrections for lipid content (data for lean women corrected to 

78.3 percent lipid. 83.2 percent in obese women) (9). an addi-

tional factor in the very similar estimates of fatness produced 

by MRI and UWW. Naturally, UWW itself is subject to errors 

of —2 percent of body mass (19). The similarity of uncertainty 

of estimation of fatness by MRI and UWW may be an additional 

reflection of their relative accuracy. In previous studies, weight 

and height correlated closely with CT-derived measures of adi-

pose tissue volumes (13. 16), as found in the present study and 

in the study by McNeill et al (5). Furthermore, information 

concerning the distribution of tissues is readily available by using 

MRI. which involves no ionizing radiation, unlike CT. Extrap-

olating from data presented in reference 12, 17 slices similar to 

the MR.! slices in the present study, collected by x-ray CT, could 

be expected to yield a dose equivalent of ionizing radiation of 

1.6-3.1 mSv. 
Hayes et al (4) indicated that irregularity of the thickness and 

nature of the muscle-adipose boundary was partly responsible 

for the poor agreement between MRI. ultrasound, and caliper 

measurement of subcutaneous adipose tissue. In the present 

study, however, subcutaneous adipose tissue measured by MRI 

correlated with the average measure of body adipose tissue by 

all six methods nearly as closely as total adipose tissue by %.I RI 

(r reduced from 0.99 to 0.97). A likely reason for this is that in 

the present study the total area of subcutaneous adipose tissue 

in each slice, rather than individual measurements ot'the thick-

ness of subcutaneous adipose tissue at specific locations, was 

used to estimate body adipose tissue. 

The truncated cone equation used to calculate volumes from 

tissue areas in the present study was also used successfully in 

many other studies (7, 12. 20). More importantly, there is a 

negligible alteration in the R.SD of equations comparing 17-slice 

(MR!. RSD = 2.9) and 4-slice (MR!, RSD = 2.9) MRI deter-

minations of body adipose tissue with IIWW. This suggests that 

given a range of body locations to choose from, predictive equa-

tions for total body adipose tissue can be constructed from a 

subset of body locations. Glasbey and Fowler (unpublished ob-

servations. 1989) investigated the statistical aspects of this prob-

lem by using MRI. carcass dissection, and chemical analysis 

techniques on pigs and concluded that as few as two slices were 

suitable for predictive equations. 
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FIG 6. Prediction of percent body adipose tissue as measured by UWW 

in seven lean (0) and seven obese (•) subjects by using four MRI slices 

(MRI4). 
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Given the range of body proportions of the subjects used in 

the present study it is likely that the predictive equations for the 

estimations of body adipose tissue reported will be applicable 

to further studies even though only 14 women were investigated. 

However, because of this relatively small sample size, equations 

based on fewer than four MRJ slices would not necessarily per-

form well on future occasions. it is evident that in extremely 

obese women, anatomical markers such as the x.iphisternum 

and iliac cress could be difficult to locate. Therefore, the test for 

robustness of predictive equations for body adipose tissue was 

important. Displacement of any one of the MRL4  slices by 2 cm 

increased the RSD by 7 percent, indicating that some latitude 

in the location of the anatomical markers is possible without a 

significant increase in the error of resulting estimates of body 

adipose tissue. 13 

We thank the volunteers, the Division of Nuclear Medicine, the 
Grampian Health Board. and GA Crusher for their cooperation during 
-his study. 
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Validation of the in vivo measurement of adipose tissue by 
magnetic resonance imaging of lean and obese pigs 3  

Paul .4 Fowler, Malcolm F Fuller. Chris .-I Glasbey. George G Cameron. and Margaret .4 Foster 

ABSTRACT 	In vivo quantification of adipose tissue with 
magnetic resonance imaging (MR.!) was validated with pigs. 
Thirteen transaxial MRI sections were collected, at intervals 
proportional to body length. from each pig, which was then killed. 
frozen. and sliced at the locations of the MRI sections. Adipose-
tissue quantities were determined by dissecting each slice, and 
lipid contents of the dissected slices and of the tissue segments 
between slices were measured. Compared with dissection. MR1 
underestimated abdominal percent adipose tissue and overes-
timated cervical percent adipose tissue by <6%. When all 13 
sections were used. MRI closely predicted percent lipid and dis-
sected percent adipose tissue with small residual SDs (RSD 
= 1.9 and 2.1. respectively), which increased only slightly if two 
sections (4. upper thorax and S. upper abdomen) were used (RSD 
= 2.3 and 2.6. respectively). In conclusion MRI accurately 
quantifies adipose tissue in vivo. matching values produced by 
dissection and chemical analysis. .Ini I Cli,i Nuir 1992: 
56:7-13. 

KEY WORDS 	Magnetic resonance imaging, adipose tissue, 
lipid, validation, body composition 

Introduction 

Fowler et al (1) and Knight et a! (2) showed that magnetic 
resonance imaging (MRI) is able to produce measures of tissue 
volume that closely approximate actual tissue volumes deter-
mined by dissection. Seidell ci a! (3) showed that MRI and x-
ray computed tomography (CT) produce similar measures of 
adipose tissue in humans. This is encouraging because CT has 
been used to compare imaging techniques for the determination 
of tissue quantities with data obtained from postmortem analysis 
(4.5). In a more recent investigation using sheep. measurements 
of adipose tissue by CT and dissection were closely correlated 
although carcass fat content itself was less closely related to the 
CT value (6). Rossner et al (7) Validated CT by comparison with 
planimetric measurements in II iransazial slices in human ca-
davers and found a dose correlation between techniques. In 
their comparison of CT and MRI for the measurement of adipose 
tissue. Seidell ci a! (3) stated that the only 'gold standard** for 
the validation of in vivo measurement of adipose tissue was 
carcass dissection. In the present study etactly such a validation 
has been carried out with lean and obese pigs. 

Studies using MRI for quantitative assessment of adipose and 
other tissues produced results that compared favorably with other 
techniques for the in vivo measurement of body composition  

(I. 3. 8-13). Fowler ci a! (8) found that the error in estimating 
percent adipose tissue by MRI was similar to that for percent 
fat determination by under-water weighing  (UWW) in humans 
but were unable to determine how closely MRI estimates percent 
adipose tissue or carcass percent lipid. 

The aim of this study was the validation of MRI-determined 
adipose-tissue quantities by postmortem dissection and chemical 
analysis of the resulting carcasses. 

Methods 

Animals 

Twelve female (Large White 3 X (Large White X Landrace) 
1 pigs. selected when they weighed —20 kg. were divided into 

two groups evenly matched in age and weight and were then 
maintained on different nutritional regimes (Table I). Those in 
the obese group were fed a low-protein diet ad libitum whereas 
those in the lean group were given a high-protein diet in restricted 
quantities (70 g kg wt ° " . d'). MR.! was done as soon as pos-
sible after body weight passed 76.0 kg (lean = 77.1 ± 0.7 kg. 
obese = 77.7 ± 1.5 kg: i = SD). a weight similar to those of 
human subjects studied by Fowler ci il(S). These weights were 
attained at age 224 = 44 d by lean pigs and 182 ± 19 d by obese 
pigs. There were no significant differences in the ages and weights 
of the two groups at the time of imaging (two sample I test. P 
> 0.05). All procedures carried out with pigs were in accordance 
with the Animals (Scientific Procedures) Act. 1986. 

%IRI procedures 

The images were collected with the Aberdeen 1.7 MHz (0.04T) 
nuclear magnetic resonance (NMR) imager (built in-house by 
the Department of Bio-Medical Physics. University of Aberdeen. 
Aberdeen. Scotland). which has a bore diameter of 490 mm. An 
interleaved saturation recovery-inversion recovery-pulse se- 

' From the Department of Bio-Medical Physics and Sio-Engineering. 
University of Aberdeen: the Roweu Research Institute. Bucksburn. 
Aberdeen: and the Scottish Agricultural Statistics Service. Edinburgh. 
Scotland. 
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TABLE I 

	

Dietar. reenc of thr 	and obe pie groups 

	

Ir.aredien: 	 Lean pi 	Obese aias 

FIRST THORACIC 	 ARTICUI.ATICN OF FEMUR 
VERTEBRA 	 WITH PELVIS 

gjkg dici 

Bark 6:5.0 
Wheal offal i 00.0 - 
So-bean meal 100.0 - 
Fish meal 90.0 - 
Limestone 1.2 10.3 

namin.mjneraJ supp'ement 2.5 2.5 
Common salt - 3.8 
N x 6.25 189.0 125.0 
Lipid 21.0 16.0 

ouence with a repetition time (TR) of 1000 ms. an inversion 
interval TI of 200 tis. and section thickness of 12 mm was 
used. These times and section thicknesses were selected to reduce 
signal saturation and to optimize contrast at this field strength. 
Data collection time for each section was 4.3 mm. Four image 
types [proton density. PD: inversion recovery. IR: spin lattice 
relaxation. T,: and difference (PD - IR). D] were collected from 
each section. Structures <5 mm were not readily resolvable. 

The pigs were sedated by injection of Suicaim (Janssen Phar-
maceuticals* Wantag. UK) at 10 mLfkg body wt and anesthe-
tized by inhalation of fluothane (Halothane. IC! Lid, Grange. 
mouth. UK). The pigs were laid in a lateral recumbent position 
on a board to which they were tightly secured (neck and fore 
and hind legs) by cords to prevent any accidental alteration in 
their position. They remained tied to the boards throughout 
imaging, killing. and cutting. The pig board was marked with a 
scale to allow designation of section positions for MR.!. Previous 
calibration with a test object showed that the position on the 
pig board related to the actual imaged section within 9.2 ± 1.2 
mm (14 repeated trials). It was therefore possible to determine 
within 10 mm where each section was positioned in relation to 
the pig on the couch. A szsgitzal section through the hindquarters 
and a coronal section through the shoulder were used to deter-
mine the distance between head of the femur and first thoracic 
vertebra. This distance was then used to calculate a section in-
terval that was proportional to the length of each pig (Fig I). 
There were no significant differences (two sample : test, P 
> 0.05) in the section intervals between lean (76 ± 3 mm) and 
obese pigs (76 = I mm). Thirteen transaxial images were collected 
along the length of each pig, requiring a 70-90-min imaging 
period for each animal. 

Image analysis was carried out at the Department of Bio-
Medical Physics and Bio-Engineering. University of Aberdeen. 
using a MicroVa, 11 minicomputer and image-display hardware 
(Digital Equipment Co Li. Reading. UK) emulating an advanced 
raster graphics system and running in-house image-display soft-
ware. All image analyses were carried out by the primary author 
(PAF). Because of the ciose agreement between MRI-determined 
and dissected tissue 'aiumes. the analytical methods used by 
Fowler ci a! (1. 2. 101 were used to calculate tissue volumes. 
During image analysis all four image types (PD. D. IR. and T0 

ere displayed simultaneously. Examples of the PD and IR im-
.ges are shown in Figure 2. The edge of the body on each MRI 
ection was determined on the PD image automatically by using 
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FIG I. The location of 13 sections along the length of the pig: use of 
the ñm thoracic vertebra and articulation of femur with peivis to deter-
mine a section interval proportional to pig length. 

a threshold technique and this outline was then displayed on all 
four image types. The thresholds were set manually to select T, 
values in the appropriate ranges for the tissues fat T 1  for deter-
mining adipose-tissue areas. The thresholds depended on pixel 
intensity and areas were automatically outlined by using a region-
growing algorithm from a manually set seedpoint (cursor set to 
a location containing the tissue of interest). The outline of visible 

(a) 
	

(b) 

26 mm 
(C) 

38 mm 

FIG 2. Example of (a) proton density (PD) and Ib) inversion recover 
(IR) MR images used in the determination of adipose-tissue areas. These 
images ere collected at the same location in the pig and at itte same 
time tsection 12 through the rump of an obese pig) and the IR image is 
heavily windowed to show adipose tissue as white areas and nonfattv 
tissues as black areas. A photograph of the animal at slice 12 after section 
with the bandsaw is also shown ic). 
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adipose tissue was then also determined automatically by using 
the threshold technique on the FR imae and was overlaid on 
all four images. Thresholds were varied as little as possible 
throughout the image analysis of each pig. Because of partial-
volume effects and high-fat content in some tissues, the automatic 
threshold technique inevitably erroneously characterized some 
tissues as adipose tissue. Theretere. the outlines of the edge of 
the bed' and of adipose tissue were trimmed interactively with 
an on-screen curser using both the ER and T 1  images. which 
also removed region-growing algomnin leakage to unwanted 
areas of the images. Areas such as bone marrow and gut contents 
were not included in the adipose-tissue category. All such tissues 
were designated as r.othtty time and were treated as a single 
entity. Statistics from any particular region of interest such as 
mean area (cm), were calculated by the image-display software. 

Most statistical anals of MRI data was performed with tissue 
areas (cm-'), but in addition, the volumes of tissues in each seg-
ment between and including consecutive pairs of sections were 
calculated. These calculations were based on the assumption 
that the thickness of the tissue segment between sections was 
equivalent to I unit (Fig 1). A truncated cone model was used 
to calculate tissue volumes from the areas of consecutive pairs 
of images (I). The overall error in volume calculation was 0.4 

1.6% of volume whereas repeatability of volume measurement 
was —2.1 ± 6.4% (1. 2, 10). 

Carcass dissection and chemical analysis 

After collection of the last MRI section, the pig was killed by 
intravenous injection of pentobarbital (0.3 mL/kg). Without re-
moving the pig from the board. transaxial lines were marked 
along the dorsal surface of the dead pig at the same locations as 
the MRI sections. The pigs were stored at —20°C still tied to 
their boards. 

Carcass dissection and chemical analysis were carried out at 
the Rowett Research Institute. Aberdeen. The frozen carcasses 
were cut transversely with a band saw at the locations of the 
MRI sections. removing at each location a slice 20-mm thick 
(slices 12-mm thick were not practical). Each carcass slice was 
weighed and after thawing, the adipose tissue and bone were 
removed by dissection and weighed. The tissues from each slice 
were minced and mixed, a sample being retained for further 
analysis. The segments of tissue between the slices, comprising 
the remainder of the carcass and excluding the head and lower 
legs. were minced, mixed, and sampled. 

The carcass samples were freeze-dried, ground, and mixed. 
Nitrogen was determined by a macro-Kjeldahl method (14) and 
lipid was determined by extraction with chloroform-methanol 
(Ii). Lipid weight in each slice was determined from the lipid 
content and the premincing weight of the relevant tissues. The 
lipid contents of all slices and the rest of the carcass were added 
together to give the total lipid in the whole pig excluding the 
head and lower legs. 

Statistical analysis 

MRI data from the University of Aberdeen and carcass-dis-
section and chemical-analysis data from the Rowett Research 
Institute were analyzed at the Scottish Agricultural Statistics 
Service. University of Edinburgh. so  that the study was as close 
to a blind test as possible. For dissection and chemical-analysis 
data the distinction was made between data derived from the 
slices (slice data) and whole animal (total data), which combined  

data from slices and interslice segments. Because of the difficulties 
in maintaining a constant slice thickness with the bandsaw. direct 
comparison of dissected slice weights and MRI tissue areas ere 
not carried out. However, by expressing areas or weights .s .1 
proportion of the total I percent adipose tissue or percent lipid). 
variation in dissected slice thickness was rendered irrelevant. 
The distributions of tissues both within and between lean and 
obese groups were compared by using linear correlation i r and 
two-sample t tests for between-group comparisons. Within-an—imal. 

 between-variable comparisons were tested by paired t tests. 
Least-squares linear regression was used to compare relationships 
between variables, in particular amounts of adipose time or 
lipid content determined by MRI. dissection, or chemical anal-
ysis. The basic physical characteristics of the pigs (age, weight, 
and group membership) were also tested as predictors of percent 
lipid or percent adipose tissue. 

Regressions of percent adipose tissue estimated by MRI by 
using all 13 sections against that from individual sections were 
carried out. Multipliers to correct MRI-derived data to either 
dissection or chemical analysis were obtained by regressing per-
cent adipose tissue by dissection and percent lipid against percent 
adipose tissue by MRI. These multipliers were then combined 
with the individual section regressions. This indirect method of 
obtaining predictors was shown to reduce the risk of overfitting 
the data (16). The robustness of the predictors was checked by 
investigating the effect on prediction of displacing the data by 
one-half section and one section (4.4% and 8.3% of torso length). 
the former determined by averaging data between adjacent sec-
tions. The methods used in this study were consistent with sug-
gestions for the comparison of techniques made by Bland and 
Altman (17). 

Unless stated otherwise results are presented as mean SD. 

Results 

Lean and obese pigs and distribution of adipose tissue 

Averages of both MRI section areas and dissected slice weights 
of lean and obese pigs (Table 2) were similar. However, the 

TABLE 2 
Differences between lean and obese pigs in the quantities of adipose 
and nonfanv tissues: data from the MRI sections and uissected slices 

pigs Obese pigs 

MRI data (cm) 
Section area 6II.335.7 614.24$.7 
Adipose-tissue area 117.6 = 22.1 220.1 t 19.3+ 

Dissection data (kg) 
Slice weight 1.218 = 0.l07 I.2320.0'6 
Adipose-tissue weight 0.279 	0.074 0.487 = 0.029+ 
Bone weight 0.087 t 0.008 0.079 ± 0.008 

Chemical analysis rkg) 
Adipose-tissue lipid 0.188 	0.061 0.364 = 0.013t 
Nonfattv-tissue lipid 0.041 	0.009 0.049 = 0.00 
Bone lipid 0.014 	0.003 	- - 	0.012 = 0.00 

• .' SD: n = 6 per group. All 13 NMI sections or dissected slices 
from each pig were used. 

1 Significantly different from ean pigs Ito-sample r test). p <0.00!. 
The two-sample i-tests and SDs retect differeaces between groups rather 
than between individual pigs. 
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FIG 3. The distribution at 13 locations along the body of total section 
volume by (a) MRI and (b) total dissected slice weight in six lean () 
and six obese (•) pigs. I = SD. 

Total percent lipid = 0.844 X percent adipose tissue (dissection) 

(0.007) 

RSD=0.8 (I) 
Total percent lipid = 0.945 percent adipose tissue (MR.!) 

(0.019) 

RSD = 1.9 (2) 

percent adipose tissue (dissection) 

= 1.12 X percent adipose tissue (MRI) RSD = 2.1 (3) 
(0.02) 

However, the RSD of prediction by MRI of percent lipid is 
just over double that for the prediction by dissected percent 
adipose tissue of percent lipid. Looking at percent adipose tissue 
predicted by individual MRI sections. section 8 (MRJ 8 ) was the 
best single predictor. 

percent adipose tissue (MR.!) = 5.56 + 0.84 X MR!, 

(1.64) (0.06) 

RSD=2.l (4) 

Combining this with equation 2 produced the following predictor 
of percent lipid: 

Total percent lipid = 5.25 -;- 0.79 x MR!, RSD = 2.8 (5) 

When this process was repeated to determine the best two 
MRI sections for predicting percent adipose tissue area. sections 
4 (MR14  land 8 MR18  ) were  found to be the best two predictors: 
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obese pigs had 87.7cc more adipose tissue by MR.!. 74-65c more 
adipose tissue by dissection, and 93.6 more lipid than the lean 
pies. There was no signi.ñcani difference in bone we-g) or in 
bone lipid between lean and obese pigs i Table . These results 
demonstrate that apart from very different adipose-tissue quan-
tities. the lean and obese pigs were otherwise similar in their 
external proportions, as can be seen in Figure 3. 

There were no significant differences (paired t test. P> 0.05) 
in lipid contents of the means of the slices alone islice percent 
lipid) or of the means of the slices and interstice segments com-
bined (total percent lipid 1 and therefore total percent lipid was 
used for comparison with MR.! and dissection because it was 
the closest measure of actual carcass lipid content available. Table 
3 shows the similarity among the three methods in terms of 
mean percent adipose content or percent lipid both within the 
lean and obese groups and when data for the groups were com-
bined. MRI-determined percent adipose tissue was closer to per-
cent lipid than to dissected percent adipose tissue by between 
2.8% (lean pigs) and 3.7% (obese pigs). The distribution of percent 
adipose tissue and percent Lipid along the lengths of the pigs are 
shown in Figure 4. The correlations between the distribution of 
adipose tissue measured by MRI and dissection (r = 0.980) or 
MR.! and chemical analysis (r = 0.979) were almost as close as 
that between dissection and chemical analysis (r = 0.995). In 
addition, the variations in proportions of adipose tissue along 
the bodies of the lean and obese pigs were closely correlated for 
all three methods (lean vs obese pigs: MRI. r = 0.939: dissection. 
r = 0.956: and chemical analysis. r = 0.990 P< 0.001)  although 
the variations in percent lipid between lean and obese pigs were 
the most similar. 

The main discrepancy between the methods was the smaller 
difference between thoracic and lower abdominal adipose tissue 
measured by MR.! compared with dissection and percent lipid. 
MR.! overestimated percent adipose tissue in sections I and 3 
of obese pigs but only in section I of lean pigs. In contrast MR.! 
underestimated percent adipose tissue in sections 7 and 8 in 
obese pigs and in sections 3 and 8 in lean pigs. The percent 
adipose tissue by dissection and percent lipid were alwas within 
2.6c of each other compared with z5.8 differences between 
MR! and dissection or MRI and chemical analysis in sections 
I. 3. 7. and 8. Despite these differences the overall agreement 
between MR.! percent adipose tissue and percent lipid was closer 
than that between dissected percent adipose tissue and percent 
lipid. 

Prediction of percent lipid and percent adipose tissue 
by using MRJ 

The main aim of the study was to validate the prediction of 
total percent lipid and percent adipose tissue. The characteristics 
that formed the basis of the selection of the pigs for the present 
study. age and weight. were not significant predictors of percent 
adipose tissue or percent Lipid. However, combined thin-group 
variability produced RSDs (equivalent to root mean square error) 
of 3.6 for the prediction of percent lipid and 3.8 for the prediction 
of dissected percent adipose tissue. As can be seen in Figure 5.a. 
there was good agreement between percent lipid, dissected 
percent adipose tissue, and MRI percent adipose tissue. Least-
squares linear regressions (performed with 0 intercepts) com-
bining data from both the lean and obese groups are given below. 
with SEs in parentheses: 
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TABLE 3 
Percent adipose tissue by MRI .rnd dissection and percent lipid content by chemical analysis n lean and obese pigs and values for both pig groups 
combined 

Lean pigs 	 Obese pigs 	 Obese:ean 	 Lean - obese 

Percent adipose tissue 
MRI 19.3 = 3.8' 35.9 = 10+ 1:0.54 7.6 = 9.2 
Dissection 22.7 = 4.7 39.6 = 2.5k 1:0.57 31.2 = 9.6 

Percent lipid by chemical analysis 
Slice 18.64.7 33.6 = 2.It 1:0.56 :6.1 	3.6 
Total 19.6 t 4.7 33.1 = 2.1+ 1.0.59 26.4 	7.9 

• . ± SD. 

t Significantly different from lean pigs (two-sample t test), P < 0.001 

percent adipose tissue (MR.!) = 3.44 + 0.41 X MRI 

(0.78) (0.06) 

+0.45XMR1 3  RSD=O.9 (6) 

(0.06) 

When equations 2 and 6 were combined, the following equation 
for predicting total percent lipid by chemical analysis was ob-
tained: 
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FIG .. The distribution at 13 locations along the body of adipose 
tissue percent by MRI and IbI dissection and of percent lipid concern 
bv (c) chemical analysis in six lean (C) and six obese (•) pigs..? = SD. 

