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Editorial

Andreas Geyer-Schulz and Józef Pociecha

The first volume of Archives of Data Science, Series A is a special issue of
a selection of contributions which have been originally presented at the 3rd
Bilateral German-Polish Symposium on Data Analysis and Its Applications
(GPSDAA 2013). The GPSDAA is a joint workshop of the Gesellschaft für
Klassifikation e.V. (GfKl) and the Sekcja Klasyfikacji i Analizy Danych (SKAD)
and its third incarnation was hosted by Hermann Locarek-Junge at the TU
Dresden from September 26th-28th, 2013.

The workshop contained 22 presentations of joint work in progress in data
science the following researchers:

Werner Adler, Daniel Baier, Fabian Ball, Tomasz Bartłomowicz, Andrzej
Ba̧k, Andreas Beyer, Hans-Hermann Bock, Robert Busa-Fekete, Sabina Den-
kowska, Józef Dziechciarz, Manuel Ferreira, Andreas Geyer-Schulz, Thomas
Górecki, Swetlana Herbrandt, Eyke Hüllermeier, Hans A. Kestler, Zardad
Khan, Anna Król, Michael Kuhn, Katarzyna Kuziak, Berthold Lausen, Ludwig
Lausser, Paweł Lula, Hans-Joachim Mucha, Jan Mutl, Jan W. Owsiński, Barbara

Andreas Geyer-Schulz
Information Services and Electronic Markets, Karlsruhe Institute of Technology (KIT)
Kaiserstraße 12, D-76131 Karlsruhe, Germany
� Andreas.Geyer-Schulz@kit.edu

Józef Pociecha
Department of Statistics, Cracow University of Economics,
Rakowicka 27, 31-510 Kraków, Poland

� Jozef.Pociecha@uek.krakow.pl
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2 Andreas Geyer-Schulz and Józef Pociecha

Pawełek, Marcin Pełka, Krzysztof Piontek, Józef Pociecha, Sergej Potapov,
Nils Raabe, Christian Rautert, Aneta Rybicka, Adam Sagan, Stefanie Schreiber,
Leopold Sögner, Andrzej Sokołowski, Christoph Stadtfeld, Marta Targaszewska,
Claus Weihs, Justyna Wilk, and Waldemar Wołyński.

The nine papers in this volume are all revised and considerably extended ver-
sions of the presentations given at the GPSDAA 2013. We thank all authors for
the considerable additional effort and time they have put into the improvement
of their papers and, last but not least, for their patience with the delays in the
publication process.

On Friday, September 27th, 2013 a roundtable on the Future of Scientific
Publishing was held which led to vivid discussions among the workshop par-
ticipants. In a way these discussions were also crucial for the creation of the
Archives of Data Science, Series A.

This issue is structured by topics:

Clustering: Hans-Hermann Bock contributes a survey paper on probabilistic
two-way clustering and Hans-Joachim Mucha a paper on the problem of
assessing cluster stability.

Machine Learning: Michael Bräuning and Eyke Hüllermeier present new al-
gorithms for learning conditional lexicographic preference trees and Justyna
Wilk shows an application of classification trees to demographic research.

Conjoint Analysis: Daniel Baier, Marcin Pełka, Aneta Rybicka and Stefanie
Schreiber compare traditional and choice-base conjoint analysis models when
both models are estimated by hierarchical Bayes algorithms and Tomasz
Bartłomowicz, Andrzej Ba̧k present the MaxDiff R-package.

Applications: The last group of papers covers three different areas of appli-
cations of data science methods:

• Józef Dziechciarz, Anna Król, Marta Targaszewska present a variety of
approaches of measuring the effectiveness of tertiary education.

• Claus Weihs, Swetlana Herbrandt, Nils Raabe, Manuel Ferreira, Christian
Rautert combine laboratory experiments, statistical modelling techniques
and finite element methods in their approach to simulate grinding pro-
cesses with diamond tools.

• Ludwig Lausser, Florian Schmid, Matthias Platzer, Mikko J. Sillanpää,
and Hans A. Kestler apply classifiers to develop diagnostic tools for gene
expression data which bridge the gap to higher-level explanations such as
molecular signaling pathways.



Probabilistic Two-way Clustering
Approaches with Emphasis on the Maximum
Interaction Criterion

Hans-Hermann Bock

Abstract We consider the problem of simultaneously and optimally clustering
the rows and columns of a real-valued I× J data matrix X = (xi j) by corre-
sponding row and columns partitions A = (A1, ...,Am) and B = (B1, ...,Bn),
with given m and n. We emphasize the need to base the clustering method on a
probabilistic model for the data and then to use standard methods from statis-
tics (e.g., maximum likelihood, divergence) to characterize optimum two-way
classifications. We survey some clustering criteria and algorithms proposed in
the literature for various data types. Special emphasis is given to the maximum
interaction clustering criterion proposed by the author in 1980. It can be shown
that it results as the maximum likelihood clustering method under a two-way
ANOVA model (with individual main effects, but cluster-specific interactions).
After a simple data transformation (double-centering) well-known two-way
SSQ clustering algorithms can directly be used for maximization.

Hans-Hermann Bock
Institute of Statistics, RWTH Aachen University, Vorder-Winterbach 36, 77794 Lautenbach, Germany,
� bock@stochastik.rwth-aachen.de
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4 Hans-Hermann Bock

1 Two-way clustering problems

Two-way clustering means clustering, simultaneously, the rows and columns
of a data matrix X = (xi j)I×J . Synonymns are bi-clustering, co-clustering, or
block clustering. In practice, two-way clustering problems occur, e.g.,

• in microbiology (microarray measurements for I genes and J different times,
situations, or tissues); see, e.g., Martella et al (2008), Cheng and Church
(2000), Madeira and Oliveira (2004), Martella et al (2011), Martella and
Vichi (2012), Turner et al (2005)

• in marketing (purchase data for I consumers described by J social character-
istics); see, e.g., Baier et al (1997), Arabie et al (1988)

• in documentation (I documents or e-mails described by presence/absence
of J keywords); see, e.g., Dhillon et al (2003), Banerjee et al (2007), Li and
Zha (2006), Cho et al (2004), Cho and Dhillon (2008).

Many two-way clustering methods have been proposed since the beginning
of clustering activities in the 1970s (recent surveys were given by Van Mechelen
et al, 2004; Madeira and Oliveira, 2004; Charrad and Ben Ahmed, 2011; Vichi,
2012; Govaert and Nadif, 2013), but the possibility to record automatically
huge sets of data in various application fields has meanwhile increased the
importance of two-way clustering for an adequate and informative analysis of
data.

In this paper we consider a real-valued data matrix X = (xi j)I×J with I
rows, J columns and try to find an m-partition A = (A1, ...,Am) of the row set
I = {1, ..., I} with m classes, and an n-partition B = (B1, ...,Bn) of the column
set C = {1, ...,J} with n classes, such that the joint m ·n-partition A ×B =
{Ar × Bs|r = 1, ...,m,s = 1, ...,n} of the set of pairs {(i, j)|i ∈ I , j ∈J }
(cells of the matrix X) together with a suitable parametric characterization of
the classes fits, approximates or reproduces optimally the hidden row by column
structure (if any) in the given data matrix X . Obviously, such a formulation
requires the specification of some “structure" that should be reconstructed from
the data, and some optimality criterion that should be optimized. The multitude
of proposed two-way clustering algorithms can be largely explained by the
great number of choices for “structure" and “optimality".

We emphasize here the probabilistic approach where “structure" is described
by a parametric and block-specific probability distribution for the data Xi j.
Then, generally, the parameter estimates as well as the bi-clustering (A ,B)
are obtained by the maximum-likelihood (m.l.) approach. Thereby, the choice
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of a distributional model is highly dependent on the way in which the data
were obtained and on their interpretation as measurement values, associations,
frequencies, indicators, etc. In this respect we will consider

• association-type data for a two-mode data matrix (Sect. 2
• measurement-type values xi j with categorical factor levels i, j (Sect. 3)
• frequency-type values Ni j with factor levels i, j (contingency table; Sect. 4)
• object by variable measurements xi j (classical data matrix; Sect. 5)

and provide some exemplary probabilistic clustering approaches. For binary
variables we refer, e.g., to Govaert and Nadif (2005); Li (2005); Govaert and
Nadif (2007, 2008, 2013) and Nadif and Govaert (2010).

Note that we will not comment here on the choice of the numbers m,n of
classes (see, e.g., Schepers et al, 2008) and will present only the so-called “fixed-
partition" or “classification likelihood" approaches (see, e.g., Bock, 1996a,b).
Alternatively, probabilistic clustering approaches can also be formulated in
terms of mixture models (‘random-partition" approach) resulting in EM-type
algorithms and fuzzy bi-partitions in the form of posterior distributions (see,
e.g., Govaert, 1995; Govaert and Nadif, 2005, 2003, 2008, 2010; Bocci et al,
2006; Li and Zha, 2006; Martella et al, 2008, 2011). Other approaches use row-
and column-wise hierarchical clusterings or try to cover the set of IJ matrix
cells with suitably weighted, possibly overlapping “homogenous blocks" A×B
such as plaid methods (described by Lazzeroni and Owen, 2002; Turner et al,
2005) or additive clustering (as in Shepard and Arabie, 1979; Mirkin et al, 1995;
Wilderjans et al, 2013). See also the articles on multi-mode clustering in the
Special Issue on “Statistical learning methods including dimension reduction"
of the journal “Computational Statistics and Data Analysis" (vol. 52, 2007,
edited by H.-H. Bock and M. Vichi).

2 Clustering for association-type data

In this section we suppose that the data xi j represent association values that
measure how “close", “associated", or “interrelated" row i is to column j. Also
we assume a two-mode case, i.e., rows and columns refer to different sets (such
as customers and products, genes and time points, respectively). In this case a
classical two-way clustering criterion is provided by the SSQ:
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g(A ,B,µ) :=
m

∑
r=1

n

∑
s=1

∑
i∈Ar

∑
j∈Bs

||xi j−µrs||2→ minA ,B,µ (1)

where µrs ∈ R is a block-specific prototype value and µ the set of these values1

(Bock, 1980). This criterion amounts to approximating the given data matrix X
by an “ideal" block-matrix X̃I×J with the same value µrs in all cells of a block
(bicluster) Ar×Bs (for all r,s). Given that partial minimization with respect
to µ leads to the average values µ̂rs = x̄Ar×Bs in the blocks Ar×Bs of X , the
criterion (1) is equivalent to the following SSQ clustering criterion:

Qmin(A ,B;X) :=
m

∑
r=1

n

∑
s=1

∑
i∈Ar

∑
j∈Bs

||xi j− x̄Ar×Bs ||2→ min
A ,B

(2)

and to

k(A ,B;X) :=
m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · ||x̄Ar×Bs ||2→max

A ,B
. (3)

In order to optimize these clustering criteria many algorithms (e.g., dou-
ble k-means) have been proposed; see, e.g., Bock (1980); Gaul and Schader
(1996); Baier et al (1997); Hansohm (2002); Vichi (2001); Castillo and Trejos
(2002); Cho et al (2004); Cho and Dhillon (2008); Rocci and Vichi (2008);
Van Rosmalen et al (2009); Schepers and Hofmans (2009); Martella and Vichi
(2012)

3 Clustering for factorial designs

In this section we consider the case where all data values xi j are measurements
of the same target variable which, however, depends on two categorical factors
U (rows) and V (columns) with categories in I = {1, ..., I} and J = {1, ...,J},
respectively. For example, in a diet experiment with many persons, U might
be the initial BMI (discretized body mass index, I = 30, say) of a person, V
the type of diet that this person applies (with J = 15 types, say), and xi j the
average loss of weight after a four-weeks diet for all persons with U = i and
V = j. Assuming a complete factorial design (i.e., observations were made for

1 ||x||means the absolute value |x| for x∈ R1 and the Euclidean norm for multivariate data (see Remark
2). For a set A, |A| means the number of elements of A.
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all IJ combinations (i, j) ∈I ×J ) the clustering problem consists in finding
(a given number m = 6, say, of) BMI classes A1, ...,Am and (a given number
n = 4, say, of) diet classes B1, ...,Bn that best describe the data. In this way, the
large number of categories can be reduced to a smaller and handy number of
category classes or “types".

Classical statistics analyzes such two-way configurations by ANOVA models
with random variables Xi j that are additively obtained from a total mean, row
and column main effects, interaction terms, and normal errors. In the clustering
framework we consider two such models: one with individual main effects, and
one with class-specific main effects. It appears that only the first one provides
new insights while the second one falls back to the criterion (2).

3.1 ANOVA clustering model with individual main effects

Here we assume that the existence of a hidden bi-clustering is exclusively
caused by block-specific interaction terms while main effects do not contribute
to the clustering aspect. In the framework of ANOVA this amounts to suppose
that Xi j are given, for a fixed bi-partition (A ,B), by the additive composition:

Xi j = c+ai +b j + γrs + ei j i ∈ Ar, j ∈ Bs,r = 1, ...,m,s = 1, ...,n. (4)

Here c is a fixed mean value, ai the individual main effect of category i of
U , b j the individual main effect of category j of V , and γrs the class-specific
interaction effect; the latter one is the same for all pairs (i, j) in the bicluster Ar×
Bs. The ei j are independent random error terms with ei j ∼N (0,σ2) where we
consider σ2 to be known here (but see Remark 1). In order to attain identifiability
of parameters, the following zero-means normalization is introduced:

ā• := ∑
I
i=1 ai/I = 0, b̄• := ∑

J
j=1 b j/J = 0,

γ̄•,s := ∑
m
r=1 |Ar| · γrs/I = 0, γ̄r,• := ∑

n
s=1 |Bs| · γrs/J = 0 for all r,s.

For estimating the unknown parameters c,ai,b j,γrs and the unknown (A ,B)
we use the m.l. approach. Due to the normality assumptions this amounts to
minimizing the SSQ:

Q̃(c,a,b,γ,A ,B) :=
m

∑
r=1

n

∑
s=1

∑
i∈Ar

∑
j∈Bs

||xi j− c−ai−b j− γrs||2→ min
c,a,b,γ,A ,B

(5)
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After some algebraic manipulations (or using derivatives) we obtain, for a
fixed bi-partition (A ,B), the following m.l. estimates:

ĉ = x̄•,• overall mean
âi = x̄i,•− x̄•,• and b̂ j = x̄•, j− x̄•,• individual main effects
γ̂rs = x̄Ar×Bs− x̄Ar,•− x̄•,Bs + x̄•,• class-specific interaction effects.

Inserting these estimates into (5) yields the clustering criterion:

Q̃min(A ,B) :=
m

∑
r=1

n

∑
s=1

∑
(i, j)∈Ar×Bs

(xi j− µ̂− âi− b̂ j− γ̂rs)
2 → min

A ,B
(6)

that can be shown, by algebraic transformations (see Bock, 1980; Schepers
et al, 2013), to be equivalent to the following maximum interaction clustering
criterion:

G(A ,B;X) :=
m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · |γ̂(X)

rs |2 (7)

=
m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · (x̄Ar×Bs− x̄Ar,•− x̄•,Bs + x̄•,•)2→ max

A ,B

where we have flagged γ̂
(X)
rs by the superscript X in order to emphasize the

corresponding data matrix X .
This clustering criterion was proposed by Bock (1980) on empirical grounds.

The previous argumentation shows that it derives from the probabilistic factorial
ANOVA approach (4). In Sect. 4 we will show that its minimization can be
easily performed by the algorithms that were developed for the SSQ cluster
criterion (2); so no specific algorithms have to be developed for (7).

Remark 1: It can easily be shown that the criterion (7) results as the m.l.
clustering criterion also in the case of an unknown variance σ2.

Remark 2: In case of vector-valued variables Xi j and observations xi j ∈ Rp the
ANOVA model (4) must be formulated with p-dimensional effects c,ai,b j,γrs

and ei j ∼Np(0, Ip). For this p-dimensional version the m.l. clustering ap-
proach yields the same clustering criteria as before (in particular, the max-
imum interaction criterion (7)) where ||...|| now is the Euclidean norm in
Rp.
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3.2 ANOVA clustering model with class-specific main effects

We may wonder what happens if we assume that in the ANOVA model (4) not
only the interactions, but also the main effects are class-specific. This amounts
to the additive model

Xi j = µrs + ei j = c+αr +βs + γrs + ei j i ∈ Ar, j ∈ Bs,r = 1, ...,m,s = 1, ...,n
(8)

with class-specific “block prototypes" µrs = c+αr +βs + γrs, typically with a
zero-mean standardization for the effects αr,βs,γrs. Note that for given {µrs}
the standardized effects are uniquely determined by c = µ̄•,•, αr := µ̄Ar,•− µ̄•,•,
βs = µ̄•,Bs− µ̄•,• and γrs = µ̄Ar,Bs− µ̄Ar,•− µ̄•,Bs + µ̄•,• such that the parameter
sets {µrs} and {c,ar,bs,γrs} are uniquely determined by each other. Therefore
only the µrs must be estimated.

Due to the normality assumption m.l. clustering is here equivalent to min-
imizing the total SSQ (1) with respect to {µrs} and (A ,B). Therefore all
statements of Sect. 2 apply and insofar also the clustering criteria (2) and (3)
are justified by a probabilistic model (Bock, 1980).

3.3 Maximizing the interaction criterion

Surprisingly it appears that the interaction criterion G(A ,B;X), (7), can be
(approximately) maximized by the same algorithms that have been developed
for minimizing the SSQ criterion Qmin(A ,B;Y ), (2), if the original data matrix
X is suitably transformed before (see also Bock, 1980). In fact:

Theorem 1. Maximizing the interaction criterion G(A ,B;X) from (7) is equiv-
alent to minimizing the SSQ clustering criterion Qmin(A ,B;Y ) from (2) where
the data matrix X has been replaced by the double-centered matrix Y = (yi j)I×J

with entries

yi j := xi j− x̄i,•− x̄•, j + x̄•,• for all i, j.
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Proof. It is easily seen that for all r,s:

ȳAr×Bs = x̄Ar×Bs− x̄Ar,•− x̄•,Bs + x̄•,• = γ̂
(X)
rs .

Therefore the interaction criterion G(A ,B;X) is identical to the criterion
k(A ,B;Y ) from (3). On the other hand, the well-known decomposition formula

I

∑
i=1

J

∑
j=1
||yi j||2 =

m

∑
r=1

n

∑
s=1

∑
(i, j)∈
Ar×Bs

||yi j− ȳAr×Bs ||2

︸ ︷︷ ︸
+

m

∑
r=1

n

∑
s=1
|Ar| · |Bs| · ||ȳAr×Bs ||2︸ ︷︷ ︸

= Qmin(A ,B;Y ) + k(A ,B;Y ). (9)

(where the left hand side is constant with respect to A ,B) shows that maxi-
mizing the criterion k(A ,B;Y ) is equivalent to minimizing the SSQ criterion
Qmin(A ,B;Y ) for the double-centered matrix Y . qed

4 Two-way clustering for a contingency table

In this section we consider again a two-way factorial design with two categorical
characteristics U and V as in Sect. 3, but here we assume that the entries xi j of
the data matrix X are counts Ni j and write X =N = (Ni j)I×J in this case. As an
example we may consider the N clients (contracts) of a car insurance company,
characterized by the profession U of the client and the brand V of the insured
car. Then Ni j is the number of clients with profession i and car make j. For the
company it can make sense to reduce the large numbers of categories I and J to
a smaller number m of (profession) classes Ar and a smaller number n of (brand)
classes Bs such that profession classes are, on the average, most predictive for
the brand class of a client, i.e., with a maximum interaction between both. The
resulting classes Ar,Bs and biclusters Ar×Bs might be the basis for calculating
adequate insurance premiums.

In contrast to Sect. 3 where normal distributions were involved, the new
scenario is modeled by a random sample of N items (clients) such that Ni j is the
number of items assigned to the category combination (i, j) (with ∑i j Ni j = N).
Then N = (Ni j) has a polynomial distribution Pol(N;(pi j)I×J) with unknown
cell probabilities pi j which are typically estimated by p̂i j := Ni j/N.
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In this framework “independence among row and column classes" is modeled
by the “hypothesis" H0:

P(Ar×Bs) = PU(Ar) ·PV (Bs) for all r,s

with P(Ar×Bs) := ∑i∈Ar ∑ j∈Bs pi j, PU(Ar) := ∑i∈Ar ∑
J
j=1 pi j,

PV (Bs) := ∑
I
i=1 ∑ j∈Bs pi j, and can be tested, for a fixed bi-partition (A ,B),

by the classical χ2 test. On the other hand, the contrasting idea of “maximum
interaction between row and column classes" is interpreted here in the way
that the χ2 test is maximally significant for rejecting H0, i.e., that the χ2 test
statistics, termed χ2 clustering criterion

C(A ,B) :=
m

∑
r=1

n

∑
s=1

(P̂(Ar×Bs)− P̂U(Ar) · P̂V (Bs))
2

P̂U(Ar) · P̂V (Bs)
→ max

A ,B
(10)

is maximal with respect to the bi-partition (A ,B). Here P̂ means the m.l. esti-
mate for the probability distribution P, e.g. with P̂U,V (Ar×Bs) = ∑i∈Ar ∑ j∈Bs p̂i j

= ∑i∈Ar ∑ j∈Bs Ni j/N.
In a more general context we note that the χ2 criterion (10) results as a

special case (for φ(λ ) := (λ −1)2) from the classical φ -divergence measure by
Csiszár:

Cφ (A ,B) :=
m

∑
r=1

n

∑
s=1

P̂U(Ar)P̂V (Bs) ·φ
(

P̂(Ar×Bs)

P̂U(Ar)P̂V (Bs)

)
→max

A ,B
(11)

where φ is an arbitrary convex function. This divergence clustering criterion
measures the deviation between the observed probability distribution P̂ and
the product distribution P̂U · P̂V for a given biclustering (A ,B). For φ(λ ) =
− logλ a Kullback-Leibler clustering criterion results. These criteria have been
proposed for clustering by Bock (1983, 1992, 2003, 2004), Celeux et al (1989,
χ2 criterion), Dhillon et al (2003) and Banerjee et al (2005, 2007). Note that
the usage of the χ2 criterion can be justified by theoretical considerations in
terms of maximum power, Bahadur efficiency etc. of the χ2 test (Bock, 1992).

In order to minimize the divergence criterion we may use the classical
alternating maximization scheme (generalized double k-means): Choose an
initial bipartition A (0),B(0) and then alternate between (i) partial maximization
with respect to the row partition A (for fixed B) and (ii) partial maximization
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with respect to the column partition B (for fixed A ). In order to conduct
these partial minimization steps Bock (1992, 2003, 2004) has proposed a k-
means-type algorithm that uses class-specific tangents (subgradients) of the
convex function φ (instead of class means as in the classical SSQ case) and
was therefore termed k-tangent algorithm. See also Dhillon et al (2003) and
Banerjee et al (2005, 2007). For a mixture-type approach see Govaert and Nadif
(2010, 2013).

5 Two-way clustering for an object by variable matrix

In the previous sections clustering of rows and columns of the data matrix
X = (xi j)I×J was performed in a symmetrical way such that the roles of rows
and columns could have been reversed without changing the results. This is
different in the case of an object by variable data matrix since, e.g., objects will
be independently sampled while variables might be more or less dependent.
Also the motivations for grouping objects and variables are different: objects
are assembled in groups because they are supposed to behave similarly (with
respect to all variables) whereas variables from the same group are supposed
to be dependent from each other while independence may hold for variables
of different groups. In this last section we sketch two approaches for modeling
bi-partition structures for X in the case of I objects and J continuous variables.
For more information see, e.g., Vichi (2012); Nadif and Govaert (2010); Govaert
and Nadif (2013).

In a probabilistic framework the rows xi = (xi1, ...,xiJ)
′ of X are considered

as a sample of I independent random (column) vectors Xi = (Xi1, ...,XiJ)
′ with

a distribution that depends on the group Ar of A = (A1, ...,Am) to which object
i belongs to. Any clustering B = (B1, ...,Bn) of the set of columns J (with
group sizes bs := |Bs|, s = 1, ...,n, ∑s bs = J) is supposed to split the set J of
variables into n mutually independent groups of variables. This also amounts to
splitting Xi into n subvectors Xi,B1 , ...,Xi,Bn such that Xi,Bs ∈ Rbs comprizes the
components Xi j of Xi that belong to class Bs. For notational convenience we as-
sume here that the ordering of components in Xi is such that all classes B1, ...,Bn

comprize contiguous sets of variables j ∈J such that Xi = (X ′i,B1
, ...,X ′i,Bn

)′.
A first clustering model is based on the J-dimensional normal distribution:
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Xi :=

Xi1
...

XiJ

=

Xi,B1
...

Xi,Bn

∼NJ(µ
(r)(B);Σ

(r)(B)) for i ∈ Ar (12)

(r = 1, ...,m) where object classes Ar are characterized by class-specific and
partitioned expectations µ(r)(B) ∈ RJ and J× J covariance matrices Σ (r)(B)
according to

µ
(r)(B) =

µr,B1
...

µr,Bn

 Σ
(r)(B) = diag(Σ (r)

11 , · · ·Σ
(r)
nn ) (13)

In particular, we then have, for all i ∈ Ar, that Xi,Bs ∼Nbs(µr,Bs ,Σ
(r)
ss ) with

independent subvectors Xi,Bs ,Xi,Bt for different column classes Bs and Bt .
While, in principle, m.l. clustering might be possible for this general case,

practical applications may concentrate on more parsimonious covariance mod-
els, e.g.:

• with independent variables within each group: Σ
(r)
ss = σ

(r)
s

2
Ibs for all s (and

then, a fortiori, independence among all J variables);

• with the same variances in all object classes Ar: σ
(r)
s

2
= σ2

s for all r and s;
• with the same variances σ2

1 = · · ·= σ2
n for all groups Bs (then variable groups

differ only by the expectation vectors µr,Bs).

A related mixture model approach is described, e.g., by Nadif and Govaert
(2010).

A second modeling approach is based on characteristic subspaces for the
variables in Bs, but is only briefly sketched here in a simple case. Let us denote
the J column variables of X by Y1, ...,YJ . We start from the assumption that
within each column class Bs, the corresponding random vector YBs (that corre-
sponds to the subvector Xi,Bs in the matrix X) is generated by a T -dimensional
random vector U (s) := (U (s)

1 , ...,U (s)
T )′ such that YBs = α(s)+∑

T
t=1 β

(s)
t U (s)

t =

α(s) + β (s)′U (s) is a linear function of the underlying T “factors" or “com-
ponents" U (s)

1 , ...,U (s)
T (which are assumed to be independent, centered and

normalized, with T ≤ bs) with unknown α(s) and coefficients β
(s)
t . Thus, in row

i of X , all data subvectors Xi,Bs are lying in the same T -dimensional subspace
H(s) of Rbs with coordinate vectors U (s)

[i] = (U (s)
i1 , ...,U (s)

iT )′ (typically with T = 1
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or 2). Typically this subspace will be different for different object groups Ar.
Completing the corresponding index r in the previous notation, we obtain the
two-way subspace model

Xi,Bs = α
(s)
r +β

(s)
r
′
U (s)
[i] for i ∈ Ar,r = 1, ...,m,s = 1, ...,n (14)

where the coordinate vectors U (s)
[i] are all supposed to be independent. Applying

this model (under normal distribution assumptions) to the given data X , we
obtain the following two-way subspace clustering criterion:

R(A ,B,α,β ,u) :=
m

∑
r=1

∑
i∈Ar

n

∑
s=1
||xi,Bs−α

(s)
r −β

(s)
r
′
u(s)[i] ||

2→ min
A ,B,α,β ,u

(15)

which is to be minimized with respect to the parameters and the underlying
(factor weighting) vectors u(s)[i] = (u(s)i1 , ...,u(s)iT )′ ∈ RT . Essentially this amounts
to mn block-specific principal component analyses. After all, the component
vectors u(s)[i] can be displayed in RT and then provide an idea about the configura-
tions of the data within the data blocks Ar×Bs. Similar models and algorithms
are surveyed in Vichi (2012); quite generally they provide a remarkable reduc-
tion in data complexity in case of a large number J of variables that is reduced
here to the dimension nT .

Finally we want to point to the fact that two-way clustering can also be seen
in the context of (social) network analysis where we are given, in the simplest
case, a data matrix that describes a binary relation among objects (rows) and
properties (columns). The problem then consists in constructing blocks of ob-
jects (e.g., persons) with a similar behaviour with respect to the properties,
and blocks of similarly related properties, all formulated in graphtheoretical
terms. Suitable probabilistic and non-probabilistic models and methods are
described, e.g., in the seminal publications by Holland and Leinhardt (1981);
Anderson et al (1992); Wasserman and Faust (1994); Nowicki and Snijders
(2001). Another approach is followed by Harris and Godehardt (1998); Gode-
hardt and Jaworski (2003) and Godehardt et al (2010) who consider, to a given
binary relation matrix, the corresponding “intersection graph" for objects and
attributes, and analyze its properties in various probabilistic data models.
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Assessment of Stability in Partitional Clustering
Using Resampling Techniques

Hans-Joachim Mucha

Abstract The assessment of stability in cluster analysis is strongly related to
the main difficult problem of determining the number of clusters present in
the data. The latter is subject of many investigations and papers considering
different resampling techniques as practical tools. In this paper, we consider
non-parametric resampling from the empirical distribution of a given dataset
in order to investigate the stability of results of partitional clustering. In detail,
we investigate here only the very popular K-means method. The estimation of
the sampling distribution of the adjusted Rand index (ARI) and the averaged
Jaccard index seems to be the most general way to do this. In addition, we
compare bootstrapping with different subsampling schemes (i.e., with different
cardinality of the drawn samples) with respect to their performance in finding
the true number of clusters for both synthetic and real data.

1 Introduction

Originally, nonparametric bootstrapping is a statistical method for estimating
the sampling distribution of an estimator by sampling with replacement from
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the original sample (Efron, 1979, 1981). Many authors such as Mammen (1992)
derived asymptotic results of parametric bootstrapping. Others presented simu-
lation results of parametric/nonparametric bootstrapping (Efron, 1981; Efron
and Tibshirani, 1993).

This very simple technique allows estimation of the sampling distribution
of almost any statistic. Bootstrapping falls in the broader class of resampling
methods and simulation schemes. Some alternative resampling methods are
subsampling (draw a subsample to a smaller size without replacement) and
jittering (add noise to every single observation), and a combination of both
simulation schemes.

In hierarchical cluster analysis (HCA), we found out that bootstrapping
performs best for finding the number of clusters (Mucha and Bartel, 2014, 2015).
In all cases (toy and real data), it outperforms subsampling. In subsampling,
the choice of the parameter “resampling rate” p causes an additional problem.
A subsampling rate of 90% (i.e., p = 0.9: this corresponds in some sense to
tenfold-cross-validation) or greater performs very bad in HCA methods such as
Ward and Average Linkage. The question arises: Is bootstrapping also the best
choice for stability investigations of results of partitional clustering?

2 Partitional and hierarchical cluster analysis

A recent survey of partitional and hierarchical clustering algorithms is given by
Reddy and Vinzamuri (2014). Here we will emphasize the differences of these
two families of cluster analysis methods with respect to the results that have
to be assessed by resampling methods. Hierarchical clustering looks fit and
proper for resampling because of the (usual) unique and parallel clustering of
the I observations into partitions of K = 2,K = 3, . . . clusters. (Here, a partition
P(I,K) is simply the exhaustive partitioning of the set of I observations into K
subsets (clusters).) In addition, pairwise distances, the usual starting point of
hierarchical cluster analysis, are not affected by bootstrapping/subsampling.

The results of partitional (iterative) clustering methods are dependent on the
initial partition into a fixed number of clusters K. That’s quite different from
hierarchical clustering. In addition, the results of some exchange algorithms
are also dependent on the sequence of the observation (Mucha, 2009). For
instance, Fig. 1 shows a quite bad result of clustering of a dataset of three two-
dimensional randomly generated normal subpopulations. The three Gaussian
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Fig. 1 Result of Quickcluster of SPSS applied to 4000 observations.

subpopulations were generated with the following parameters: cardinalities
1100, 1600, and 1300, mean values (-3, 3), (0, 0), and (3, 3), and standard
deviations (1, 1), (0.7, 0.7), and (1.2, 1.2). Here the procedure Quickcluster
of SPSS is applied with the option running means: the clusters are updated
after each observation is assigned to a new cluster. In this two-dimensional
setting, one can check the validity of cluster analysis results visually by eye. In
a high-dimensional setting, there is a need for a general validation approach
that works in almost all situations (see the next subsection). In this paper, the
partitional clustering methods of our software ClusCorr98 are used (Mucha,
2009). Here, a random access to the observations is realized. This is in order
to avoid such bad solutions as shown in Fig. 1. Usually, many different initial
partitions, say around 50, are needed to get many different locally optimal
solutions. In practice, the best solution is taken for the investigation of stability.
Moreover, you have to do this for each K (K = 2,3, . . .). Finally, you have to
do all the things outlined above also for each bootstrap sample (or subsample).
Obviously, resampling of partitional clustering looks much more costly in terms
of computational complexity than hierarchical clustering. The good news is that
some partitional methods such as K-means clustering can work with pairwise
distances which are not affected by bootstrapping/subsampling.
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Fig. 2 K-means clustering of the two-dimensional no-structure data into three clusters (marked by
black borderlines and color).

Concerning interpretation/comparison of the assessment of stability of two
partitions P(I,K) and P(I,K +1) of a hierarchy one has to keep in mind that
exactly K−1 clusters are identical, i.e., only one cluster is changed when going
from P(I,K) to P(I,K + 1). That means, theoretically, the lower K the more
the stability of the partition P(I,K) depends on the stability of the partition
P(I,K + 1). This is different from partitional clustering where, usually, all
clusters of the two partitions are different.

Even though both clustering techniques, the well-known hierarchical Ward’s
method and the partitional K-means method, have the same underlying sta-
tistical model (Banfield and Raftery, 1993), the results are usually different.
Both methods minimize the same criterion (Eq. 1) below but they do this in
another way. The K-means clustering method produces the well-known Voronoi
tessellation, where the objects have minimum distance to their centroid and,
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Fig. 3 Ward’s clustering of the two-dimensional no-structure data into three clusters (marked by black
borderlines) and into 15 clusters (marked by color), respectively.

thus, the borderlines between clusters are hyperplanes as shown in Fig. 2. There
are 4000 random generated points in R2 coming from a standard normally
distributed population. In detail: a K-means clustering was done here based on
pairwise proximities (squared Euclidean distances, see equations (4) and (5) be-
low). By contrast, the Ward method does not create hyperplanes as borderlines
between clusters as illustrated in Fig. 3 for the three cluster solution. Both the
hierarchical Ward method and the partitional K-means method minimize the
within-cluster sum of squares criterion

WK(G) =
K

∑
k=1

tr(Wk) (1)

with respect to a Boolean assignment matrix G for a fixed K (for details see
below).
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Wk =
I

∑
i=1

gik(xi−xk)(xi−xk)
T (2)

is the sample cross-product matrix for the kth cluster Ck of a given data matrix
X = (xi j) consisting of I rows and J columns (variables), and

xk =
1

g.k

I

∑
i=1

gikxi (3)

is the usual maximum likelihood estimate of expected values in cluster Ck.
Further, g.k is the cardinality of cluster Ck, that is, g.k = ∑i gik.

The Boolean assignment matrix G formalizes the simplest (elementary) solu-
tion to the clustering problem with a fixed number of clusters K: G ∈ {0,1}I×K

(that is, G = (gik)) with the restriction of uniqueness and exhaustive assignment
(completeness) ∑

K
k=1 gik = 1 for every object i. Formally, the mapping is:

G : C ×{1,2, . . . ,K} −→ {0,1}

with

gik =

{
1 if observation i comes from the cluster (subset) Ck
0 otherwise.

Indeed, the cluster mapping G induces a partition P(I,K) = {C1, . . . ,CK} of C .
Here, by definition,

⋃K
k=1 Ck = C and Ck∩Cl = /0 for every pair of clusters Ck

and Cl , k, l = 1,2, . . . ,K,k 6= l. This cluster mapping yields exactly K clusters
(subsets), where the numbering of the clusters is arbitrary because it usually
depends on the applied clustering algorithm. Alternatively, let g = (g1, . . . ,gI)

T

denote the identifying labels for the clustering and thus for the cluster mapping
G, where gi = k if the ith object xi comes from the kth cluster. One can under-
stand g as a categorical variable or partition variable with K different nominal
states {1, 2, . . . ,K}. Formally, g = Ge, where the vector e = (1,2,3, . . . ,K)T

has K entities.
It is well known that the criterion (1) can be written in the following equiv-

alent form without the explicit specification of cluster centers (centroids) xk
(Späth, 1982):

WK(G) =
K

∑
k=1

1
2g.k

I

∑
i=1

I

∑
h=1

gikghkdih, (4)

and

Herein
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dih = d(xi,xh) = (xi−xh)
T (xi−xh) = ‖xi−xh‖2 (5)

is the squared Euclidean distance between two observations i and h.
In practice, it is not possible to know how good our best (sub-optimum) result

matches both the true (but unknown) classes and the global optimum. We start
with many different initial partitions (usually 50), and we select the one that
gives the best criterion value. Cluster ensemble methods are another approach
in order to find a better cluster analysis result (see, for instance, Minaei-Bidgoli
et al, 2014; Fischer and Buhmann, 2003).

3 Resampling techniques in cluster analysis

Nonparametric bootstrapping is resampling taken with replacement from the
original data. Equivalently, bootstrapping can be formulated by choosing the
following random weights of the observations:

mi =

{
n if observation i is drawn n times
0 otherwise.

(6)

Here we suppose that the original weights of the observations are mi = 1, i =
1,2, . . . , I (“unit mass”). Then, obviously, I = ∑i mi holds in resampling with
replacement. Bootstrapping generates multiple observations. When clustering
“small” datasets, this can cause problems. The meaning of “small” depends
on several factors of influence such as the number of dimensions (variables)
and the complexity of the cluster analysis model. Small can be, for instance
in the case of simple models such as K-means clustering or Ward’s method, a
relation I/K < 5 with regard to the number of expected clusters K, or a number
of observations I < 20. In the last situation, soft bootstrapping is recommended
by Mucha and Bartel (2014). All statistical methods that make use (directly or
indirectly) of weights of the observations can do bootstrapping based on (6).
Concerning the K-means method based on pairwise distances, the “centers-free”
criterion (4) can be generalized by introducing the weights of the observations
to

WK(G) =
K

∑
k=1

1
2Mk

I

∑
i=1

mi

I

∑
h=1

gikghkmhdih. (7)

Obviously, it allows a computationally efficient bootstrapping because the
pairwise distances (5) remain unchanged in the K-means clustering.
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Subsampling is resampling taken without replacement from the original data.
It can also be formulated by choosing the following random weights of the
observations:

m∗i =
{

1 if observation i is drawn randomly
0 otherwise.

(8)

Here I > L = ∑i m∗i holds in resampling without replacement. The param-
eter p = L/I is needed which causes an additional problem, i.e., setting the
cardinality L of the drawn sample. This is different from bootstrapping where
no parameter is needed because here the cardinality of the drawn sample al-
ways equals I. Below we will investigate subsampling with different p values,
say p = 0.6 (“Sub60%”), p = 0.75 (“Sub75%”), and p = 0.9 (“Sub90%“). A
practical way out from choosing the parameter p would be to discard multiple
points in a bootstrap scheme (named “Boot2Sub“ in the investigations below).
Concretely, the random bootstrap-weights mi in (6) have to be modified simply
to

m∗i =
{

1 if observation i is drawn n times
0 otherwise.

(9)

As a consequence of subsampling via (9), the cardinality of such a subsample
“Boot2Sub“ is around 63.2% of the I observations (see Efron and Tibshirani,
1997). Clearly, “Boot2Sub“ (based on (9)) and bootstrapping (based on (6)) lead
to identical results for all the cluster analysis methods that make no use (directly
or indirectly) of the weights of the observations mi such as the hierarchical
Single Linkage or Complete Linkage method.

For instance, the resampling method can be used to investigate the variations
of the centroids of the clusters, see Mucha and Bartel (2014). As an application,
Fig. 5 shows the estimates of the location parameters that are the result of
hierarchical Ward’s clustering of 250 non-parametric subsamples of the toy
dataset presented in Fig. 4. Here three clusters were investigated (for details see
Mucha and Bartel, 2014). But, in clustering, the estimation of parameters such
as the expected values is not the main task. However, in the case of quantitative
data, an estimation of the confidence regions around the cluster centroids can
be of interest. The final aim of clustering is the formation of groups either as a
partition or a hierarchy of a given set of observations. Therefore, here the focus
is on a general investigation of the stability based on partitions. This covers
also hierarchies because they can be considered as a set of partitions (Mucha,
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Fig. 4 Plot of the two-dimensional toy dataset divided into three classes by eye. The latter can be
found exactly by the partitional K-means clustering. The data values are integers. They can be taken
directly from the plot. The observations are numbered.

Fig. 5 Plot of the estimates of the location parameter of clusters. They are the result of Ward’s HCA
of 250 subsamples (75% resampling rate) into three clusters.



30 Hans-Joachim Mucha

2007). To assess the stability of a cluster in the most general way, resampling
techniques can be used.

Xiong and Li (2013) investigated many measures of stability with reference
to cluster analysis. Here our focus is on two measures, namely the adjusted
Rand index (ARI) R and the Jaccard index γ . Why is validation of clustering so
important? That is because cluster analysis presents clusters in almost any case.
Real clusters should be stable, i.e., they should be confirmed and reproduced to
a high degree if the dataset is changed in a non-essential way (Hennig, 2007).
Thus, clustering of a randomly drawn sample of a dataset consisting of really
well-separated clusters should lead to similar results.

In clustering, usually nothing is known about the true class structure, es-
pecially about the number of clusters K. Therefore, the performance or the
stability of clustering can not be assessed by counting the rate of misclassifica-
tions based on a confusion matrix. However, with the help of non-parametric
bootstrapping we are able to operate also on a confusion matrix. It comes from
crossing two partitions: the original one and one coming from clustering a
“bootstrap” sample. Then the adjusted Rand index or other measures of stability
can operate on such an “artificial” confusion matrix. Usually, hundreds of boot-
strap samples are needed, see for details (Mucha and Bartel, 2015). Here we
work with B = 250 bootstrap samples and we take the average (or median) of
the B ARI values to come to a final RK ,K = 2,3, . . .. The maximum RK gives
us an idea about the number of clusters K we are looking for.