Total percent lipid = 3.25 + 0.39 X MR.!., 

+ 0.43 X MR!3  RSD = 2.3 (7) 

It is apparent that MR.!, and MR!8  can be used to predict total 
percent lipid almost as closely as percent adipose tissue area 
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FIG 5. The relationship of MRI and dissected adipose tissue percent 
with total lipid percent in 12 pigs: (a) mean values for all sections by 
MRI II) and all slices by dissection (C). (b) mean values for MRI sections 
numbers 8 (C) and 4 (A). 
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obtained from 13 sections. As can be seen in Figure 5. b. these 
two sections were c'ose to th e  .v = y line when plotted against 
percent lid. e ,ecia li:. for the lean ;ics. which were closer to 
the x = line thar were the obese pigs. Similarly, equation 3 
cia:. be combined :th equation and o to obtain predictors 
of percent adipose we?—ht from section 8 and from sections - 
and S with RSD aatn close to vailues ohtainej for al! 13 sections: 
percent adipose tissue tdissectioni = 6.23 -r 0.94MR1 8  

RSD=3.2 (8) 

Percent adipose tissue Idissection) = 3.85 + 0.46MR1 4  

—0.50MR1 8  R.SD=2.6 (9) 

The use of the two best sections (MR1, and MRI 8 ) produced 
even smaller increases in RSD than one section alone. Using 3 
or more sections did not significantly increase RSD compared 
with results produced with all 13 sections and no other subsets 
o,  sections were tested. 

Robustness oldie .tIPj method 

When the RSDs for the prediction of dissected percent adipose 
tissue were calculated, the predictions were based on the use of 
one or two sections to predict percent adipose tissue. Displacing 
section 8 by half the spacing between sections (one-half of I 
section interval. 40 mn.. 4.4 of torso length) did not change 
RSD by much (from 3.2 to 3.4), but RSD increased to 5.0 when 
section 8 was displaced by 80 mm of torso length). Dis-
placing both sections 5and 8 by one-half of one section interval 
increased the RSD from 16 to 2.8 whereas the displacement of 
both sections by one section interval increased the RSD to 3.4. 
A similar pattern was observed for the prediction of percent 
lipid by either MR1 6  or MR!3  and MR1 9  together. which also 
provided the best prediction of percent lipid. 

Discussion 

To our knowledge this is th e  first major study comparing MRI 
derived in vivo data for percent adipose tissue with percent adi-
pose tissue and percent lipid determined by postmortem analysis 
and ampiiñes results obtained by Fuller et a! (18). Although the 
imaging of live subjects followed by postmortem analysis isgen-
erallv 7

limited to nonhumap, determining the relationship be-
tween MR!-measured and actual tissue areas or volumes in an-
imals may. in part, be used to validate MRI-based studies of 
human adipose tissue. Apart from the need for sedation and 
anesthesia in the present study, the MRI methods used were the 
same as those applied to humans by Fowler et al (8. 9). 

The distributions of adipose tissue or lipid content along the 
bodies of the pigs were similar by the three techniques, with 
most discrepancy between MRI compared with carcass dissection 
and chemical analysis in the neck-shoulders and abdomen. The 
tendency for MRI to underestimate abdominal percent adipose 
tissue compared with postmortem analysis is not unexpected 
given the problems of motion and alimentary contents producing 
partial-volume effects (3. 9). Although anesthesia may have re-
duced alimentary motility compared with that in conscious hu-
mans. the problem was exacerbated by the disseminated nature 
of mesenteric adipose tissue compared with larger adipose-tissue 
blocks SUCh as subcutaneous and perirenal depots. The diffuse 
na:ure of adipose tissue in the neck and shoulder of the pigs 
may have been a contributory factor to the overestimation of 
Percent adipose tissue produced b MRI at this location. Given 

the relatively  lo 	so;ution of MRI. c!csety Juxtaposed thin 
adiriose-zjssue and =ue sheets. such as the paniculus muscle. 
that were visualj,. disnct during dissection ma% have been 
treated as sinrie hiacks cfadioosc tissue during image analysis. 

Previous studies snowed that the IR type of MRI image has 
eceIlent poter.tia! fr discriminating between high- and io -fat 
t:ssues !. i'ri. Shctter R scan 	epiv 	 e-tive. par- eff 
ticuiarl  when used in conjunction with semlaujomated thresh-
old-based and rigorousiv standardized image-analysj techniques. 
Lewis et a! (20) used- an NMR technique to measure quantita-
tively total body water 'TBW) within of gravimetrjcjy 
determined TBV. Lewis et a! (201 then used TBW to calculate 
bock fat content within !.3 of postmortem values in baboons 
but could not obtain the additional information concerning tissue 
distribution in vivo provided by MRI. 

Thu et al (21). using automatic boundary-detectio n  image-
analysis methods. reported errors in area estimates 10-fold greater 
by MRI than by CT for test objects between 13 and 19 mm in 
diameter, falling to —5h (MRI) against —20.9c (CT) errors 
for test objects 5 mm in diameter. These errors were greater than 
those reported for MRI-based area calculations of test objects 
between 300 and 4500 mL (I. 9). Although Seidell eta! (3) did 
not report errors of estimation of areas of test objects for either 
MRI or CT. the repeatability of area or volume calculation re-
ported by us (1.9) remains < 10. similar to the CYs of MR]-  
determined adipose areas reported b y  Seidell ci a! (3). 

The close agreement between MRI and CT-based estimations 
of adipose tissue reported by Seidell ci a! (3) was encouraging 
because of the support it gave to the contention made in our 
previous study (8) that MRI produced accurate measures of adi-
pose tissue in vivo. At a purely descriptive level the relationship 
between MRI and percent lipid shown in Figure 5, b is markedly 
less close to the line of equality for obese than for lean pigs. 
However, the treatment of the data by fining a straight line is 
compatible with sample size and for making inferences about 
pigs in general as opposed to pigs on specific dietary regimes. 
Considering the selection of the pigs in this study for similar 
ages and weights, it is not surprising that these variables were 
not good predictors of percent lipid or percent adipose tissue. 
However, again because of the strict dietary regimes, combined 
group membership produced good predictors of percent lipid 
and percent adipose tissue (RSDs of 3.6 and 3.8, respectively), 

The agreement between percent adipose time determined by 
MRI and dissection was vent good, and for all three techniques 
the differences between methods in terms of percent adipose 
tissue or percent lipid were smaller for the lean compared with 
the obese pigs. An important and encouraging point to emerge 
was that total percent lipid was closer overall to percent adipose 
tissue by dissection and by MRI than was slice percent lipid. 
because total percent lipid is probably a more accurate reflection 
of lipid content in the pig than is the data subset represented by 
slice percent lipid. In addition, the greater similarity between 
MRI-determined percent adipose tissue and percent lipid (1.2l 
difference overall: Table 3 and Fig 51 than between these variables 
and dissected percent adipose tissue perhaps reflects the involve-
ment of the chemistry of adipose-tissue lipid in the construction 
of the MR image compared with the simple optical characteristics 
in',olved in visual selection of adipose tissue during dissection. 
Although Young ci a! (6) did not find a close correlation between 
lipid content by chemical analysis and adipose tissue by CT or 
dissection in sheep. percent lipid in the present study correlated 
%WN closel with percent adipose tissue by both MRI and dis- 
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section. Our observation that MRI may be used accurately to 
predict percent lipid in vivo is vet-: promising and supports the 
close agreement between MRI and UWW reported by Fowier 
ci at IS) and McNeil ci :ii lii. 

Glasbey and Fowler (16) used a stepwise procedure to select 

MRI section data that gave regression equations with the smailest 

RSD for predictir.g dissected percent adipcse tissue or percent 

lipid content by chemical analysis. This method was found to 

greatly overtit the data in the present study- and an indirect 

section selection procedure, which is more valid statistically. 

was used. As with prediction of percent adipose tissue in humans 

(8). the selection of specific sections in the present study enabled 
the close prediction of percent adipose time by a limited number 
of sections. Even using just one MR.! section (MR I 5 ) to predict 
percent lipid or percent adipose by dissection resulted in only 

1.4-fold and 1.5-fold increases, respectively, in MD. Because 
the use of the two best sections (MRI.. and MR1) produced 

even smaller increases in RSD and three or more sections did 

not significantly increase RSD compared with all 13 sections, it 

is possible to predict dissected percent adipose tissue or percent 

lipid with a reasonable degree of certainty by using a small subset 

of images in pigs. Kvist et a! (22) using CT found that reducing 

the number of slices from 22 to 10 or 5 did not result in signif-

icantly different estimates of total adipose tissue, supporting our 
results and those of Fowler et a! (8). 

The calculation of RSD after displacement of sections in the 

present study produced smaller increases than did those reported 

in humans (8). although in the latter study displacement of one 

of four sections nevertheless resulted in RSD increasing from 

2.9% by :s 7%. A major contributory factor to the smaller in-

creases in RSD may be the less pronounced changes in adipose-

tissue distribution along the length of the pig compared with the 

marked changes in adipose-tissue quantities as different points 

along a woman's body. This can be seen in Figures 3 and 4. 

which snow the relatively cylindrical nature of the pig torso, but 

the small increases in RSD in the two studies demonstrate that 

conclusions drawn for the use of MRI with pigs will be generally 

applicable to humans. In the present study even quite large dis-

placements of MRI sections in pigs resulted in trivial increases 

in the RSD ofMRI-based prediction of dissected percent adipose 

tissue or percent lipid content. Provided the distributions of adi-

pose tissue at sections 4 and S were relatively stable, then the 

robustness of MRI-based predictions ot'percent ipid or dissected 

percent adipose to small shifts in position should not be sur-
prising. 

In this study we validate the in vivo use of MRI for the esti-
mation of percent adipose tissue or percent lipid content and 

show that the technique is accurate, repeatable, and robust in 

pigs. In particular it was striking that MRI-derived percent adi-

pose tissue values were closer to total percent lipid than were 

those produced by dissection. These results strongly support ev-

idence presented Fowler et al (3) and McNeill et al (II) that 

MR.! produced accurate estimates of percent adipose tissue in 
women. 13 

We thank I Brown for technical assistance throughout this study and 
A Law and P Ross for assistance with the :mage-anahsis systems. 
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Regression models fitted using conditional independence to 
estimate pig fatness from magnetic resonance images 
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Abstract. Regression models were used to predict whole-body fat percentage from as few as 13 cross-sectional 
magnetic resonance images from each of 12 pigs. Models were fit indirectly, by relating fat percentage to statistics 
averaged over all images from each pig, and relating these to individual images. Predictors were checked for 
robustness against errors in image locations. 

I Introduction 

Magnetic resonance imaging (MRI) is one of several methods for obtaining cross-
sectional images through living tissue. For an introduction to this and other methods in an 
animal context, see Lister (1984). In a study to determine the effectiveness of MRI for 
estimating pig fatness, 13 images were collected at equal spacings (approximately 8 cm) 
along the full-body lengths of 12 pigs. The fat percentage in each image was measured 
simply by counting the number of pixels whose value exceeded the threshold appropriate 
for fat tissue. The pigs were subsequently killed and dissected to determine the actual fat 
percentage. Further experimental details are given in Fowler et al. (1991). 

In this paper, statistical aspects of the analysis of the data given in Table 1 are explored. 
An important question to be answered was whether fewer images would suffice for 
prediction of fat percentage, because it is time consuming to collect and interpret as many 
as 13 images per pig. In Section 2 the selection of images is considered. The problem of 
overfitting when there are so many models from which to choose is obviated by exploiting 
a prior assumption: dissected fat percentage will be independent of data from any single 
image, conditional on an estimate of the fat percentage obtained by averaging over all 13 
images. In other words, average image statistics are sufficient information for whole-body 
fat percentage: two pigs with the same average statistic, but a different distribution of 
values through the 13 images, would be expected to have the same total fat percentage. 

In Section 3 the robustness of design is investigated. When only one or two images are 
obtained, they are not likely to be positioned as accurately as in this study. Therefore, the 
effect on prediction errors of misplacement is determined. 

2 Model selection 

Dissected fat percentage (denoted y) has a 98% sample correlation coefficient with the 
estimate obtained by taking a weighted average (denoted z) of the 13 MRI slices, with 

* Present address: Department of Obstetrics and Gynaecology, University of Aberdeen, Aberdeen A139 IFX, 
UK. 
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Table 1. Pig whole-body fat percentages measured by dissection and estimated from MRI 

C') 

rA 

Dissected Average Fat percentage (X) estimated from MRI position number 
Ra 

Pig fat percentage fat percentage 
number (y) for MRI (z)* 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1713 1526 2924 20•09 1001 1511 1415 1813 14i6 1077 1747 1934 1298 1218 1067 
2 1729 1528 1881 965 1190 1447 1389 1372 1431 1237 1728 1962 2025 1870 1690 ft 

3 2306 1938 3553 1416 1247 1922 2126 1804 1441 1835 1863 2852 2596 1405 1891 
4 2330 1845 26•01 1722 1521 1968 1774 2094 2117 1803 1749 2076 1385 1688 1794 
5 2721 24'72 3949 2616 1990 2497 2799 1992 17•99 2179 2523 3152 3284 1768 2241 
6 28i5 2243 3774 1560 2093 2669 2298 1921 2264 2044 2359 2135 2977 1850 1594 
7 3600 3600 5207 3914 4094 4326 3465 3659 3522 319 40i0 3407 3465 2362 2195 
8 3845 3632 4453 3533 3765 3869 3928 3556 3103 3508 3789 3900 3920 2940 2976 
9 3929 3539 41-74 32-63 39-31 35-19 4436 3314 29-75 38-48 3387 41-01 3872 2513 2900 

10 39-69 33-39 3964 20-61 3803 3909 3107 34-38 37-69 3230 4136 37-24 3794 2455 2365 
11 40•55 3481 3795 32-30 3178 4123 3569 3249 3057 3260 4220 39-25 4414 28-06 27-02 
12 43-72 3944 5311 29-29 3657 4043 3752 4589 45-15 4376 45-01 43-46 40-03 29-25 2642 

Average 31-15 2757 3799 2435 2622 2984 28-38 2733 2617 26-32 3001 3134 3086 2150 21-71 

* For each pig, z is a weighted average of X 1  to X 13 , with weights proportional to slice cross-sectional areas 
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Table 2. Results of predicting fat percentage from fat percentage estimated from MRI 

MSE of 

	

Regression coefficients (standard errors) 	 prediction 
Method of 	Number of 	 MSE (from 1000 

model selection s 	images 	Constant 	X 2 	X4 	X 8 	of fit simulations) 

Direct 	 I 8-24(1-76) 087 (006) 49 124 
2 6-32(1-30) 0-37(0-10) 052 (010) 22 102 
3 6-78(1-15) —014 (007) 047 (010) 0-53(0-09) 17 118 

Indirect 	 1 6-22(2-56) 0-94(0-09) 103 122 
2 3-85(2-23) 046 (018) 0-50(0-18) 66 83 
3 3-47(3-32) 0-12(0-15) 	038 (021) 0-50(0-18) 6-8 81 

* Direct: best choices in regression of fat percentage on fat percentage estimated by MRI in individual images. 
Indirect: best choices in regression of overall fat percentage estimated by MRI on that estimated in individual 
images, rescaled by 112 to estimate whole-body fat percentage. 

Table 3. Percentage correlations and partial correlations 

Image number, i corr (y, X) corr (z, X 1) corr (y, XIz1) 

1 81 86 —33 
2 75 84 —69 
3 94 97 —13 
4 96 97 18 
5 93 95 —4 
6 93 95 —2 
7 92 92 34 
8 98 98 43 
9 96 97 25 

10 93 95 13 
11 92 91 35 
12 92 92 20 
13 87 88 12 

weights proportional to cross-sectional areas. The fitted regression equation, which was 
found not to need an intercept term, is given by 

y=112z+c 	 (1) 
(OO2) 

where the term in brackets is the standard error. The residual e has a variance a 2  estimated 
as 45. 

A simple-minded approach to finding whether fewer than 13 images will suffice for 
predicting whole-body fat percentage is simply to select the images which give regression 
equations with the smallest residual variances. The best single image is found to be at 
position number 8 and the residual variance is 4-9. The best pair of images are 4 and 8, with 
a residual variance of 22. A third image, number 2, further reduces the variance to 17. The 
F statistic, however, is less than 4, which indicates that such a gain could easily have 
occurred by chance. The top half of Table 2 summarizes these results. 

Two or three images appear to predict whole-body fat more accurately than the average 
of all 13 slices, which violates the assumption that y and the X values are independent, 
conditional on z. This assumption is borne out by the data as only one of the partial 
correlations in Table 3 is significantly different from zero. Therefore, it is much more likely 
that overfitting is the cause of the low variances in the above models. 
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To test for overfitting, 1000 data sets of size 12 were generated from multivariate normal 
distributions with the same means, variances and covariances as the rows of Table 1, and 
with the partial correlations between y and the X values set to zero. The final column of 
Table 2 shows the mean square errors (MSE) of prediction which results when the 
preceding fitting strategy was applied independently to each simulated data set. 
Overfitting is confirmed. 

This prompts the question, can we utilize conditional independence to improve the 
current model selection procedure? For example, if u is a three-vector, normally 
distributed with variance V, where V has unit diagonal elements, V12  = V23  = 4 and 

V1 3 = , then u 1  and u 3  are independent, conditional on u 2 . If V, denotes the correlation 
coefficient between u 1  and uj  obtained from a sample of size 12, then V12  V13  is a better 
estimate of V13  than is f/13 . Table 4 reports simulation results to this effect. 

We have termed our approach indirect regression. Fat percentage estimated from all 13 
images (z) is regressed on that from individual images, then multiplied by 112 to predict 
dissected fat percentage. The best single-image position is again number 8, with model 
(standard errors) 

z=556+084X8 +q 
(164) (006) 

The residual, q, has a variance (t 2) estimated as 43. Combining this with equation (1) gives 

y= 112(556+084X 8)+e+ 1i21 

The residual mean square error, after adjustment for degrees of freedom, is (1 1/10)d 2  
+1-12 2f2, 

  i.e. 103. Standard errors of parameter estimates need recalculating. For 
example, that for the intercept term is 1-64(10-3/4-3) 1/2, i.e. 256. 

The Appendix provides mathematical underpinning for this intuitive approach of 
indirect regression. The above, and further results, are given in the second half of Table 2. 
Simulation appears to substantiate the approach, with the difference between MSE of fit 
and prediction being due to uncertainty in the parameter estimates. 

Underestimation of MSEs has been largely eliminated by the use of the indirect 
regression procedure, and furthermore, the prediction equations are more accurate. The 
problem of overfitting when there are as many explanatory variables as there are 
experimental units appears to have been overcome by structuring the model to reflect 
known relationships. Overall, two images seem to be adequate to achieve predictors only 
slightly weaker than those obtainable from 13 images. 

Table 4. Comparison between estimators of 
V131  the covariance between u 1  and u 31  where 
u is a three-vector, normally distributed with 
variance V, and V has unit diagonal elements, 
V12 = V=4 and V13 =0' (Pij  denotes 
the correlation coefficient between u, and uj  

obtained from a sample of size 12) 

It; 

1000xMSE of prediction of V13  

00 92 	 8 
02 92 	 13 
04 87 	 27 
06 72 	 34 
08 37 	 24 
09 14 	 10 
095 6 	 4 
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3 Robustness of design 

In practice, if only one or two images are obtained, then there is a problem in positioning 
them precisely. To investigate the effect on prediction, data misplaced by half, or the full, 
distances between images, were substituted into each prediction equation. Data at half 
distances were obtained simply by averaging adjacent columns in Table 1, which 
unfortunately has the side-effect of reducing sampling noise. 

The first half of Table 5 shows the MSEs using a single image, with the entry of 103 for 
image 8, accurately positioned, being that already given. Results using misplaced images 
were obtained as averages of MSEs from the two directions of misplacement. As expected, 
MSEs tend to rise if images are mislocated, although the hall distance results are probably 
too small because of the reduction in sampling noise already discussed. Images at 
positions 4, 8 and 9 give predictors which are both accurate and relatively robust. 

Table 5 also shows MSEs for the best 10 pairs of images, several of which appear to be 
robust to mislocation. Again, these were obtained as averages of MSEs, in this case for the 
four combinations of misplacement of two images. Overall, images 4 and 8 appear to be 
best, and have the additional advantage that, if one image is lost, the other one is still 
capable of providing a good predictor of carcass fat percentage. 

The conclusion is that two images, positioned one-third and two-thirds along a pig's 
body, are sufficient to predict whole-body fat percentage to within a standard deviation of 
about 3%. The use of more slices appears to offer little further gain. 

Table 5. Effect on prediction of pig fat percentage of using one or two magnetic 
resonance images, misplaced by up to 8 cm 

Image 
number Exact positions 

Mean square error 

Locations out by 
half distance 

between images 

Locations out by 
full distance 

between images 

1 343 723 2168 
2 384 449 1199 
3 122 151 324 
4 108 106 224 
5 156 80 15.0 
6 155 131 210 
7 234 155 137 
8 103 115 251 
9 122 108 225 

10 172 135 237 
11 253 323 725 
12 224 578 1918 
13 315 219 226 

Pairs of images 
4 	8 66 77 117 
5 	9 67 75 127 
4 	10 73 9.4 180 
5 	7 75 82 132 
6 	11 76 118 269 
8 	9 76 9.7 148 
4 	5 7.7 85 135 
5 	6 80 84 139 
3 	10 82 88 172 
3 	8 82 9.3 191 
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Appendix: algorithm for indirect regression, based on conditional independence 

Let X denote an n x p matrix, of which the first column is ones, and the other columns are a 
subset of the X i  values. If y, given z, is distributed with mean ocz and variance a 2!, and y is 
conditionally independent of the X i  values, given z, then 

E(XTy) = E(XTZ)E(YTZ)/E(ZTZ) 

This suggests the use of w = XT z(yTz/zlz) as a better estimator than XTy  of  E(XTy),  as 
illustrated in Table 4. Applying this to the fitting of 

y=X/t+c 	var(s)=2 2  

leads to the standard equations, but with XT   replaced by w 
= (XTX) - 'w 	12= (yTy - WT(XTX) - 1w)/(n - p) 

Computationally, this can be implemented as a pair of regressions: 

Fit y=ctz+, by least squares, where var()=a 2 . 

Fit z=Xy±i1, by least squares, where var(q)=r 2 . 

Calculate /S = 	= 2 .f 2  + d 2 (n - 1)1(n - p), SE() = SE()A/f. 
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Abstract 

A random smooth path of infinite, length crossed a square lattice. Intersections 
with the lattice were censored if they lay within a threshold distance of a preceding 
uncensored intersection, defined by tracking along the path in one direction. The 
distribution of distances between consecutive uncensored intersections is derived. 

IMAGE ANALYSIS; STEREOLOGY 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 68U15 

SECONDARY 51 N05 

1. Introduction 

Consider a random smooth path of infinite length in the plane intersecting a square 
lattice. By smooth we mean that over the scale of a few lattice intervals the path can be 
considered to be straight, and by random we mean that short sections of the path have 
isotopic uniform randomness (IUR), and the path exhibits no long-term dependencies. In 
tracking along the path in a single direction, an intersection with the lattice is censored if it 
lies within a threshold distance of the preceding uncensored intersection. In this paper, the 
distribution is derived of distances between consecutive intersections, after censoring. 

The problem arose in image analysis. Fourier descriptors (Grandlund (1972)) were 
used to approximate a closed curve specified by locations of intersections with the image 
lattice. That is, given points (x,, y,) for i = I,. -•, n, the fitted curve is 

mf 	2mij 	2irzj\ 
x= iacos—+bsin-- 

j—O\ 	 fl 	 fl / 

for some value of m <n/2, and similarly for y, where the a's and b's are the least squares 
estimates obtained by applying a Fourier transformation. By omitting some points, it 
was hoped to reduce the variability in distances between the remainder and thereby 
reduce m, the number of Fourier coefficients needed to produce a good fit. 

Received 11 December 1990; revision received 14 January 1992. 
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There are further possibilities for applying the results in image analysis. The relation-
ship between computer representations of images, that is as data on a lattice, and true 
images in continuous space remains much in need of study. There are also connections 
with stereology, in which context the uncensored case was solved by Coleman (1969). 

2. Distribution 

Without loss of generality, we consider the integer lattice in the x—y plane, and a short 
interval of the path given by y = (x - s) tan 0, starting in the interval [0, 1) on either the 
x or y axis, where the slope, 0, is a random variable, distributed in the range 7114 to 7r/2. 
The x-intercept, s, is also a random variable, whose distribution depends on 0 and on the 
censoring threshold, 1. We shall consider tin the range [0, 1], but in the discussion we 
return to the general case of t taking any positive value. 

2.1. Conditioning on 0. In the absence of censoring and conditional upon 0, for 
IUR, s is uniformly distributed between - cot 0 and 1. The effect of censoring is that 
intervals with distances, denoted z, which are less than t are extended into the next 
square above, or to the right, as shown in Figure 1. But, to avoid double counting, 
intervals from the previous square (below or to the left) which are shorter than t, and 
thus have to be extended, have to be omitted. This produces the gap shown in Figure 1, 
and s is uniformly distributed between - cot 0 and - t cos 0, and between I cos 0 and 1. 

This situation, Case (1), pertains provided 2t cosec 0. If I exceeds this limit then the 
upper interval for s changes to being between cot 0 - I cos 0 and 1, which is Case (2). 
Figure 2 illustrates the two cases. 

+ t cos 8 

Figure 1. Censored intervals in Case (I a) 
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1.0 
+tcosO-2cot9]=O 
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0.7 
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Figure 2. Four possible cases of envelopes of censored intervals 

Returning to Case (1), the intervals are as shown in Figure 1 provided that t cos 0 
1 - cot 0, Case (1 a). The probability density function of z, conditional on 0, is 

	

1 	
(21(zlt, cosec e—t) 

sec 0 + cosec 0 - 2t 

+ I(z I cosec 0 - t, cosec 0 + t) + (sec 0 - cosec 0) ô(z - cosec 0)), 

where I is the indicator function defined as 

I(zla,b)= 
i, tO, ifzE(a,b) 

 otherwise, 

and ô is the Dirac delta function 

	

ô(z)=lim_1_J(ZI 	E, 8). 
e—o 2e 

If i cos 0 1 - cot 0 then Case (1 b) pertains, and 

p,(zjO)= 	
1 	

(21(zjt, cosec O—t) 
sec 0 + cosec 0 - 21 

• I(z I cosec 0 - t, sec 0 - t) + tô(z - cosec 0) 

• I(z I cosec 0, sec 0) + (cosec 0 - sec 0 + t)ô(z - sec 0)). 
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Case (2) can similarly be subdivided. In (2a), cot 0 - t cos 0 1 - cot 6, and 

p,(z I 6) = cos 0(I(z It, 2 cosec 0 - t) + (sec 0 - 2 cosec 0 + 21)6(z - cosec 0)). 

Otherwise, in Case (2b) 

p,(z I 0) = cos 0(I(z It, t + sec 0 - cosec 0) + tô(z - cosec 0) 

+ I(z I cosec 0, sec 0) + (2 cosec 0 - sec 0 - 	- sec 6)). 

2.2. Random 0. In removing the conditioning on 0, the probability density function 
becomes 

p, (z) 
= 1/4 

p1(z I 0)p(0)d0. 

In the absence of censoring, for IUR, 0 and the perpendicular distance from the origin to 
the line, that is s sin 0, are uniformly distributed over the region defined by ir/4 0 

- cos 0 s sin 6 sin 6. Therefore p(0) is proportional to sin 0 + cos 0. As we 
have seen, censoring restricts the range of s. Therefore, 

f sin 6 +cos 0— 21sin Ocos 0, 	if2t cosec 0 
p,(0)=c,  

sin 0, 	 if cosec 0 21 2 

where c, is a normalising constant. 
In principle, it is possible to combine these equations with those in Section 2.1 to 

obtain analytical expressions for p,(z) for different values of 1. However, this rapidly 
becomes very complicated, as can be judged from the result below for small 1, that is the 
'resolution constraint' sampling case: 

2 

2—t 

1 

2' 	
iftzl —t 

2(z+t)2 	
ifl — tzl 

1 	
+ 	

1 	1 
2(z+t)2 z2Jz2_1z2' 	

if 1<z 1+1 

1 	
+ 	

1 	1 	1 	1 
2(z+t)2 2(z_t)22+z2.../?Tz2 	if1+tz cosec a 

1 	1 	1 
2(z_t)22z2+z3 	 i0sezJ 

1 	1 	1 	1 	t 
2(z_t)22z22+z2,./?i+z 	if/zseca 

where a is the solution in the interval m/4 to 7r/2 of t = sec a - cosec a, that is 
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Figure 3. 

+12_ 1)]. 

This result applies provided that 1 + 1 cosec a, that is 1 <0.29077. For I = 0, this was 
one of the results derived by Coleman (1969); the conditions were what he termed a-
randomness, through a rectangle with unit sides. 

We resorted to numerical integration, which provided the results in Figure 3 and 
Table 1. Analytic results are available for the expectation and the upper limit: 

if Ot0.5 
2—I 

Et (Z) = 	41 

1+2i' 	
ifO.5t/O, 

if,5/ötl. 

The upper limit is sec a. Here a is as defined above for the range of values of t in the right 
boundary of Case (lb) shown in Figure 2, that is t ./T/6, and otherwise for I 1 is 
the solution, in the range 7r14 to 702, of 1 + 1 cos a - 2 cot a = 0. 

3. Discussion 

This project was set up to find what degree of censoring minimised the variability in 
the distribution. For censoring between 0 and 1, the range and standard deviation are 
minimised when I = 1. However, the interquartile range is minimised by 1 near 0.5, 
when the lower quartile is equal to 1. 



274 	 A. V. WHEELWRIGHT AND C. A. GLASBEY 

TABLE I 
Summary statistics for distributions of distances with censoring thresholds between 0 and I 

Inter- 
Censoring 	Lower Lower 	 Upper Upper 	Standard quartile 
threshold and limit quartile Median quartile limit Mean deviation range Range 

0.0 0.500 1.000 1.038 1.414 0.785 0.356 0.538 1.414 
0.1 0.575 1.000 1.046 1.467 0.827 0.324 0.471 1.367 
0.2 0.650 1.002 1.058 1.525 0.873 0.298 0.408 1.325 
0.3 0.726 1.007 1.078 1.585 0.924 0.278 0.352 1.285 
0.4 0.850 1.014 1.107 1.655 0.982 0.260 0.257 1.255 
0.5 1.000 1.027 1.153 1.727 1.047 0.241 0.153 1.227 
0.6 1.003 1.041 1.192 1.803 1.096 0.215 0.189 1.203 
0.7 1.006 1.051 1.190 1.742 1.111 0.179 0.184 1.042 
0.8 1.009 1.055 1.176 1.685 1.111 0.152 0.167 0.885 
0.9 1.012 1.059 1.169 1.631 1.111 0.132 0.157 0.731 
1.0 1.015 1.064 1.169 1.582 1.111 0.121 0.154 0.582 

Simulation results for t between 1 and 10 show the probability densities to have the 
same general shapes as those in Figure 3, with the singularity at the integer immediately 
above 1. However, there are also subtle differences, such as the range appearing to 
oscillate with a frequency of ,.J as t increases. No other values of I achieve as small a 
range. 
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Abstract - Ultrasound imaging is widely used in animal breeding to provide in 
vivo estimates of the carcass composition of candidates for selection. Although 
the technique is less accurate than more recent medical imaging methods, such 
as X-ray computed tomography and magnetic resonance imaging, it is relatively 
cheap and mobile. Therefore large numbers of animals can be measured. Most 
current ultrasound scanners require some degree of manual interpretation of images, 
which is time consuming and liable to vary both between and within individuals. 
Hence, this study investigated the automatic interpretation of ultrasound scans 
from sheep. A computer algorithm is proposed for identifying tissue boundaries. 
Estimates of tissue depth are shown to be comparable with those obtained by 
manual interpretation, for images of seventy two sheep scanned twice at the position 
of the 13th thoracic vertebra. The root-mean-square errors of subcutaneous fat 
depth and m. longissimus muscle depth were 0.7mm and 1.7mm, respectively. 

Key words - Eye-muscle depth, Fat depth, Image analysis, Suffolk sheep. 
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1 Introduction 

Non-invasive imaging techniques such as ultrasound, X-ray tomography (CT) and 
magnetic resonance imaging (MRI) are widely used in human medicine today. They 
also have great potential in animal science and production, because tissue bound-
aries can be mapped and used to predict body composition (Simm, 1983 and 1992). 
Ultrasound uses cheaper and more-mobile imaging equipment than either CT or 
MRI. Largely for these reasons, this technique has become widely used in animal 
breeding to assist in selection for leaner carcasses. However, ultrasound images are 
far more susceptible to noise than those from CT or MRI (see Fig 1 for a typi-
cal example). Therefore, most ultrasound images require some degree of manual 
interpretation. This is very time consuming, because experimental and industry 
selection programmes usually involve many animals, and variation between and 
within interpreters (and operators) may limit the precision of the technique. For a 
thorough examination of factors affecting the reproducibility of ultrasonic scanning, 
see Miles et al (1972) and other studies cited in the reviews of Alliston (1983) and 
Simm (1983). 

Partly to circumvent problems of subjective assessment of images, ultrasound trans-
mission techniques have been investigated (eg Miles et al, 1984). These produce 
direct estimates of body composition, based on the relationship between the recip-
rocal of the speed of transmission of ultrasound across the body, and the fat content 
of the tissue through which the sound has travelled. Whilst these techniques give 
broadly similar precision of prediction of composition to pulse-echo methods (Simm, 
1987), the latter are more widely used to date. This is partly because measure-
ments of tissue depths or areas have direct value in some cases. Hence, the interest 
in automatic methods for interpreting ultrasound pulse-echo scans. 

Currently, in the Scottish Agricultural College, ultrasound scans are interpreted 
manually. A mouse is used to control a screen cursor and identify tissue bound-
aries, in order to measure average fat depth and maximum eye-muscle depth. In 
this paper, an algorithm is proposed for identifying tissue boundaries in thoracic 
ultrasound scans of sheep without any human intervention. It was developed using 
a subset of 20 images, and subsequently validated on a set of 144 images by making 
comparisons with results obtained by human interpretation. 

We are unaware of other pulished work on automatic interpretation of sheep ul-
trasound scans. However, there are several papers on ultrasonic applications with 
humans. For example, Lin ci al (1991) used a Bayesian approach to detect bound-
aries in abdominal images, whereas Baldock (1992) and Cootes el al (1994) proposed 
the use of trainable models for the interpretation of echocardiograms. For a broader 
discussion of the issues involved in using a computer to analyse images, see Glasbey 
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and Horgan (1995). 

2 Materials and methods 

A Vetscan MKI, real time, 'B' mode, ultrasonic scanner with a 56mm, 5MHz trans-
ducer was used in this experiment. It produces images which are typical of most 
modern pulse-echo machines. The animals scanned were 72 female Suffolk lambs. 
Their average liveweight was 60kg (s.d. 6kg), and they were part of an experi-
ment to investigate selection for improved carcass composition in sheep (Simm et 
al, 1990). Each sheep was scanned twice, a week apart, such that the average age 
at scanning was 150 days of age, with a range of 4 days. The sheep were scanned 
at two locations, namely, the 13th thoracic vertebra (last rib) and the 3rd lumbar 
vertebra. There are few muscles at these locations and their anatomy is relatively 
simple, which aids interpretation of scans. At both these locations the transducer 
was positioned so the scan began at approximately the midline. 

Pulse-echo ultrasound instruments operate by sending a pulse of sound waves of 
very high frequency into a subject. When the ultrasound wave meets a boundary 
between two tissues, partial reflection occurs. The greater the difference in acoustic 
impedance between the two tissues, the greater the reflection. For example, more 
energy is reflected from a muscle-bone interface than from a muscle-fat one. The 
reflected energy is received by the instrument and converted into electrical signals 
which are displayed on a video monitor, with time delay interpreted as depth. The 
topmost, approximately horizontal, light-grey band in Fig 1, which is a thoracic 
image, is the transducer-skin boundary. Below this are further light-grey bands 
corresponding to the skin-fat boundary, a boundary within the subcutaneous fat 
layer, and the fat-muscle boundary. The backbone appears as a light-grey area in 
the bottom left of the image, from which a rib can be seen sloping slightly upwards. 
The muscle above this bone is the m. longissimus or eye-muscle. 

At the first scanning occasion, instrument settings such as overall- and near-gain, 
brightness and contrast, were adjusted to give the best visual contrast between 
tissues, and were then left in these positions, with only a few exceptions when 
images were difficult to obtain. The screen-displayed images used eight shades of 
grey. Each image was photographed using a Polaroid PCU-100 camera mounted in a 
black box at a fixed distance from the screen, and printed on black and white 8.5cm 
x 10.8cm Polaroid (ISO 200/240 ) film. Good reproduction of the original grey scale 
was achieved. The photographs produced were 1.24 x the live animal scale. The 
central parts of the photographs were subsequently digitized to 401 x 341 arrays with 
256 grey-levels, at a resolution of 7.9 pixels/mm using a Hewlett Packard ScanJet 

3 



Plus desktop scanner. Combining these two conversions together, the scaling factor 
works out as 1 pixel corresponding to 0.157mm of tissue depth in the sheep. This 
indirect method of data transfer between computers was used because the Vetscan 
machine had no video output. It is both time consuming and a source of additional 
noise in the images, in particular producing the vertical display lines which can be 
discerned in Fig 1. 

2.1 Algorithm 

The algorithm for interpreting the digitized scans proceeds in three stages. First, 
the angle of orientation of the digitized photograph is identified. Misalignment of 
Polaroid prints in the scanner was only slight, but is critical to later stages in the 
algorithm and so has to be corrected. Secondly, horizontal boundaries are found 
corresponding to the top and bottom of the fat layers, using a method akin to a 
Hough transform (see for example, Leavers, 1992). Finally, the top of the rib is 
located. Details of the three stages follow, using the image in Fig 1 for illustration. 

2.1.1 Image orientation 

Let X 2 ,3  denote the image intensity at pixel location (i,)*), that is, the element in 
row i, column j. A large value of Xij  indicates a bright pixel, whereas a value near 
zero represents a dark area in the ultrasound image. 

In order to identify the image orientation, the position of the transducer-skin bound-
ary is determined on the left and right sides of the image, by finding the brightest 
row of pixels in the first and last 41 columns. The left and right ends of the 
boundary are estimated to be in rows 2* 1  and i,., defined as follows: 

40 	 340 

il = armax1X2, 3  and i, = arni 
3=0 	 j=300 

Here 'argmax' denotes that ii and r  are set to the values of i which maximize the 
summations. The x 's on Fig 1 indicate the selected positions in rows 88 and 85 for 
this illustrative image. From these results, the slope of the image is calculated as: 

Zr -   ZI 

300 

In the case of Fig 1, the slope is —0.010. 

4 



2.1.2 Fat layer 

The top and bottom boundaries of the fat layer are assumed to be horizontal in 
the original photograph, and are therefore at slope s in the digitized image. The 
restriction to a horizontal boundary, which is only an approximation to the truth, 
is made for simplicity and in order for the algorithm to be robust. Boundaries are 
discontinuous in some ultrasound images and it is difficult even for the human eye 
to follow them. 

As a first step in locating these horizontal boundaries, the summed image intensity 
along each sloping row of the image is derived as: 

340 

= > X_70 31,3 	for i = 0,... 1 400 1  
j=0  

where [ ] denotes 'rounding to the nearest integer' and Xk, 3  is set to 0 if k lies 
outside the range 0 to 400. Fig 2 shows the Y's obtained from Fig 1. Essentially, 
this is equivalent to an 'A' mode ultrasound scan, in which a one-dimensional signal 
is produced instead of an ultrasound image, though it has been obtained by other 
means. 

From these row sums, the row index it corresponding to the top of the image is 
obtained as the value of i which maximizes Y, i.e. 

it = argmax Y. 
i='0...400 

In Fig 2, the maximum occurs at i t  = 86. The point is marked by the left-most x. 

The top of the fat layer is found as the first local maximum of Y2  which exceeds 
20% of Y and is more than 10 rows below i t . Therefore, if is found as the smallest 
value of i such that 

i > it  + 10 , Y_ 1  <Y <}' 	and Y  

These constraints ensure that the skin layer is at least 10 pixels thick, and that 
fluctuations in low values of Y in the skin layer, produced by noise, are not mis-
interpreted as being a real boundary. These particular limits were chosen after 
carefully examining the 20 original images. For Fig 2, the maximum is identified as 
i f  = 115, and is marked by the central x. The corresponding boundary is shown in 
Fig 1 as the topmost dotted line superimposed on the image. A valid value of i was 
found in all our applications of this rule. If, in future, exceptions are encountered, 
we suggest that i f  is set to its mean value of (t + 28). 



Similarly, the top of the muscle layer is found as the last local maximum of Y2  which 
exceeds 60% of Y and is less than 100 rows below i t. Therefore, m  is found as the 
largest value of i such that 

if <j <t + 100 , —1 <Y < Yi+1 and Y> 

The combined skin and fat depths are thereby constrained to be less than 100 
pixels. A value of i can always be found, because i = if satisfies the constraints. 
For Fig 2, the rule that Z n < Z t  + 100 excludes the maximum when i = 310, and the 
rule that Y m  ~!Y21  excludes the maximum at i = 185. The top of the eye-muscle 
is found to be on row 143, which is marked by the right-most x in Fig 2. The 
boundary is shown by the second-from-top dotted line in Fig 1. 

2.1.3 Rib 

We have to adopt a slightly more complicated approach to locate the rib, because 
it is not horizontal or straight, nor does it cross the whole image. Therefore, we 
chose to specify it as a parabola excluding the left-most quarter of the image. 
(Strictly speaking, in referring to the bone in what follows, we actually mean the 
two-dimensional intersection of the rib with the plane of the image.) A parabola 
requires three parameters to specify it: we use i to locate the maximum depth of 
the bone, which we assume to occur in column 85, a to specify the angle of the 
slope of the the bone at this point, and 0 to control the curvature of the parabola. 
The row-location of the parabola in column j is given by Z' -   g(a,f3,j) where 

g(a,fi,j) = (j —85)tana 
- ( _85)2  

10000 

(The divisor of 10000 is to allow 0 to take integer values.) In the same way that 
the earlier boundaries were located as the brightest horizontal lines in restricted 
positions in an ultrasound image, so the rib is located as the section of a parabola 
in the bottom part of the image which has the greatest summed pixel intensity. 
Values are obtained as: 

340 

(ib, ab, /3b) = argmax E X[i_ g (a,,j)],j 
(i,a8)EC j=85 

where C is the set of triples (i, a, 0) over the ranges: 

a=0,...,50 , /3=0,...,20 

subject to the restrictions that the right end of the parabola is no lower than the 
left end, and is at least 40 rows below 	i.e. 

g(a, /3, 255) 0 and [i - g(a,/3,j)] > m + 40. 



For Fig 1, the maximum occurs when (ii,, ab, 13b) = 397,32, 10, which specifies the 
curved boundary shown as the dotted curve at the bottom of Fig 1. Use of a 
parametric curve for the rib seems adequate in this application. An alternative 
approach, which could also incorporate information about the backbone, would be 
to construct a grey-scale template and match it to each ultrasound scan (Amit, 
Grenander and Piccioni, 1991). For example, another imaging modality, such as 
CT, could be used to provide a template (Moshfeghi, 1991, Abdalla, 1994). 

3 Results 

The algorithm was applied to the 2 thoracic images, obtained one week apart for 
each of the 72 sheep. As already discussed, the results for one image are shown in 
Fig 1. For comparison, the figure also shows as continuous white lines the manually-
obtained boundaries for the same image. Various aspects of the algorithm, such as 
the limits applied in the derivations of if and m, were chosen after careful examina-
tion of 20 images. The remaining 124 images therefore provide a validation of the 
method, albeit with the caveat that they were images from the same experiment. 

Fig 3(a) shows the estimated fat depths on week one for all 72 sheep, with the 
manual results plotted against the output from the algorithm, i.e. (im - if). The 
agreement is good, although it can be seen that the automatic method appears to 
underestimate the fat depth. This is because boundaries are positioned to maximize 
image intensity, whereas the hand-drawn lines are placed further apart. The bias 
can be corrected for, by regressing the manual results on the automatic ones, which 
gives an unbiased estimator of fat depth of 

19 + 0.89( m  - if). 

The regression line is shown in Fig 3(a). The intercept term, 19, adjusts for the 
apparent underestimation in the automatic method. The residual standard devia-
tion, or equivalently the root-mean-square error, is 4.6, which converts to 0.7mm. 
For comparison, the average fat depth is 42 pixels, or 6.6mm. 

Fig 3(b) shows manually estimated fat depths for weeks one and two plotted against 
each other. The average fat depth increased to 45 pixels on the second scan occa-
sion. The root-mean-square difference in results is 5.0, after allowing for this change 
in mean value of 3 pixels (0.5mm). Therefore, there appears to be no greater con-
sistency in results between the two hand-drawn interpretations than with output 
from the algorithm. This is borne out in Table 1, which shows all root-mean-square 
differences between manual and automatic estimates of fat depth on the two scan 
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dates. The calibration equation derived for the automatic method in week one was 
applied to the data in week two without any re-estimation. 

Eye-muscle depth estimates were calibrated between the automatic and manual 
methods, by regressing the manual results for the scans on week one against (b.), 

cIb and /3b  from the automatic algorithm. The coefficient in /3b  was not significantly 
different from zero, so the predictor of muscle depth was simplified to 

51 + 0.77(ib - m) - ° 68b 

Note that the manual method for measuring eye-muscle depth is best predicted by 
the maximum depth from the automatic algorithm only after an adjustment has 
been made for the slope of the rib (ab). The root-mean-square error is 10.6 pixels, 
which converts to 1.7mm for an average eye-muscle depth of 32.4mm. If the ab 
term is omitted from the predictor, then the root-mean-square error is 1.9mm. Fig 
3(c) is a plot of muscle depths on the first scan occasion: the manually-obtained 
result is plotted against that derived from the algorithm. Agreement can be seen 
to be better than that in Fig 3(d), which shows manual results from weeks one 
and two plotted against each other. Comparisons between methods and weeks, 
shown in Table 2, confirm that the algorithm estimates eye-muscle depth at least 
as accurately as the manual method. 

4 Discussion 

Ultrasound imaging has become a widely used tool in animal production over the 
past few decades. Although more advanced imaging techniques such as CT and 
MRI may give more precise prediction of body composition, their high cost and 
relative immobility severely limit their application in agriculture. Even when these 
techniques are available, they are likely to be used only for 'second-stage' selection 
of a relatively small number of animals, pre-selected from a much wider population 
using ultrasound measurements. The utility of ultrasound imaging would be further 
increased if it could be made easier, quicker or cheaper to use, or if the precision 
of results were improved. At present, measurements are obtained from ultrasound 
images either by recording the image in some way, followed by later interpretation 
(as in the example used here), or by temporarily freezing an image on the screen of 
the imaging machine to allow interpretation at the time of imaging. Automation 
of interpretation offers potential advantages in both these cases. In the former case 
it can reduce the tedious and time consuming tasks involved in obtaining detailed 
measurements from recorded images. In the latter case it could, in future genera-
tions of imaging machines, allow more repeatable and comprehensive measurements 



to be obtained from images under field conditions, where speed of operation and 
rapid availability of results are important. 