In addition to ARI, bootstrapping the Jaccard coefficient can be recom-
mended. The latter assesses the similarity between sets (clusters), for details,
see Hennig (2007). It can be used to measure the stability of each individual
cluster k by the corresponding Jaccard values γb

k with regard to the bootstrap
sample b,b = 1,2, . . . ,B. Then we take the average (or median) of the B Jaccard
values to come to γk that assesses the stability of an individual cluster k. Both the
ARI and the averaged Jaccard measure γK are recommended for an investigation
of the stability of a partition into K clusters. Here, the latter is the average of
all Jaccard values γk of the K individual clusters of a partition into K clusters.
An alternative proposal can be, for instance, a weighted average of all Jaccard
values γk.

To summarize, bootstrapping of a stability measure is based on an original
clustering that is compared many times to corresponding clustering results
coming from a bootstrap sample. Concerning more details about bootstrapping
a stability index see Mucha (2007); Hennig (2007); Mucha and Bartel (2015).
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Fig. 6 Jaccard’s measures of partitional K-means clustering (shown in Fig. 4) of the toy data.

Fig. 7 ARI measures of partitional K-means clustering (shown in Fig. 4) of the toy data.

Other ways of the evaluation of cluster solutions via the bootstrap can be found,
for instance, in Fang and Wang (2012), and Dolnicar and Leisch (2010).
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4 Bootstrapping versus subsampling in partitional cluster analysis

Fig. 4 introduces a toy dataset consisting of three classes C1 = {1,2, . . . ,17},
C2 = {18,19, . . . ,23}, and C3 = {24,25, . . . ,32}, i.e., it seems to be plausible
that there are three classes when looking at the scatterplot. In Fig. 6, different
resampling techniques are compared based on the averaged Jaccard measure γK

for the validation of results of the toy data shown in Fig. 4. The three cluster
solution of K-means clustering matches exactly the three classes shown in
Fig. 4. Fig. 7 shows similar results as Fig. 6 but based on the ARI RK .

Fig. 8 Plot of the bivariate density estimate of the toy data.

Without much doubt, in this experiment only bootstrapping finds out that
there are three clusters. In addition, the ARI “outperforms“ Jaccard with respect
to the steepest rise when going from K = 2 to K = 3 clusters. But both present
similar results and especially both vote clearly for three clusters and for at most
four clusters. The latter because of the steep decrease when going further on to
five clusters. Almost all subsampling versions fail in finding the three clusters.
In addition, “Sub90%“ doesn’t indicate any partition clearly. Fig. 8 shows a
continuous representation of the toy data. Only class 2 looks homogeneous and
well separated (see also Fig. 4), and, maybe, there are more than three peaks.
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Fig. 9 Jaccard’s measures of K-means clustering of the Gaussian data.

Fig. 10 ARI measures of partitional clustering of the Gaussian data.

Similar to Figs. 6 and 7, Figs. 9 and 10 show the validation results of
the partitional K-means clustering of the randomly generated two-dimensional
three class data based on the averaged Jaccard measure γK and the ARI RK ,
respectively. The three Gaussian sub-populations were generated with the fol-
lowing parameters: cardinalities 80, 130, and 90, mean values (-3, 3), (0, 0),
and (3, 3), and standard deviations (1, 1), (0.7, 0.7), and (1.2, 1.2). K-means
clustering is successful in dividing (decomposing) the data into three subsets:
only five errors are counted.
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Fig. 11 Variance of ARI measures of partitional clustering of the Gaussian data.

Here bootstrapping performs also best in finding the three classes because it
has

1. the maximum value at K = 3,
2. the most steeply rising when coming from K = 2 and going to K = 3, and
3. the most steeply sloping when going further on to K = 4.

As before, “Sub90%“ performs worst. Subsampling “Boot2Sub“ looks most
similar to bootstrapping. However, looking at the variances of ARI, say for K =
2, bootstrapping has nearly three times more variance (Fig. 11). Bootstrapping
looks very instable for the K = 2 solution in contrast to “Boot2Sub“, and, thus,
bootstrapping excludes the wrong solution much clearer.

Next, a real dataset is investigated: the well-known Swiss banknotes data
(Flury and Riedwyl, 1988). The data consists of 200 Swiss bank notes based
on 6 measurements. There are 100 genuine bank notes and 100 forged ones.
Figures 12 and 13 show the validation results of K-means clustering that finds
the two classes almost perfectly except for one misclassified observation only.
The two true classes are confirmed by both the averaged Jaccard index γK and
the ARI RK . The steepest decrease when coming from K = 3 and going to
K = 4 indicates that at most three clusters have a high stability. The latter comes
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Fig. 12 Averaged Jaccard of the partitional K-means clustering of the Swiss bank notes data.

Fig. 13 ARI of the partitional K-means clustering of the Swiss bank notes data.

from the fact that the class of forged bank notes is much more heterogeneous
than the class of genuine bank notes (Mucha, 1996). Maybe, the reason for this
is that the forged banknotes stem from several different workshops.

The Iris flower data is another well-known real dataset (Fisher, 1936). There
are 150 observations that come from three species (classes). One class (species)
is easy to find because it looks well separated from the other two in a principle
component analysis plot (Mucha, 1992). The other two species are not well
separated of each other. 16 errors are counted when using the K-means method
with K = 3. Fig. 14 and Fig. 15 show the validation results of K-means cluster-
ing. The true three classes partition cannot be confirmed by both the averaged
Jaccard index and the ARI. The main reason for this failure may be, among
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Fig. 14 Averaged Jaccard of the partitional K-means clustering of the Iris data.

Fig. 15 ARI of the partitional K-means clustering of the Iris data..

others, that K-means clustering is not the appropriate method with an error rate
of more than 10%.



Assessment of Stability in Partitional Clustering 37

5 Summary

In partitional cluster analysis, bootstrapping seems to be also the first choice
for both the decision about the number of clusters and the general investiga-
tion/assessment of stability. In all cases investigated so far (toy and real data), it
outperforms subsampling. It seems to me that multiple observations in bootstrap
samples (i.e., observations with mass mi > 1 in (6)) have a great influence for
finding the (true) number of clusters. Why? This question has to be answered
in the future. The experience of bootstrapping as the winner is similar to the
results of hierarchical cluster analysis presented in (Mucha and Bartel, 2014,
2015). But, we investigated here only the very popular K-means method. In sub-
sampling, the choice of the parameter “resampling rate” p causes an additional
problem. The simulation results based on a low subsampling rate such as 60%
looks similar to bootstrapping. If it necessarily should be subsampling then
the recommendation is to take the usual bootstrap scheme but discard multiple
observations, i.e., “Boot2Sub“. As a consequence, approximately 63.2% of the
observations will be presented in such a subsample. The advantage is that no
parameter for setting the sample size is necessary.
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Learning Conditional Lexicographic
Preference Trees

Michael Bräuning and Eyke Hüllermeier

Abstract We introduce a generalization of lexicographic orders and argue that
this generalization constitutes an interesting model class for preference learn-
ing in general and ranking in particular. We propose a learning algorithm for
inducing a so-called conditional lexicographic preference tree from a given set
of training data in the form of pairwise comparisons between objects. Experi-
mentally, we validate our algorithm in the setting of multipartite ranking.

1 Introduction

Preference learning is an emerging subfield of machine learning that has re-
ceived increasing attention in recent years (Fürnkranz and Hüllermeier, 2011).
A specific though important special case of preference learning is “learning to
rank”, that is, the learning of models that can be used to predict preferences
in the form of rankings of a set of alternatives (Cohen et al, 1999; Dekel et al,
2003). Ranking problems are often reduced to problems of a simpler type,
such as learning a value function that assigns scores to alternatives (with better
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alternatives having higher scores) or learning a binary predicate that compares
pairs of alternatives (Hüllermeier et al, 2008). While the former approach is
close to regression, the latter is in the realm of classification learning.

Another approach to learning ranking functions is to proceed from specific
model assumptions, that is, assumptions about the structure of the sought prefer-
ence relations. This approach is less generic than the previous one, as it strongly
depends on the concrete assumptions made. On the other hand, it typically of-
fers the advantage of being more easily understandable and interpretable. As an
example, let us mention CP-networks, that is, the representation of conditional
dependence and independence of preference statements under a ceteris paribus
(all else being equal) interpretation (Boutilier et al, 2004). Those preferences
are encoded as a graph, in which each node is annotated with a preference
table. Another example is lexicographic orders that are widely accepted as a
plausible representation of (human) preferences (Schmitt and Martignon, 2006),
especially in complex decision making domains (Ahlert, 2008). Here, the as-
sumption is that the target ranking of a set of alternatives, each one described in
terms of multiple attributes, can be represented as a lexicographic order.

From a machine learning point of view, assumptions of the above type can
be seen as an inductive bias restricting the hypothesis space. Provided the
bias is correct, this is clearly an advantage, as it may simplify the learning
problem. On the other hand, an overly strong bias may prevent the learner from
approximating the target ranking sufficiently well. For example, while being
plausible in some situations, the assumption of a lexicographic order will be
too restrictive for many applications.

In this paper, we therefore present a method for learning generalized lexi-
cographic orders. While still being simple and easy to understand, the model
class we consider relaxes some of the assumptions of a proper lexicographic
order. More specifically, we increase flexibility thanks to two extensions of
conventional lexicographic orders:

• First, we allow for conditioning (Booth et al, 2009, 2010): The importance of
attributes as well as the preferences for the values of an attribute may depend
on the values of other variables preceding that one in the underlying variable
order.

• Second, we allow for grouping (Wilson, 2009): Several (one-dimensional)
variables can be grouped into a single high-dimensional variable, and prefer-
ences can be specified on the Cartesian product of the corresponding domains.
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The remainder of this paper is organized as follows. In the next section, we
give a brief overview of related work. In Sect. 3, we introduce generalized
lexicographic orders and the notion of conditional lexicographic preference
trees. In Sect. 4, we present an algorithm for learning such preference models
from data. An experimental study is presented in Sect. 5, prior to concluding
the paper in Sect. 6.

2 Related Work

The use of lexicographic orders in preference modeling has already been consid-
ered in the seventies of the last century (Fishburn, 1974), whereas in machine
learning, this type of structure has attracted attention only recently. Flach and
Matsubara developed a lexicographic ranker called LexRank , using a linear
preference ordering on attributes derived by the odds ratio (Flach and Matsub-
ara, 2007, 2008). Experimentally, they show that LexRank is competitive to
decision trees and naive Bayes in terms of ranking performance.

Further work on learning lexicographic orders was done by Schmitt and
Martignon (2006), Dombi et al (2007), and Yaman et al (2008). However, these
works are based on rather simplistic assumptions. More general models were
studied by Booth et al (2009, 2010), and in fact, important parts of our approach
(such as conditional importance of attributes and conditional preferences on
attribute values) are inspired by these models. Their work remains rather theo-
retical, however, without a practical realization in terms of an implementation
of algorithms or an experimental study with real data.

3 Generalized Lexicographic Orders

Formally, we proceed from an attribute-value representation of decision alterna-
tives or objects, i.e., an object is represented as a vector

o ∈ O = D(V ) = D(A1)× ...×D(An),

where V = {A1, ...,An} is the set of attributes (variables) and D(Ai) is the
domain of attribute Ai. For a subset A = {Ai1 , . . . ,Aik} ⊂ V of attributes we
define D(A) = D(Ai1)× ...×D(Aik).
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An assignment or instantiation of a subset A⊆V of attributes is an element
a ∈ D(A); an assignment is called complete if A = V , otherwise it is called
partial. For an object o∈O and a subset A⊂V , we denote by o[A] the projection
of o from D(V ) to D(A); if A = {Ak} is a single attribute, we also write o[k]
instead of o[{Ak}].

A lexicographic order on O is a total order � defined in terms of

• a total order = on V , i.e., a ranking of the attributes,
• a total order =i on each attribute domain D(Ai).

More specifically, o∗ � o (suggesting that o∗ is preferred to o) if and only if
there exists a k ∈ {1, . . . ,n} such that(

o∗[k]=k o[k]
)
∧
(
(Ai = Ak)⇒

(
o∗[i] = o[i]

))
for all i ∈ {1, . . . ,n}. The relations =i indicate preference on individual at-
tributes: a =i b means that, for a,b ∈ D(Ak), a is preferred to b as a value
for attribute Ai. Moreover, the relation = reflects the importance of attributes:
Ai = A j means that attribute Ai is more important than A j, whence the former is
considered prior to the latter. Without loss of generality, we shall subsequently
assume that A1 = A2 = · · ·= An (unless otherwise stated).

3.1 Conditional preferences on attribute values

Conventional lexicographic orders assume that preferences =k on attribute
domains are independent of each other. Needless to say, this assumption is often
violated in practice. For example, although it is possible that a person prefers
red wine to white wine in general, it is also plausible that her preference for
wine may depend on the main dish: red is preferred to white in the case of meat,
whereas white is preferred to red in the case of fish.

In order to capture attribute dependencies of that type, the preference relations
=k can be conditioned on the values of the attributes A j preceding Ak in the
order = (Booth et al, 2009, 2010). That is, =k is now replaced by a set of strict
orders {

=
(a1,...,ak−1)
k |(a1, . . . ,ak−1) ∈D({A1, . . . ,Ak−1})

}
Moreover, the order relation � on O is then defined as follows: o∗ � o for
o∗ = (a∗1, . . . ,a

∗
n) and o = (a1, . . . ,an) if and only if there exists a k ∈ {1, . . . ,n}

such that
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(
∀ i ∈ {1, . . . ,k−1} : a∗i = ai

)
∧
(
a∗k =

(a1,...,ak−1)
k ak

)
.

3.2 Conditional attribute importance

Going one step further, one may assume that the values of the first attributes
in the attribute order = do not only influence the preferences on the values of
the attributes that follow, but also the importance of the attributes themselves
(Booth et al, 2009, 2010). Thus, we are no longer dealing with a lexicographic
order in the sense that = defines a sequence of the attributes V according to their
importance. Instead, we are dealing with a tree-like structure. This structure is
defined by the following (choice) function:

A =C
(
(Ai1 ,Ai2 , . . . ,Aik),(ai1 ,ai2 , . . . ,aik)

)
,

where (Ai1 ,Ai2 , . . . ,Aik) ∈V k is a sequence of attributes (such that Ai j 6= Aik for
j 6= k) and ai j ∈D(Ai j) for all j ∈ {1, . . . ,k}. Moreover, A ∈V \{Ai1 , . . . ,Aik}
is the most important attribute given that Ai j = ai j for all j ∈ {1, . . . ,k}.

3.3 Variable grouping

Another extension consists of grouping several variables, that is, to allow the
expression of preferences on attribute tuples instead of single attributes only
(Wilson, 2009). Formally, this means selecting an index set I ⊆ {1, . . . ,n}
and defining a total order relation =I on the Cartesian product D(VI ) of the
domains D(Ai), i ∈I .

Note that the possibility of variable grouping significantly increases the
expressivity of the model class. In particular, by taking I = {1, . . . ,n}, it is
possible to define every order on D(V ), that is, to sort the set of alternatives
in any way. Since this level of expressivity is normally not desirable, it is
reasonable to restrict to variable grouping of order gmax, meaning to impose the
constraint |I | ≤ gmax for a fixed gmax ≤ n.
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3.4 Conditional lexicographic preference trees

Combining the generalizations discussed above, we end up with what we call a
Conditional Lexicographic Preference Tree (CLPT). Graphically, this is a tree
structure in which

• every node is labeled with a subset of attributes VI and a total order on
the Cartesian product D(VI ) of the corresponding attribute domains D(Ai),
i ∈I ;

• there is one outgoing edge (descendant node) for each value o[VI ]∈D(VI );
• every attribute Ai ∈V occurs at most once on each branch from the root of

the tree to a leaf node (i.e., the index sets I along a branch are disjoint).

We call a CLPT complete if every attribute Ai ∈V occurs exactly once on each
branch from the root of the tree to a leaf node (i.e., the index sets I along a
branch form a partition of {1, . . . ,n}).

A (complete) CLPT can be thought of as defining an order relation on O
through recursive refinement of a weak order �, that is, by refining an order
relation with tie groups in a recursive manner (in the following,∼ and� denote,
respectively, the symmetric and asymmetric part of �):

• One starts with a single equivalence class (tie group), i.e., o∗ ∼ o for all
o∗,o ∈ O .

• Let the root of the CLPT be labeled with the attribute set VI , and let =I

denote the corresponding order on D(VI ). The current order � is then
refined by letting o∗ � o whenever o∗[VI ]=I o[VI ]; otherwise, if o∗[VI ] =
o[VI ], then o∗ and o remain tied.

• Thus, a linear order of tie groups (equivalence classes) is produced.
• Each equivalence class (represented by a value a ∈ D(VI )) is then recur-

sively refined by the subtree the objects of this equivalence class are passed
to.

Note that, if the CLPT is complete, the order relation � eventually produced is
a total order �.

4 Learning CLPTs

In this section, we outline a method for inducing a CLPT from training data
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T =
{
(o∗i ,oi)

}N
i=1 (1)

that consists of a set of object pairs (o∗i ,oi) ∈O2, suggesting that o∗i is preferred
to oi. Roughly speaking, this means finding a CLPT whose induced order rela-
tion � on O is as much as possible in agreement with the pairwise preferences
in T (without overfitting the training data). The induced order relation � is a
total order � if the CLPT is complete.

4.1 Performance and evaluation measures

In order to evaluate the predictive performance of a CLPT, there is a need to
compare the order relation � (with asymmetric part �) induced by this model
with a ground truth order �∗. As will be seen below, the same measures can
be used to fit a CLPT to a given set of training data (1) during the training
phase. In this case, the “ground truth” is not a total order but a set of pairwise
comparisons between objects. Since a total order �∗ can be decomposed into
(a quadratic number of) such comparisons, too, we can assume (without loss of
generality) that we compare � with a set T of pairs (o∗,o) ∈O2, suggesting
that o∗ should be ranked higher than o.

Inspired by the corresponding notions introduced in Cheng et al (2010), we
define two performance measures of correctness and completeness, respectively,
as follows:

CR(�,T ) =
|C|− |D|
|C|+ |D|

, (2)

CP(�,T ) =
|C|+ |D|
|T |

, (3)

where

C =
{
(o∗,o) ∈T |o∗ � o

}
,

D =
{
(o∗,o) ∈T |o� o∗

}
.

Note that CR(�,T ) assumes values between −1 (complete disagreement) and
+1 (complete agreement), while CP(�,T ) ranges between 0 (no comparisons)
and 1 (full comparison).
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4.2 A greedy learning procedure

We implement an algorithm for learning a CLPT as a (greedy) search in the
space of tree structures based on the greedy algorithms presented by Schmitt
and Martignon (2006) as well as Booth et al (2009, 2010). This is done by
constructing the tree from the root to the leaves in a recursive manner. In each
step of the recursion, a new node is created with an associated subset VI of
attributes, where |VI | ≤ gmax, and a total order =I on D(VI ).

4.2.1 Creating a node

The problem to be solved in each recursion is the following: Given a set of
pairwise comparisons T and a set V ′ ⊆V of attributes still available, select the
most suitable subset VI ⊆V ′ and an order =I . Following a greedy strategy,
we choose (VI ,=I ) so as to maximize correctness (2), using completeness (3)
as a second criterion to break ties. In the (unlikely) event of both correctness
and completeness having ties, the first subset VI and order =I identified are
selected.

The selection of an attribute subset VI can be done through exhaustive
search if its size is sufficiently limited, i.e., if the upper bound gmax is small.
Otherwise, a complete enumeration of all possibilities may become too ex-
pensive. Moreover, for each candidate subset VI , a total order =I needs to
be determined. Again, all such orders can be tried if D(VI ) is not too large.
Otherwise, heuristic ranking procedures such as a Borda count can be used
(counting the number of “wins” and “losses” of each value a ∈D(VI ) in the
training data T and sorting according to the difference).

4.2.2 Limiting the number of candidate subsets

In order to avoid a complete enumeration of all candidate subsets VI of size
≤ gmax, we combine a greedy search with a kind of lookahead procedure: We
provisionally create a node by selecting a single attribute instead of a subset,
i.e., we tentatively set gmax to 1; apart from that, exactly the same selection
procedure (as outlined above) is applied. This step is repeated gmax times,
thereby producing a subtree of depth gmax. Let V ∗ ⊆ V denote the subset of
attributes that occur in this subtree, i.e., that are chosen in at least one of the
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nodes. Then, as candidate subsets VI , we only try subsets V ∗, i.e., subsets
VI ⊆V ∗ such that |VI | ≤ gmax. Obviously, the underlying assumption is that
an attribute that has not been chosen in any of the gmax steps is not important at
this point.