The algorithm proposed here is simple but effective. In some of the scans most 
severely contaminated with noise, boundaries were slightly misplaced, as shown 
by a few outlying points in Fig 3(a). However, the level of uncertainty remained 
no higher than that obtained with hand-drawn boundaries. (If contamination by 
noise was more severe, a filter such as that proposed by Loupas ci al (1989) could 
be used.) Various subjectively-chosen constraints in the algorithm will probably 
need modification for use with other sheep breeds, scanning positions or types of 
scanner. Also, the representation of the top of the eye-muscle by a horizontal line 
is only an approximation to the true, curved boundary. This is particularly true 
for images obtained at the alternative scanning location, the 3rd lumbar vertebra. 
However, an approach similar to that used for locating the rib could be adopted. 
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Table 1: Root-mean-square differences between estimates of fat depth, 
expressed in pixel units (1 pixel represents 1.57mm of tissue). 

manual, manual, 	automatic, 	automatic, 
week 1 week 2 	week 1 	week 2 

manual, week 1 - 

manual, week 2 5.0 - 

automatic, week 1 t4.6 6.0 	 - 

automatic, week 2 4.3 4.6 	4.3 	 - 

t value deflated through estimation of regression coefficients 

Table 2: Root-mean-square differences between estimates of eye-muscle depth, 
expressed in pixel units (1 pixel represents 1.57mm of tissue). 

manual, manual, 	automatic, 	automatic, 
week 1 week 2 	week 1 	week 2 

manual, week 1 - 

manual, week 2 14.6 - 

automatic, week 1 tlO.6 12.4 	 - 

automatic, week 2 15.2 9.7 	11.1 	 - 

t value deflated through estimation of regression coefficients 

11 



Captions for figures 

Fig 1 Ultrasound image of a sheep, at the location of the 13th thoracic vertebra. 
Positions of the top of the skin layer on the left and right sides of the image are 
shown by x 's. Also shown are tissue boundaries identified by the automatic 
algorithm, corresponding to the top and bottom of the fat layer and to the 
rib ( ... ), and the manually-identified top and bottom of the fat layer, and a 
line indicating maximum eye-muscle depth (—). 

Fig 2 Sum of intensities along each (sloping) row in Fig 1, plotted against row 
number. The three x 's, from left to right, are the estimated locations of the 
transducer (it),  the top of the fat layer (i 1 ) and the top of the muscle layer 
(m). 

Fig 3 Estimated fat and muscle depths for 72 sheeps: (a) manual estimate of fat 
depth on week one plotted against automatic estimate on week one, together 
with 1:1 line (—) and regression line (- - -); (b) manual estimate of fat depth 
on week one plotted against manual estimate on week two, together with 1:1 
line (—); (c) manual estimate of muscle depth on week one plotted against 
automatic estimate on week one, together with 1:1 line (-); (d) manual 
estimate of muscle depth on week one plotted against manual estimate on 
week two,together with 1:1 line (—). Scales are expressed in pixel units (1 
pixel represents 1.57mm of tissue). 
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SUMMARY 

Three cross-sections of soil aggregates (2-5 mm diameter) were digitized at 5 gm 
resolution from montages (x 100) of scanning electron micrographs to produce binary 
images representing the soil pores and soil matrix. A three-dimensional random Boolean 
process was chosen as a model of the soil pores and matrix. The soil matrix was simulated 
by randomly positioned, overlapping spheres with radii drawn from an exponential distri-
bution. Simulation of a 1 mm cube of one soil aggregate showed that all but 0.1% of the 
pore space was connected to the exterior, although only 50% appeared to be connected to 
the exterior in a cross-sectional image. Pore spaces able to accommodate different sizes of 
microorganisms were also investigated. For example, a protozoan with a cross-sectional 
diameter of 20 urn could be accommodated in 17% of the pores in a 1 mm' soil cube, 
although only 11% of the pores would be accessible to those protozoa on the exterior of 
the cube. 

INTRODUCTION 

Darbyshire el al. (1989) studied the porosity of nine soil aggregates (2-5 mm diameter) from the 
surface horizon of a Scottish arable soil by image analysis of montages of scanning electron micro-
graphs. They estimated that some of the pores in the aggregates were large enough to accommodate 
soil ciliates. The three-dimensional pore connectivities within the aggregates and with the outside of 
the aggregates were not determined. Thus, the actual accessibility of these intra-aggregate pores to 
ciliates was not known. As the ciliate population inside the aggregates was estimated to be small, it 
was concluded that the majority of the soil ciliate population resided in the interaggregate pore 
space and that many of the microfloral prey inside the aggregates were protected from ciliate 
predation until the aggregate was at least partly disrupted. The work reported in this paper is an 
attempt to predict pore connectivity from the same two-dimensional montages of the soil aggregates 
by assuming a particular three-dimensional stochastic model of the soil structure of the aggregate 
without recourse to the use of many serial sections. The significance of such a three-dimensional 
pore network for ciliate ecology is discussed. This model may also aid the understanding of water 
and gaseous movement into and out of aggregates. - 

MATERIALS AND METHODS 

Preparation of montages of soil aggregates 

Sandy loam soil (pH 5.5. 5.2°c carbon) was collected from Dunecht, Aberdeenshire (Countesswells 
Soil Association & Series, Slaver; Glentworth & Muir, 1963) from a field in stubble after harvest of 
a crop of spring barley. After wet sieving through a series of sieves (Endecotts, London) three 
randomly chosen aggregates (2-5 mm diam.) were air-dried and embedded in LR white acrylic resin 
(London Resin Co., Basingstoke, UK) under reduced pressure. After polymerization, aggregates 
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in the resin blocks were cut approximately in half with a dental diamond wheel. The cut surfaces 
were polished with diamond paste (Hyprez 5 star, Engis, Maidstone, UK) to I Am finish, mounted 
on stubs, coated with about 20 nm of carbon, examined in a scanning electron microscope (SEM) 
(Cambridge Stereoscan S4, Cambridge, UK) and backscattered electron scanning images (BESI) 
recorded (Darbyshire et al.. 1985). In this backscattered mode, there is a strong contrast in SEM 
between resin-filled pore spaces and the soil matrix. Large cross-sections of three aggregates were 
assembled as a montage from about 40 prints (x 100) of adjacent portions of each aggregate 
(Darbyshire etal., 1989). 

Image analysis 
Three montages from aggregates Nos. I, 2 & 3 of Darbyshire etal. (1989) were digitized at 5 Am 
resolution using an Apple scanner (Apple UK, Hemel Hempstead, UK). Some speckle was removed 
from the data by replacing each value by the median of a 3 x 3 window centred on it. A threshold was 
then subjectively chosen to convert the grey scale image to a binary image, with black corresponding 
to pore space and white to the soil matrix. Fig. 1 shows part of one two-dimensional image. 
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Fig. I. Cross-section through part of a soil aggregate (aggregate No. 3 of Darbyshire el al., 1989) from scanning 
electron micrographs and digitized (5 urn resolution) into a binary image with black corresponding to soil pores 
and white to the soil matrix. 

Methods of mathematical morphology (Serra, 1982) were used to analyse the images in order to 
study the distribution of the pore sizes. In particular, pore-hitting probabilities were obtained. These 
are the probabilities that randomly-placed discs of different radii lie completely within pore spaces. 
They are, therefore, statistics that describe the distribution of sizes of pore spaces. The probabilities 
can be derived by first calculating the distance from every black pixel in the image (where black 
represents pore space) to the nearest white pixel, using the computationallv efficient algorithm of 
Borgefors (1984). Then, for a specified radius, if a disc is centred on a black pixel less than that 
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distance from a u hite pixel. the disc must overlap the white pixel and so not sit completely within the 
pore space. It follows that the hitting probability is the proportion of the image occupied by black 
pixels exceeding the specified distance. Fig. 2 shows these areas for three distances on a portion of 
Fig. I. All the results from Fig. I are shown by the crosses on Fig. 3. For example, a disc of radius 
zero (i.e, a point) placed at random on Fig. I will sit completely in the black with a probability of 
0.16. whereas for a disc of radius 10 rim, this probability falls to 0.026. Similar results were obtained 
from the other to aggregates that were analysed. 

100 pm 

Fig. 2. An illustration of the technique used to estimate the hitting probabilities. Lower right part of Fig. I is 
shown. The white area represents the soil matrix; the remainder represents the pores. The shaded regions sho 
the regions of the pore space at various distances from nearest white pixel. Lighter shaded areas at only by I or 2 
pixels distance, darker shaded areas at 3 or 4 pixels distance, black area removed by >4 pixels distance. 

Fitting a Boo/can model 

A three-dimensional random-set model, known as a Boolean process (Stoyan ci al., 1987), was 
chosen as an appropriate model of pore distribution consistent with Figs I and 3. This process 
operates by choosing sets of spheres at random from some specified population and then placing 
them in random, possibly overlapping, positions in space. The Boolean model has the desirable 
property that a cross-section of the process in three dimensions remains a Boolean process in two 
dimensions. It also has the important property, for our purposes, that the form of its hitting 
probability function is known theoretically. Diggle (1981) illustrates its use and refers to other 
applications. Serra (1982. pp. 506-508) describes the fitting of a three-phase Boolean process to 
model a synthetic soil consisting of quartz, clay and pore space. The quartz and clay are represented 
by spheres of constant radii. Quiblier (1984) uses a lattice process to model porous media, matched 
to cross-sectional data by means of the probability density and auto-correlation functions, but it is 
computationally complex to make simulations of this process. 
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Fig. 3. Hitting probabilities for discs ofdifferent radii. Probability that discs placed at random on Fig. I will fall in 

black areas only (x), expected probabilities for a Boolean process for spheres of exponentially distributed radii 
(—), envelope of 12 simulations for a Boolean process for spheres with exponentially distributed radii (- - 

RESULTS AND DISCUSSION 

The soil matrix was simulated as a Boolean process of solid spheres positioned at random with radii 
taken from one of two chosen probability distributions and allowed to overlap. The porosity is the 
proportion of the volume not occupied by spheres. In the first instance all the spheres had the same 
radius; in the second instance an exponential distribution was used. Stoyan etal. (1987; Chapter 3) 

give the hitting probability function (f) of a two-dimensional cross-section of this process as 

	

f(x) = exp[— A(A + Bx + izx)] 	 (I) 

where A = the average number of spheres intersecting unit area of a cross-section. A and B = the 

average area and circumference respectively of a cross-section through a sphere. x = radius of the 

disc. For example, on average, a proportion expE — AA] of the image is pore space. 
The simplest model is one in which all spheres have the same radius. R. A cross-section will show 

these as circular discs with a distribution of radii, between 0 and R. Applying formulae of Stoyan 

etal. (1987; Chapter II), A = 2iz R13 and B= 7r2 R/2. Parameters i. and R were estimated from the 

hitting probability curve by weighted least squares by minimizing 
(2) 

Y[log Y— logf(x)12   

Here Y is the observed hitting probability for a sphere of radius x, such as is plotted in Fig. 3 and 

x = Si I.tm. The summation limit of seven corresponds to the maximum disc radius used for a hitting 
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probability. The weighting term (}') is to allow for changes in error variance (Draper & Smith, 
1981); its particular form was selected by simulation as discussed later. Fig. 4 shows a simulation 
result, which was obtained from Fig. 3 with R= 39  .tm and A =580  mm. Fig. 4 does not closely 
resemble Fig. I, because the individual spheres are too prominent. Comparison of various other 
image functions, such as the soil matrix hitting probabilities (i.e. applying the hitting procedure to 
soil matrix instead of pores) also indicated a large discrepancy between the simulations and Fig. I. 

V 	 JUlr, 

c 

\ _I  
200 pm 

Fig. 4. Cross-section of a three-dimensional simulation by a Boolean process with all spheres of same size (39 pm 
radius) and A = 580 mm'. 

An exponential distribution for sphere radii was considered as more realistic and a mathemati-
cally tractable alternative. This distribution specified that Prob (radius> r) = exp( - r/S), where 
S=the average sphere radius, A =4,S2  and B=ir2S. With A and S estimated as above, the con-
tinuous line in Fig. 3 shows the expected hitting probabilities when S= 14 Am and A =760 mm -2 . 
Fig. 5 shows a single simulation. The dashed lines on Fig. 3 show the ranges of observed hitting 
probabilities for twelve such simulations. It is the separation of these lines that justified the weight-
ing term, Y The 12 simulations using exponential distribution of sphere radii show reasonable 
agreement with the data in Fig. 3 except that the hitting probabilities for small spheres are slightly 
larger than those for the real data from Fig. I. This feature can also be seen when Figs 1 and 5 are 
compared; the real data appear locally more irregular in shape. It would be possible to modify the 
Boolean realizations, such as shown in Fig. 4, by adding some noise to give better agreement with the 
real data. This course of action was not pursued, because it is not likely to have much effect on pore 
connectivity and because it is unknown which of the small irregularities in Fig. 1 were genuine and 
how many resulted from errors generated at different stages of the imaging procedures. 

No analytical results on connectivity are known to us for Boolean models. Accordingly, we 
resorted to simulations, which made heavy demands on computer time. A 1 mm' of aggregate 3 was 
represented in the computer as a 100 x 100 x 100 array of 'voxels' (discrete elements of volume) each 
10 urn 3 . The Boolean process with exponentially distributed sphere radii was used to label each voxel 
as either soil matrix or pore. An efficient connectivity algorithm, described in Rosenfeld & Kak 
(1982; section 11.3) was used to label all the connected pores and to determine which pores were 
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Fig. 5. Cross-section of a three-dimensional simulation by a Boolean process with exponentially-distributed 
spheres of 14 pm average radius and A = 760 mm2 . 

connected to the exterior of the aggregate. For the parameters, A and S determined from Fig. I, 
almost all pore space (99.9%) is connected to the exterior, although on average only about half 
appears to be connected to the exterior in cross-section. The Boolean process was also simulated 
with each sphere radius increased by 10 pm to generate pore spaces that could accommodate ciliate 
protozoa of 20 pm diameter. For Fig. 1, 17% of the pore space was found to be large enough for such 
protozoa, although only 11% of the pore space could be reached from the exterior by such micro-
organisms before they reached a constriction that was too small for them to pass. The ability of some 
soil ciliates to squeeze through slightly smaller orifices than their normal diameter will counteract 
this tendency. 

The simulations described in the previous section have produced results for one set of the model 
parameters from Fig. I (A and 5). It seems reasonable to expect these parameters to vary for different 
sizes of aggregates and for different soil textures. Accordingly, the effects of varying the parameter 
values on connectivity were investigated. Table I shows the percentages of pore space connected to 
the outside of a 1 mm 3  aggregate obtained from simulations with average sphere radii of 10, 15 and 
20 pm and porosities of 5, 10 and 15%. As either the porosity or sphere radius increased, the 
percentage olconnected pores increased. It can be seen that for porosities of at least 10%, almost all 
the pore space is connected to the exterior. Table I also shows the percentages of pore space large 
enough to accommodate protozoa of 20 pm diameter and those within reach of such protozoa on 
the exterior of the I mm' aggregates. Larger values of S generated aggregates with greater pro-
portions of large pores. As porosity or sphere radius increased, the percentage of large connected 
pores also increased. The penultimate row in Table I corresponds most closely with Fig. I. 

In the nine soil aggregates studied by Darbyshire etal. (1989), the porosity varied between 7.8 
and 47 7%. On the basis of these Boolean model simulations, the degree of connectivity between 
different pores within these aggregates and between the pores and the outside of these aggregates 

ould sary considerably. Soil ciliates in the interaggregate pore space would probably be able to 
enter some aggregates more easily than others; microfloral predation by ciliates and the ensuing 
nutrient recycling would also be likely to occur more rapidly in some aggregates than in others. It 
rrmain% to he established how representative of soil in general are the nine aggregates studied by 
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Table I cruentaee of pore space in I mm 3  soil aggregates for a range of average sphere radii and porosities for 

all porch > 5 oni radius Results based on two simulations. Standard deviations are tvpicalh a few percent 

Pore Space (%) 

Within reach 
Aerage 	 Sphere 	Connected to 	 of protozoa 

Porosu v 	sphere 	 density 	aggregate 	>20 pm 	(20 pm diameter) 
( ° o) 	 radius S(pm) 	, (mm -2) 	 exterior 	diameter 	outside aggregate 

10 2380 85 1 0 
IS 1060 96 8 4 
20 600 93 18 13 

It) 	 II) 1830 98 3 
5 810 99 14 9 

20 460 100 26 23 

IS 	 10 1510 100 5 2 
IS 670 100 19 15 
20 380 100 32 30 

Darbyshire etal. (1989). The porosity of aggregates with finer textures may prove to be less variable. 
Also, it is unknown whether there is a statistically significant correlation between aggregate porosity 

and the rate of nutrient recycling in an aggregate. Aggregate porosity might also prove to be an 

Important factor in the preparation of suitable carrier materials for soil microbial inoculants to 

provide the desired level of protection from the indigenous soil microorganisms and environmental 
conditions. 

The conclusions about connectivity discussed earlier depend on the Boolean model assumed in 

this paper. Almost identical results were obtained with a different Boolean model, which is not 

reported in this paper, in which the spheres were only of two fixed sizes. Also, completely different 

models could give quite different results. For example, the addition of long narrow pores, such as 

root channels, to the existing model could increase connectivity in cases where it is less than 100%. 

Some of these root channels would be indistinguishable from other small pore spaces in cross-

sectional images. Many further investigations of other aggregates and soils using closely-spaced 

parallel sections impregnated with the least possible distortion are required to test whether this 

model can be used to mimic the connectivity of other aggregates successfully. The model could be 

easily modified to include differences in porosity in different regions of the same aggregate. For 

example, it was found that in aggregate No. 3 of Darbyshire etal. (1989). the porosity of the outer 
region was 27.9%, but in the inner core it was 15.4%. The uses of ellipsoids or other geometric 
bodies in place of spheres may give more realistic models for some aggregates. 

CONCLUSIONS 

The three-dimensional simulation of soil aggregates using image analysis and a Boolean model, 

based on some characteristics measured in two-dimensional sections of soil aggregates, appears to 

be possible. Reasonably good agreement between two-dimensional images of the Boolean simu-

lation and actual sections of soil aggregates was obtained. The model needs to be tested more 

extensively with serial sections of other soil aggregates impregnated with the least possible dis-

tortion. Further refinements of the model are possible to represent structural differences in different 

regions of an aggregate. The conclusion derived from the Boolean model that increasing porosity 

leads to greater access between the interior and exterior of aggregates could facilitate future 

microbial studies of predator/prey relationships, nutrient cycling and soil inoculants. 
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A digital-image-processing algorithm is described for automatically measuring the diameters of 
cashmere-goat fibres from microscope images. A correction factor is used to remove bias when 
fibres are out of focus. Diameters are estimated to within a standard error of 4%. 

INTRODUCTION 
The measurement of fleece characteristics in cashmere goats is essential to breeding 
programmes designed to increase the weight and improve the quality of the product [11. 
Samples from the double coat, consisting of the fine cashmere produced by the secondary 
hair follicles and the coarse guard hair from the primary follicles, have to be mechanically 
separated [21 or hand-separated to provide material for the gravimetric estimation of yield 
(i.e. the proportion of down) and the determination of the mean and distribution of the 
diameters of the cashmere fibres. These methods are time-consuming and therefore costly. 

Automatic determination of the bimodal distribution of fibre diameter in raw-cashmere 
samples would enable the mean and distribution of the fine fibres to be estimated and would 
at the same time permit yield values to be calculated. Such a technique, if sufficiently rapid, 
would increase the rate of sample-processing and reduce laboratory costs. 

One approach to the development of such an automated technique is the digital processing 
of microscope images of fibres. This has been used by van Schie, Marler, and Barry [31 and 
Baxter, Brims, and Taylor [41 to measure wool-fibre diameter and by Marcuse and Presby 
[51 to measure the refractive index of man-made optical fibres. For an overview of digital-
image analysis, see, for example, a book by Glasbey and Horgan 161. 

This paper describes work on the automated measurement of the diameter of fine cashmere 
fibres. In this application, out-of-focus effects are severe, so simple thresholding techniques 
to distinguish between fibres and background do not work. The proposed method has potential 
for application to the simultaneous measurement of both fine and coarse fibres in samples of 
raw cashmere and could therefore also be used in the determination of yield. 

BECKE LINES 
Fig. 1(a) shows the cashmere fibres in a mounting medium of Euparat (R.I. 1.485) and 
viewed through a Reichert Diastar microscope. Magnification is such that the depth of focus 
is narrow, and now two fibres in an image are simultaneously in focus. Black or white 
borders, so-called Becke lines (71, are visible on either side of fibres, which cause problems 
for simple image-processing algorithms. 

Fig. 2 shows a section of fibre imaged at a range of focal planes. (Because of alignment 
problems, the exact positioning of the fibre varies between images.) The focal plane is 
below the fibre in Fig. 2(a) and moves up gradually in Fig. 20) through Fig. 2(e); the fibre 

is in focus in Fig. 2(1) and then becomes progressively out of focus in Fig. Z(g) through Fig. 

2(k). When the fibre is out of focus in one direction, white borders appear on either side of 
the fibre, whereas, when it is out of focus in the other direction, the borders are black. In 
manual processing, microscope focus would be adjusted until the fibre appeared as in Fig. 20. 
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This is difficult to achieve automatically, and thus the main task is that of measuring fibre 
diameter when the fibre is not in focus. 

(42) 	 (b) 

(c) 	 (a') 
Fig. 1 	(a) Microscope image of cashmere fibres. (b) result of applying range filter, (c) histogram of pixel 

values in (b). (d) threshold version of (b), with rectangular sub-areas of isolated fibres identified 

The reason for the Becke lines is that the fibre is acting as a lens. Fibres refract (and may 
also diffract) the light passing through them, as shown schematically in Fig. 3. If the 
microscope is focussed above a fibre, the cross-section appears as in the grey strip at the top 
of Fig. 3. When focussing at a lower plane, intensity appears as a back-tracing of these rays, 
as shown in the other grey strips. 

Although Fig. 3 gives a qualitative understanding of Becke lines, it is a simplification. In 
practice, fibres are not exactly circular in cross-section, refractive index and absorption 
vary spatially, the incoming light rays are not precisely collinear, microscope optics are not 
perfect, and non-linear and blurring effects are introduced by the digitizing process. For 
these reasons, it was not possible to find a reliable means of employing a physical model. It 
was therefore necessary to resort to empirical methods. 

3. ALGORITHM 

3.1 Digitization of Images 

Microscope images, such as Fig. 1(a), were digitized. This was done by photographing the 
view in the microscope and digitizing it by using a Hewlett—Packard ScanJet Plus desk-top 
scanner 181. A more direct method would be to place a CCD camera on the microscope. In 
either case, the result is an array of numbers representing image intensity at a grid of points, 
termed pixels. In the case of Fig. 1(a), this array is of dimensions 256 by 256. We shall use 

to denote the pixel value at position (iJ), where I indexes rows andj indexes columns from 
to n. 

The algorithm proceeds in three steps: firstly, a single section of fibre is identified; 
secondly, its diameter is measured; and finally, the estimated diameter is adjusted for bias 
introduced by focussing effects. 
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1/'I 

I 	1;H 
ii 

IxII iil:!I 
Fg 2 	Single fibre at eleven focal planes: (I)  is in focus; the local plane muses progressively further below 

the fibre from (e) to (a). and further above the fibre from (g) to (k) 

3.2 Isolation of  Single Fibre 
A simple threshold is inadequate to separate fibres from background, because some parts of 
fibres are brighter than the background, whereas others are darker. However, this feature 
can be exploited. Fig. 1(b) shows the result of applying a range filter of size 21 by 21 to Fig 
1(a). The range filter creates a new array, g, say, where g,, is the difference between the 
maximum and minimum of values: 

.fk! fork =i-10.....j+10 1=j—I0..... 1+10 

lhat is, values in a 21 by 21 square centred on (i,j). (The dimensions of the square need to 
exceed the fibre diameters for the method to work, because every window centred within a 
fibre needs to overlap at least one edge.) The histogram of values ofg, shown in Fig. 1(c). is 
clearly bimodal, with a value of 50 providing a threshold between the modes. Fig. 1(d) 
shows the result of applying this threshold: values of s greater than 50 are displayed as 
white, the rest are black. By comparing Figures I and 1(a), it can be seen that fibres, plus 
generous borders, have been separated from background pixels. 