4.2.3 Recursion

Once an optimal subset VI has been chosen, the training examples (o∗,o)
with o∗[VI ] 6= o[VI ] are removed from T (since they are sorted at this node).
Moreover, for each value a ∈D(VI ), a data set

Ta =
{
(o∗,o) ∈T |o∗[VI ] = o[VI ] = a

}
is created and passed to the corresponding successor node (together with V ′\VI

as the attributes that have not been used so far). The same recursive procedure
is then applied to each of these successor nodes.

4.2.4 Initialization and termination

The learning procedure is called with the original training set T and the full
set V of attributes as candidates. The recursion terminates if no attribute is left
(V ′ = /0) or if the set of training examples is empty (T = /0). A description of
the basic algorithm in the form of pseudocode is provided in Algorithm 1.1

4.2.5 CLeRa

We call the algorithm outlined above CLeRa, which is short for Conditional
Lexicographic Ranker . The CLPT induced by CLeRa can be used to compare
new object pairs {o∗,o} ⊂ O . To this end, the tuple is submitted to the root
and propagated through the tree until either a leaf node is reached or a node at
which o∗[VI ] 6= o[VI ]; in this case, o∗ � o is decided if o∗ =I o and o � o∗

if o =I o∗. Otherwise, if o∗[VI ] = o[VI ] in all nodes traversed by the two
objects, then o∗ ∼ o.

Given not only a pair but a complete set of objects to be ranked, the pairwise
comparison realized by the CLPT can be embedded in any standard sorting

1 The pseudocode does not consider the lookahead procedure.
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Algorithm 1: CLeRa
Input : training data T , set of attributes V , maximal grouping size gmax
Output :CLPT ct

ct← /0, V ′←V , I ′←{1, . . . ,n}
if T 6= /0 && V ′ 6= /0 then

I′← /0, CR← 0, CP← 0
for I ⊆I ′, |I | ≤ gmax do

determine =I on D(VI ) maximally consistent with T
compute CR(=I ,T ) and CP(=I ,T )
if CR(=I ,T ) = CR && CP < CP(=I ,T ) then

CP← CP(=I ,T )
I′←I

else if CR(=I ,T )> CR then
CR← CR(=I ,T )
CP← CP(=I ,T )
I′←I

I ′←I ′\I′
V ′←V ′\VI′

remove every (o,o′) ∈T decided by =I′

add node (VI′ ,=I′ ) to ct
for a ∈D(VI ) do

Ta =
{
(o∗,o) ∈T |o∗[VI ] = o[VI ] = a

}
return CLeRa[Ta,V ′,gmax]

return ct

algorithm, such as insertion sort. Note that, since o∗ ∼ o is possible in a pairwise
comparison, the result of the sorting procedure will in general only be a weak
order �.

5 Experimental Results

We evaluate our approach on 15 benchmark data sets from the Statlog and the
UCI repository (Asuncion and Newman, 2007). These data sets, which define
binary or ordinal classification problems, were pre-processed as follows: numer-
ical attributes and attributes with more than five values were discretized into
four values using equal frequency binning. Moreover, instances with missing
values were neglected.

The learning problem we consider is multipartite ranking (Fürnkranz et al,
2009): Given a set of test instances X ⊂ O , the goal is to predict a ranking �
that agrees with the (ordered) class labels of these instances. Formally, this
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agreement is measured in terms of the so-called C-index, which can be seen as
an extension of the area under the ROC curve (AUC):

C =
1

∑i< j nin j
∑

1≤i< j≤m
∑

(o,o∗)∈Xi×X j

I(o∗ � o)+
1
2
I(o∗ ∼ o),

where Xi ⊆ X denotes the set of instances with class labels yi, and these class
labels are assumed to have the order y1 < y2 < · · · < ym. I(·) is the indicator
function mapping false predicates to 0 and true predicates to 1. The training data
consists of a set of labeled instances, just like in classification. Since CLeRa
is learning from pairwise comparisons of the form (o∗,o), it first extracts
such comparisons from the original data by looking at the class information:
A preference (o∗,o) is generated for each pair (o∗,y j) and (o,yi) of labeled
instances in the (original) training data such that yi < y j.

The ranking performance of CLeRa (with maximum grouping size of
gmax = 2) is compared with LexRank, which was implemented as proposed by
(Flach and Matsubara, 2007, 2008); therefore, this method was only applied to
binary (two-class) problems but not to problems with more than two classes.2

We applied naive Bayes (NB) and decision tree (J48) learning as additional
baselines, using the standard implementations3 in the Weka machine learning
toolbox Hall et al (2009) and sorting instances according to the estimated prob-
ability of the positive class; note that these methods are not applicable to the
multi-class case either.

The results of a 10-fold cross-validation are given in Table 1. Since CLeRa
produced a completeness of 1 or extremely close to 1 throughout, these values
are not reported here. Overall, the performance of the methods is quite compa-
rable but slightly in favour of NB. In particular, CLeRa and LexRank produce
quite similar results on many data sets (Asuncion and Newman, 2007). In some
cases, however, the results are strongly in favor of CLeRa:

• Census Income: The census data provides information about whether an
income exceeds 50,000 USD over a year. The root node of the CLPT is
labeled with a single attribute (capital-loss) as well as the descendant node.
The preferences on attribute values of the descendant nodes at the third stage
depend on the values of the node following the root node. This is also true

2 The red wine data actually has a target attribute with values between 1 and 10; it was binarized by
thresholding at the median.
3 Trees are not pruned.
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Table 1 Average performance in terms of C-index based on a 10-fold cross-validation (best results
per data set highlighted in bold font).

Dataset CLeRa LexRank J48 NB

Red Wine 0.7827 ± 0.0479 0.8011 ± 0.0475 0.7378 ± 0.0272 0.8110 ± 0.0225
Census Income 0.7952 ± 0.0523 0.5776 ± 0.0256 0.7401 ± 0.0356 0.8607 ± 0.0192
Credit Approval 0.9201 ± 0.0298 0.9229 ± 0.0389 0.8517 ± 0.0480 0.9061 ± 0.0377
Mammographic Mass 0.8831 ± 0.0289 0.8960 ± 0.0327 0.8524 ± 0.0430 0.8999 ± 0.0307
Mushroom 1.0000 ± 0.0000 0.9865 ± 0.0021 1.0000 ± 0.0000 0.9484 ± 0.0164
SPECT Heart 0.6740 ± 0.0767 0.6590 ± 0.1430 0.5106 ± 0.0961 0.7409 ± 0.0957
Ionosphere 0.9198 ± 0.0494 0.5748 ± 0.0740 0.8059 ± 0.1290 0.9061 ± 0.0805
MAGIC Gamma Telescope 0.8218 ± 0.0302 0.7263 ± 0.0517 0.7841 ± 0.0304 0.8241 ± 0.0329
Breast Cancer Wisconsin 0.9837 ± 0.0171 0.9901 ± 0,0093 0.9793 ± 0.0392 0.9909 ± 0.0091
German Credit 0.6285 ± 0.0880 0.4523 ± 0.1092 0.6251 ± 0.0902 0.7835 ± 0.0647
Car Evaluation 0.9198 ± 0.0185 n/a n/a n/a
Nursery 0.9052 ± 0.0288 n/a n/a n/a
Tic-Tac-Toe Endgame 0.7728 ± 0.0389 n/a n/a n/a
Vehicle 0.7554 ± 0.0459 n/a n/a n/a
Cardiocraphic 0.9551 ± 0.0138 n/a n/a n/a

for the importance of the attributes at this stage. One level below, the CLPT
also contains nodes that are labeled with grouped attributes.

• Ionosphere: The radar data contains information about whether radar re-
turns are “good” or “bad”.4 With regard to the conditional dependencies
and the grouping, the basic structure of the CLPT is very similar to the
aforementioned case.

• MAGIC Gamma Telescope: The gamma telescope data contains information
about the registration of gamma particles. The basic structure of the CLPT
differs from the aforementioned CLPTs with respect to the occurrence of con-
ditional dependencies. Already the first descendant nodes exhibit conditional
dependencies on the attribute values of the root node.

• German Credit: In the credit data, customers are classified as good or bad.
The respective CLPT makes even stronger use of the proposed extensions
compared to the CLPT for the MAGIC Gamma Telescope data set. The first
descendant nodes are labeled with grouped attributes.

Overall, these results indicate that the bias imposed by the assumption of
a standard lexicographic order is inadequate for these data sets, and hence

4 Good returns show evidence of some type of structure in the ionosphere.
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our extensions (conditional attribute importance, conditional value preferences,
variable grouping) clearly pay off.

6 Conclusion and Future Work

Lexicographic orders constitute an interesting model class for preference learn-
ing, which allows for representing rankings of a set of objects in a very compact
and comprehensible way. Yet, as we have argued in this paper, this model class
may not be flexible enough for many real-world applications. Therefore, we
have proposed to weaken the assumptions underlying a lexicographic order in
various directions, allowing for conditional attribute importance, conditional
preferences on attribute values, and variable grouping. Moreover, we have pro-
posed an algorithm called CLeRa, which learns preference models in the form
of conditional lexicographic preference trees from training data in the form of
pairwise comparisons between objects.

First experimental results in the setting of multipartite ranking are quite
promising and show CLeRa to be competitive with other methods. In a direct
comparison with an existing lexicographic ranker, the benefit of our extensions
are becoming quite obvious.

Important topics of future work can be found both on the theoretical and
practical side. In particular, we are currently studying formal properties of our
generalized model class, such as its expressiveness and means for regularization
and complexity control. Practically, there is certainly scope for improving our
current algorithm, for example by devising a suitable procedure for estimating
an optimal value gmax for the oder of variable grouping. Moreover, improving
the computational efficiency of CLeRa would be desirable, too. Last but not
least, we are of course interested in real applications for which (generalized)
lexicographic models appear to be an adequate representation.
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Application of Classification Trees in the Analysis
of the Population Ageing Process

Justyna Wilk

Abstract A process of socio-economic development is continuously accom-
panied by a process of population ageing. In terms of a policy of regional
development, it is valuable to identify factors of ageing to mitigate or impede its
undesirable impact on a national economy. The paper discusses how to model
the process of ageing using classification trees and presents an empirical study.
The main research question is if the populations similar in their degrees of
ageing, feature common demographic conditions of this process as well.

1 Introduction

The socio-economic development process is inseparably accompanied by the
population ageing process (see Uhlenberg, 2009; Martinez-Fernandez et al,
2012). Population ageing relates to the changes in the age distribution and an
increase in the percentage share of senior citizens in the general population.
This results from reductions in mortality which are followed by reductions in
the number of births. It is mostly determined by social, economic, cultural,
environmental and other factors, such as: the intentional delay of procreation
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time and changing life priorities, leading more and more towards a healthy
lifestyle, progress in medicine etc.

Population ageing strongly affects the situation of a country in terms of its
financial, social and economic conditions. In the long-term prospect, without
taking appropriate actions, it may lead to disturbing the retirement system,
decreasing the efficiency of social systems and an increasing gap in the labour
market etc. (see Magnus, 2008; Weil, 1997; United Nations, 2013; Légaré,
2006).

Population ageing is a natural process in economically well developed coun-
tries (see Prskawetz and Lindh, 2011; Lindh and Malmberg, 2009; Martinez-
Fernandez et al, 2012). The most intensive process of population ageing is seen
in Asian countries, especially in Japan, where one in four people is 65 years old
or older (see World Population Prospects, 2012). This process also occurs in
the majority of European Union (EU) countries of which Italy and Germany are
demographically the oldest. Although the population of countries which joined
the EU in 2004 and 2007 is relatively young (Slovakia, Poland and Cyprus are
the youngest), they also suffer from ageing (see Muenz, 2007; Giannakouris,
2008; Grundy, 1996).

The diversification of demographic situations relates not only to the national
economies but also occurs within countries. This results from socio-economic
disparities and also cultural, social and environmental differences etc. Martinez-
Fernandez et al (2012) see ageing as one of the most substantial factors of
global demographic change and the shrinkage of cities and regions as well.

Regions differ in their nature of ageing; its intensity and demographic condi-
tions, e.g. extremely low fertility, high out-migrations of young people, older
and older workforce etc. Different situations of regions require different ac-
tivities to mitigate the effects of ageing and also to impede this process. The
identification of factors of ageing may be helpful in creating a policy of regional
development.

This paper proposes using classification trees to model the population ageing
process and presents an empirical study. The key research question is if regions
similar in their intensity of ageing, feature common factors of this process as
well.
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2 Modelling the population ageing process

An examination of ageing covers its intensity and the demographic determinants.
A lot of research studies are limited to examining the degree of ageing. This
requires defining the threshold of ageing and determining the age structure of a
population.

The threshold of ageing is the age which classifies a person as being older.
Some statistical studies use the retirement age as the threshold of ageing, which
is usually separate for men and women. Other research studies assume the age
of 60 or 65 as threshold and the same threshold for both, men and women (see
e.g. Sauvy, 1948). Sanderson and Scherbov (2008) see the age for which the
remaining life expectancy is 15 years as the threshold of ageing.

Several researchers propose a lot of rates indicating the age structure of a
population (see Clarke, 1965; Beaujeu-Garnier, 1966; United Nations, 2013).
The first group includes age-related measures e.g. measures of location (e.g.
median age), the old-age rate, ageing index, old-age dependency ratio. The
second group covers the graphical tools such as, the population pyramid and
Ossan’s triangle etc.

Population ageing results from reductions in mortality and the number of
births. At the national level, fertility and life expectancy are seen as the main
determinants of the age structure (see Preston et al, 1989; United Nations,
2013). At the regional level, it may also be affected by massive out-migration
of young people. The process of ageing is also intensified by the ageing of the
adult population, if the share of older adult people is increasing. Moreover, the
advancement of ageing is seen, in a population with a very high proportion of
people older than 80 years, in the population aged 60 and older.

The study of ageing requires examination if regional sub-populations with
similar intensity of ageing also feature common demographic conditions of
this process. We can use a contingency table which displays the multivariate
frequency distribution. This approach is simple for categorical data or if a
division of numerical data is given.

Otherwise we can use multivariate data analysis (see Colley and Lohnes,
1971; Johnson and Wichern, 1992; Everitt and Dunn, 2001; Hair et al, 2006). A
regression analysis can identify an overall impact of the demographic factors
on the intensity of population ageing and helps to select variables for further
studies. But in terms of creating a policy of regional development, it is valuable
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to identify common factors of ageing in sub-populations exhibiting a similar
intensity of this process.

Discriminant analysis is useful when simple, linear interactions between a
dependent and the explanatory variables exist, and when the random variables
in the model follow a multivariate normal distribution (see Fisher, 1936; Klecka,
1980; Lachenbruch, 1975). In contrast to this, classification trees are nonpara-
metric and the assumption of a multivariate normal distribution is not relevant.
They are useful, when complicated and nonlinear relations exist (see Breiman
et al, 1984; Ripley, 1996; Rokach and Maimon, 2008).

Classification trees are widely used in medicine, computer science, botany,
psychology, finance, marketing, engineering etc. rather than in demography. But
Ninčević et al (2010) used them to examine the impact of various factors on life
expectancy. Toulemon (2006) applied them to model the transition to adulthood
and find differences between Austrians’ and Italians’ paths. High predictive
performance, simplicity and transparency of the classification scheme make
them a promising tool in examining the population ageing as well.

3 Classification trees in the analysis of population ageing

This paper examines the situation of Poland which is one of the fastest develop-
ing EU countries. Although the Polish population is relatively young, it exhibits
an intensive demographic ageing process. The identification of the degree of
ageing and its regional diversification, and finding its demographic factors is
crucial in order to impede or mitigate the effects of ageing and program the
right regional development policy. The main interest of the study is to exam-
ine if the sub-populations similar in their degrees of ageing, feature common
demographic conditions of this process as well.

The investigation was carried out for 66 Polish subregions. These NUTS
3 units are statistical rather than administrative territorial units. They come
from a division of 16 Polish provinces. As Polish subregions represent rela-
tively homogeneous territorial areas in respect to economic, social, cultural
and environmental features, we can assume that they also exhibit individual
demographic situations. The study covers the period 1995-2012 because the
demographic changes can only be seen over a long time period. Empirical data
comes from the Central Statistical Office of Poland.
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This paper uses classification trees in the comparative analysis of demo-
graphic conditions of population ageing. Classification trees are used to predict
a membership of units in the categories of a categorical dependent (response)
variable from their measurements on a set of predictors (explanatory vari-
ables). In this study, they help to find differences between predefined classes
of subregions and identify profiles of these classes. The next sections follow a
classification procedure:

1. Specifying the demographic features of population ageing. Sect. 4 identifies
the degrees of ageing in Polish subregions, while Sect. 5 discusses the
demographic factors affecting this process.

2. Classifying a set of subregions. Sect. 6 describes the construction and esti-
mation of a classification tree and presents the classification results.

3. Profiling classes. Sect. 7 identifies demographic conditions of population
ageing and makes policy suggestions. Sect. 8 gives comments and open
questions.

4 The intensity of the population ageing process

The comparative studies of demographic ageing usually use a typology of the
population age. Each of them takes some indicator of a population structure
and distinguishes a set of categories of demographic age according to a value of
this indicator. The first typology was developed by Sündbarg (1900), the others
were proposed by Sauvy (1948), Beaujeu-Garnier (1966), and Veyret-Verner
(1971) etc.

In their recent works, the United Nations (UN) distinguishes five demo-
graphic ages according to the share of senior citizens in the total population.
If the percentage of people aged 65 or older is less than 4%, the population is
demographically young. A share above 4% and below 7% indicates a mature
population. A share below 14% means an ageing population while a share
between 14% and 21% defines an old population. More than 21% is typical of
the aged population (see Coulmas, 2007, p. 5).

The population age defines the present demographic situation of a population
but does not indicate the expected changes in the age structure. Therefore, in
analyzing a relatively young population such as Poland, we should also consider
the increase rate of the share of senior citizens. A value of the rate shows a scale
of changes and can be used to foresee the future age structure.
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Table 1 Basic statistics of the share of people aged 65 or older in 2012, and the increase rate of this
share in the period from 1995 to 2012 in 66 Polish subregions (NUTS 3 units)

Variable name Share of senior Increase rate of the share
citizens in 2012 (%) in the years 1995-2012 (%)

Poland 14.2 1.4
Minimum 9.9 0.2
Maximum 18.6 3.4
Median 13.9 1.4
Mean 14.1 1.5
Standard deviation 1.7 0.7
Coefficient of variation (%) 12.2 46.6

Pearson’s correlation [−1,1] 0.08

Over the last thirty years, the share of young people in Poland has signif-
icantly decreased, while the number of older people increased. The yearly
increase of the share of senior citizens was 1.4% from 1975 to 2012 to reach
14.2% of people aged 65 or older in 2012 (see Table 1).

This situation is not homogeneous in the whole country. High socio-economic
disparities and also cultural, social and environmental differences translate into
a territorial diversification of the age structure and its changes in time. The
values of the share of senior citizens were in the range of [9.9, 18.6] in 66 Polish
subregions in 2012 (see Table 5 for details). According to the UN classification,
we can distinguish subregions with ageing (53%) and subregions with old (47%)
population, respectively.

All subregions showed yearly increases of this share; the majority of them
showed a yearly increase between 0.5 and 2.0%. According to the national
average value (1.5%), two groups of subregions were distinguished: relatively
low (56% of subregions) and high progress of ageing (44% of subregions).

It is interesting that the share of senior citizens is not statistically correlated
with the increase rate of this share. We cannot conclude that the higher the
increase rate of people aged 65 and older in the total population, the older the
population (and inversely). It is also not true that the older the population, the
lower the increase rate of the share (and inversely). We can use both features,
the demographical age of a population and the progress of ageing to divide
subregions into four classes:

1. The "old-high” class includes 24.2% of subregions with a high share of
senior citizens and also a high growth rate of this share.
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2. The "old-low” class consists of 22.7% of subregions with a high share of
senior citizens but with a low growth rate of this share.

3. The "ageing-high” class is represented by 19.7% of subregions with a low
share of senior citizens but with a high growth rate of this share.

4. The "ageing-low" class is the biggest and covers 33.3% of subregions with a
low share of senior citizens and also with a low growth rate of this share.

In general, the most intensive ageing relates to the majority of subregions
located in south western Poland (see Fig. 1). This process is also seen in
the biggest Polish cities. Demographically old, but not ageing quickly, is the
population of east Poland and also some subregions of central Poland which
belong to the Łódzkie and Świȩtokrzyskie provinces). Still relatively young but
quickly ageing is the population of north western and west Poland and also the
Warmińsko-mazurskie province.

5 Factors of the population ageing process

This section examines five demographic factors of ageing (discussed in Sect. 2)
relevant for the Polish population. An indicator of the generation replacement is
the total fertility rate. It is the average number of children a woman would bear
over the course of her lifetime if current age-specific fertility rates remained
constant throughout her childbearing years. Values between 2.10 and 2.15
provide the replacement of a generation without excessive growth or shrinkage
of a population.

The rate reached approximately 1.30 in Poland and from 0.9 to 1.6 in subre-
gions but 85% of them did not reach 1.4 in 2012 (see Table 2). Although the
replacement condition was not satisfied, the fertility rate has been increasing.
But this growth is extremely slow and we cannot expect any extra changes in
the next 20 years.