It is then a matter of finding rectangular sub-areas which have background on two sides 
and are traversed by a single fibre. Some identified areas have been superimposed on Fig. 

I (I). The rectangles can also be rotated so that the fibres have a common orientation, vertical 
'say). Note that fibres which are close together, such as the right-hand-most two in Fig. 1(a), 
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'N. 
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/1 

Fig. 3 	Diagram showing refract ion of coil mear rays of light (—) through a fibre of circular cross-section, 
and back-tracing of rays ( .... ) when focussing at the lower planes; the superimposed grey ships show 
views of the fibre at three focal planes 

cannot be isolated by this method. However, this is not a problem, since the intention is to 
sample sections of fibre rather than complete a census of all of them. 

3.3 Measurement of Diameter 
In order to develop an algorithm which compensated for focussing effects, microscope images 
such as those shown in Fig. 2 were collected. These are the data we shall analyse from now 
on in this paper. The images in Fig. 2 have been digitized at greater resolution than those in 
Fig.1, and all consist of arrays of 170 by 130 pixels. Furthermore, the mean value of 
background pixels has been subtracted from pixel values,!. 

For vertically oriented fibres (as in Fig. 2), the diameter was estimated in each row (labelled 
by index 0 of the image, by the following procedure: 

smoothing the pixel values over a window of width 3 

.11) —(i.I- +jq +ç 1+1 )/3 forf= 2.....n—i 

to reduce noise; 

finding k, the location of the largest decrease in adjacent pixel values in the left-hand 
side of the image, that is, the smallest value of k such that: 

!ikJ.k+l Jij 	forj2.....n/2 

(c)similarly, finding!, the location of the largest increase in pixel values on the right side of 
the image, that is. the largest value of I such that 

304 	 J. Text. Inst.. 1994, 85No. 3 C Textile Institute 



Towards the Automatic Measurement of Cathmerefthre Diameter by Image Analysis 

J+-f,•, ~!j.f  f, forj=n12.,,,.n-2 

(d) estimating diameter on row i as (1— k). 
The algorithm was repeated for every row of each of the eleven images in Fig. 2. Fig. 4 

shows smoothed pixel values, and identified positions k and 1, for the first rows of Figures 
2(a), (I), and (k). The algorithm succeeded every time in locating the edges of the fibre. It 
failed a few times with a second set of images of a different fibre because it was confused by 
striations within the fibre and because of background noise. However, provided that a fibre 
is measured on many rows, a few outlying values are easily detected and deleted. 
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Fig. 4 	(a)Pixel intensities in lust row of Fig. 2(a) plotted against column index, together with identified 
statistics R. I. m, e), as explained in the text: (b) similarly for first row of Fig. 20; (c) similarly for 
first row of Fig. 2(k) 

The average diameter was estimated to be 83 pixels, from the in-focus Fig. 2t). This will 
be assumed to be the correct diameter, upon which out-of-focus images will be calibrated. 
Of course, in practice, it is also necessary to calibrate this estimated diameter against that 
determined by a more accurate method, such as use of a projection microscope 171. Fig. 5 
shows the upward bias in estimated diameter for out-of-focus images. Bias increases gradually 
as the fibre moves out of focus and is more severe for focussing below the fibre, where it 
rises to 97o. 

J. Text. Inst., 1994, 85 No. 3 © Textile Institute 	 305 



Glasbey. Hitchcock, Russ4 and Redden 

X 

ft,L NONE  

- 	 4 

Fig. 5 	Bias in estimated fibre diameter plotted against focal plane for images in Fig. 2: x observed, - 
predicted by regression model. 

3.4 Correction for Bias 
To correct for bias, it is necessary to identify when, and by how much, an image is out of 
focus. This is indicated by the width and intensity of the Becke lines. Several statistics 
which are simply obtainable from the pixel values were considered. The two most effective 
ones were: 

the maximum pixel intensity outside the range (ki), averaged over left- and right-hand 
sides: 

in, = ![maxj..z.1 fsj + max1,11 f] 

the average pixel intensity at the two edges of the fibre: 

e6 =![At +1k+I +fil+fi1+11 

These statistics are illustrated in Fig. 4. When the fibre has white borders, as in Figures 2(a) 
and 4(a), in is large, whereas, when the borders are black, e is large and negative, as in 
Figures 2(k) and 4(c). When the fibre is in focus, both in and e are small, as in Figures 2(/) 
and 4(b). 

By regressing observed bias on in and e, the following expression for predicted bias was 
obtained: 

—1.1— 0.03e1  + 0.22m1  

Values averaged over each image are plotted in Fig. 5. It can be seen that most of the bias 
has been explained. For single-row estimates of diameter, the root-mean-square error, a 
statistic which combines bias and standard error of prediction, has been reduced from 4.6% 
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to 2.1%. Much of the remaining uncertainty is due to intrinsic variation in fibre diameter, 
clearly visible in Fig. 2. 

The bias correction was repeated on a second set of eleven images, which have already 
been mentioned. Inevitably, it did not perform as well: average bias was reduced from 3.2% 
to -0.2%. but the root-mean-square error remained high at 4.1%. 

4. DISCUSSION 

An automatic algorithm has been presented for estimating diameters of cashmere fibres, 
even when they are out of focus. It has been shown to be capable of giving unbiassed estimates 
of diameter once it has been calibrated against a more accurate method, although variability 
remains higher than with manual methods. It should in future be possible to reduce this 
variability by basing the bias correction on a greater number of images. Moreover, because 
automatic methods are fast, it should be possible to achieve target levels of accuracy of 
mean fibre diameter by measuring a larger number of fibres. 

So far, the method has been applied only to white cashmere fibres with diameters between 
8 and 28 pm. A more sophisticated approach may be required with coloured fibres because 
of potential confusion between black Becke lines and texture within fibres and to incorporate 
the measurement of coarse fibres (>40 pm) to enable estimates of the proportions of cashmere 
and guard hair to be made. 
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Abstract - A matching algorithm is proposed for aligning microscope im-
ages obtained using different modalities, making use of cross-correlations 
of outputs from Prewitt's edge filter. Brightfield, phase contrast and dif-
ferential interference contrast microscope images of algal and bacterial 
cells from an experimental, high-rate algal pond are used for illustra-
tion. The information content of multimodal images is explored using 
principal components analysis and colour displays, and an image which 
represents optical thickness is constructed digitally. 

Key words - Brightfield microscopy, Cross-correlation, Differential inter-
ference contrast microscopy, High-rate algal pond, Image matching, op-
tical thickness, Phase contrast microscopy, Prewitt's edge filter, Princi-
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1 Introduction 

Different imaging modes with the light microscope convey complementary infor-
mation about a specimen. Brightfield microscopy primarily conveys information 
about the optical attenuation of the specimen, whereas phase contrast microscopy 
shows diffractive properties and differential interference contrast (DIC) microscopy 
responds to the refractive properties of the specimen. Bracegirdle (1993) provided 
a simple but lucid demonstration of this, revealing hidden details in old microscope 
slides by DIC microscopy. Similarly, Steinholt, Chandler and Tirado (1991) com-
pared detection of the acrosome reaction of spermatozoa using DIC and brightfield 
microscopy, after staining. Chicino et al (1990) found that DIC microscopy had 
advantages over both phase contrast and brightfield methods for detecting Pneu-
mocystis, although comparison of features of both the phase contrast and DIC 
images illustrated the potential advantages of multimodal microscopy. In an even 
more exhaustive comparison of microsopic imaging modes, Leonardi, Blakistone 
and Kyryk (1990) compared applications of polarised light, brightfield, DIC and 
scanning electron microscopy (SEM) in the paper industry. 

Fluorescence microscopy adds further possible imaging modes to light microscopy. 
Germida (1984) concluded that non-specific fluorescent staining was better than 
brightfield and phase contrast microscopy for detecting spores of a microsporidian 
protozoan in soil. Collazo, Fraser and Mabee (1994) used images obtained with DIC 
and fluorescent vital staining to trace the embryonic origin of fish mechanorecep-
tors. In addition, many workers have exploited the ability of immunofluorescence 
to provide highly selective visualisation of microscopic structure. For example, Au-
gustine, Watkins and Danforth (1992) used phase contrast, immunofluorescence 
and transmission electron microscopy (TEM) to investigate antigen release from 
antibiotic-damaged coccidian parasites. 

At present the major application of multimodal microscopy involves fluorescence 
microscopy, either alone or in combination with brightfield, phase contrast, DIC or 
darkfield microscopy (Modrusan et al, 1994). For example, Ried et al (1992) pro-
posed an elegant method which involved pseudocolouring and recombining images 
labelled with two visible and one infrared fluorochrome to apply seven gene probes 
to human chromosomes. Also, Armbrust, Ferris and Goodenough (1993) combined 
DAPI fluorochrome stained and immunofluorescent stained images to demonstrate 
the action of a chromosomal gene product on chioroplast nucleoid DNA in Chiamy-
domonas. A combination of darkfield and brightfield microscopy (at low magni-
fication) was used for detecting gene probes in developing flowers (Jack, Fox and 
Meyerowitz, 1994). In discussing multimode microscopy, Farkas et al (1993) sum-
marised the features of almost every conceivable mode of light microscopy. They 



described integrated multimode workstations with advanced combinations of optics, 
several cameras and sophisticated software tools which control image acquisition, 
processing, analysis and display. However, they drew a distinction between such 
multimode systems and multimodality imaging, which involves combining images 
from spatially and/or temporaneously distinct sources. 

The combined imaging systems considered above have the advantage that all imag-
ing modes can be handled simultaneously, or sequentially, without changing major 
elements of the optical system. Additionally, the information conveyed by these 
techniques is sufficiently different that it is retained in the resultant optically-
combined image. Optical image recombination is not an option for producing mul-
timodal images which combine modes such as brightfield, phase contrast and DIC, 
because their optical requirements are mutually exclusive. Perhaps more impor-
tantly, the separate images must be produced and recombined in such a manner 
that the signal from one mode, for example brightfield, does not swamp the signal 
from other modes, where the overall intensity distribution may be very different. 

In this paper we explore the application of digital image processing techniques as 
a potential solution to the problem of combining microscope images. Much effort 
has been expended in developing and modifying algorithms for matching images 
produced by different types of satellite remote sensing systems, such as optical 
sensors and synthetic aperture radar (see, for example, Richards, 1986, chapter 2). 
Recently there has also been considerable interest in combining images produced by 
different medical sensing systems in order to increase their usefulness (Colchester 
and Hawkes, 1991, §3). For example, X-ray images reveal structure, whereas mag-
netic resonance images reveal functionality. However, comparable developments 
specific to digital multimodal microscopy appear have been relatively neglected. 

Methods are illustrated by reference to Fig 1, which shows images of a sample of 
algal and bacterial cells from an experimental, high-rate algal pond (Martin and 
Fallowfield, 1989), obtained using brightfield, phase contrast and DIC microscopy. 
Images were obtained on an Olympus Vanox microscope fitted with a Panasonic 
model WV-CL700 colour CCD camera. The brightfield and DIC images were pro-
duced using an Olympus Plan X40 0.65NA. flat field objective and the phase con-
trast image was obtained with an Olympus LWDCDP1an X40 0.55NA. long working 
distance objective. The photo tube was fitted with an Olympus FK X3.3 compen-
sating eyepiece. The images were digitised on an Elonex 386 computer fitted with 
a VP1100-KIT-512-E-C1-AT Overlay Frame Grabber Kit image capture board us-
ing Optimas image processing software (both from Data Cell Ltd, 10 West End 
road, Mortimer Common, Reading, Berkshire RG7 3SY, UK). To avoid a strong 
interference caused by interaction between the frame grabber and the colour video 
camera, the frame size was set to 768 pixels x 1024 pixels and subsequently cropped 



to 512 x 768 pixels. Before storage, the images were processed, using the Optimas 
software's 'colour filter' facility to remove residual interference caused by the colour 
carrier signal from the CCD camera. 

Before multimodal images can be combined they must be processed to compensate 
for changes in image alignment resulting from imperfect centration of the different 
lens systems, from slight movements of the specimen and from slight differences 
in magnification between objective lenses with the same nominal magnification. 
Galbraith and Farkas (1993) presented two methods for aligning images, the first 
of which required the imaging of a rectangular grid and the second the manual 
identification of control points. In §2 we present a fully automatic method of 
alignment. Then, in §3 the information content of multimodal images is explored 
using principal components, and an image, which represents the optical profile of 
an algal cell, is constructed digitally. 

2 Alignment of images 

Although the microscope specimen was not moved between modalities, the changes 
in optics of the microscope have produced some changes in position, particularly 
between the phase contrast image, Fig 1(b), obtained with the long working distance 
objective, and the other two images. The same objective was used in brightfield 
and DIC, but small image shifts were produced by inserting the Wollaston prisms 
into the optical train. It is important that these changes are corrected for, before 
proceeding to combine the images. 

We represent a digitised image as a two-dimensional array of numbers corresponding 
to image intensities. We wish to find a transformation, which maps a position (i,j) 
in one image, where i denotes row number and j denotes column number, to (i',j') 
in another image. If the only difference between the images is a shift of location, 
either along rows, along columns or in some other direction, then 

i'=i+io, and j'=j+jo 

performs the required mapping. Here, the top-left corner (0, 0) of one image 
matches location (i0 , JO

) in the other image. If there is also some change in magni-
fication between images, then 

i'=ci+io, and j'=cj+JO, 

where the constant c performs a rescaling between images. A value of c = 1 
corresponds to no change in magnification, whereas c > 1 is an enlargement and 
c < 1 is a shrinkage. 
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Yet more general transformations can be considered, to include rotations, differen-
tial stretching between rows and columns, and shearing. The most general linear 
transformation is the affine one: 

a1i+a2j+io, and  j'=a3i+a4j+j0. 

Horgan, Creasey and Fenton (1992) used this mapping to superimpose SDS-PAGE 
gel electrophoretograms. In some applications in medical imaging and remote sens-
ing, nonlinear transformations are needed, such as polynomials, splines and finite 
element methods. (For overviews of geometric transformations see Bookstein (1991) 
and Tang and Suen (1993).) With microscope images this would be required if sig-
nificant distortion were present between images. The video images utilise only the 
central 50% of the visual field of the plan optics used here, however, so this cor-
rection is unnecessary and we will not pursue the matter further. A more serious 
problem arises if there is relative motion between particles within the picture frame; 
as for example will happen with motile microorganisms. This presents a much more 
difficult computational problem and for the purposes of this investigation only fields 
in which the cells were stationary were used. 

Another issue to be addressed is how to choose the parameters in the transforma-
tion. One approach is to identify a few features which are common to the two 
images. Then a regression algorithm can be used to estimate the linear parame-
ters which bring these features into alignment (Horgan, Creasey and Fenton, 1992). 
While satisfactory for images containing well defined punctiform details such as the 
fluorescent probes used by Ried et al (1992), this method is less than ideal for nor-
mal images. For the latter, it depends on subjective judgements and can be time 
consuming if it has to be done repeatedly. Therefore, a fully automatic algorithm 
is preferable. 

A criterion of agreement between images is required, which an automatic algorithm 
can seek to optimize. The cross-covariance and cross-correlation are widely used 
measures. If fe,, denotes the image brightness at the pixel located at (i, j) in one 
image and f ,  denotes the image brightness at (if , j') in the second image, then 
the cross-covariance is proportional to 

(fiJ -  !)(f',' 

where f denotes the average pixel value in the first image and the summation is 
over the area of overlap between the images (see, for example, Rosenfeld and Kak, 
1982, §9.4). Cross-correlations are obtained by dividing the cross- covari ances by 
the standard deviations of the pixel values in the two images. The transformation  

(Z", j') is chosen to maximize this criterion. If the transformation is simply 
one of translation, then the cross-covariance is a linear convolution, which can be 
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evaluated very efficiently for all possible changes in origin simultaneously using a 
Fast Fourier Transform (Glasbey and Horgan, 1995, §3.2). The array of cross-
covariances is given by 

F1{F(f - j)FC(f/ - 

where F denotes the Fourier transform, FC  denotes the complex conjugate of the 
transform and F is the inverse transform. If an unknown change in magnification 
is also involved in the transformation, then the covariances need to be evaluated for 
a range of values of c. Maximizing the cross-correlation was tried as an approach, 
but it did not perform well with microscope images obtained using different modal-
ities. This result is not surprising, given the differences between images which can 
be seen. For example, in brightfield microscopy, algal cells appear dark, whereas in 
DIG one side of cells is dark and the other side is light. 

Phase-correlation, defined as 

F1 

 {

F(f)Fc(f) 

IIF(f)Fc(fF)M } 

where 11 H denotes the modulus of a complex number, was proposed as a matching 
criterion by Kuglin and Hines (1975). It performs better than the cross-correlations 
in applications where differences between images occur only at a subset of frequen-
cies. This would be the case, for example, if the trend in illumination differs between 
the images, but not if significant levels of white noise are present. It performed bet-
ter than cross-correlations with our microscope images, but not well enough. 

We then considered using gradient images instead of intensity ones, because po-
sitions where intensities change rapidly at the edges of cells generally coincide in 
the different modalities. Edge information has been used by Bajcsy and Kovacic 
(1989) and Moshfeghi (1991) to align medical images. Prewitt's edge filter (see, for 
example, Glasbey and Horgan, 1995, chapter 3) provides a simple way to extract 
edge information from an image. More sophisticated edge filters, such as Canny's 
(1986), could have been used, but Prewitt's filter proved to be adequate for our 
purposes and is faster to compute. The edge strength at pixel (i,j) is calculated 
as: 	

gi,j = Vy2,j+ Xj.  

Here, 9i,3  estimates the rate-of-change in image intensity in the direction of greatest 
change at (i,)), yij is an estimate of the between-rows rate-of-change in image 
intensity and x, 3  estimates the between-columns rate-of-change: 



i f 	t 	 t 	 S 
Yi,j - 	+Ji-i,j-1 +Ji-1,j +Ji-1,j+1 

- f+1,3-1 	fi+1,j - f+i,3+i ) 

and 	 =( +fi-i,3-i 	 — f-i,+i 

Fig 2 shows the filter outputs for the three images in Fig 1. 

Note that, because of differences in absorbance, refractility or optical thickness 
between cells, interference from underlying or overlying cells or because of intra-
cellular structures, not all of the edges apparent in one image, may be observed in 
images from a different modality. For example, some algal cells in the brightfield 
image (Fig 2(a)) show edges, where there is a colour change at the edge of the 
chloroplasts, which are not apparent in the DIC image (Fig 2(c)). In turn, some 
cells in the DIC image show edges which correspond to vacuolar margins. In the 
phase contrast image many of the edges appear double because of the phase con-
trast halo artefact. However, we have not encountered any problems through these 
differences, and do not anticipate any in future provided such structures do not 
dominate the images in question. 

We tried aligning our microscope images by applying both cross-correlation and 
phase-correlation criteria to gradient images. Because the cross-correlations per-
formed slightly better, and also because there does not seem to be any theoretical 
justification for using phase-correlation with gradient images, we will only present 
results based on cross-correlations. Table 1 shows the maximum cross-correlation 
between pairs of the three gradient images in Fig 2, for each of a range of val-
ues of c. The largest value in each column is underlined. For each choice of c, 
a SPARCstation IPX took 5 minutes of CPU time using not particularly efficient 
Fortran77 code to compute all the cross-correlations among three images, each 512 
x768 pixels in size. 
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Table 1: Maximum % cross-correlation between pairs of gradient images for a 
range of values of c. 

brightfield and brightfield and DIC and 
c phase contrast DIC phase contrast 

0.95 35.8 
0.96 38.3 
0.97 41.9 
0.98 45.9 
0.99 52.3 
1.00 17.2 58.3 19.2 
1.01 17.1 53.5 20.6 
1.02 17.9 46.2 22.0 
1.03 19.5 41.6 22.6 
1.04 21.2 38.7 25.0 
1.05 22.6 36.4 27.3 
1.06 23.3 27.7 
1.07 21.9 26.4 
1.08 19.9 23.9 
1.09 18.4 22.8 
1.10 17.6 21.9 

These results are consistent, and indicate that the brightfield and DIC images are 
at the same magnification, whereas the phase contrast image has been magnified by 
a factor of 1.06. Fig 3 shows the arrays of cross-correlations displayed as intensity 
images for these selected magnifications. Larger values are displayed as darker. 
The location parameters which correspond to the maximum cross-correlations are 
given in Table 2, together with the estimated values of c. 

Table 2: Estimated parameter values to align algal images 

Images io jo C 

brightfield and phase contrast 29 167 1.06 
brightfield and DIC 2 5 1.00 

DIC and phase contrast 29 164 1.06 

These estimated translation parameters are close to, but not precisely, consistent: 
consistency would require those for the third pairing to be i o  = 27 and jo = 162 
given the first two sets of values. 

The other two images can be transformed to the same scale as the brightfield image, 
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simply by assigning pixel (i',j') the value at (i,j), where 

i=--io, and 
C 	 C 

However, if i' and j' are integers then in general i and j will not be. They could 
be rounded to the nearest integers, but it is preferable to use bilinear interpolation 
instead, with 

"F ([i] + 1 - i)(j] + 1 - i)f],] + ( i - [i])([j] + 1 - i)f(1+l],] 

+([i] + 1 - i)(j - [i1)f(],+11 + (i - [i])(j - [i1)f+1],u+1] 
where [.] is used to denote the integer part of a number. 

To assess the robustness and accuracy of the alignment algorithm, the aligned 
images were divided into four quadrants which were then independently realigned. 
Rather than present estimated values of i o , jo  and c, which can be difficult to 
interpret when c 0 1, Table 3 instead gives the misalignment of the first row 
of each quadrant of the brightfield image with the first row of the corresponding 
quadrant in the other two images. For example, when the top-left quadrants of the 
brightfield and phase contrast images are aligned, the first row in the brightfield 
quadrant is misaligned by —1, that is, one pixel width with respect to the first row 
in the phase contrast quadrant (recall that the images are 512 x 768 pixels in size). 
Table 3 also shows the misalignments of the last row and first and last columns 
of each quadrant. Misalignment is never more than 5 pixels on the borders of the 
quadrants, and will therefore be less than 5 pixels inside the quadrants. Overall, the 
root-mean-square misalignment is 2.5 pixels, which shows the alignment algorithm 
works well, in spite of the individual quadrants having far less information upon 
which to base their choices of magnification and translation parameters. 

Table 3: Errors in alignment when the algorithm is applied to the four quadrants 
of aligned algal images 

quadrant first row last row first column last column 

brightfield and phase contrast 
1 —1 2 —3 1 
2 2 —1 3 —1 

3 1 —4 5 —3 
4 0 —5 4 —4 

brightfield and DIC 
1 2 —1 3 —1 

2 2 —1 2 2 

3 0 3 —3 1 

4 0 —3 2 —2 



3 Multimodal microscopy 

Correlations between images, for the areas of overlap, were calculated on a pixel by 
pixel basis. These are given in Table 4. 

Table 4: Correlations between algal images after alignment 

brightfield phase contrast 
phase contrast 	—0.42 

DIC 	 0.90 	—0.46 

It can be seen that the brightfield and DIC images show the strongest association, 
with a correlation coefficient of 0.90. The phase contrast image is negatively corre-
lated with the other two modalities, as is evident also in Fig 1: in (b) the cells are 
lighter than the background, whereas in (a) and (c) they are darker, on average. 
This is an optical consequence of the algal cells being relatively large and refractile. 
The resultant increased phase difference between the direct and the diffracted light 
beams leads to constructive interference in the image plane and hence bright in-
stead of dark cells. The cluttered background in Fig 1(b) suggests that the poorer 
correlation coefficient for the phase contrast image probably results from the greater 
sensitivity of this imaging mode to interference from out of focus material. 

3.1 Principal components analysis 

Principal components analysis is one way of interpreting the correlation matrix. 
The first principal component is the linear combination of the images (after they 
have been standardized to have a common variance) which has maximum vari-
ability. The second principal component has maximum variability among linear 
combinations which are uncorrelated with the first principal component, and so 
on. (See, for example, Krzanowski (1988).) In image analysis applications, Savoji 
and Burge (1985) have shown principal components to be efficient for feature ex-
traction, image compression and noise filtering. Turk and Pentland (1991) used 
principal components of images of human faces for recognition. The three principal 
components of the algal image are given in Table 5. 
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Table 5: Principal components of aligned algal images 

Component 1 	1 	2 	3 
of variation 1 	74 	23 	3 

Weighting 
brightfield 	0.62 	0.35 —0.70 

	

phase contrast —0.46 	0.89 	0.04 
DIC 	0.63 	0.29 	0.72 

The first principal component is an average of the brightfield and DIC images, with 
a smaller, negative contribution from the phase contrast image (Fig 4(a)). This 
accounts for 74% of the variability in the multimodal image. It strongly highlights 
the pigmented algal cells. The second principal component is essentially the phase 
contrast image, and explains 23% of the variability (Fig 4(b)). Phase-dark cells 
show improved contrast as compared with the original phase contrast image (Fig 
1(b)). The final principal component is a difference between the DIC and brightfield 
images, which is discussed in §3.2. This is shown in Fig 4(c). Note the black borders 
at the top and left sides of these figures, produced by the alignment of images. The 
black squares in Fig 4(c) indicate subimages to be considered further. 

Fig 5 is a pseudocoloured composite image, formed by arbitrarily assigning red to 
the first principal component, green to the second one and blue to the third one. By 
assigning colours to the principal components, rather than to the original images, a 
greater spread of colours is produced and more information can be extracted. Other 
criteria could have been used. For example, Green et al (1986) proposed a maximum 
noise fraction technique, in which a sequence of linear combinations of variables is 
found with noise levels decreasing through the sequence, whereas Nason and Sibson 
(1991) used projection pursuit to find interesting projections of multidimensional 
satellite data. The composite image reveals structural details in the optically-thick 
algal cells shown in the brightfield and DIC images (Figs 1(a), (c)) while also 
demonstrating optically-thin, phase-dark non-photosynthetic organisms (examples 
are shown as pinkish regions in the outlined rectangle in Fig 5). The image also 
clearly retains the distinction between the pigmented photosynthetic organisms, 
which appear dark, and non-photosynthetic organisms, which are coloured pinkish. 

3.2 Construction of an image of optical thickness 

If an object is completely transparent then DIC microscopy produces an image of 
the rate of change in a fixed direction of its optical thickness (Holmes and Levy, 
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1987, 1988). For objects such as the algal cells, which are only semi-transparent, 
the DIC image will be the sum of this rate of change and of the brightfield image. 
Therefore, the third principal component, in subtracting the brightfield image from 
DIC, recovers the rate of change image. If this is integrated along the same direc-
tion, then (in theory) an image of optical thickness can be constructed. In practice, 
this only seems to be achievable for small subimages and the sums need rescaling 
so that the background values are zero. 

Consider an n by n subimage, such as that shown in the smaller black box in Fig 
4(c). The direction of DIC is from top-left to bottom-right, so we will carry out the 
integration along diagonals. For all values if i between 1 and n, and all values if j 
between 1 and n, the constructed image hij  is obtained as follows. If i < j, then 

hij = I fi-,- 	- 	 - . 	 f-_ 
k=O 	 T+l 3 kj-n 

otherwise 
i_1 	

- 

 

hij= i 	 - 	 i 
k0 	 - 	n+3 ki-n 

where f, 3  is a pixel in the third principal component. The second term in both 
expressions is there to ensure that the cumulative sums are zero at the borders of 
the image. The result is shown in Fig 6(d). For comparison, Figs 6(a)-(c) show 
the same pair of cells in brightfield, phase contrast and DIC microscopy. 

To illustrate what happens to the reconstruction for larger subimages, Fig 7 shows 
the results of applying the same algorithm to the grouping of cells in the larger 
black box in Fig 4(c). Although an image of optical thickness can be discerned, 
diagonal streaking effects dominate the image. They are the result of speckle noise 
having a cumulative effect along each summed diagonal. The results are even worse 
if the whole image is analysed at once. Therefore, the best that can be achieved at 
present is to reconstruct isolated cells and pairs of cells. 

4 Discussion 

There is great potential for further development of image processing algorithms 
which exploit the information contained in light microscope images. Recombina-
tion of images obtained with different imaging modes is but one application. The 
alignment algorithm presented in this paper could also be used to align images of 
a three-dimensional specimen at a series of focal planes. Pseudocolour is another 
option available in digital image processing. Key features demonstrated in one 
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mode can be superimposed on images obtained with another. This would enable 
workers rapidly to visualise the structural environment of a particular feature, such 
as cells expressing a particular gene in studies like those of Modrusan et al (1994) 
or the precise locations of the labelled embryonic cells investigated by Collazo et al 
(1994). Many similar examples suggest themselves. 

Multimodal microscopy offers opportunities for eliciting information which is un-
available from any single modality. For example, to estimate cell volumes it is 
necessary to know the vertical as well as the horizontal profile of the cell. The 
removal of attenuation components in the DIC image of a light absorbing cell such 
as the algal cells shown in this paper makes an image of the true optical profile of 
the cell accessible without recourse to a specialised interference microscope. (We 
have assumed that the whole cell is sufficiently in focus here to be involved in the 
imaging process. If this is not the case, then an overlying focal plane image may 
need to be incorporated.) In theory, the volume of a cell is directly proportional 
to the integrated intensity of the optical thickness image. Suitably calibrated, this 
would greatly facilitate volume measurement for cells with cross-sections which are 
not figures of rotation or for highly irregular cells such as the trypanosomes whose 
volumes were estimated by Webster and Griffiths (1994). It should be stressed how-
ever that practical verification of this proposal has not yet been undertaken and 
is dependent on further improvement in the image analysis to remove background 
artefacts. 

Another example of the potential of multimodal microscopy is in the estimation 
of cell biomasses, for which it is necessary to know both the cell density and vol-
ume. Phase contrast and DIC images contain information on the refractive index, 
directly related to the density, of the cell contents. Appropriate algorithms could 
be developed to extract this information. Also, by combining fluorescence images 
of algal cells, the chloroplasts can be shown separately from the cytoplasm, allow-
ing chloroplast volumes to be evaluated independently of the total cell volume. In 
summary, multimodality greatly widens the scope of investigations which can be 
performed with the standard light microscope. 
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Captions for figures 

Fig 1 Microscope images, using different modalities, of a sample of algal and bac-
terial cells from an algal pond: (a) brightfield microscopy, (b) phase contrast 
microscopy, (c) DIC microscopy. 

Fig 2 Results of applying Prewitt's edge filter to the algal images in Fig 1. Larger 
values from the edge filter are displayed darker and zero values are displayed 
as white. 

Fig 3 Cross-correlations between gradients of algal images shown in Fig 2, with 
larger positive values displayed darker and negative values displayed lighter: 
(a) brightfield and phase contrast (magnified by a factor of 1.06), (b) bright-
field and DIC, (c) DIC and phase contrast (magnified by a factor of 1.06). 

Fig 4 Principal components of algal image after alignment: (a) first principal 
component, (b) second principal component, (c) third principal component, 
with two squares to be considered further in Figs 6 and 7. 

Fig 5 Pseudocoloured composite image, formed from Fig 4 by assigning red to 
the first principal component of the multimodal algal image, green to the 
second principal component and blue to the third principal component. The 
rectangle encloses some pinkish regions, which show optically-thin, phase-dark 
non-photosynthetic organisms. 

Fig 6 Images of the pair of algal cells enclosed by the smaller black square in 
Fig 4(c), using different microscope modes: (a) brightfield microscopy, (b) 
phase contrast microscopy, (c) DIC microscopy, (d) image of optical depth 
produced by directional integration of Fig 4. 

Fig 7 : Image of optical depth produced by directional integration of algal cells 
enclosed by the larger black square in Fig 4(c). 
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Inference on binary images from binary data 

C.A. Glasbey 
Biomathematics and Statistics Scotland 

JCMB, King's Buildings, Edinburgh, EH9 3JZ, Scotland 

Abstract - The problem addressed is to reverse the degradation which 
occurs when images are digitised: they are blurred, subjected to noise 
and rounding error, and sampled only at a lattice of points. Inference 
is considered for the fundamental case of binary scenes, binary data 
and isotropic blur. The inferential process is separable into two stages: 
first from the lattice points to a binary image in continuous space and 
then the reversal of thresholding and blur. Methods are motivated by, 
and illustrated using, an electron micrograph of an immunogold-labelled 
section of tulip virus. 
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1 Introduction 

Digital images are imperfect representations of reality. Typically, data are affected 
by blur, subjected to noise and rounding error, and sampled only at a lattice of 
points. A fundamental case is where the true scene is binary, and the data are also 
binary, because either the digitising sensor is binary or blur is minimal. 

To illustrate, Fig 1 shows an electron micrograph of a section of pellet of puri-
fied tulip virus X which has been immunogold labelled with antiserum (Roberts, 
1994). In comparison, Fig 2 shows a binary digitisation of Fig 1 at a coarse spatial 
resolution, such as would be produced by a binary digitising sensor. (Here and 
in subsequent figures we follow the convention of displaying pixels as contiguous 
squares rather than as distinct points on a grid. For the moment ignore the distinc-
tion between grey and black pixels). Fig 1 can be thought of as a blurred and noisy 
version of a binary scene, consisting of black discs (which are the gold particles) on 
a grey background. The particles are distributed at random, except for local clus-
tering effects where two or three particles are drawn together by surface tension, 
and they are spherical in shape, with radii which are normally distributed with 
mean p = 6.5 nm, standard deviation o-  = 0.41 nm. Further, the blur is Gaussian 
with standard deviation 'i-  = 1.4 nm. (We will not go into details of how these 
values were obtained.) Fig 2 is sampled at one pixel per 8.5 urn, with the binary 
threshold set at a value 25% of the way between the foreground and background 
levels in Fig 1. The threshold between white and black ensures that all black pixels 
are due to gold particles. We would like to use Fig 2 rather than Fig 1 to count 
the number, and estimate the size distribution, of the gold particles. 

We will return to this example for motivation and illustration, but will consider the 
problem in greater generality. We assume that the effects of noise can be neglected, 
i.e. sampling variation is much less than the effects of thresholding. This is often 
a reasonable assumption to make with binary data, and the inferential problem 
would be significantly harder without it. We also assume that the blur of known 
form, because otherwise there is insufficient information to estimate it from binary 
data except in very restrictive circumstances. We will restrict attention to square 
lattices, although the results are generalisable to rectangular, hexagonal and other 
configurations. Therefore, as has been stated by many earlier authors, the data are 
an array of pixels, z, for integer lattice positions (i,j), such that 

	

{ 1 

	if{fff(x,y)g(x—i,y—j)dxdy} 

	

Zu 
- 0 	otherwise. 

Here, T is a known threshold, g is the blurring function and f(x, y) is the intensity 

14 



of the binary scene at 2D location (x, y): 

{  f(x, 	fi 	if(x,y)EC 

	

= fo 	otherwise, 

for some set C and known foreground and background levels of fi  and  fo.  The values 

of 0 and 1 for z will henceforth be referred to as white and black, respectively. 

The problem to be addressed in this paper is one of inferring f from z. The 
positioning of the image with respect to the sampling lattice is assumed to be 
random in both location and orientation. By restricting attention to isotopic blur, 
the positioning of the integer lattice can be considered separately from the effect 
of blurring and thresholding. So, if we define f by 

1 	if {ii f 	(X I  y)g(x—u,y—v)dxdy} <T 

otherwise, 

for (u, v) E R2 , then z j  = J(i,j), and we can infer f from z, followed by f from f. 
In §2, the first stage in the restoration process will be considered, that of inferring a 
binary image in continuous space (f) from lattice data (z). Then, in §3, inference on 

f from its blurred, thresholded version (f) will be discussed. (If blur is absent, then 

g is a delta-function, f(u, v) oc f(u, v), and the second stage can be omitted.) In the 
terminology of Grenander's (1976) pattern theory, §2 is an example of 'incomplete 
data' and §3 of 'indirect data'. 

As far as I am aware this particular problem has not been considered before, al-
though it has close connections with work in several other areas, including image 
digitisation, number theory, stochastic geometry, mathematical morphology, image 
restoration and printing/ lithography. Digital representations of simple geometric 
shapes such as straight lines (Dorst and Duin, 1984) and circles (Nakamura and 
Aizawa, 1984) have been analysed. Also the information loss due to both spatial 
and intensity quantisation has been studied by Nielsen et al (1984) and Bruckstein 
(1987). Havelock (1989, 1991) considered the precision with which a point could 
be located in continuous space, given lattice observations of a blurred version sub-
ject to rounding errors, including binary data as a special case. The number of 
lattice points lying within a randomly positioned circle is a classical problem in 
number theory which continues to generate interest (see, for example, Bleher et al, 
1993). Asymptotic results have also been obtained for other shapes, such as ovals 
(Kendall, 1948) and parallelograms (Holgate, 1990). See also Kendall and Moran 
(1962, chapter 5) and the more general theory of combinatorial stochastic geome-
try (Ambartzumian, 1981). A major contribution to the analysis of binary images, 
including some aspects of the relationship between lattice-based and continuous 
representations, has been mathematical morphology, developed by Serra (1982, 
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1988) and co-workers. For example, Minkowski sum and difference operators can 
be used to analyse the effects of lattice translations on the pixel representation of 
objects (Serra, 1992, p  225). Many approaches to the restoration of grey-level im-
ages have been considered (Rosenfeld and Kak, 1982, chapter 7), including recovery 
to sub-pixel accuracy (Koplowitz and Raj, 1987; Sriraman et al, 1989; Boult and 
Wolberg, 1993). Bayesian methods with global priors have been used by Ripley 
(1991) and Aykroyd and Green (1991), among others. Davies (1990, chapter 9) 
considered circle detection in the context of machine vision. Korostelev and Tsy -
bakov (1993) and Rudemo and Stryhn (1994) derived estimators, with asymptotic 
efficiencies, of a boundary fragment in a binary image observed subject to noise. 
Saleh (1987) considered some algorithms for reversing blur in binary images, par-
ticularly from a printer's perspective of constructing a binary function, f, such that 
its blurred version, f, is of a prescribed form. The results also have applications in 
microlithography (Fu et al, 1991). 

2 Lattice sampling 

Let 0 denote the set of points (x, y) for which f(x, y) = 1. In §2.1 it is assumed that 
C is a disc. Maximum likelihood estimators of disc size are derived for observed 
groups of black pixels, and in §2.2 these results are applied to Fig 2. Maximum 
likelihood estimators of elliptical and polygonal sets are obtained by simulation in 
§2.3. Finally, in §2.4 it is shown that a disc is not (as might be expected) the set 
which maximises the probability of observing a single black pixel, and it remains 
an open question as to what is. 

2.1 Disc sets 

The problem is similar to that of 'franc-carreau', considered by Buffon in 1777 
(see Solomon, 1978, p  1). However, he was concerned with the number of square 
tiles overlapped by a disc, whereas we are interested in counting the number of 
intersections of four tiles or, equivalently, the number of tile centres. If the radius 
(r) of C is less than 0.5, then at most one lattice point can lie inside it. Given 
random positioning of the disc with respect to the sampling lattice, the probability 
of observing a single black pixel is equal to the disc area, that is 

P, (r) = irr 2  

If 0.5 < r < \/ö, then zero, one or two adjacent pixels may be observed. It is 
only necessary to consider the position of the disc centre within a single square in 
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the lattice. Fig 3 shows how the square is partitioned, an example of the locales 
considered by Havelock (1989). If the centre of the disc lies in a region labelled 1, 
then a single black pixel is observed. Similarly 0, 2 pixels are observed if the disc 
centre lies in regions labelled 0, 2 respectively. It follows that the probability of 
observing 2 black pixels is 

P2 (r) = 8 
(-- - 

/iI) = 4ar2 - \/4r2 
- 1, 

where a = cos - 1  1 . Similarly, 

P, (r) = 7rr2  - 2P2 (r) = 7rr 2  - 8ar2  + 2V4r2 
- 1. 

If /O < r < 1, then between one and four lattice points can lie within the disc. 
The algebra becomes more complicated, but in particular 

Pi  (r) =z2  + z./4r2 - 	 - 4r2  sin -

z 
 

hr 

where z = 1 - /2r2 - 1. For r > 1, the algebraic manipulations necessary to 
evaluate the probabilities of different configurations of black pixels becomes pro-
gressively more complicated. It is easier to numerically integrate over locations of 
disc centres. Fig 4 shows the results for a range of disc areas. 

For each observed pattern of pixels, it is possible to derive the size of disc most 
likely to have produced it, i.e. the maximum likelihood estimate conditional on C 
being a disc. The left-most two columns in Fig 5 show the observed black pixels and 
estimated discs. In these results, rotations and reflections of patterns of pixels have 
not been counted as distinct. Some patterns, such as diagonally adjacent pixels, 
cannot be produced by a disc and so have been left blank. For a single pixel, the 
maximum value of Pi  (r) occurs when 0.5 <r </d, and 

dP1  - 	 8r2 	8r 
2irr - l6ar - 	 + V4r2 

- 1 - 	 2r /r2_ 

which equals 0 when a = E . Therefore, at the maximum, 

1 	 1 

= 2cos 	= 	/'2+ 	
= 0.541, 

the disc area is 0.92 and P1 (p) = 82.8%. It is perhaps surprising that a disc of unit 
area does not maximise the probability of observing a single pixel. A 95% confidence 
interval for the radius is given by values for which Pi (r) ~: 0.828 x e 192 , i.e. 
0.20 < r < 0.83. The width of the interval illustrates the imprecision of inference 
from binary data. However, we can do better with larger numbers of observations, 
as we show in the next section. 
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2.2 Example 

We restrict attention to 4-connected groups of pixels, as is appropriate for discs. 
The 7 grey areas in Fig 2 were identified as being produced by groups of two or 
more gold particles. In 6 cases this was because the pattern of pixels could not 
have been produced by a single disc. In the final case, the group of 5 pixels in 
the centre-left of the figure, the disc would have had to have been larger than the 
permitted range of radii of gold particles. There remain 99 groups of one or more 
black pixels, which we assume are each due to a single gold particle. The observed 
size distribution is given in Table 1. If the particles have normally distributed radii, 
then the parameters can be estimated numerically by maximising the likelihood. 
Expected frequencies are obtained by convolving the probability curves in Fig 4 with 
the normal distribution. The mean is estimated as A = 5.8 rim, with a standard 
error of 0.14 nm obtained from the observed information matrix in the standard 
way, and the standard deviation is ô = 0.57 nm (s.e. 0.20). The fit is good, as can 
be seen in the agreement between observed and expected values in Table 1. The 
parameter estimates cannot be compared directly with those given in §1, because 
the effects of blur and thresholding have not yet been allowed for (see §3.1). 

Table 1: Observed and expected size groups in Fig 2, and the maximum 
likelihood fit of a normal distribution to gold particle radii. 

number of pixels 0 1 2 3 4 
observed 
expected 

* 
1.5 

50 
49.9 

46 
46.4 

3 
2.2 

0 
0.6 

* denotes a missing value 

The mean area of C is 7r(fi 2  + &2) = 108 nm2  and the sampling rate is one pixel 
per 8.52  nm2 . Therefore, the 33 grey pixels in Fig 2 are expected to represent 
33 x 8.5/108 = 21.9 gold particles, on the assumption that larger particles are 
no more or less likely to aggregate. From Table 1, we would expect to miss 1.5 
particles if we observe 99. Therefore, if we observe 99 + 21.9 = 120.9 particles, we 
would estimate there to be 100.5 x 120.9/99 = 122.7 of them. In comparison, 115 
particles can be counted in Fig 1, of which one is missing in Fig 2 and 15 produce 
the 7 grey areas. 

To explore sampling variability, a further 24 digitisations of Fig 1 were analysed 
in the same way. The root-mean-square errors in A and ô about their means were 
0.11 nm and 0.15 nm, respectively. These agree well with the average standard 
errors of 0.12 nm and 0.19 nm. Comparisons between Fig 1 and these sampled 
images showed the assumption to be false that all 'L-shaped' pixel groups (the fifth 



configuration in Fig 5) were produced by single gold particles: on 17% of occasions 
two particles contributed. This leads to some overestimation of P. Simulations of 
groups of discs similar to Fig 1 showed that, fortuitously, this bias is approximately 
cancelled out by a bias in the other direction because larger groups of pixels are 
more likely to be connected and therefore omitted from the histogram. 

2.3 Elliptical and polygonal sets 

For shapes lacking full rotational symmetry, simple analytic results on probabilities 
do not seem to be obtainable. Minkowski sum and difference operators could be 
used to analyse the effects of lattice translations on the pixel representation of 
objects (Serra, 1992, p  225), but then rotations would also need to be considered. 
Here we resort to simulating shapes at random locations and orientations. By 
stratifying the sampling it proved possible to reduce the variances of the estimated 
probabilities. Locations of shape centres were restricted to a single square in the 
lattice, which was divided into a 10 by 10 subpixel grid. Orientations of shapes, 
which need only lie in the range 0 to 11 , were similarly divided into 10 intervals. In 
order to generate 1000 simulations, one location /orientation was generated from a 
uniform distribution within each of these 1000 strata. Variances were typically less 
than one quarter of what they would have been with simple random sampling. 

The third column of Fig 5 shows the elliptical shapes which were found to maximise 
the probabilities. A problem of bias was encountered, in that the shape which was 
found to maximise the probability for the original set of 10000 simulations did not 
produce as high a probability if a second set of simulations was used. To overcome 
the bias, probabilities in Fig 5 were obtained using simulations independent of those 
used at the selection stage. 

The fourth column of Fig 5 shows shapes built out of unit-sized blocks, arranged 
in the same configuration as the pixels. It can be seen that they sometimes have 
higher probabilities than the ellipses of producing the desired z, and sometimes 
lower ones. In particular, the probability is 82.0% for a unit-sized block. If blocks 
of other than integer dimensions are considered, then it is found that a square 
with area 0.97 maximises the probability of observing a single black pixel. The 
probability is 82.5%, which is only marginally less than that for a disc. 

A numerical optimisation algorithm was used to search for optimal polygonal 
shapes. Iterations started from the above mentioned blocks, which were parametrised 
by locations of corners and at half-pixel spacings along each edge. Interiors of re-
gions were determined using the parity principle (Pavlidis, 1981, chapter 8). The 
final column of Fig 5 shows the optimal shapes obtained. In most cases they are 
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little changed from the block patterns, a feature which is more likely to be due to 
the flatness of the probability surface than the optimality of the shapes. 

2.4 Optimal set to produce a single pixel 

It is an unsolved problem as to what set, if any, maximises the probability of 
observing a particular grouping of black pixels. As a first guess it would seem 
worthwhile to conjecture that a disc is optimal for a single pixel. However this is 
not the case. If a cog shape is considered, specified in polar coordinates (R, 0) by 

 

{       	

fi 

,

3ir\ 
  

	

(yr, ) or  (, R -r
+S 	if 0 e (0, , 

r - 	
) 

	

S 	otherwise, 

where r is the optimal disc radius, that is 0.541, and 6 is small, then 

P1  = 0.828 + 8(\/ - 1)62 + 0(6). 

The 62  term in P1  corresponds to the shaded diamond shapes in Fig 6, which are a 
net gain at all orientations. Other changes in P1  at different orientations cancel out, 
to order 62,  when averaged over all orientations. Table 2 reports the probabilities, 
estimated from 70000 batches of 1000 simulations for a range of values of 6, together 
with values predicted by the above equation. It can be seen that the approximation 
breaks down quite quickly, but it is clear that a disc is suboptimal. 