An indication of life duration is the life expectancy of people at the age of
65. It is the mean number of years still to be lived by a man or woman who
has reached the age of 65, if subject throughout the rest of his/her life to the
current mortality conditions (age-specific probabilities of dying). The Polish
population is living longer and longer. Yearly increases in the life expectancy
of men and women at the age 65 are observed in all subregions. An average 65
year old man will live to be 80.4 years old which is approximately 4.0 years
less than an average woman. The statistical correlation of the indicator values
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Fig. 1 Four classes of 66 Polish subregions (NUTS 3 units) according to the demographic age in 2012
and the progress of population ageing in the years 1995-2012 (see Table 5 for details)

for men and women in subregions is very high. Thus the study includes only
the situation of men.

An indicator of changes in a demographic structure is the net migration of
people in the age between 20 and 59. It is the difference between registered
(domestic and international) migration inflow and outflow of people with a
permanent residence in a region to the average population of the region. The
rate took values between –55 and +100 in 2012 in Polish subregions. In 2012
nearly 75% of subregions had a negative balance of migration (higher outflow
than inflow of people). Yearly increases of the rate were seen in the majority of
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Table 2 The demographic factors of population ageing in Polish subregions (NUTS 3 units)

Abbreviation Variable name Year* Poland Median Minimum Maximum

Fertility Total fertility rate (person) 2002 1.249 1.312 0.893 1.614
2012 1.299 1.298 1.091 1.632

Life Life expectancy of men 2007 14.6 14.3 13.6 16.4
at the age 65 (year) 2012 15.4 15.2 14.2 16.9

Migration Net migration rate of population 1995 NA NA NA NA
aged 20-59 2012 NA –21.2 –55.2 100.2

Working Working-age population ageing 2009 37.8 37.7 33.7 41.7
rate (%) 2012 37.4 37.7 34.4 41.1

Oldest Oldest-old-age population 2005 20.3 20.3 16.2 24.2
rate (%) 2012 26.3 26.3 19.5 31.3

*depending on the data availability, NA – not applicable.

subregions. A much higher inflow than outflow of young people is seen in the
biggest Polish cities and their surroundings.

An indicator of ageing of an adult population is working-age population
ageing rate. The working age is the age between 18 and the retirement age. The
age 45 distinguishes the immobile and mobile working age. The working-age
population ageing rate means the percentage of immobile working-age people
in the working-age population. The rate was 37.4% in Poland in 2012 but four
subregions exceeded the threshold of 40.0%.

The progress of ageing of the senior population is shown by the oldest-old-
age population rate. It is the percentage of people aged 80 and older in the total
population aged 65 and older. The rate reached 26.3% in Poland in 2012. That
was 6 percentage points more than in 2005. But two subregions exceeded 30%
while one subregion did not reach 20.0%. Yearly increases of the rate were seen
in all subregions.

Two separate linear regression models served to examine the statistical
significance of these demographic factors in explaining the share of senior
citizens (see Table 3) and its increase rate (see Table 4). The estimate of the
total fertility rate is statistically significant exclusively for the increase rate
which means that the impact of fertility is perceptible in the long term rather
than in the short term. The higher the fertility, the smaller the progress of ageing.
A Similar situation relates to the net migration rate whose estimate is significant
only for the increase rate of the share of seniors. The lower the net migration
rate, the older the population.
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Both estimates of life expectancy are significant and positive. The increase
of life expectancy in a population causes an increase of the share of senior
citizens more intensively than the increase rate of this share. A similar situation
is presented by the working-age population ageing rate. The oldest-old-age
population rate is also related to both dependent variables but proved bilateral
impact. The older the senior population, the older the whole population but the
lower the progress of ageing.

6 Construction and estimation of a classification tree

Poland has high regional disparities according to the share of senior citizens
and its increase rate. Four classes of subregions presenting different degrees of
ageing were distinguished in Sect. 4. Although all demographic factors affecting
the situation of subregions discussed in Sect. 5 are statistically significant, there
are no obvious differences between classes according to the average values of
demographic factors (see Table 5). For example, the averages of the working-
age population ageing rate are very similar in old-high, old-low and ageing-high
classes.

We cannot profile classes on the basis of these results. In this situation
we construct a classification tree to depict relations between the degrees of
population ageing and a set of demographic factors of this process. The set of
four classes of subregions served as the realizations of categorical dependent
variable, while all demographic factors formed a set of explanatory variables.

In the study, the CART algorithm proposed by Breiman et al (1984) is applied
to profile pre-assigned classes for subregions. CART produces a tree-structured
model using recursive binary partitioning. The algorithm asks a sequence of
questions which split a set of objects into two subsets. Splitting is determined
by a condition of the value of a single explanatory variable which is satisfied by
the observation or it is not.

The starting point of a tree, called a root, consists of the entire learning set. A
set of nodes originates from the root. A nonterminal (or parent or internal) node
is a node that splits into two daughter nodes. A node which has stopped splitting
is called a terminal node (or a leaf). A path from the root to the terminal node
shows the classification rules on which the units are assigned to a class.

The construction and estimation of a tree includes three steps: the partitioning
of the dataset, determining the complexity of the tree and validating the results.
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Table 3 Estimation results for the share of senior citizens in 2012 (least-squares method)

Name* Coefficient Standard error Student’s t-test p-value

Constant –52.664 7.196 –7.318 6.05e-010a

Fertility x x x x
Life 2.005 0.285 7.034 1.87e-09a

Migration x x x x
Working 0.821 0.108 7.601 1.95e-010a

Oldest 0.205 0.066 3.086 0.003a

R-Squared 0.604778

* Fertility: the total fertility rate (person), Life: the life expectancy of men at the age 65 (year),
Migration: the net migration rate of population aged 20-59, Working: the working-age population
ageing rate (%), Oldest: the oldest-old-age population rate (%)
a denotes statistical significance at the 99% level
x denotes statistical insignificance

Table 4 Estimation results for the increase rate of the share of senior citizens in the years 1995-2012
(least-squares method)

Name* Coefficient Standard error Student’s t-test p-value

Constant 0.855 3.714 0.230 0.8187b

Fertility –1.981 0.546 –3.626 0.0006a

Life 0.452 0.111 4.080 0.0001a

Migration –0.004 0.001 –3.914 0.0002a

Working 0.084 0.045 1.869 0.0665b

Oldest –0.265 0.019 –14.260 6.27e-021a

R-Squared 0.817918

* Fertility: the total fertility rate (person), Life: the life expectancy of men at the age 65 (year),
Migration: the net migration rate of population aged 20-59, Working: the working-age population
ageing rate (%), Oldest: the oldest-old-age population rate (%)
a and b denote statistical significance at the 99% and 90% levels respectively

Table 5 The average values of demographic factors determined for four classes of regions in 2012

Variable name* Old-high class Old-low class Ageing-high class Ageing-low class

Fertility 1.199 1.289 1.288 1.379
Life 15.5 15.2 14.9 15.3
Migration –7.6 –16.2 –21.4 3.5
Working 38.1 37.9 38.1 36.5
Oldest 25.3 28.1 24.6 26.1

* Fertility: the total fertility rate (person), Life: the life expectancy of men at the age 65 (year),
Migration: the net migration rate of population aged 20-59, Working: the working-age population
ageing rate (%), Oldest: the oldest-old-age population rate (%)
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The tree growing procedure is based on the partitioning rules. They divide
subsets of the learning set with respect to a dependent variable and create the
daughter nodes from a parent node. The data in each of the daughter nodes is
obtained by reducing the number of cases that has been misclassified. All of
the possible ways of splitting are tested and the one which leads to the greatest
increase in node purity is chosen. The goodness of a potential split is indicated
by an impurity function. This is a function of the proportion of the learning
sample belonging to the possible classes of the dependent variable. This study
uses Gini’s index of impurity.

The second problem of classification is to select a tree of the right size in such
a way as not to overfit the learning sample, as well as to achieve an exhaustive
representation of the data. In this study, the dataset is relatively small, so we
use a strategy of growing a fully expanded tree and then pruning it back, or
removing some of its nodes to produce a tree with a smaller number of terminal
nodes. This produced a finite sequence of nested subtrees from which the best
solution was chosen.

The membership accuracies in a sequence of subtrees can be compared using
some estimates of their misclassification rates. One of the possible solutions, if
one has enough data, is to distinguish an independent test set. In this study, due
to having a not very large number of cases, a V-fold cross-validation estimate
of the misclassification rate is used. The entire dataset used as a learning set is
randomly divided into V parts of approximately equal sized, disjoint subsets. In
this study V was equal to 5.

The subtree with the smallest estimated misclassification rate equal to 12.1%
is selected to be the final tree-based classification model. Table 6 presents a tree
growing scheme. The classification tree has 10 internal nodes and 12 leaves
which determine the profiles of classes. The node numbers indicate the rules
of a division. For example, the leaf node with the number of 2.2.2.2.2.1 is a
subdivision of an internal node with the number of 2.2.2.2.2 according to the
values of the life expectancy of men at the age 65 higher than 14.85 years. All
calculations were made in Statistica 10 software.

An example of the classification rules for a subclass of the ageing-low class
is the leaf node number 2.2.2.1.2 in Table 6. This subclass includes subregions
with the rate of adult population ageing between 37.09% and 37.78% which is
very close to the Polish national average equal to 37.4% in 2012. The percentage
of people aged 80 and older in the total population is lower than 27.60%. The
life expectancy of men at the age 65 is less than 15.15 years which is rather
shorter than the Polish national average equal to 15.4% in 2012. The total
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Table 6 Classification tree

Node Type Input Splitting Number Number of Number Number of Number of
number of node variable* criterion of sub- old-high of old-low ageing-high ageing-low

regions class class class class
(66) members members members members

(16)** (15)** (13)** (22)**

1 internal Working ≤37.09 26 3 4 1 18
1.1 leaf Fertility >1.25 18 0 1 0 17
1.2 internal Fertility ≤1.25 8 3 3 1 1
1.2.1 leaf Working ≤35.99 3 3 0 0 0
1.2.2 internal Working >35.99 5 0 3 1 1
1.2.2.1 leaf Migration ≤−18.18 2 0 0 1 1
1.2.2.2 leaf Migration >−18.18 3 0 3 0 0
2 internal Working >37.09 40 13 11 12 4
2.1 leaf Oldest >27.60 6 0 6 0 0
2.2 internal Oldest ≤27.60 34 13 5 12 4
2.2.1 internal Life >15.15 9 8 0 1 0
2.2.1.1 leaf Life >15.30 6 6 0 0 0
2.2.1.2 leaf Life ≤15.30 3 2 0 1 0
2.2.2 internal Life ≤15.15 25 5 5 11 4
2.2.2.1 internal Fertility >1.37 5 0 3 0 2
2.2.2.1.1 leaf Working >37.78 3 0 3 0 0
2.2.2.1.2 leaf Working ≤37.78 2 0 0 0 2
2.2.2.2 internal Fertility ≤1.37 20 5 2 11 2
2.2.2.2.1 leaf Fertility >1.28 11 0 1 9 1
2.2.2.2.2 internal Fertility ≤1.28 9 5 1 2 1
2.2.2.2.2.1 leaf Life >14.85 3 0 1 1 1
2.2.2.2.2.2 leaf Life ≤14.85 6 5 0 1 0

* Fertility: the total fertility rate (person), Life: the life expectancy of men at the age 65 (year),
Migration: the net migration rate of population aged 20-59, Working: the working-age population
ageing rate (%), Oldest: the oldest-old-age population rate (%)
** Bold values indicate a predicted class for which a cost of misclassification is the lowest

fertility rate is higher than 1.37 which is much more than the Polish national
average equal to 1.299 in 2012. A population of subregions belonging to this
subclass is relatively young and does not age very quickly due to presenting a
relatively short life duration and high fertility as well.

7 Demographic conditions of population ageing within Poland

The results of a classification tree help to profile 4 classes of subregions. The first
(old-high) class with an old and still ageing population consists of 3 subclasses.
The most intensive ageing is seen in the big socio-economic centers in Poland:
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the cities of Cracow (KRA), Wrocław (WRO) and Poznań (POZ). See Table 7.
The GDP per capita in these cities is 150% of the national average value
(Poland: 37,096 PLN). In spite of the relatively young working-age population,
extremely low fertility accompanied by high life expectancy is seen in these
subregions.

This probably results from the intentional delay of procreation time and
changing life priorities from family-related to profession-related. The situation
requires a redefinition of social policy. Exemplary activities include promoting
starting a family, giving help to women to reconcile their career with caring for
children, e.g. by providing social infrastructure (e.g. increasing the availability
of nurseries), giving an opportunity for men to take paternal leave etc.

The second subclass covers economically well developed subregions with
the cities inside and also the city of Szczecin (SZC). They exhibit an extremely
old working-age population which is accompanied by low fertility and high
life expectancy. These subregions experience serious demographic problems
which are difficult to solve. The population of young people is shrinking. This
can disturb the regional labour market and diminish demand for jobs. Regional
policy, e.g. creating new jobs and services, should attract people to live in these
subregions.

The intensive process of population ageing is also typical of weak, neigh-
bouring subregions of south-western Poland apart from the Katowicki (KTW)
subregion. Extremely old working-age population and low fertility, and also
a big migration outflow of young people occur in this area. These subregions
suffer from very serious demographic and economic problems which affect a
depopulation process and may lead these subregions to become extinct.

The second (old-low) class with an old but very slowly ageing population
also distinguishes three subclasses. The first subclass covers a few subregions
together with Warsaw (WAR), the capital city of Poland. The situation of this
subclass is very similar to the situation of the cities of Cracow, Wrocław and
Poznań. But it will be much more difficult to increase fertility in Warsaw due
to social and cultural (e.g. life style) and economic (e.g. high cost of living)
adversities.

The old-low class also includes the weakest Polish subregions (less than
75% of the national average value of GDP per capita value in 2012) with
common borders such as the Chełmsko-zamojski (CHZ), Puławski (PUL),
Radomski (RAD) and Sandomiersko-jȩdrzejowski (SKJ) subregions. Extremely
high migration outflow of young people from these subregions and also a lot
of oldest-old age people directly result from the long-term economic problems.
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Table 7 Share of people aged 65 or older and its increase rate in 66 Polish subregions (NUTS 3)

Name Full name Share of Increase Name Full name Share of Increase
of senior rate of the of senior rate of the
citizens share in citizens share in
in 2012 1995-2012 in 2012 1995-2012

(%) (%) (%) (%)

BAL Bialski 14.1 0.4 OPO Opolski 15.0 2.8
BIE Bielski 14.4 1.7 OSW Oświȩcimski 14.5 1.8
BLS Białostocki 14.6 1.3 PIL Pilski 11.9 1.3
BOT Bydgosko-toruński 14.3 1.9 PNK Poznański 10.7 0.5
BYM Bytomski 15.4 2.8 POZ City of Poznań 16.4 1.6
CEP Ciechanowskopłocki 13.9 1.1 PRZ Przemyski 13.9 0.9
CHZ Chełmsko-zamojski 15.3 0.7 PTK Piotrkowski 14.3 0.9
CZE Czȩstochowski 15.8 1.3 PUL Puławski 15.6 1.0
ECK Ełcki 12.3 1.9 RAD Radomski 14.1 0.9
ELB Elbla̧ski 12.2 1.6 RYB Rybnicki 13.6 3.4
GDA Gdański 9.9 1.4 RZE Rzeszowski 13.6 1.2
GLI Gliwicki 15.3 3.2 SGD Starogardzki 11.2 1.4
GOR Gorzowski 12.5 1.6 SIR Sieradzki 15.0 0.8
GRU Grudzia̧dzki 12.6 1.1 SKJ Sandomiersko- 16.1 0.3

jȩdrzejowski
JEL Jeleniogórski 13.8 1.3 SKN Skierniewicki 15.5 1.0
KAL Kaliski 13.5 1.0 SLU Słupski 11.9 1.9
KIE Kielecki 15.3 1.8 SNK Szczeciński 11.4 1.9
KKW Krakowski 13.0 0.2 SOS Sosnowiecki 15.7 1.9
KNN Krośnieński 13.7 1.4 STA Stargardzki 12.3 1.6
KON Koniński 13.0 1.3 SUW Suwalski 13.9 1.0
KRA City of Kraków 16.6 1.9 SZC City of Szczecin 16.0 2.2
KSZ Koszaliński 13.0 2.1 TAR Tarnowski 13.9 1.5
KTW Katowicki 16.2 2.7 TNB Tarnobrzeski 13.4 1.8
LDZ Łódzki 15.5 1.1 TRM Trójmiejski 17.0 2.3
LEG Legnicko-głogowski 12.7 2.5 TYS Tyski 12.4 2.7
LMN Łomżyński 16.2 0.9 WAR City of Warsaw 18.0 1.2
LOD City of Łódź 18.6 1.2 WBS Wałbrzyski 15.2 1.5
LSZ Leszczyński 12.1 0.8 WKW Warszawski 12.8 0.6

wschodni
LUB Lubelski 14.6 1.3 WLC Włocławski 13.4 1.2
NOW Nowosa̧decki 12.5 1.4 WRO City of Wrocław 16.6 1.7
NYS Nyski 14.4 1.7 WSZ Warszawski 13.6 0.5

zachodni
OKD Ostrołȩcko-siedlecki 13.9 0.5 WWS Wrocławski 12.1 0.8
OLS Olsztyński 12.5 2.0 ZIE Zielonogórski 12.8 1.5

This is a very similar situation to the last subclass of the old-low class. An
effective social policy and economic measures to stimulate regional economies
may help to keep young people and impede shrinkage.
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The third (ageing-high) class is formed by subregions with a relatively young
population which experiences the ageing process. It is the most homogeneous
class according to demographical conditions but differs in economic and envi-
ronmental factors. This class consists of selected subregions of the Lubuskie
region (the Gorzowski (GOR) and Zielonogórski (ZIE) subregions) located
in western Poland, subregions of the Śla̧skie region (the Rybnicki (RYB) and
Tyski (TYS) subregions) located in southern Poland, the Warmińsko-mazurskie
region (the Elbla̧ski (ELB) and Ełcki (ECK) subregions) located in northern
Poland, and also the Słupski (SLU) and Legnicko-głogowski (LEG) subregions.
Low fertility, accompanied by an old working-age population, which results
from the migration outflow of young people, are typical features of this class.
Some of these subregions will probably join the old-high class in the future.

The fourth (ageing-low) class presents the smallest population ageing but is
the most diversified according to its demographic conditions. The majority of
its subregions has a relatively young working-age population but also high life
expectancy. Extremely weak economic situation (GDP per capita less than 60%
of the national average value) translates into a high migration outflow of young
people.

Subregions surrounding the biggest economic centers of Poland (the cities
of Warsaw, Wrocław, Poznań, Cracow and Gdańsk) show an extremely high
positive net migration of young people. This results from the sub-urbanization
process and expansion of these cities. The rest of the subregions of the ageing-
low class home a relatively old working-age population and low fertility, ac-
companied by a high migration outflow of young people. This subclass will
probably join the ageing-high class if no preventive measures are taken.

8 Discussion

Population ageing is not simple to examine because its foundations do not
lie only in demographic factors. For example, in general, we can assume that
subregions similar in their economic situation are also similar demographically.
However, when we compare the situation of the biggest Polish cities with
the other economically well developed subregions, we cannot expect that the
demographic situation of such different types of agglomerations will be similar.

The occurring sub-urbanization process may also disturb the analysis results.
Thus we cannot expect that the youngest population lives in the biggest cities.
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Many young people work in a city but live outside the city. It is a problem
how to interpret this situation. Is the population of economic centres really
demographically old?

Some demographic factors of the population ageing process which were not
disclosed in this study also exist. For example, eastern Poland is economically
the weakest macro-region, so we can suppose that the population of the subre-
gions of eastern Poland is demographically the oldest. But there are subregions
in the rest of Poland which are economically well developed and also show
a very intensive process of population ageing. For example, some pensioners,
after working many years outside, come back to their native region, e.g. to the
Śla̧skie region, to spend the rest of their lives there.

Although demographic changes are not rapid and take a long-time, the anal-
ysis shows that results are not stable in time. Changes of economic trends,
social and economic policies, actions of local authorities, and even some mis-
fortunes affect the demographic situation. Carrying out additional studies is
recommended.

9 Conclusions

The paper conducts a comparative study of demographic features of populations
exhibiting the ageing process using classification trees. It presents an original
approach in the analysis of population ageing which is not well recognized in
the literature.

1. It examines the demographic determinants of population ageing besides the
intensity of ageing.

2. It concerns the internal situation of a country rather than international
comparisons.

3. It uses classification trees which are not frequently applied in demography
and population ageing studies.

4. It indicates regional problems and conditions of ageing in Poland.

The main advantage of using classification trees is to discover two, previously
unknown situations difficult to find with other tools. The most important result
of the study is to prove that regions similar in their intensity of population ageing
may feature different demographic conditions of the process. Only subregions
with young but quickly ageing population are common in their factors of ageing.
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The second, unexpected finding is that the intensity of population ageing is
not correlated with the economic situation of subregions. But subregions similar
in their economic situation exhibit common demographic factors of ageing as
well. In general, well developed regions mostly suffer from very low fertility,
while poor regions struggle with a high out-migration of young people and an
old working-age population. This requires an individual approach in mitigating
the effects of ageing and impeding this process within a country and, besides
an effective national social policy and also coordinated activities of regional
and local authorities.
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Abstract For some years, choice-based conjoint analysis (CBC) has demon-
strated its superiority over other preference measurement alternatives. So, e.g.,
in a recent study on German and Polish cola consumers, the superiority of CBC
over traditional conjoint analysis (TCA) was striking. As one reason for this
superiority, the usage of hierarchical Bayes for CBC parameter estimation was
mentioned (CBC/HB). This paper clarifies whether this really makes the differ-
ence: Hierarchical Bayes is also used for TCA parameter estimation (TCA/HB).
The application to the above mentioned data shows, that this improves the
predictive validity compared to TCA but is still inferior to CBC/HB in “high
data quality cases". However, in “low data quality cases" TCA/HB is superior
to CBC/HB.
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1 Introduction

In marketing and market research, the application of preference measurement
methods for modeling choices among multi-attributed products has a long
history. Maybe the best known family of methods is conjoint analysis (CA).
CA started its success in the 1960s and 1970s as an approach that allows to
estimate part worths for attribute-levels from rankings or ratings of attribute-
level-combinations using regression-like procedures (see, e.g., Green and Rao,
1971). Green et al (2001) used in their overview on CA methods the term
traditional CA (TCA) for approaches that rely on ranking and/or rating data.
It should be mentioned that in TCA the usage of MONANOVA or ANOVA
for parameter estimation leads in many cases to rather similar results (see, e.g.,
Green and Srinivasan, 1978). This is mostly ascribed to the misfit between few
observations and many parameters at the desired individual modeling level.
Also, in TCA, despite many methodological improvements over the years (e.g.
adaptive conjoint analysis), the basic five application steps remained the same
(see, e.g., Green et al, 2001):

1. Determine the attributes and levels that influence the customer’s choice
decisions.

2. Design a set of fictional attribute-level-combinations (stimuli) for data
collection.

3. Collect preferential evaluations of these stimuli from a sample of customers.
4. Derive part worths for the attribute-levels using regression-like procedures.
5. Predict the choices of each customer in an assumed market scenario and

aggregate them to market shares or sales volumes.

However, today, not TCA but choice-based CA (CBC) (see, e.g., Louviere
and Woodworth, 1983; Sawtooth Software, 2013a) is most frequently applied
(see, e.g., Selka and Baier, 2014; Selka et al, 2014, for recent overviews on
commercial applications). With CBC, in step 3, instead of rating or ranking
attribute-level-combinations, the respondents are repeatedly confronted with
sets of attribute-level-combinations (so-called choice sets) and asked to select
the most preferred ones. Then, in step 4, a multinomial logit model is used for
estimation. However, even more severe as TCA, CBC suffers from the misfit
between few observations and many parameters at the individual modeling
level. As a consequence only pooled models could be estimated (assuming
that groups of customers have identical part worths). Here, hierarchical Bayes



TCA/HB Compared to CBC/HB for Predicting Choices 79

(HB) methods for CBC part worth estimation (see, e.g., Allenby and Lenk,
1994; Sawtooth Software, 2009) provided the solution: Observations are shared
across respondents during estimation. So, it is possible to estimate individual
part worths from few observations per respondent.

Comparison studies (see, e.g., Elrod et al, 1992; Oliphant et al, 1992; Vriens
et al, 1998; Moore et al, 1998; Moore, 2004; Karniouchina et al, 2009; Baier
et al, 2015) have shown that CBC outperforms TCA in many cases, especially
when CBC/HB is used for parameter estimation. However, since also HB
methods exist to estimate TCA model parameters (see, e.g., Lenk et al, 1996;
Baier and Polasek, 2003; Sawtooth Software, 2013b; Baier, 2014), the question
remains unanswered whether CBC/HB is also superior to TCA/HB. This paper
tries to close this gap. In Sect. 2 TCA/HB and in Sect. 3 CBC/HB are shortly
described. Then, in Sect. 4, the data from Baier et al (2015) are used to compare
TCA/HB and CBC/HB. Section 5 closes with a short conclusion and outlook.

2 Hierarchical Bayes Traditional Conjoint Analysis (TCA/HB)

Let y1, . . . ,yn ∈ Rm describe observed preferential evaluations from n respon-
dents (i = 1, ...,n) w.r.t. to m stimuli ( j = 1, ...,m). yi j denotes the observed
preference value of respondent i w.r.t. stimulus j. X ∈ Rm×p denotes the char-
acterization of the m stimuli by p variables. In case of nominal or ordinal
attribute-levels a dummy- or an effect-coding is used. The observed evaluations
are assumed to come from the following (lower hierarchical) model:

yi = Xββ i + εε i, for i = 1, . . . ,n with εε i ∼ N(0,σ2I), (1)

with I as the identity matrix, σ2 as an error variance parameter.
The individual part worths ββ 1, . . . ,ββ n are assumed (higher hierarchical

model) to come from a multivariate normal distribution with mean part worth
vector µµ ∈ Rp and a (positive definite) covariance matrix H ∈ Rp×p:

ββ i ∼ N(µµ,H) i = 1, . . . ,n. (2)

For estimating the model parameters (µµ,H,ββ 1, . . . ,ββ n,σ
2), Bayesian pro-

cedures provide a mathematically tractable way that combines distributional
information about the model parameters with the likelihood of the observed
data. The result of this combination, the empirical posterior distribution of the
model parameters, is generated by (Gibbs) sampling a sequence of draws from
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the conditional distributions of the model parameters (see, e.g., Lenk et al, 1996;
Baier and Polasek, 2003; Sawtooth Software, 2013b; Baier, 2014, for details)
using iteratively the following four steps (starting, e.g., with random values as
estimates for the model parameters):

1. Use present estimates of ββ 1, . . . ,ββ n and H to generate a new estimate of µµ .
µµ is assumed to be distributed normally with mean equal to the average of
the ββ 1, . . . ,ββ n and covariance matrix equal to H divided by the number of
respondents. Randomly draw a new estimate of µµ from this distribution.

2. Use present estimates of ββ 1, . . . ,ββ n and µµ to draw a new estimate of H from
an inverse Wishart distribution in the following way:

• Calculate G = pI+∑
n
i=1(µµ−ββ i)

′(µµ−ββ i).
• Apply a Cholesky decomposition to G−1 s.t. G−1 = FF′.
• Draw n+ p vectors ui from N(0,I), calculate S = ∑

n+p
i=1 (Fui)(Fui)

′.
• Set H = S−1.

3. Use present estimates of µµ , H, and σ2 to draw new estimates of ββ 1, . . . ,ββ n
from the following conditional distributions (i = 1, ...,n):

ββ i ∼ N(µµ i,G) with G = (H−1 +σ
−2X′X)−1, µµ i = G(H−1

µµ +σ
−2X′yi).

4. Use present estimates of µµ , H, and ββ 1, . . . ,ββ n to generate a new estimate of
σ2 by a similar – but scalar – approach as in step 2.

The final estimates of the model parameters are obtained by averaging the
repeated draws from the above four steps. Here often the draws from the first
– so-called burn-in – iterations are omitted.

3 Hierarchical Bayes Choice-Based Conjoint Analysis (CBC/HB)

CBC differs from TCA insofar that respondents are repeatedly confronted with
(choice) sets of attribute-level-combinations (stimuli) and asked to select the
most preferred one. So, at the (lower hierarchical) level, the choice of stimulus
j′ out of J alternatives ( j = 1, ...,J) has to be modeled. As usual in multinomial
logit models

pi j′ =
exp(x j′ββ i)

∑ j=1 exp(x jββ i)
(3)
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is the probability that the respondent i selects stimulus j′ (assuming an indepen-
dently, identically type I extreme distributed additional error in the utilities, see,
e.g., Louviere and Woodworth, 1983; Sawtooth Software, 2013a). x j denotes
the characterization of the alternative j in this choice task ( j = 1, ...,J). As with
TCA/HB, the individual part worths ββ 1, . . . ,ββ n are assumed (higher hierarchical
model) to come from a multivariate normal distribution with mean part worth
vector µµ ∈ Rp and a (positive definite) covariance matrix H ∈ Rp×p:

ββ i ∼ N(µµ,H) i = 1, . . . ,n. (4)

Again, for estimating the model parameters (µµ,H,ββ 1, . . . ,ββ n), Bayesian
procedures are used. The steps are similar as above, only the draws w.r.t. the
ββ 1, . . . ,ββ n) differ. Here, a Metropolis Hastings algorithm has to be used. For
details see Allenby and Lenk (1994) and Sawtooth Software (2009).

4 Empirical studies: Experiments and Results

For testing whether CBC/HB is superior to TCA/HB the data from Baier et al
(2015) are used. The multi-attributed product under investigation was – as
already mentioned – cola to be bought in the supermarket with the attributes
brand (with levels Coca Cola, Pepsi Cola, other brand), flavor (Cola, Cola with
orange, Cola with lemon, Cola with cherry), calorie content (normal, light,
zero), caffeine content (caffeinated, caffeine-free), price (0.59 e/l, 0.69 e/l,
0.79 e/l, 0.89 e/l), and bottle size (0.5 l, 1 l, 1.5 l, 2 l). The usage of the unit
price per volume (e/l) is somewhat problematic since the respondents are used
to buy colas at absolute prices (e), but they were explicetely informed about
this difference from the usual buying situation.

The data collection took place at two universities near the German-Polish
border. The first experiment in each country was an offline-experiment with
a TCA task. For TCA, 25 stimuli were generated using orthogonal plans as
proposed by SPSS Conjoint to the above number of attributes and levels. In
Germany 199 respondents participated in the TCA experiment, in Poland 194.
The second experiment in each country was an online-experiment with a CBC
task. The respondents were confronted with 18 choice sets, each consisting
of four attribute-level-combinations plus a no-choice option. The number of
stimuli and choice sets is somewhat high in both experiments, but the students
received an incentive and accepted the (complicated) tasks. In Germany 169
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respondents participated in the CBC experiment, in Poland 225. All experi-
ments (also the online-experiments) were performed in a controlled laboratory
situation: Interviewers informed the respondents about their tasks and observed
the answering process. As an incentive for participating, in all experiments, the
respondents received a voucher for a small bottle of cola in the cafeteria of their
university. All experiments closed with the same holdout choice task (eight
identical holdout choice sets were presented) to evaluate the predictive validity.
All experiments were performed during four weeks in May and June 2013.

As discussed in Baier et al (2015), the data collection in all four experiments
was possible without problems. However, in all experiments, data inspection
showed that there were cheating respondents when filling out the questionnaires:
Some obviously didn’t sort the stimuli with great efforts (resulting in “similar"
orderings compared to the stimuli numbers), some used some simplifying rules
when selecting stimuli in the choice sets (e.g. always selecting the first stimulus
in the set). The total number of such directly observable cheaters was small
(e.g. about 10 % in the Polish samples, 5 % in the German samples), but this
supported the impression that the Polish samples were data “of lower quality"
than the German samples.

The TCA data were analyzed in Baier et al (2015) using MONANOVA as
implemented in SPSS Conjoint whereas the CBC data were analyzed using
Sawtooth Software’s CBC/HB software (Sawtooth Software, 2009). The “di-
rectly observed" low data quality of the Polish samples is reflected in the model
fit: So, e.g., 16 from the 194 respondents in the Polish TCA sample showed
a Pearson correlation of 0.7 or lower when comparing the observed and the
estimated preference values. In the German TCA sample only three respondents
showed such a low model fit. On average, the Polish respondents showed a
Pearson correlation of 0.858 whereas the German respondents showed a Pearson
correlation of 0.982. Similar differences can be observed between the Polish
and German CBC samples. So, we refer to the two German experiments in the
following as a “high data quality case" whereas the two Polish experiments are
referred to as the “low data quality case". Especially in the “high data quality
case", the CBC experiment showed in Baier et al (2015) a clear superiority w.r.t.
predictive validity.

Now, for the research question in this paper, we analyzed also the TCA data
with hierarchical Bayes procedures. We used Sawtooth Software’s Hierarchi-
cal Bayes Regression software for this purpose (Sawtooth Software, 2013b)
with 50,000 draws as burn-ins and 10,000 draws for calculating the param-
eter estimates. We used constraints w.r.t. the price levels in order to prevent
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Table 1 Averaged standardized part worths and attribute importances for the different samples in Ger-
many and Poland (TCA/HB=Hierarchical Bayes Traditional Conjoint Analysis, CBC/HB=Hierarchical
Bayes Choice-Based Conjoint Analysis); sample differences between Germany and Poland were t-
tested; *: significant at α=.05, **: at α=.01, ***: at α=.001

Averaged standardized part worths (std. dev.)

Germany Poland

TCA/HB CBC/HB TCA/HB CBC/HB
Attribute Level (n=199) (n=169) (n=194) (n=225)

Brand Coca Cola .181 (.201) .172 (.127) .141 (.157) .144 (.172)
Pepsi Cola .072 (.108) .075 (.073) .119 (.144) .121 (.141)

Other .091*** (.141) .015 (.035) .120* (.156) .088 (.164)

Flavor Cola .236 (.188) .241 (.140) .111 (.137) .164*** (.162)
W. orange .119 (.152) .094 (.111) .055 (.078) .072 (.109)
W. lemon .153 (.146) .132 (.117) .125 (.130) .105 (.111)
W. cherry .089* (.124) .060 (.100) .150*** (.115) .101 (.135)

Calorie Normal .167 (.156) .193 (.167) .086** (.084) .064 (.080)
Light .064 (.097) .086* (.081) .086*** (.085) .037 (.056)
Zero .042 (.076) .046 (.096) .037 (.067) .048 (.071)

Caffeine Caffein. .128*** (.138) .083 (.092) .039 (.062) .035 (.049)
C.-free .009 (.036) .014 (.045) .034 (.049) .026 (.060)

Price .59 e/l .029 (.072) .087*** (.095) .097 (.071) .130* (.148)
.69 e/l .022 (.049) .060*** (.065) .031 (.037) .100*** (.074)
.79 e/l .011 (.029) .038*** (.044) .002 (.001) .086*** (.079)
.89 e/l .000 (.000) .013*** (.025) .000 (.000) .044*** (.094)

Bottle 0.5 l .085*** (.093) .027 (.049) .049 (.059) .056 (.090)
size 1 l .079* (.085) .061 (.052) .106** (.090) .059 (.075)

1.5 l .054 (.064) .049 (.050) .112** (.094) .071 (.075)
2 l .033 (.051) .048** (.056) .093 (.090) .075 (.108)

Averaged attribute importances (std. dev.)

Germany Poland

Attribute TCA/HB CBC/HB TCA/HB CBC/HB

Brand .231* (.197) .187 (.116) .254 (.160) .256 (.192)
Flavor .292 (.180) .279 (.133) .256 (.125) .255 (.170)
Calorie .189 (.150) .241*** (.141) .136*** (.083) .105 (.086)
Caffeine .138*** (.134) .096 (.091) .073* (.061) .061 (.065)

Price .029 (.072) .103*** (.090) .097 (.071) .186*** (.140)
Bottle size .122*** (.090) .094 (.061) .184*** (.080) .137 (.121)
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degeneration. The internal validity of TCA/HB was 0.767 (averaged R2 across
respondents) for the German sample and 0.418 for the Polish sample. Please
note, as in Baier et al (2015) for TCA and CBC/HB, the “lower quality" of
the Polish data. The internal validity of CBC/HB (see Baier et al, 2015) was
0.647 (averaged root likelihood value across respondents) for the German and
0.598 for the Polish sample. However, the respondents with a low model fit
were not removed from the further analyses since we explicetely wanted to
demonstrate the ability of the different procedures to deal with the “low data
quality" problem.

Afterwards, for comparison reasons, the estimated part worths at the respon-
dent level were standardized in the usual way so that – for each respondent
in each experiment – the maximum possible value for a stimulus is 1 and the
minimum 0. Also the individual attribute importances in each experiment were
calculated via the difference of the highest and the lowest part worth for levels
of the corresponding attribute. Table 1 gives the averaged part worths for all four
experiments (TCA/HB, CBC/HB in Germany and Poland) and also averaged
importances. From Table 1 one can easily see, that – more or less – the results
across nationality (also: “data quality", see above) and methods are similar:
“Flavor" is – on average – the most important attribute when selecting colas,
followed by “brand" and “calorie". The importance of “price" differs between
German and Polish consumers but also between TCA/HB and CBC/HB. So,
e.g., with CBC/HB, the importance of price is much higher than with TCA/HB.
This can be partly ascribed to the well-known fact that “simple" or “quantifi-
able" attributes are more looked at in the choice than in the ranking setting (see,
e.g., Karniouchina et al, 2009; Baier et al, 2015), but also to the constraining of
the price parameters during TCA/HB estimation.

The most important comparison deals with the predictive validity. Here the
responses to the holdout choice tasks (identical in all experiments) have to be
compared with model predictions (assuming that the respondent selects the
stimulus with highest predicted sum of part worths in each holdout choice set).
There are two possibilities to calculate them: One could control all holdout
choices (including the selections of the no-choice option, in total n=9,880
selections) or one could control only the holdout choices where a holdout
stimulus was selected (excluding the selection of the no-choice option, in total
n=7,803 selections). The fair comparison would be the second one (see, e.g.,
Karniouchina et al, 2009; Baier et al, 2015), since TCA resp. TCA/HB do not
collect data to predict the no-choice option, only CBC resp. CBC/HB are able
to give such predictions.
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Table 2 First Choice Hit Rates (FCHR). (TCA/HB=Hierarchical Bayes Traditional Conjoint Analysis,
CBC/HB=Hierarchical Bayes Choice-Based Conjoint Analysis); “With NC" stands for all choices of
respondents in the holdout tasks including the no-choice selections, for “Without NC" the no-choice
selections are excluded; a binomial test was applied to compare the results: FCHR of one method was
assumed and checked whether FCHR of the other is higher; *: significant at α=.05, **: at α=.01, ***:
at α=.001

First Choice Hit Rates

Germany Poland

Holdout choices considered TCA/HB CBC/HB TCA/HB CBC/HB

With NC .456 .710*** .339 .335
Without NC .648 .726* .378 .323

So, for the second one, in Germany, CBC/HB outperforms TCA/HB with
First Choice Hit Rate (FCHR, the percentage of correctly predicted selections in
the holdout choice sets) values of 0.726 (for CBC/HB) and 0.648 (for TCA/HB).
The TCA/HB value is better than the value 0.626 for TCA in Baier et al (2015),
but still worse than CBC/HB. See Table 2. In the Polish experiments, TCA/HB
(FCHR=0.378) outperforms CBC/HB (FCHR=0.323). See Table 2. However,
since the FCHR values for the Polish experiments are very low, one should
nevertheless conclude that CBC is superior with respect to prediction, especially
in “high data quality cases".

5 Conclusions and outlook

The analyses have shown, that – especially in “high data quality cases" – for
choice predictions, CBC/HB outperforms TCA and also – as a result of this
paper – TCA/HB. However, especially in markets with “low data quality", the
TCA/HB approach competes well, especially when the no-choice options are
neglected. Of course, the comparisons between traditional and choice-based
methods have not come to an end, one needs more such comparisons.

However, already from the comparison in this paper, one can draw ideas
for methodological improvements: The main improvement with respect to
predictive accuracy but also with respect to model fit comes from the motivation
of the respondents to answer the questionnaires carefully. The “low data quality"
problem in the Polish samples can only partly be compensated by the better
HB estimation procedure. So, it seems that improvements that focus on better
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data collection and respondent motivation procedures are of higher value for
marketing research practice than better parameter estimation procedures.
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Maximum Difference Scaling Method in the
MaxDiff R Package

Tomasz Bartłomowicz and Andrzej Ba̧k

Abstract In microeconomics, measurement of consumer preferences is one
of the most important elements of marketing research. Accurate measurement
of preferences allows to gain an understanding of likes and dislikes of con-
sumers. Using some statistical methods (like e.g. conjoint analysis and discrete
choice models) it is possible to quantify preferences and answer the ques-
tions: What product will a consumer choose? What attribute of the product is
most important? Consumer choice models attempt to answer these questions.
This article describes the R package MaxDiff for the Maximum Difference
Scaling method to assess consumer preferences from consumer choice experi-
ments. Because practical applications of this method depend on the availability
of computer software, this paper describes an implementation of the Maxi-
mum Difference Scaling method in the R package MaxDiff. Functions of the
MaxDiff R package can be used for the measurement of consumer prefer-
ences. MaxDiff supports the design of the experiment (e.g. to build a list of
features), encode the alternatives, estimate the models, etc. Some functions of
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the MaxDiff R package are presented with examples of applications in the
empirical analysis of consumer preferences.

1 Introduction

Maximum Difference Scaling (MaxDiff) is a relatively new approach for mea-
suring the importance of preferences for multiple items like product features,
job-related benefits, advertising claims, product packaging, etc. Although Max-
imum Difference Scaling has much in common with conjoint analysis and
discrete choice methods, the method is easier to use for researchers, respon-
dents and clients. We can say, that the MaxDiff method combines the best
features of traditional conjoint analysis and discrete choice methods. That is
why Maximum Difference Scaling is also known as Best-Worst Scaling or Best-
Worst Conjoint (Louviere, 1991). Comparison of the most popular preferenc
measurement methods is presented in Table 1.