Table 2: Probabilities of a single lattice vertex lying inside a randomly positioned 
cog, with teeth of depth 26, based on 7 x 10 simulations at each 
size, together with an 0(82)  approximation to the probabilities. 

6 P1 % 0.828+8(V'-1)6 2  
0.00 82.85 82.84 
0.01 82.86 82.88 
0.02 82.90 82.98 
0.03 82.89 
0.04 82.73 
0.05 82.11 

(se 0.003) 
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3 Deblurring 

In the previous section we inferred f from z. We now need to work backwards from 

f to obtain the original binary image (f), for known background and foreground 
levels, threshold and blur. However, without additional information the problem 
is ill-posed, because there is no one-to-one correspondence between f and  f. For 
example, any fine structures with measure zero in f will disappear upon blurring. 
Also, I know of no result which proves that every conceivable set C is realisable by 
some set C. 

Discs are the easiest sets to work with and are of relevance to the interpretation 
of Fig 2. They will be considered in §3.1. A general algorithm for obtaining one 
possible f, given f, will be considered in §3.2, and illustrated for the case where C 
is a square. 

3.1 Discs 

If C is a disc, then C will also be a disc. Fig 7 shows the relationship between C and 
C for a range of radii and thresholds at 25%, 50% and 75% of the interval between 
foreground and background image intensity levels. This was obtained using an 
algorithm for bivariate Gaussian integration over a disc given by Gilliland (1962) 
and Patel and Read (1982, pp  303). 

For the range of disc sizes found in §2.2, and for r = 1.4 nm and a threshold of 
25%, the calibration curve is well approximated by a linear relationship in which 
the radius of C is 

0.72 + 0.976r, 

where r is the radius of C. Therefore, the results of §2.2 convert to a normal 
distribution with mean 0.72+0.976 x5.8 = 6.4 nm, standard deviation 0.976 xO.57 = 
0.56 nm. The estimated mean agrees well with the known mean of 6.5 nm. However, 
the standard deviation appears to be overestimated: it should be 0.41 nm. This is 
probably caused by incorrectly assuming that 'L-shaped' groups of pixels are single 
particles. 

3.2 General sets 

If we assume that f is constant over squares within a fine grid of spacing L, and 
restrict attention to f on the same grid, then the problem can be formulated as 



finding f such that 

fi :5 f fo 

and 

f(kL, lL) g'(kt - mL, lL - nL) :~ T 

k  

where k, 1, m and n are integers, 

U v+ 
g'(u,v)=j 
	

IV 	
g(x)y)dxdy, 

if(mL,nL) E C 
otherwise, 

and c is a small positive constant. Standard linear programming algorithms exist 
for this problem Strictly, f should be constrained to take values of either fi  or  fo, 
but this is a far-less tractable problem. In practice, at the solution most f(k, 1A) 
lie at the limits and the remainder can be dealt with by further subdivision. 

Fig 8 shows possible sets (C) at scale A = 0.1 pixels, which can produce squares of 
dimensions 1, 2 and 3 after Gaussian blurring with unit variance and thresholding 
at 50%. Rotational and reflection symmetries in C were used to reduce the number 
of elements to be considered. Hence the eight-fold symmetries in all the results. 
Corners have been built-up in a similar way to that found by Saleh (1987) and 
Fu et al (1991). These results are not unique, but identifiability could be ensured 
by requiring the solution to maximise a linear criterion such as the total area, in 
addition to satisfying the constraints. 

4 Discussion 

As common sense would suggest, inference is very uncertain from binary data to 
binary scenes. One exception is where an image consists of a population of well-
separated objects of specified shape and size, except for one or two parameters, 
such as in Fig 1. However, even in this case, problems arose through interference 
between objects. 

If observed data are multi-level rather than binary then much more progress can be 
made. Havelock (1989) found that grey-level quantisation led to far greater loss of 
information than did spatial quantisation. Kiryati and Bruckstein (1991) showed 
that blur improves the resolving power of digitised images. Jennison and Jubb 
(1991) and Hitchcock and Glasbey (1995) considered the restoration to subpixel 
accuracy of binary scenes containing objects only a few pixels across. Inference was 
found to be far more precise that that found here for binary data. 

10 
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Captions for figures 

Fig 1 Electron micrograph (1.07 jim xO.65 jim) of section of pellet of purified tulip 
virus X which has been immunogold labelled with antiserum. 

Fig 2 Binary digitisation of Fig 1, at 8.5 nm per pixel. Grey regions have been 
used to denote groups of pixels which are the wrong shape or too big to have 
been produced by a single gold particle. 

Fig 3 Positions for the centre of a disc in a single square in the lattice such that 
0 1  1 or 2 vertices lie inside the disc, for radius (r) in the range 0.5 to \/O. 

Fig 4 Probabilities of different numbers of lattice vertices lying inside a randomly 
positioned disc, for a range of disc areas. 

Fig 5 Shapes which maximise the probabilities of obtaining specified patterns of 
pixels, together with percentage probabilities. Columns from left to right are: 
observed pattern, optimal sizes of discs (blank entries are where the observed 
pattern cannot be generated by a disc), optimal ellipses, unit-sized blocks and 
polygons found by a search procedure starting from the block shapes. 

Fig 6 Modification of Fig 3 if the disc is replaced by a cog shape. The shaded 
diamond areas are net gains to the probability of obtaining a single vertex. 

Fig 7 The relationship between the radius of disc C and the radius of disc C 
obtaineded by blurring C with a Gaussian density (standard deviation r) 
and thresholding at 25%, 50% and 75% of the way between the foreground 
and background levels. 

Fig 8 Shapes which, after blurring and thresholding, produce squares of size 1, 2 
and 3. Columns from left to right: initial shapes, shapes after blurring, and 
shapes after blurring and thresholding. 
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Chris A. Glasbey 	 An algorithm for unwarping multitrack electrophoretic 
Frank Wright 

gels 
Scottish Agricultural Statistics 
Service 	 An algorithm is proposed for removing the effect of "frowns" and "smiles" (i.e. 

warping) from multitrack electrophoretic gels, so that the bands are horizontal 
and in alignment between tracks. It has been applied to a DNA sequencing 
autoradiograph, but could equally be applied to other types of gel separation 
where warping occurs. The algorithm uses a gradient filter to estimate band 
orientations. These are smoothed and interpolated by robust regression, and 
integrated to find the unwarping transform. No manual intervention is 
required. 

I Introduction 

Considerable effort is being devoted to increasing the 
amount, and accuracy, of information which can be 
extracted from electrophoretic gels. This is particularly 
true for DNA sequencing gels, where automation has 
had considerable impact on the rate of production of 
sequence data. One barrier to automation is that non-
uniform mobility of proteins in different parts of a gel 
produces warping effects, referred to as "frowns" and 
"smiles". An extreme case is shown in Fig. 1. These 
effects can greatly reduce the usable parts of gels. Cor -
rection of warping (normalization) can be carried out by 
straight line interpolation [1],  or cubic spline interpola-
tion [2], between control tracks, provided such tracks 
exist. Fujii and Kashiwagi [3] proposed an automatic 
method for unwarping, but it is specific to DNA 
sequencing gels and assumes a constant rate of warp. 
Sanders etal. [4] corrected for warping, but only to the 
extent of straightening bands within tracks. This paper 
develops further the ideas of Elder etal. [5]. An algo-
rithm is proposed in which bands are straightened and 
tracks are aligned, using the estimated orientations of 
bands. The justification is that visual comparisons in Fig. 
1 can be made simply by following the directions of 
bands from one track to the next, right across the gel. 
The algorithm is described in Section 2. It is applicable 
to both autoradiographs and fluorescence gels. The auto-
radiograph in Fig. I is used throughout for illustration. It 
was digitized as a 540 by 330 array, and analysed in a PC 
environment, as described in Horgan etal. [6]. 

2 Algorithm 

The algorithm proceeds in four steps: firstly, a gradient 
filter supplies local edge orientations; secondly, orienta-
tions are discarded if the edge strength is weak or orien-
tation varies locally; thirdly, the remaining orientations 
are smoothed by fitting a function using robust regres-
sion; and finally, this function is integrated to produce 
the unwarping transform. 

2.1 Gradient filter 

Let Z 1  denote the gel/autoradiograph's scanned bright-
ness at position (i, J), where i is the row index ranging 

Correspondence: Dr. C. A. Glasbey. Scottish Agricultural Statistics Ser-

vice, JCMB. King's Buitdings, Edinburgh, El-19 3JZ. Scotland 

from I at the top of the gel to I at the bottom. Similarly, 
J indexes the columns, from 1 at the left side to J on the 
right, as shown in Fig. 1. The across-columns gradient is 
estimated locally as 

= { - Z_, 	 + 

- 	i-I 	 + 	j+l 

- Z1 + 1 .i-I 	 + zI*I, J+I 

for i = 2.....i—I 

f—i 	(1) 

Similarly, for the down-rows gradient 

= 	- Z-1. j-1 - Z_ 1  - 

+ Z 1 	+ Z 	+ Z+j.1 ( 2 ) 

It follows that the maximum gradient at position (i,j) is 

G, = (G . G + G . G) 	 (3 )ij 

This is shown in Fig. 2, for the illustrative gel, with larger 
values displayed darker. Notice the large gradients 
around the edge of each band. 

The direction perpendicular to the gradient, measured 
anti-clockwise, with zero as down-rows, is given by 

= tan' 	 (4) 
Gci j  

It need only be defined in the range 00  to 180°. Figure 
3(a) shows A. coded so that dark grey is 450  (i.e a NW to 
SE slope, in terms of points of the compass), mid grey is 
90°, light grey is 135° (SW to NE) and white is where A 
is undefined because G is close to zero. 

2.2 Rejection of angles 

Although a general trend can be seen in Fig. 3(a), with 
colour changing from blue to red across the figure, there 
is a great deal of variability in edge angles. These arise 
from: (i) noise in the original gel image, and (ii) the left 
and right edges of bands. Type (I) will be associated with 

© VCH Verlagsgesellschaft mbH. 69451 weinheim, 1994 	 01730835/94/0202.0143 S500+.2510 
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small gradients and (ii) with locally variable orientations. 
Therefore, A, j  was discarded if G, < 10 

or if 
. A 

max 4 , 4 , 4 
J -1, A, 	, 4i ,,. J  

	

A3 	, A_1, 
- mm 	A, 	, A, j,  A, I 	> 40. 

, A 	, A 3 , J 
I  

The limits were chosen by trial and error. (We would 
expect the same values to be applicable to similar gels, 
but they would need to be redefined in new applica-
tions.) Figure 3(b) shows the retained angles. Rejection 
has the added benefit of greatly reducing the number of 
angles to be considered in the next stage, in this case 
down from 180000 to 9000. 
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Figure I. DNA sequencing gel with severe warp. 
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2.3 Robust regression 

To perform the unwarping, the edge direction is required 
at all locations in the gel, not just at those in Fig. 3(b). 
One way to achieve this is by regressing A, on a function 
(f) of i and j,  polynomials for example. However, the 
classical fitting procedure, least squares, is unduly sensi-
tive to even a few outlying points, of which several are 

visible in Fig. 3(b). Robust regression is a range of tech-
niques (e.g. Hogg E7]) for fitting a curve to most data 
values and ignoring a few which do not fit. The algo-
rithm we used proceeds as follows. 

0: Initially, set all the weighting terms to unity, i.e. all 
= 

4 
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Figure 2. Gradient (G) in brightness in Fig. 1. 
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Perform weighted regression to minimize 

	

	 Figure 4 shows the orientation data (A) and fitted curve 
when U is a cubic equation in the column index, j,  alone, 

W, (A,, - f(i, J))2 	 that is, 

with respect to the parameters in f (a standard technique 	f(i. j) = b0  + b 1j + b2j' + b3,., 3 . 	 (5) 
available in most statistical computer packages). 

In this case 7500 points were fitted and the remaining 
Estimate the standard deviation, S, of the residuals as 	1500 were identified as outliers. Quartic and higher- 

1 	 order terms in j  were unnecessary to follow the trend in 
S = 	median A., — f (I, j) I 	 Fig. 4. The results would need to be viewed as a surface 

0.6745 	 if f were a function of both i and j. 
(The divisor is to make this an unbiased estimator for 
normally distributed data). 	 2.4 Unwarping 

Recalculate weights as 	 We now need to switch to continuous variables, say x in 

1 if I A - I (I ii 	< 2.5 	 place ofj to index columns, and  in place of i. Contours 

0 otherwise. 
= 	' 	 . 	 which follow edges across the gel satisfy 

4: Repeat steps 1 to 3, for instance three times, until 
values stabilize. 
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Figure 3. Angle (A) perpendicular to direction of maximum gradient in brightness in Fig. 1, measured anticlockwise. with down-rows as zero, 
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For general f, numerical methods are required because 
of the lack of analytical solutions. Starting at position (j 

.v) = (1, 1) on the left side of the gel, increment to 

L 
tan f(y, x) 

-. x + L 

for a small value of L, for instance 0.1. Repeat this step 
until x = J. the right side of the gel. At integer values of 
x, set Z',, = Zk X , where k is the nearest integer to y. For 
starting values, i, which are multiples of 25, Fig. 5(a) 
shows the curves followed by (y ,  x) when f is a cubic in x 
alone. In this case they are all the same, save for a down-
rows shift. Figure 5(b) shows the unwarped gel, Z', when 
the interations are repeated for all integers i = 1..... I. 

Although most of the bands are now horizontal and in 
approximate alignment, some warping is still in evidence 
at the top of the gel. Therefore f was taken to be more 
general, a fourth-order polynomial in I and j,  requiring 
ten parameters. (A higher-order term in j  was needed to 
obtain closer agreement with the data once down-rows 
effects had been removed.) Figure 6(a) shows the inte- 

• --- 	
,1 

 

l 

Figure 5. (a) Some contours which satisfy angle A = F. where F is the cubic curve plotted in Fig. 4, superimposed on gel: (b) unwarped gel, 
produced by straightening the contours. 
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Figure 6. As for Fig. 5, except t is a fourth-order polynominal in i and j, again with parameters estimated by robust regression. 

grated curves, which are no longer "parallel", and Fig. 
6(b) shows the unwarped gel. Although in this extreme 
case alignment is still not perfect, it is a great improve-
ment on the original gel. 

3 Discussion 

The algorithm makes more tracks usable on an electro-
phoretic gel, and is reasonably efficient in computing 
terms. It will outperform algorithms which digitize each 
track separately, and then try to coregister them, because 
it uses spatial information. It is also more generally 
applicable to gels than the algorithms of Fujii and Kashi-
wagi [3],  which are specific to DNA sequencing gels and 
require a constant distortion rate, and Gill and Werrett 
[1] and Hotmlund etal. [2] which require control tracks 
to be spaced out across a gel. Warping is only one of sev -
eral problems in the reading of gels. The algorithm 
could be modified to correct another distortion: tracks 
which bend. However, it cannot cope with warping which 
is internal to tracks. Sanders etal. [4] discuss bands 

which have "dumbbell" shapes. Elder [8] considers cor- 
rections for another problem, that of blurring of bands. 
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Abstract 

Operational properties of a Hewlett-Packard Scanjet Plus desktop scanner are investigated. The grey-scale response and its 
uniformity are evaluated, the spatial arrangement of sampled pixels is identified and the blurring function is estimated. Recom-
mendations are made for quantitative use of the scanner. 

Keywords: Desktop scanner; Blurring function; Pixel sampling, Grey-scale response 

1. Introduction 

Desktop scanners provide a cheap alternative to 
high-quality laser scanners for digitizing images. 
However, they are intended for desktop publishing: 
manufacturers make no claims regarding their suita-
bility for scientific work. Therefore, before data from 
these scanners are used quantitatively, it is important 
to understand their operational properties. This note 
describes the study of a Hewlett-Packard Scanjet Plus 
model 9195A, (using Scanning Gallery Plus, version 
A.03.00. software). Similar methods should be ap-
plied to any scanner before it is used scientifically. In 
Section 2, the monotonicity of the scanner's response 
to a range of grey-levels, and its uniformity across the 
scanning field, are investigated. Then, in Section 3, 
the effects of scanning at different resolutions, and 
the extent of blur, are identified. Finally, recommen-
dations for use of the scanner are made in Section 4. 

Corresponding author. Email: c.glasbey a uk.ac.san.sass  

2. Grey-scale response 

The Scanjet scanner scans images at 256 grey-lev-
els. The first test investigated the uniformity of re-
sponse over the scanning area. Three A4 sized sheets 
of paper, one white, one grey and one black, were 
scanned. Fig. 1 shows an image of the grey sheet, for 
which pixel values ranged between 121 and 140. The 
display scale has been stretched to emphasise varia-
tion. There is clearly a pattern, with intensities being 
lighter near the top and sides of the image. The same 
pattern was found when the grey sheet was rotated 
through 1800  and scanned again, indicating that the 
pattern is a feature of the scanner, rather than of the 
sheet. Similar patterns were found with the white and 
black sheets, although for the latter the intensity vari-
ation was much less. 

The response to different grey-levels was investi-
gated by scanning a Kodak Reflection Density Guide 
(Eastman Kodak Company, Rochester, New York. 
Publication Q-16). This has uniform patches at 24 
nominal density values, that is shades of grey. The 

0167-8655/94/$07.00 © 1994 Elsevier Science B.V All rights reserved 
SSDJO1 67-8655 (93  )E0082-Y 
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Fig. 1. Scanned image of  uniform grey sheet, I he grey -scale has been stretched to emphasise intensity variation, with 121 displayed as 

black. 140 as while. 

log-transformed mean intensity in these patches ap-
peared to be linearly related to the nominal density 
value (Fig. 2). This trend breaks down at the black 
end of the scale (which has high density value). Here, 
the effect of the discrete grey-levels appears to distort 
the pattern. The positional intensity variation de-
scribed above will also have a small effect. The stan-
dard deviation of the pixel values in the patches var-
ied from 1.5 at the white end of the range to 0.5 at 
the black end. 

3. Sampling properties 

The Scanjet scanner has standard sampling rates of 
75. 150 and 300 dpi (dots per inch), or can be set to 
sample at other rates. The five figures on the left of 
Fig. 3 show the computer version of a printed num-
ber three after sampling at 75, 100, 150, 200 and 300 
dpi. (We have used a binary image as an example in 
which the spatial and blurring effects can easily be 
distinguished, but the results are applicable to gen-
eral grey-level images.) Detailed examination of the 
arrays of numbers showed that the data at 150 dpi 
were every second row and column of the 300 dpi 
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Fig. 2. Scanned grey level, log-transformed, plotted against the nominal density value on a Kodak Reflection Density Guide. 

data, to within a standard deviation of 2. Similarly 
75 dpi matched to data in every fourth row and col-
umn of the 300 dpi data. For the user-selected sam-
pling rates the pattern was less systematic. At 100 dpi, 
every third row of the 150 dpi data was omitted, and 
an average of every third column, but not in any rec-
ognizable pattern. The same relationship appeared to 
exist between 200 and 300 dpi. Locations of sampled 
data, relative to 300 dpi, are shown graphically in the 
right half of Fig. 3. 

Although the original, printed version of the num-
ber three was black and white, the digitized versions 
in Fig. 3 show intermediate grey-levels because of 
blurring. Knowledge of the form of this blur is im-
portant in some quantitative applications. Fig. 4a 
shows a larger piece of printed text, sampled at 300 
dpi. Fig. 4b shows a binary version of the same im-
age, obtained by thresholding at an intermediate grey-
level. A histogram of Fig. 4a indicated that it was 
strongly bimodal, and a wide range of thresholds pro- 

duced very similar binary images. Fig. 4b is therefore 
a close approximation, at 300 dpi, to the original text 
image. 

We assume that Fig. 4a is the blurred version of 
Fig. 4b. The blurring function may be estimated from 
the ratios of the Fourier amplitudes of the images 4a 
and 4b (see for example, Gonzalez and Wintz, 1987, 
p. 84). These ratios are the Fourier amplitudes of the 
blurring function. Examination of these amplitudes 
indicated that the blur was isotropic. Fig. 5 shows the 
median values of the log-transformed Fourier ampli-
tudes of the blur as a function of frequency. The re-
lationship is clearly linear, with a slope of 0.67 esti-
mated by least squares regression. For a continuous 
Fourier transform this would correspond, upon back-
transforming, to the blur being a bivariate Cauchy 
distribution (Mardia, 1970), that is 

f(x.v) =
2(c2+x2+y2)312' 
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Fig. 3. A printed number three sampled at 75, 100, 150, 200 and 300 dpi. On the left are shown the sampled figures. On the right are 
shown the locations of sampled points, relative to 300 dpi. 
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Fig. 5. Log-transformed Fourier amplitudes of the blur between 
Figs. 4(b) and 4(a), assumed to he isotropic and obtained by 
forming the median of ratios of Fourier amplitudes of Figs. 4(a) 
and 4(b) at each of a range of frequencies. The fitted regression 
line is also shown. 

x+ 1/2 y+ 1/2 

f'(x,y)= J 
	J 

f(u,v)dudv 
x- 112 y- 1/2 

II (from 
where 

=h(x+,y+)—h(x—,y+) 

—h(x+,y—)+h(x—,y—) 

h(x.y)=tan 	
XV 

27t 	1C(C 2 +X
2 +Y 2 ) 1,21 .  

Fig. 4. (a) Printed text scanned at 300 dpi. (b) A binary version 
of the same text, produced by thresholding (a). 

where c=0.67. However, we have a discrete, not a 
continuous, Fourier transform. There is no analytic 
expression for its back-transform. Numerically, the 
blur seems to be well approximated by an integrated 
form of the bivariate Cauchy, namely 

Note that, the bivariate Cauchy is the distribution 
generated on the plane if uniformly distributed an-
gles are taken from a fixed point above the plane. Fig. 
6 shows the relationship between f(x, 0) and x, that 
is a conditional distribution. Note that this is not a 
univariate Cauchy distribution: the marginal distri-
bution of x, integrated over all possible values for y, 
is the Cauchy. (The Gaussian is the only isotropic 
distribution which has the same conditional and 
marginal distributions.) 
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What conclusions can we draw from the above re-

suits about how to use the scanner quantitatively? 
Firstly, if the image is small enough, it should be 
placed in a region of little variation in grey-scale, such 
as the bottom centre of the scanning area. Alterna-
tively, the trend shown in Fig. 1 should be subtracted 
from any data before further analysis. Secondly, the 
user-specified sampling rates have the undesirable 
property of unequally spaced sampling points. Also, 
the coarse sampling rates of 75 and 150 dpi can un-
dersample image features which happen to lie be-
tween sampled points, because of the limited range 
of the Cauchy blurring. For example, a unit mass ex-
actly coincident with a sampling point at 150 dpi, will 
contribute a cumulated effect over the whole image 
of 

f'(2i, 2j)= 1.39. 

but if it is in the centre of four sampling points its 
contribution is only 

f'(2i+ 1, 2j+ 1)=0.77. 

This effect can be seen in Fig. 7: note the "u" at the 
top centre of 7(a). sampled at 100 dpi, and compare 

tt rt rn 3 19 .71 

311 (from 3 892) 

Fig. 7. (a) Printed text scanned at 100 dpi. (b) Text scanned at 
300 dpi, but averaged in 3 x 3 blocks to produce 100 dpi. (c) 
Bilinear interpolation of (a) to 300 dpi. (d) Bilinear interpola-
tion of (b) to 300 dpi. (e) Text scanned at 300 dpi. 

it with 7(e), sampled at 300 dpi; the top half of the 
"u" has been almost omitted at 100 dpi. Therefore 
we recommend that images are always sampled ini-
tially at 300 dpi. Then, if a coarser sampling rate is 
required, these data should be averaged in blocks of 
4x4 for 75 dpi, 3x3 for 100 dpi and 2x2 for 150 
dpi. For other sampling rates, such as 200 dpi, an 
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equation can be derived by regarding each point at 
300 dpi, say g13  at lattice point (U), as a function: 

g(x.v)g, 3  ifix<i+l,jr<j+l 

Then to sample at spacing d (= 300/required sam-
pling rate), the derived data value at location (di, di) 
equals 

d(,+ I) d(j+l) 

Wi  $ 	J g(x, y) dxdv. 
di 	di 

This works out as a local average of the 300 dpi 
data: at 200 dpi a 2 by 2 block is weighted in propor-
tions 4/9, 2/9. 2/9 and 1/9. 