Maximum Difference Scaling (originally Best-Worst Scaling) is a preference
measurement method developed by Louviere and and other researchers (see
Louviere and Woodworth, 1983; Louviere, 1991; Finn and Louviere, 1992;
Marley and Louviere, 2005).

With the MaxDiff method, respondents are shown subsets of the possible
items in the experiment and are asked to indicate (among these subsets) the most
and the least preferred (best and worst) items. Respondents typically evaluate a
dozen sets where each set contains a different subset of items. The combinations
of items are designed very carefully. Each item is shown with an equal number
of pairs of items an equal number of times. Each respondent typically sees
each item two or even more times across the MaxDiff sets. Compared to the
rankings which is usually limited to a small number if items and to the scaled
ratings, MaxDiff choosing is usually selective enough. Let us consider a set in
which a respondent evaluates five items: A, B, C, D and E. If the respondent
says that A is the best and E is the worst, these two responses inform us on
seven of ten possible implied paired comparisons: A>B, A>C, A>D, A>E,
B>E, C>E, D>E. In the opinion of some authors, humans are much better
at judging items at extremes than in discriminating among items of middling
importance of preference. Maximum Difference Scaling experiments focus
on estimating preference or importance scores for typically about 15 to 30
attributes (Sawtooth Software, 2013).
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Table 1 Comparison of the most popular methods of preferences measurement

Specification Traditional
conjoint analysis

Discrete choice method Maximum Difference
Scaling

Number of variables
(attributes)

Max 6 attributes Max 9 attributes 15-30 attributes

Method of profiling Full factorial design,
fractional factorial
design

Blocking factorial design Subsets of items

Method of data
collection

Ranking (rating) of all
profiles

Choosing of the most
preferred item or any one

Choosing of the most
and least preferred (best
and worst) items

Model Multiple regression
model

Multinomial, conditional,
mixed logit model

Multinomial logit model

Estimation method OLS regression Maximum likelihood method,
Expectation-Maximization
(EM) algorithm

Maximum likelihood
method

Commercial software SPSS, STATISTICA,
Sawtooth Software

SAS/STAT, STATISTICA,
S-PLUS

Sawtooth Software

Free software
(GNU GPL license)

conjoint R package DiscreteChoice R package,
mlogit R package

MaxDiff R package

In MaxDiff models estimation of the utility function is typically performed
using multinomial discrete choice models, in particular multinomial logit mod-
els. Several algorithms could be used in this estimation process, including
maximum likelihood, neural networks and the hierarchical Bayes method. In
the MaxDiff R package a multinomial logit model with maximum likelihood
estimation method is used. Additional information about the MaxDiff method
can be found in (Cohen, 2003; Louviere, 1991; Sawtooth Software, 2013).

2 The MaxDiff R package functions

The MaxDiff package is an implementation of the Maximum Difference
Scaling method for R (Bartłomowicz and Ba̧k, 2013). The package is available
under the GNU General Public License with free access to source code. The
current version of the MaxDiff package is 1.12. It is possible to download the
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package from the CRAN packages repository1 and the home WWW page of the
Department of Econometrics and Computer Science of the Wrocław University
of Economics2. To use the package it is necessary to install the base R computer
program (R Development Core Team, 2013) and two other packages: mlogit
(Croissant, 2012) for estimation of the logit models and AlgDesign (Wheeler,
2004) for generating fractional factorial designs.

The current version of the MaxDiff package (v. 1.12) has thirteen functions.
All of them (with their arguments and short description) are presented in Table 2
(in order of the MaxDiff procedure).

The first two functions are used to make fractional factorial design with the
suggested number of profiles and alternatives in each block of profiles using
vector (or matrix) of alternatives’ names. The function mdBinaryDesign()
returns a binary fractional factorial design while the function mdAggregate-
Design() returns an aggregate fractional factorial design. If we want to make
a design with alternatives’ names, it is necessary to use next the mdDesign-
Names() function which replaces the binary or aggregate fractional factorial
design in the design with the alternatives’ names.

The next two functions: mdAggregateToBinaryDesign() and
mdBinaryToAggregateDesign() convert binary designs to aggregate
designs or aggregate designs to binary ones. These functions are comple-
ments of each other, because for some of the functions (mdRankData(),
mdLogitData(), mdLogitIndividualCounts(), mdLogit-
Individual-Ranks(), mdMeanRanks(), mdLogitModel(),
mdLogitRanks() and mdMeanIndividualCounts()) it is necessary
to convert an aggregate design to a binary design.

In the group of data set functions there are two functions, namely the function
mdRankData() which converts a basic data set into a rank data set and the
function mdLogitData() which converts a rank data set into a logit data
set. In the first case the basic data set from questionnaires is converted into a
special data set for almost all functions of the MaxDiff package except the
function mdLogitModel(). For this last function, it is necessary to use the
mdLogitData() function which converts rank data into a special data set
for the logit model which is estimated with the mlogit R package.

In the next group of functions we find the function mdMeanIndividual-
Counts() and the function mdMeanRanks(). The first of them computes

1 http://cran.r-project.org/web/packages/MaxDiff
2 http://keii.ue.wroc.pl/MaxDiff/
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Table 2 Functions of MaxDiff R package with required arguments

Function header and description

mdBinaryDesign(profiles.number, alternatives.per.profile.number, alter-
natives.names) function makes binary fractional factorial design with suggested number of
profiles and alternatives in each profile using vector (or matrix) of alternatives’ names

mdAggregateDesign(profiles.number, alternatives.per.profile.number, al-
ternatives.names) function makes aggregate fractional factorial design with suggested number
of profiles and alternatives in each profile using vector (or matrix) of alternatives’ names

mdDesignNames(binary.or.aggregate.design, alternatives.names) function re-
places binary or aggregate fractional factorial design in design with alternatives’ names

mdAggregateToBinaryDesign(aggregate.design, alternatives.names) function
converts aggregate design to binary design with alternatives’ names

mdBinaryToAggregateDesign(binary.design) function converts binary design to aggregate
design

mdRankData(basic.data, binary.design) function converts basic data set into rank data set
for functions: mdIndividualCounts(), mdLogitData(), mdLogitRanks(), mdLogitIndividualCounts(), md-
LogitIndividualRanks(), mdMeanRanks()

mdLogitData(rank.data, binary.design, alternatives.names) function converts
rank data set into logit data set for mdLogitModel() function

mdMeanIndividualCounts(rank.data, binary.design) function computes the individu-
al-level counts for each respondents

mdMeanRanks(rank.data, binary.design) function computes the overall counts for the
whole sample using the arithmetic mean

mdLogitModel(logit.data, binary.design, alternatives.names) function esti-
mates an aggregate logit model

mdLogitRanks(rank.data, binary.design, alternatives.names) function com-
putes the overall counts and ranks for the whole sample using the logit model

mdLogitIndividualCounts(rank.data, binary.design, alternatives.names)
function computes the individual-level counts for each respondent using the logit model

mdLogitIndividualRanks(rank.data, binary.design, alternatives.names)
function computes the individual-level ranks for each respondent using the logit model

Arguments of functions

profiles.number Number of profiles in every block

alternatives.per.profile.number Number of alternatives in every block of profiles

alternatives.names Vector (or matrix) with alternatives’ names

binary.or.aggregate.design Binary or aggregate fractional factorial design

aggregate.design Aggregate fractional factorial design

binary.design Binary fractional factorial design

basic.data Data set from questionnaires

rank.data Data set with ranks

logit.data Data set for logit model
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the individual level counts for each respondent, while the second one computes
the overall counts for the whole sample using the arithmetic mean.

The last group of functions is linked to the logit model. In this group there
are four functions. The first function – mdLogitModel() estimates an ag-
gregate logit model. The second one – mdLogitRanks() computes the
overall counts and ranks for the whole sample using the logit model. The third
one, the function mdLogitIndividualCounts(), computes the individ-
ual level counts for each respondent using the logit model and the fourth func-
tion mdLogitIndividualRanks() computes the individual-level ranks
for each respondent using the logit model.

The detailed description and more examples of the use of all functions are
available in the documentation of the MaxDiff R package (Bartłomowicz and
Ba̧k, 2013).

3 The MaxDiff R package application

In the application example of the MaxDiff R package the identification and
analysis of the preferences of respondents using some forms of job benefits is
proposed. The main aim was to determine the most and least important features
of the following job benefits: phone (mobile), laptop, company car, voucher,
house subsidy and food subsidy. The data set of job benefits choice data allows
to illustrate the use of the MaxDiff R package.

In the example, the job benefits experiment has 6 choice options. This means
that in the outcome it was necessary to build a fractional factorial design with
at least 5 profiles of job benefits. In the MaxDiff R package it is possible to
generate a binary design (for the rest of calculations) and an aggregate design
(used in the questionnaires) with profiles as a fractional factorial design. In the
following example 5 profiles with 3 (from 6) attributes in each profile were
generated3:

3 The same fractional factorial design is saved as matrix X in the Job_benefits sample data set
for MaxDiff R package.
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> library(MaxDiff)
> Z=c("Phone","Laptop","Company_car","Voucher","House_subsidy",

"Food_subsidy")
> X=mdBinaryDesign(5, 3, Z)
> print(X)

Profile1 Profile2 Profile3 Profile4 Profile5
Phone 1 0 0 1 1
Laptop 1 1 0 0 0
Company_car 0 1 0 1 0
Voucher 0 1 1 0 1
House_subsidy 0 0 1 1 1
Food_subsidy 1 0 1 0 0

The binary design can also be converted into an aggregate design with the
help of the function mdBinaryToAggregateDesign() function4:

> X.aggregate=mdBinaryToAggregateDesign(X)
> print(X.aggregate)

Profile1 Profile2 Profile3 Profile4 Profile5
1 1 2 4 1 1
2 2 3 5 3 4
3 6 4 6 5 5

Besides that, it is possible to create an aggregate design immediately with
the function mdAggregateDesign(). To see the design in the form of a
questionnaire we should replace the numbers with attributes’ names using the
function mdDesignNames(). It does not matter if we use the binary or the
aggregate design as the primary parameter:

> survey.design=mdDesignNames(X.aggregate, Z)
> print(survey.design)

Profile1 Profile2 Profile3 Profile4 Profile5
1 Phone Laptop Voucher Phone Phone
2 Laptop Company_car House_subsidy Company_car Voucher
3 Food_subsidy Voucher Food_subsidy House_subsidy House_subsidy

To present and check the MaxDiff R package there should be used some
data. In the example we use an artificial data set for 10 respondents. The data
set contains the choice of the best and worst attribute in each profile for each
respondent (three attributes) and is shown below. For example, for the first
respondent in the first profile the best attribute is phone (coded as 1) and the
worst attribute is food subsidy (coded as 6).

4 It is also possible to convert the prepared aggregate design into a binary design with mdAggregate-
ToBinaryDesign() function.
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> library(MaxDiff)
> data(Job_benefits)
> print(Y)

Id Profile Best Worst
1 1 1 1 6
2 1 2 3 2
3 1 3 6 4
4 1 4 3 5
5 1 5 1 4
6 2 1 1 6
7 2 2 2 4
8 2 3 5 6
9 2 4 1 5
10 2 5 1 5
...

To calculate the next functions it was necessary to convert the data matrix Y
shown above into a rank data set:

> rank.data=mdRankData(basic.data=Y, binary.design=X)
> print(rank.data)

Phone Laptop Company_car Voucher House_subsidy Food_subsidy
Profile1 1 0 NA NA NA -1
Profile2 NA -1 1 0 NA NA
Profile3 NA NA NA -1 0 1
Profile4 0 NA 1 NA -1 NA
Profile5 1 NA NA -1 0 NA
Profile1 1 0 NA NA NA -1
...

A rank data set represents each alternative as a variable, with missing value
codes (NA) used when alternatives are not shown, a 1 is used to denote an
alternative that is chosen as best, -1 for worst and 0 for alternatives shown but
neither best nor worst (not chosen). This structure of data is a very useful way
of setting up results in statistical programs. When data is structured in this way
the counts can be, for example, computed using sums and arithmetic mean5:

> mean.ranks=mdMeanRanks(rank.data, binary.design=X)
> mean.ranks

Counts Ranks
Phone 0.4000000 1
Laptop 0.3500000 2
Company_car 0.3000000 3
Voucher -0.2333333 4
House_subsidy -0.4000000 6
Food_subsidy -0.3000000 5

5 If we want to compute the individual-level counts for each respondents we should use
mdMeanIndividualCounts() function.
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With the mdMeanRanks() function it is possible to rank the attributes.
According to this ranking, the most attractive are the following job-benefits:
phone, then laptop and company car. The least attractive are: voucher, food
subsidy and house subsidy. But because the design can be unbalanced (some
attributes can be shown more times than others) it is rather a very simple way
to rank the attributes. That is, why a logit model should rather be used to count
and rank the attributes.

First of all, the rank data should be converted into a logit data set6

(Food_subsidy abbreviated to Food...):

> logit.data=mdLogitData(rank.data, binary.design=X,
alternatives.names=Z)

> print(head(logit.data))
ID Set Choice Phone Laptop Company_car Voucher House_subsidy Food...

1 1 1 1 1 0 0 0 0 0
2 1 1 0 0 1 0 0 0 0
3 1 1 0 0 0 0 0 0 1
4 1 2 0 -1 0 0 0 0 0
5 1 2 0 0 -1 0 0 0 0
6 1 2 1 0 0 0 0 0 -1
...

The data set logit.data allows to use the mlogit R package in the MaxDiff
R package to estimate the logit model:

> mdLogitModel(logit.data, binary.design=X, alternatives.names=Z)

Call:
mlogit(formula = formula, data = logit.data, alt.levels =

paste(1:alternatives.per.profile.number),
shape = "long", method = "nr", print.level = 0)

Frequencies of alternatives:
1 2 3

0.33 0.30 0.37

nr method
4 iterations, 0h:0m:0s
g’(-H)^-1g = 0.00139
successive function values within tolerance limits

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

Laptop 0.167594 0.436420 0.3840 0.7009635
Company_car 0.032706 0.433899 0.0754 0.9399142
Voucher -1.413223 0.408347 -3.4608 0.0005385 ***
House_subsidy -1.752940 0.402960 -4.3502 1.36e-05 ***

6 Based on: http://surveyanalysis.org/wiki/Analyzing_Max-Diff_Using_-
Standard_Logit_Models_Using_R.
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Food_subsidy -1.528994 0.455613 -3.3559 0.0007911 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -90.622

The logit model estimates all parameter values relative to the first alternative
(attribute phone), where the alternative has a parameter of 0. It means that
2 attributes (laptop and company car) are more attractive than phone, and 3
attributes (voucher, food subsidy and house subsidy) are not so attractive as a
phone.

Similar results can be reached with the function mdLogitRanks(). This
function computes the overall counts and ranks for the whole sample using a
logit model:

> logit.ranks=mdLogitRanks(rank.data, binary.design=X,
alternatives.names=Z)

> print(logit.ranks)
Counts Rank

Phone 15.5 3
Laptop 41.4 1
Company_car 32.3 2
Voucher 1.1 6
House_subsidy 3.4 5
Food_subsidy 6.3 4

> print(logit.ranks[order(logit.ranks[, 2]), ])
Counts Rank

Laptop 41.4 1
Company_car 32.3 2
Phone 15.5 3
Food_subsidy 6.3 4
House_subsidy 3.4 5
Voucher 1.1 6

> sum(logit.ranks[, 1])
[1] 100

Thus, between the attributes presented in the example there is the follow-
ing MaxDiff relationship: laptop>company car>phone>food subsidy>house
subsidy> voucher. This result is achieved for the whole sample (10 respondents).
It is also possible to compute the individual counts and ranks for individual
respondents using the logit model. The function mdLogitIndividual-
Ranks() computes individual ranks for each respondent:



Maximum Difference Scaling Method in the MaxDiff R Package 99

> mdLogitIndividualRanks(rank.data, binary.design=X,
alternatives.names=Z)

Phone Laptop Company_car Voucher House_subsidy Food_subsidy
[1,] 2 5 1 6 4 3
[2,] 1 2 3 5 4 6
[3,] 2 1 4 3 6 5
[4,] 1 5 2 4 3 6
[5,] 6 3 1 5 2 4
[6,] 2 1 5 3 6 4
[7,] 2 3 1 6 5 4
[8,] 4 3 2 5 6 1
[9,] 2 1 5 3 6 4
[10,] 4 1 2 5 3 6

For most respondents, the phone is attractive or very attractive but most
attractive is the laptop. Some respondents prefer other job benefits. For example,
for 5th respondent, the phone is the least attractive and the company car is the
best option. The food subsidy is the most attractive option for the 8th respondent,
but only for him, not for the whole sample. That is why, for the whole sample
these 3 attributes (food subsidy, house subsidy, and voucher) are the worst.

4 Conclusions

The MaxDiff package presented in this article is a new package for R designed
mostly for statisticians, econometricians, economists and students of economics
who are interested in the research of stated consumers preferences. As the
R environment and many other packages for R, the package is available for
free (under the GNU General Public License with free access to source code).
Nevertheless, it is as useful as commercial specialized computer software
packages.

The MaxDiff R package implements the Maximum Difference Scaling
method supporting all steps of the method. It is possible to design the ex-
periment, encode the alternatives, estimate the models, etc. within the same
environment – the MaxDiff R package. By building a binary or aggregate frac-
tional factorial design with the suggested number of profiles and alternatives
it is also possible to generate a useful questionnaire for respondents in the
package. In the authors’ opinion, the MaxDiff R package provides an integrated
support of the process of a Maximum Difference Scaling experiment for the
researchers.
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Table 3 R packages for measurement of stated preferences from Department of Econometrics and
Computer Science Wrocław University of Economics

Package name Implemented
method

Authors Download site

conjoint Traditional conjoint
analysis (Ba̧k and
Bartłomowicz,
2013a)

Andrzej Ba̧k,
Tomasz
Bartłomowicz

CRAN: http://cran.r-project.org/
web/packages/conjoint/
Homepage: http:
//keii.ue.wroc.pl/conjoint/

Discrete-
Choice

Discrete choice
method (Ba̧k and
Bartłomowicz,
2013b)

Andrzej Ba̧k,
Tomasz
Bartłomowicz

CRAN: http://cran.r-project.org/
web/packages/DiscreteChoice/
Homepage: http://keii.ue.wroc.pl/
DiscreteChoice/

MaxDiff Maximum
Difference Scaling

Tomasz
Bartłomowicz,
Andrzej Ba̧k

CRAN: http://cran.r-project.org/
web/packages/MaxDiff/
Homepage:
http://keii.ue.wroc.pl/MaxDiff/

In the current version the MaxDiff R package contains a mix of own func-
tions and of functions of packages maintained by others to implement the
Maximum Difference Scaling method. It means that to use the package it is
necessary to install, in addition to the base R computer program, the mlogit
and AlgDesign packages. This makes the MaxDiff R package dependent on
the mlogit and the AlgDesign package. Because it is not the first package
for measurement of stated preferences implemented by members of the Depart-
ment of Econometrics and Computer Science of the Wroclaw University of
Economics (see Table 3), the authors have some experience as maintainers of
the packages: In the experience of the authors a new software version of the
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Various Approaches to Measuring Effectiveness of
Tertiary Education

Józef Dziechciarz, Marta Dziechciarz-Duda, Anna Król and Marta
Targaszewska

Abstract This paper aims at assessing selected approaches to measuring the
effectiveness of investment in tertiary education and their applicability. It sum-
marizes various results obtained in the research project Methods of Measuring
the Return on Investment in Higher Education. The applied methods, include
classical methods (ANOVA, Mincerian earnings function, correspondence anal-
ysis, hierarchical agglomerative clustering) as well as new ideas (application of
the Wilcoxon Matched-Pairs Signed-Rank Test to determine the significance of
differences in incomes before and after reaching the tertiary education). The
research is based on data coming both from Polish (Social Diagnosis, Study of
Human Capital) as well as German databases (Social Economic Panel, SOEP).
The obtained results support the hypothesis that tertiary education influences the
level of incomes. Moreover, the estimated pseudo rates of return to education
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provide the basis for the evaluation of the effectiveness of private investment in
education.

1 Introduction

Since the year 1998, when the Sorbonne Declaration was signed and the Eu-
ropean Higher Education Area was established, the development and modern-
ization of higher education have been priorities of the policies of the European
Union (EU) policies. Both, the Bologna Declaration and the Lisbon Strategy,
have emphasized the following aims: improving the quality of education, build-
ing the knowledge-based society and economy, adapting the education system to
the needs of the labour market, lifelong learning, and supporting the acquisition
of skills to compete in a global environment. According to the strategy pre-
sented by the European Commission in 2006, the project of the Modernization
Agenda for Universities (entitled Delivering on the Modernisation Agenda for
Universities: Education, Research and Innovation) should be based on three
reforms: curricula, governance and funding (cf. European Commission, 2006).