If a sampling rate greater than 300 dpi is required, 
this may be simulated by bilinear interpolation, which 
should be an adequate approximation given the 
smoothness resulting from Cauchy blur. (Obviously 
the larger data set contains no more information than 
that at 300 dpi.) Therefore, at location (x, y) the 
value would be 

(i+ 1 —x) [ (j+ I —i')g0  + (v—j)g, 1+  

+ (x— i) [ (j+ I 	)g,, + (y—j)g1+ i±,] 

where ix<i+l andjv<j+1. 
Fig. 7a shows some text sampled by the scanner at  

100 dpi, 7e shows it sampled at 300 dpi and 7b shows 
the results of averaging to obtain a sampling rate of 
100 dpi. To aid comparison, Figs. 7c and 7d show 7a 
and 7b after bilinear interpolation back to 300 dpi. It 
can be seen that 7d is the more faithful representa-
tion of 7e. The pixel-by-pixel correlation between 
Figs. 7d and 7e is 90%, whereas between 7c and 7e it 
is only 68%. 

Finally, note that knowledge of the scanner's sam-
pling properties may be used to deconvolve the data 
to produce sharper images and potentially to recover 
information at a resolution greater than 300 dpi. 
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Graham W. Horgan 	 Uses of digital image analysis in electrophoresis 
Chris A. Glasbey 

Scottish Agricultural 	 The information in electrophoretic gels can be extracted visually, or by using 
Statistics Service, Edinburgh 	specialised computer hardware and software which treat the gels as digital 

images. We discuss issues which arise in applying digital image analysis to elec-
trophoresis, and comment on the range of computer packages available. We 
also illustrate how image analysis can make gel interpretation easier and more 
reliable. Methods covered include gel registration and warping, mathematical 
morphology and deconvolution to sharpen images. 

I Introduction 

The questions asked of electrophoretic gels range from a 
determination of whether two or more samples differ in 
their composition, to a quantification of the amount and 
properties of the different constituents present in a col-
lection of samples. The answers lie in the positions, sizes 
and densities of the spots or bands on the gels. This 
information is often assessed visually, with the scientist 
using experience and judgement in examining gels, per-
haps with the help of some simple measurement tools. 
Frequently this approach is satisfactory, but some appli-
cations may call for more objectivity, or for a way to 
relieve the scientist of the tedium of examining many 
gels. Computers are the modern vehicles for information 
handling and storage. Therefore it is natural to use them 
to help in gel analysis. This may be done by digital 
image analysis, in which images of gels are stored as two-
dimensional arrays of picture elements or pixels. Digital 
image analysis is widely used in many areas of science, 
ranging from satellite remote sensing to microscopy. 
Both specialised and general computer packages are 
available. They vary greatly in their capabilities, flexi-
bility and cost. Some packages attempt to fully automate 
a particular task while others, which we term 'semi-auto-
matic', speed up and assist the interpretation of the 
images, but leave some parts of the task to the user. In 
Section 2 we will consider the issues involved in imple-
menting a system for image analysis in electrophoresis. 
Then. in Section 3 we will describe some image analysis 
procedures which can aid interpretation of electropho-
retic gels. While not fully automating the analysis, they 
can be regarded as stages in a longer sequence of opera-
tions, and they are available in many image analysis 
packages. For a general discussion of image analysis, see 
Glasbey and Horgan [I] or Gonzalez and Wintz [2]. 
Image analysis has been widely used in electrophoresis, 
being one of the branches of science to make early use 
of these techniques (for some examples, see [3-101). The 
image analysis described in these packages has generally 
aimed to fully automate some specific tasks in gel inter-
pretation, usually with some success. Commercially avail-
able systems are now becoming widely available. 

Correspondence: Dr. Graham Horgan. Scottish Agricultural Statistics 
Service. JCMB, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, 
Scotland Tel: +44131-650-4897: Fax: +44131-650-4901) 

keyords: Image analysis  

2 Computer equipment for gel analysis 

Many laboratory instrumentation producers, as well as 
computer hardware and software manufacturers, have 
products aimed at the electrophoresis user. The products 
reflect the three requirements for an automated use of 
electrophoresis: (i) laboratory equipment to perform the 
electrophoresis, (ii) computer hardware to capture and 
store the image data, and (iii) software to analyse and 
interpret the data. Packages consist of different combina-
tions of laboratory equipment, hardware and software. 
The main distinction is between those which are com-
plete and incorporate laboratory equipment, and those 
which provide computer hardware and software alone. 
Complete systems typically have the advantages that 
they are well integrated, with different components 
having been designed to work together easily and effi-
ciently; they are easy to learn to use; and they have facil-
ities appropriate to the electrophoresis technique being 
used. Their disadvantages are that they tend to be inflex-
ible, and only work with particular laboratory equip-
ment; and they are expensive. Conversely, stand-alone 
computer systems are generally lower in cost and more 
flexible, but may give compatibility problems and lack 
particular features. 

Before choosing a gel analysis system, the user must con-
sider what information is required. If, for example, the 
positions of bands or spots are all that matters, then 
money spent on a high-quality densitometer is likely to 
be wasted. The researcher should also consider how 
much automation is required. Unless many gels are to 
be analysed, the cost and the time spent learning how to 
operate and make best use of an automatic analysis 
system may not be justified. The three components of a 
system are as follows. 

2.1 An image capture device 

This is the equipment which generates the digital image. 
It may be an integral part of the laboratory equipment. 
in which case its choice will be determined by that of 
the laboratory equipment. Alternatively, it may be a sep-
arate unit, which generates an image from a stained gel 
or an autoradiograph, such as: (i) a digital camera, which 
is usually inexpensive, (ii) a scanner, also inexpensive. 
which produces higher quality data than many cameras. 
but is slower to use and may necessitate an extra photo-
graphic stage when used with some types of gel, and 
(iii) a densitometer, which is expensive but gives accu-
rate measurements of optical density. 

'CH \erlgsgeseIlscha1t mbH. 69451 Weinheim, 1995 	 0173083519510303-0295 S5.00.25/0 
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The following issues which will affect the choice of a cap-
ture device. (i) The resolution of the device: This can be 
expressed as the number of pixels per unit length of the 
object scanned. The greater the resolution, the finer the 
detail that will be captured in the resulting image, and 
the greater will be the size of the file needed to store it. 
More than 20 pixels per millimetre are now available for 
many scanners and densitometers. The resolution of a 
digital camera will depend on the lens fitted to it. It is 
important to ensure that maximum resolution figures 
quoted reflect real resolution rather than the results of 
an algorithm which interpolates pixel values without 
adding any greater detail. (ii) Linear dynamic range: This 
is the range of gel optical densities over which the pixel 
values produced are a linear function of the density. It is 
important that this relationship is linear (or can easily be 
calibrated to give a linear form) when integrated optical 
densities are being used to estimate protein amounts 
Greater control is generally possible with a densitometer. 
(iii) Speed of acquisition: If many gels are to be pro-
cessed, a slow capture device could slow down an other -
wise efficient operation. This is one feature where digital 
cameras are generally superior. (iv) Size of image: The 
capture device should be capable of scanning, as a single 
image, gels of the largest size likely to be handled. Both 
digital cameras and scanners may be used in other image 
analysis applications. Their choice will depend on the 
requirements, laboratory organization and budget of the 
researcher. A demonstration of the image quality should 
be sought before any decision is made. 

2.2 Computer hardware 

This may be integrated with the laboratory equipment, 
or stand alone. If it is integrated, then an important issue 
may be the extent to which the results of any analysis, 
and perhaps the images themselves, can be transferred 
to another computer. If the computer hardware stands 
alone, then the other uses to which it may be put should 
be borne in mind. The user should also consider: (i) the 
power and speed of the computer, which will determine 
the amount of time required to process gel images; 
(ii) the image storage facilities (how many images can be 
stored, what media are they stored on and at what cost, 
and how easily can they be retrieved?); and (iii) the oper-
ating system (is it familiar or will it require an invest-
ment of time to learn? Also, can the computer be joined 
to existing networks?) 

At present, computer hardware for image analysis will 
almost certainly be based on one of three types of com-
puters: a PC, a Macintosh or a workstation. (i) A PC is 
the most widely used computer, and the most popular 
choice of most image analysis product developers. They 
are cheap and flexible, and can be used for almost all 
other types of computing also. The types of main com-
puting chip used in a PC (386, 486, Pentium ...) are 
becoming more powerful. For image analysis, it is usu-
ally recommended that a PC with a powerful chip and a 
large memory be used Often, an extra image processing 
board is added as well to provide convenient and rapidly 
accessible image storage. (ii) A Macintosh is the easiest 

to use and best integrated computer system. They are a 
little more expensive than PCs, and do not have as wide 
a range as other computing applications. Consequently, a 
smaller number of software packages and hardware add-
ons are available. (iii) A workstation is one of a diverse 
range of powerful computers, generally using the Unix 
operating system. Their principal advantage over PCs 
and Macintoshes is their greater power, both computa-
tional and graphical. This is bought at a higher cost. The 
range of other applications is not as diverse as that for 
PCs. 

2.3 Computer software 

Two categories of image analysis software are available 
to the electrophoresis user: those which are designed for 
image analysis in general, and those which are intended 
for electrophoresis only. A large number of general 
image analysis packages are available, and the choice 
continues to grow. Prices range from free to very expen-
sive. In our experience, correlation between price and 
quality is not as strong as in computer hardware. Some 
packages are designed to work with specialised computer 
hardware, usually some sort of image storage boards 
which are inserted in the computer. General image anal-
ysis software, while lacking algorithms specifically 
designed for electrophoresis, will have useful facilities 
such as: (i) image enhancement by contrast stretching, 
magnification, sharpening filters, background subtraction. 

measurement of pixel positions and intensities, 
extraction of pixel values along transects, and 

image warping based on control points. The advan-
tages of using general image analysis software are that it 
can more easily be adapted to other image analysis tasks 
and it is easier to find inexpensive packages. 

Software created specifically for electrophoretic image 
analysis is also widely available. Such packages provide 
many algorithms which are particularly suitable for gel 
analysis. They will also be designed to enable easy 
storage of quantitative results in a convenient format, 
and may have database capabilities, enabling lists of 
band and spot positions and intensities to be recorded 
for comparison with new gels. The advantages of such 
software are: (I) Routines for gels analysis should be rea-
dily available, and will not have to be built up by the 
user. (ii) They will often 'speak the language' of the elec-
trophoresis scientist, thereby being easier to learn than 
general packages. The manufacturers are also likely to 
communicate well with biologists. (iii) Gel database faci-
lities can be very useful. (iv) They may provide easy 
interfaces with high-quality densitometers. Many com-
panies offer all three above components (image capture 
equipment, computer hardware and computer software) 
as a package. Such packages are often more expensive 
and less flexible than self-assembled systems. However, 
there should be fewer problems of equipment incompati-
bility, and the customer will have better after-sales sup-
port. Demonstrations of equipment should be sought. It 
is important that these presentations should use exam-
ples of electrophoretograms of the type with which the 
equipment will be expected to work. 
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3 Examples of image analysis techniques 

In this section we look at three image analysis tech-
niques which can be of use in analysing electrophoretic 
gels. The methods can either be regarded as useful in 
aiding human interpretation, or as early stages in a fully 
automatic procedure. The techniques considered are 

registration and alignment (to enable comparison 
between different gels or tracks on a gel), mathematical 
morphology (to handle and quantify shape) and decon-
volution (to sharpen spots or bands). We will use the 

notation / to denote pixel value (I, j), where i denotes 

row position, and ranges from 1 to n, and where I 

denotes column position, ranging from I to n Darker 

parts of a gel are represented by smaller values of .f. 
Although the algorithms described may help quantifica-
tion of the gel features, this quantification will not be 
straightforward. There are two properties of spots or 
bands we may wish to estimate: their position or the 
amount of protein or other substance present. There will 
be uncertainties in the position because the band or spot 
will be spread over an area, and the location of the 
centre will not be determined trivially. Estimating the 

F0 

amount of protein will be affected by uncertainty in the 
relationship between the pixel alues, f,. and density of 

protein, and in the appropriate area over which the con-
centration will need to be inte4rated. 

3.1 Registration and alignment 

Interpretation of gels often reduces to the comparison of 
tracks on a gel or to the comparison of spot or band 
positions on two or more gels. This is made more diffi-
cult by distortions in the gels. Such distortions can lead 
to the misalignment of tracks. For two-dimensional gels, 
it can mean that spots corresponding to the same pro-
teins are not in exactly the same relative positions. The 
human interpreter can subjectively allow for such distor-
tions in assessing differences, but it would clearly be 
beneficial if the digital images could be manipulated to 
remove the distortions. Figure 1a) shows an example of 
a DNA sequencing gel. It is clear that the tracks are not 
aligned, because of a relative lengthening of the tracks 
near the centre of the gel, known colloquially as a smile' 
on the gel. Interpretation would be simplified if this 
could be removed. Glasbey and Wright [11] show how 

Figure 1 at DNA equencing autoradiograph with'smile' distortion. 4h) Warped gel 	ith 'smile remose b unrping. 
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this may be done. Their approach assumes that the dis-
tortion may be described by a smooth Continuous func-
tion, and that it can be estimated from the angles of the 
individual bands (Trubuil [12] uses a similar idea). Esti-
mating angles is a straightforward image analytic task. 
Once the distortion function has been estimated, an 
image can be constructed of what the gel would have 
looked like without it. Figure 1(b) shows the result of 
this unwarping operation. Here, gradient angles were 
approximated by a fourth-order polynomial in row and 
column position. Comparison of bands is easier in this 
image than in Fig. 1(a). Distortion in the position of 
spots in different gels can also be removed. If we know 
the positions of some invariant features in the gels we 
can use them to model the distortions. This then leads 
to an algorithm for removing the distortions, allowing 
the gels to be superimposed exactly. Horgan, Creasey 
and Fenton [13] illustrate the method using 2-D PAGE 
gels from isolates of Plasmodium falciparum. The gels are 
unwarped to remove distortions, and then superimposed 
using different colours. 
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3.2 Mathematical morphology 

Mathematical morphology is the name given to a wide 
range of image analysis techniques founded on set 
theory. The seminal work is Serra [14]. Other useful 
introductions may be found in Glasbev and Horgan 
(Chapter 5) [1], Haralick, Sternberg and Zhuang f 15 and 
Haralick and Shapiro (Chapter 5) [ 1 6]. Although the 
results we demonstrate here can be achieved by other 
image analysis methods, morphology has the advantage 
that it is developed by building complex algorithms from 
simple fundamental operations which are available in 
most image analysis packages. Morphology can be under-
stood intuitively as an approach which studies the prop-
erties of objects by investigating whether test objects can 
fit within them. This is a little like describing the size 
and shape of the boot of a car in terms of what can fit in 
it - which is probably the way most car owners think 
about it. For binary images (those which are black and 
white only, with no intermediate tones) the objects 
whose shapes we study are the patches of black or white. 

Figure 2 (a) DNA autoradiorraph after closing using a disc of radius 10 pixels. (b) The top-hat transform: the results of subtracting the image in 
tat from that in ihL 
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For a greyscale image, such as Fig. I. we must think of 
three-dimensional shape. We regard the level oigreyness 
as indicating height above the plane. Looked at in this 
way, a dark spot in an image becomes a depression on a 
surface. 

One problem with gels such as Fig. 1(a) is that the 
brightness in the background (the parts of the image 
which are not bands) varies. This is a common problem 
in image analysis, and makes comparison of similar fea-
tures in different parts of the image difficult. If we look 
for depressions relative to the local background bright-
ness, we can construct an image based on the depths of -  

these depressions. This can easily be done by subtracting 
the closing of the image from each original image. The 
closing is obtained by first replacing each pixel by the 
local maximum intensity (in a disc about each pixel). 
and then performing a similar operation on the resulting 
image, using the local minimum. Mathematically, the 
pixels, h, in the closed image will be given by 

= nun 	 (1) 

where Ik2  + 1'< R, the radius of disc, and 

g = max 

Only pixels in depressions narrower than the disc will be 
substantially different between j  and h,,, and so these 
will stand out when the closed image is subtracted from 
the original. Because this operation is equivalent to 
investigating where a cylinder of some chosen radius 
will fit into the depressions, it is known as a top-hat 
transform and is generally used for subtracting image 
backgrounds. Figure 2(a) shows the result of a closing of 
Fig. 1(b) with a disc of radius 10 pixels. The bands are 
removed, leaving only the background intensity trend. 
Figure 2(b) shows the top-hat transform, the result of 
subtracting Fig. 2(a) from Fig. 1(b). 

The structuring element for the closing should be 
chosen to be the smallest shape that will not fit into 
structures in the image that are not background. A disc 
is a common choice, for convenience and because it is 

isotropic. Software packages generally allow a choice of 
structuring elements. Other methods of background sub-
traction are possible. What is required is a method of 
estimating the background intensity, from which devia-
tions corresponding to features of interest can be stud-
ied. Local averaging and fitting of low-order polynomials 
are possibilities. The top-hat has the advantage of being 
easy to understand and implement. Its effects should 
therefore be readily predictable. 

Another operation which can be used to find dark 
objects in a variable background is that of h-basins. For a 
general discussion see Vincent [17]. Basically, an /i-basin 
is connected region of pixels with an intensity range less 
than Ii. in which each pixel value is less than any pixel 
bordering the li-basin. In other words, we are looking for 
depressions of any size in the image. However, only the 
bottom part of a depression (up to a height h above the 
losest point) will be extracted, so that if there are 
depressions in generally dark parts of the image. only 

they (and not the whole dark region) will he extracted. 
Finding h-basins (or their reverse, h-domes) is more 
complex than the top-hat transform. Algorithms are dis-
cussed by Vincent [17].  The value of Ii should be care-
fully chosen, If  is too large, then large dark regions "ill 
be recovered, rather than local depressions. If h is too 
small, then too many unimportant noise features will he 
extracted. Automatic methods of choosing I,. based on 
the properties of the image recovered with a range of 
values of Ii could be envisaged. 
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Figure 3. (a) Image of . 2-D PAGE gel from an p,ulat.  l 

/'akiparwu. (b) Extraction of h-basins of depth 14. Boxes have c-

dran around some of the spots which are more easily seen in 

than (a). 
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Figure 3(a) shows a 2-D PAGE gel from an isolate of 
Plasmodium falciparum. Some of the spots are difficult 
to see. Figure 3(b) shows an image of all basins of depth 
14 (where the range of pixel values in the original image 
was about 250). Many of the spots are more readily seen 
in Fig. 3(b) than in Fig. 3(a). Boxes have been drawn 
around some of these. 

3.3 Deconvolution 

If an image has been contaminated by noise and blur-
ring of known forms, then filters can be constructed 
which optimally restore the original image. There are 
both linear and nonlinear restoration methods (see, for 
example, Rosenfeld and Kak (Chapter 7) [181). The fun-
damental linear method is the Wiener filter. Nonlinear 
restoration algorithms can do better than linear ones, 
but require substantially more computation. For 
example, maximum entropy restoration (Elder 1191)  is 
one method which exploits the constraint that the res-
tored image is non-negative. However, as Donoho, 
Johnstone, Hoch and Stern [20] point out, there are 
many alternative methods which are equally good. Here 
we will illustrate one such alternative, constrained least 
squares. 

In this section only, intensities are inverted so that f= 0 
corresponds to white pixels and darker pixels have 
higher values. Figure 4 shows pixel values for a section 
through four bands in Fig. 2(b). They are well approxi-
mated by a mixture of four Gaussian distributions with a 
common variance of a ' = 2. A model which may be con-
sidered for the image in Fig. 2(b) is 

=w5g +5J  + eu  for 1=1,..., n 	j= I, ..., fly, 
5--... 	

(3) 

I 

Figure 4. Pixel values for a section through four bands in Fig. 2(b) 

and mixture of four Gaussian densities with a common variance of 2. 

where 

W11 	 exp 	for k = —m, .... 	(4) 

where m is the integer part of 3, g is an ideal unblurred 
version of the image, which is constrained to be nonne-
gative, and e,, is noise. For computational simplicity, we 
wrap-round the image so that in the summation row 0 is 
equated with row a,, etc. Note that we are considering 
vertical blur only and assuming a constant variance () 
However, the method can be extended quite simply to 
handle spatially varying blur, such as often occurs in 
electrophoresis, with bands at the bottom of the gel 
being more spread out than those at the top. 

Deconvolution can be posed as a constrained optimiza-
tion problem [21]: 

minimize s = 	
(f'I

_w*i+sj ) 	 (5) 

with respect to g. for / = I. ..., n,j = 1,..., n and subject 
to g -> 0. 

The problem can be solved iteratively by gradient 
descent. Initially g  is set equal to f,. Then, at each itera-
tion 

- max (o. g - A 
	

(6) 
6191.1 

where 

as  
.. = 	

2(, 
	 (7) 

and A is a small positive constant, sufficiently small that 
S decreases in value at each iteration. (For a general dis-
cussion of linearly constrained optimisation, and more 
sophisticated algorithms, see, for example [22].)  After 
several hundred iterations g settles down to a constant 
array of values and the optimisation is complete. Figure 
S shows the deconvolution of Fig 2(b). Figure 6 shows a 
detail from Fig. 5. and the same detail from Fig. 2(b); it 
can be seen that bands which are very close together 
have been resolved. 

4 Discussion 

We have discussed the issues involved in choosing an 
image analysis system for electrophoresis gels, and we 
have demonstrated some image processing tools which 
can make interpretation easier for the scientist or for 
more sophisticated image analysis algorithms. Some 
scientists may feel disquiet at the image manipulations 
described in Section 3, feeling that it is unacceptable to 
interfere' with the original image, on which interpreta-
tions should alone be based. Such an attitude is laudable 
in general, as a scientist should be wary of any sugges-
tion of tinkering with data in order to make them show 
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Figure 5. DNA autoradiograph after constrained least-squares decon-

volution. Box shows area magnified in Fig. 6. 

what one would like to see. However, we would claim 
that our image enhancements should not be seen in this 
regard. This is because: (i) Image enhancement can rea-
sonably be seen as just another stage in gel production. 
The gel itself is not directly of interest - it is the pro-
teins or DNA bases which we wish to study. It is 
possible to regard the enhanced digital image as the 
final product of the electrophoresis operation. Looked at 
in this way, enhancements are just part of the routine of 
production. They will no more be chosen to enhance 
'desired' features, or suppress things undesired, than any 
other stage in the gel image production. Some, such as 
the gel unwarping, will be fully automatic and inde-
pendent of the user, and others, such as the top-hat 
transform, require only the setting of a parameter (disc 
radius). This is no different from any other machine set-
ting. (ii) Many of the manipulations we described are 
already used intrinsically by gel analysis software. For 
example, gel reading packages will estimate the smile' 
distortion in order to read the sequences correctly. Dis-
playing the unwarped image simply makes this explicit 
and apparent for the user. It then has the advantage that 
any errors in correcting the distortion can be see. (iii) 
The original image will remain available for consultation. 

L  cr- 

L 

Figure 6. A detail from Fig. 5. and the same detail from Fig. 2(b) 

Also, whatever computerisation of gel handling is used. 
the scientist always remains the final arbiter of any con-
clusions drawn. Computer technology has become 
widely used in many areas of science, and electro-
phoresis is a good example of this. We expect advances 
to continue, and look forward to the continuing develop-
ment of more powerful and reliable methods of image 
analysis in electrophoresis. 

This work was supported bt funds .from the Scottish Office 
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