The latest EU strategy – “Europe 2020” – is yet another step of reforming the
higher education system in Europe. Its main priority is to support the creation
of a knowledge-based and balanced economy which favors social inclusion and
cohesion. Tertiary education is one of the essential factors in achieving the main
goals of this strategy. In order to define and realize all the educational aims of the
strategy, the European Commission issued the Higher Education Modernisation
Agenda which recommends – among other measures – increasing the number
of universities’ graduates, encouraging people from various social groups to
undertake studies, increasing the quality of tertiary education, adjusting the
curricula to labour market needs, directing higher education on financial crisis
issues, as well as introducing outcome oriented funding of the universities
(output-budgeting).

Moreover, the contemporary research and education market with its in-
creasing number of students, globalization, rapid technological development,
growing research costs, emergence of specialized university-independent B+R
centres, and the increasing significance of commercialization and entrepreneur-
ship poses many challenges for traditional universities and enforces their trans-
formation (cf. Etzkowitz and Peters, 1991; Wissema, 2009; Jongbloed, 2010).
In order to ensure the better quality, effectiveness and accessibility of higher
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education among all EU countries the shift from the traditional Humboldtian
University towards the modern entrepreneurial university is essential. Conven-
tionally functioning areas of the university – education and research – should be
supplemented by other fields such as research commercialization, application
for external grants, and projects as well as co-operation with industry.

A significant part of the postulated reforms in the functioning of the univer-
sities require changes in the area of funding, in particular encouraging a shift
from a centralized input oriented funding mechanism towards a decentralized
outcome oriented financing. All this causes the necessity of measuring the effec-
tiveness of various aspects of higher universities’ activities, including education
(cf. Dziechciarz, 2011).

This paper aims at assessing selected approaches to measuring effectiveness
of investment in tertiary education and their applicability, making use of the data
from Polish (Social Diagnosis, Study of Human Capital), as well as German
databases (SOEP). It summarizes various results obtained in the framework of
the research project Methods of Measuring the Return on Investment in Higher
Education.

2 Rate of return to education concepts

In this paper effectiveness refers to a relationship between higher education,
resources used in education and outcomes – labour productivity and graduates’
employability (cf. Aubyn et al, 2008, p. 55). One of the concepts used in mea-
suring effectiveness in the education system is the rate of return on investment
to education. The most widely and commonly used approach is the concept of
private returns, measured from the point of view of individuals (students), where
benefits are increased earnings and costs are foregone earnings, education fees,
cost of attendance or other incidental expenses during the period of studies (cf.
Psacharopoulos, 1995). The returns to education may also be measured from
the social perspective. The costs are in this case the state’s and the society’s
large spending on education and the benefits are based on productivity (cf.
Psacharopoulos, 1995). Table 1 presents various types of benefits of education
from both private and social perspectives.

The focus of this study is placed on measuring the effectiveness of tertiary
education, defined as post-secondary education obtained at both universities
and colleges.
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Table 1 Classification of the benefits of education

Private Benefits Social Benefits

Market employability higher productivity
higher earnings and savings higher net tax revenue
less unemployment less reliance on government
labor market flexibility financial support
greater mobility technological development

Non-market increased happiness reduced crime
better personal and family health less spread of infectious diseases
better child cognitive development lower fertility
greater longevity better social cohesion
greater satisfaction from consumption decisions voter participation

See e.g. Psacharopoulos (2009), McMahon (1997).

3 Datasets

The described research is based on three datasets: German database Socio-
Economic Panel Study (SOEP) (Wagner et al, 2007), and two Polish bases:
Social Diagnosis (Rada Monitoringu Społecznego, 2003-2011) and the Study
of Human Capital (BKL) (Bilans Kapitału Ludzkiego, 2012).

The SOEP is an annual wide-ranging representative longitudinal study on
private households which started in 1984. The data provides information on
households and its members and some of the many aspects include house-
hold composition, occupational biographies, employment, earnings, health and
satisfaction indicators.

The Polish Social Diagnosis is a panel study investigating households and
their members aged 16 and above. The project takes into account all the signifi-
cant aspects of life, both the economic ones (i.e. income, material wealth, sav-
ings and financing), and the not strictly economic ones (i.e. education, medical
care, problem-solving, stress, psychological well-being, lifestyle, pathologies,
engagement in the arts and cultural events). The first sample was taken in the
year 2000. The following study took place three years later, and since then
has been repeated every two years. The database is open and may be accessed
through the internet site of the panel1.

The BKL is a labour market monitoring project carried out by the Polish
Agency for Enterprise Development (Polska Agencja Rozwoju Przedsiębiorc-
zości, PARP) in collaboration with the Jagiellonian University Krakow. In the

1 http://www.diagnoza.com/

http://www.diagnoza.com/
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years 2010-2014 the project traced how the structure of competences changed
in the labour market and sought answers to the key questions related to human
capital at both the national and regional level. The project provides access to its
results and gathered data without any limitations and fees. 2

4 Various reseach approaches to measuring effectiveness of
tertiary education

4.1 Application of the Mincer model in the analysis of the influence
of tertiary education on the level of incomes

The first approach to measure effectiveness of tertiary education is a two step
procedure. In the first step we examine the significance of the influence of
education on monthly net incomes. Additionally we investigate whether factors
such as sex, the class of residence, region, study major, occupation, age, tenure
of employment, tenure of employment with current employer etc. significantly
differentiate the income level among persons with higher education of those
with lower education.

The number of observations for the analysis of the influence of education
level on monthly net incomes is 9756, and 2022 for the investigation of the
influence of additional factors on incomes. Only those respondents which are
of working age, and who currently work (according to the variable tenure of
employment with current employer), and who declared salaries at least as high
as the minimum wage in the year 2009 were chosen. The research also excluded
those respondents which declared extreme incomes. The list of the variables
with mean standard derivation and number of observations used in the research
is given in Tables 2 and 3.

In the described research one-way analysis of variance (ANOVA) is applied,
except in cases of heterogeneous variances in groups of independent variables,
in which the Welch test was used (cf. Proust, 2009, p. 141). ANOVA is used
to examine the equality of group means for a quantitative outcome. The goal
of one-way ANOVA is to verify the hypothesis that the analysed variable is
influenced by independent (grouping) variables by rejecting the null hypothesis
that all of the group means are equal (cf. Walesiak and Gatnar, 2012, p. 104).
The application of one-way ANOVA is limited by the following assumptions:

2 http://en.bkl.parp.gov.pl/

http://en.bkl.parp.gov.pl/
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Table 2 Independent variables characteristics of the data set Social Diagnosis (2003–2011)

Variable name Groups Number of Mean1 Standard
observations [PLN] deviation

education level Higher education 2221 2331 1013
Post-secondary education 409 1695 548
Secondary vocational education 2504 1761 636
Secondary general education 789 1617 570
Basic vocational education 3101 1637 602
Lower secondary, primary or unfinished primary 932 1423 437
education and without education

age working mobile age (18–44 years) 1408 2286 987
working immobile age 614 2589 1031
(females 45–59, males 45–64 years)

sex male 785 2720 1089
female 1237 2161 891

the class of big cities (100000 and more inhabitants) 924 2567 1076
residence small and medium cities (less than 100000) 650 2251 2251

villages 448 2171 2171

region 2 central (without Warsaw) 226 2298 1003
south (without Silesia) 150 2296 855
east 392 2128 909
north-west 319 2374 993
south-west 198 2436 1075
north 329 2476 1007
Warsaw sub region 210 2778 1121
Silesia 198 2386 942

tenure of less than 5 years 366 1964 943
employment 3 at least 5 but less than 20 years 959 2389 987

at least 20 years 690 2579 1026

tenure of
employment with
current employer

5 years or less 977 2240 1021

more than 5 years 1045 2507 982

1 Monthly net income
2 Warsaw sub region and Silesia were analysed separately due to higher income levels than observed
in other regions in Poland (www.wynagrodzenia.pl/dane_gus.php, [14.11.2012])
3 Ranges indicated by: Ustawa o promocji zatrudnienia i instytucjach rynku pracy z dnia 20 kwietnia
2004 r. [Dz. U. 2004 nr 99, poz. 1001].

the dependent variable should be normally distributed and the variance should
be homogeneous in all group of independent variables (cf. Ntoumanis, 2001,
pp. 73, 74).

www.wynagrodzenia.pl/dane_gus.php
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Table 3 Independent variables characteristics of the data set Social Diagnosis (2003–2011) (cont.)

Variable Groups Number of Mean 1 Standard
name observations [PLN] deviation

study major 2 education 375 2137 826

arts, humanities 203 2272 915

social sciences, journalism, information sciences,
economy and administration, law

717 2367 1024

biological sciences, physics, mathematics, statistics,
computer sciences

193 2565 1105

technical sciences, production and processing,
architecture and engineering

271 2631 1035

agriculture, forestry, fishing, veterinary medicine,
public health, health care, social welfare, services for
population, transportation services, protection of
environment and sanitary, municipal services,
protection and safety

257 2434 1090

occupation 3 parliamentarians, high officials and managers 223 2984 1078

specialists 1080 2399 947

technicians and other mid-level staff 336 2308 1028

office workers 156 1958 8778

personal services staff and salesmen, farmers,
gardeners, foresters, fishermen, industry workers,
craftsmen, operators and mechanics for machines,
simple work staff, armed forces

166 2054 986

1 Monthly net income
2 Classification indicated by: Rozporządzenie Rady Ministrów w sprawie Polskiej Klasyfikacji
Edukacji z dnia 6 maja 2003 r. [Dz. U. 2003 nr 98, poz. 895].
3 Classification indicated by: Rozporządzenie Ministra Pracy i Polityki Społecznej w sprawie klasy-
fikacji zawodów i specjalności na potrzeby rynku pracy oraz zakresu jej stosowania z dnia 27 kwietnia
2010 r. [Dz. U. 2010 nr 82, poz. 537].

The research was conducted for the data from the Social Diagnosis data
set in the year 2009, and all hypotheses (influence of an independent variable
on income) were verified at the 95% confidence level. The test statistics and
significance levels for one-way ANOVA or Welch test are presented in Table 4.

The results of the analysis show that the level of education significantly
influences the monthly net income. The highest incomes were characteristic
for persons with tertiary education degree, and lowest for persons with at
most a lower-secondary education level. Moreover, all independent variables
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Table 4 Test of influence of independent variable on income for 2009 of the data set Social Diagnosis

Variable name Statistic Significance – ANOVA/
strong tests for means equality

education level 245.500 0.000
age 39.193 0.000
sex 145.514 0.000
the class of residence 31.126 0.000
region 8.774 0.000
tenure of employment 46.358 0.000
tenure of employment with current employer 35.695 0.000
major 11.027 0.000
occupation 31.317 0.000

significantly (at the level 0.05 for the post-hoc Games-Howell test (cf. Morgan
et al (2004, p. 152), Field (2005, p. 341)) differentiate personal monthly net
income of persons with higher education degree, where the average monthly
income is 2331.16 PLN. The results of research also shows that females achieve
lower (on average of 550 PLN) wages than males. Lower incomes are specific
for persons of working mobile age. This could be explained by the lower
experience of those persons.

There is also a significant difference between the wages of persons living in
big cities (population ≥ 100000) and the persons living in small and medium
cities (population < 100000) or villages, where the wages of persons from the
first two categories are the highest. In case of the variable “region” high income
is characteristic for the respondents from the Warsaw sub-region, and the lowest
income is observed for the Eastern provinces (Lublin, Podkarpackie, Podlaskie,
Świętokrzyskie).

Both, “tenure of employment” and “tenure of employment with current
employer”, significantly influence the achieved income - persons with higher
experience (more than 5 years) earn more money. The last two variables –
“study major” and “occupation” - are closely related. Our research shows that
the graduates of educational studies, humanities or art studies obtain lower
incomes than graduates of technical and theoretical science studies. Moreover,
the average incomes in the group of social sciences, journalism and information
sciences, economy, administration and law studies are similar to the group
which contains studies such as agriculture, forestry, fishing, veterinary medicine,
public health, health care, social welfare, services for population, transportation
services, protection of environment, sanitary municipal services, protection,
and safety. The level of monthly net income is also influenced by occupation,
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where the highest incomes (800 PLN higher than for other professions) are
specific to parliamentarians, high officials and managers. Similar earnings are
characteristic for technicians, mid-level staff and specialists. For more details
on the result of this analysis see Targaszewska (2013).

These results were used to support the process of cmodel selection in the
second step of the research - the estimation of the private pseudo rate of return
to education with Mincer’s earning function. Additionally, the analysis of the
dynamics of the influence of the education level on wages was performed. The
empirical research for Germany was based on the SOEP database (years 1995,
2000, 2005, 2010) and for Poland on the Social Diagnosis data set (years 2003,
2005, 2007, 2009, 2011). The description of variables for the SOEP data set
and its summary statistics are presented in Table 5, whereas the presentation
of the variables from the Social Diagnosis data set is given in Table 6. For the
sake of conciseness, the summary statistics for the SOEP data set are presented
only for the year 2010 (the most recent of the analyzed years) and for the Social
Diagnosis data set only for the year 2009 (as in Table 4). Similarly, the various
specifications of the estimated models are presented in detail in Tables 7 and
8 only for the selected years (the SOEP data set in year 2010 and the Social
Diagnosis data set in year 2009 accordingly), and Tables 9 and 10 present only
the most important results for each year of the study.

To analyze the dynamics of influence of education level on the wages the
commonly applied Mincerian earnings function (cf. Mincer, 1958, 1974) was
used in each year separately:

lnEARi = XT
i β + εi, (1)

where EAR - earnings, X - vector of variables influencing wages, β - vector
of unknown parameters, ε - error term. The elements of X describe education
(represented by number of years of education or dummies for level of education,
the latter providing the estimation of the pseudo rate of return to education)
and professional experience, as well as auxiliary characteristics such as gender,
region, place of work, position etc. As the dependent variable real hourly gross
earnings for SOEP data set and real monthly net earnings for Social Diagnosis
data set were used. Adjustment for inflation led to creation of new variables:
RHGEAR and RMNEAR accordingly. Afterwards the inflation-adjusted earn-
ings were transformed to natural logarithms. The log-linear functional form
proved to be correct in many previous studies (cf. Heckman et al, 2003). In
addition, a Box-Cox transformation which allows to choose between linear
(α = 1) and log-linear (α = 0) specification was used (cf. Box and Cox, 1964):
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Table 5 Description of variables for the SOEP data set and summary statistics in year 2010

Variable name Description Mean Standard Distribution of
deviation categories (%)

HGEAR Hourly gross earnings in [EUR] 16.80 15.01

YOET Years of education and training 12.82 2.75

AGE Age 43.70 12.52

PWE Potential work experience 25.60 12.18
(PWE=AGE -YOET -6)

HEDU Higher education
1 if obtained higher education diploma 26.60
0 otherwise 73.40

MEDU Secondary education
1 if obtained secondary education diploma 98.08
0 otherwise 1.92

SEN Tenure of employment 11.53 10.57
with current employer

FEM Gender
1 if female 48.90
0 otherwise 51.10

TYPE Work position type
APP (trainee) 12.74
SPEC (specialist) 12.17
PROF (freelancer/professional) 44.69
MAN (manager) 6.74
OTHER (other) 23.66

SIZE Size of current employer
SMALL (less than 20 employees) 31.66
MEDIUM (20 - 2000 employees) 47.29
LARGE (more than 2000 employees) 21.05

B(EARi,α) =

{
EARα

i −1
α

for α 6= 0
lnEARi for α = 0

. (2)

For all tested specifications the parameter α was close to 0 indicating the better
fit of the models resulting from the log-linear transformation. Fig. 1 presents
the results of searching the parameter α which maximizes the logarithm of
the likelihood function for the model specification SOEP4 in Table 7. The
horizontal line in Fig. 1 marks the 95% confidence interval for parameter α .
Its lower boundary (0.1051), center (0.1213) and upper boundary (0.1353) are
shown by vertical lines.
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Table 6 Description of variables for the Social Diagnosis data set and summary statistics in year 2009

Variable name Description Mean Standard
deviation

Distribution of
categories (%)

MNEAR Monthly net earnings in [PLN] 1350.00 707.72

HE Higher education
1 for tertiary education 10.83
0 otherwise 89.17

ME Secondary education
1 for secondary education 36.63
0 otherwise 63.37

YOE Years of education 11.54 3.31

AGE Age 48.77 18.01

EXP Professional experience years 22.36 13.91

WSEC Work sector
public (PUB ) 14.21
private (PRIV ) 24.08
own business (ENT ) 3.20
other (OTH ) 58.51

CTYPE The type of residence
BCITY (more than 100 thousand occupants) 23.92
MCITY (less than 100 thousand occupants) 32.90
VIL (villages) 43.18

F Gender
1 if female 54.79
0 otherwise 45.21

EAST Geographical localization1

1 if eastern Poland 26.52
0 otherwise 73.48

1Eastern Poland includes the Lubelskie, Podkarpackie, Podlaskie, Świętokrzyskie and Warmińsko-
Mazurskie regions in accordance with the division incorporated in the European Operational
Programme Development of Eastern Poland. These provinces are considered to have lower living
standards, a lower dynamic of economic development, poorly developed and inadequate transport
infrastructure and insufficient growth factors, which might be reflected in the earnings of their
residents.

Since heteroscedasticity of the error term was detected in the large majority of
cases (using White’s test (cf. White, 1980)), for model estimation the weighted
least squares method was applied. For a more detailed analysis and additional
information see Król (2014).

Table 7 presents estimation results of five different specifications of Min-
cer’s model in the year 2010 based on the SOEP data set (dependent variable
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Fig. 1 Values of the logarithm of likelihood function for various values of α parameter for specification
(SOEP4).

ln(RHGEAR) ), starting from the simplest classic Mincer model SOEP1 de-
scribing earnings by the number of years of education and experience to the
most complex model SOEP5. Model SOEP5 was chosen for further interpre-
tation, since it has the highest goodness-of-fit measure and the lowest AIC
information criterion, moreover all its variables are statistically significant. The
interpretation of results of estimation of the model SOEP5 shows that in the
year 2010 the Germans with higher education could earn about 25% more in
comparison to similar (in terms of gender, work experience, work type, size
of the company etc.) persons. Women in Germany earned in 2010 on average
about 15% less than men on similar work positions and with similar profes-
sional experience. The professionals and freelancers in the year 2010 could
earn about 31% more, the managers about 33% more and the trainees about
31% less than regular employees (specialists and other employees). This result
shows that labour market requirements extend beyond simple higher education
diploma, and that additional qualifications and skills are also important. The
differences in earnings in big and small firms may also be observed: employees
of small companies in the year 2010 earned about 24% less and in medium
companies about 10% less than employees in big corporations, ceteris paribus.

Table 8 presents estimation results of five specifications of Mincer’s model
in the year 2009 based on the model Social Diagnosis data set (dependent
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Table 7 Estimation results of five different specifications of Mincer’s model (year 2010) based on the
SOEP data set (dependent variable ln(RHGEAR) )

SOEP1 SOEP2 SOEP3 SOEP4 SOEP5

constant 0.8636∗∗∗ 1.839∗∗∗ 1.518∗∗∗ 2.207∗∗∗ 2.090∗∗∗

(0.03461) (0.02436) (0.07071) (0.02290) (0.06951)
YOET 0.08217∗∗∗

(0.001909)
PWE 0.05246∗∗∗ 0.05220∗∗∗ 0.05225∗∗∗ 0.02572∗∗∗ 0.02577∗∗∗

(0.001943) (0.002006) (0.002001) (0.001813) (0.001803)
PWE2 −0.0008456∗∗∗ −0.0008823∗∗∗ −0.0008815∗∗∗ −0.0004860∗∗∗ −0.0004867∗∗∗

(3.867e-05) (3.916e-05) (3.912e-05) (3.522e-05) (3.508e-05)
HEDU 0.4192∗∗∗ 0.4148∗∗∗ 0.2231∗∗∗ 0.2229∗∗∗

(0.01225) (0.01226) (0.01046) (0.01041)
MEDU 0.3236∗∗∗ 0.1181∗

(0.06703) (0.06579)
SEN 0.02148∗∗∗ 0.02151∗∗∗

(0.001403) (0.001396)
SEN2 −0.0003143∗∗∗ −0.0003161∗∗∗

(3.659e-05) (3.644e-05)
FEM −0.1679∗∗∗ −0.1684∗∗∗

(0.008819) (0.008774)
APP −0.3813∗∗∗ −0.3749∗∗∗

(0.02136) (0.02131)
PROF 0.2694∗∗∗ 0.2682∗∗∗

(0.01036) (0.01031)
MAN 0.2893∗∗∗ 0.2881∗∗∗

(0.01771) (0.01765)
SMALL −0.2836∗∗∗ −0.2847∗∗∗

(0.01369) (0.01361)
MEDIUM −0.1084∗∗∗ −0.1081∗∗∗

(0.01028) (0.01021)

n 9534 9534 9534 8787 8787
R̄2 0.2219 0.1711 0.1731 0.4153 0.4172
AIC 41081.68 40710.35 40745.02 38393.00 38289.02

Significance levels (’***’ = 0.01; ’**’ = 0.05; ’*’ = 0.1), n = number of observations , R̄2 adjusted R2

and AIC = Akaike Information Criterion.

variable ln(RMNEAR) ). Again the most complex specification (SD5) is taken
for interpretation and further research. The premium for higher education in
Poland in the year 2009 was about 29%. Note that in the Social Diagnosis data
set the values of variables HE and ME for the persons with higher education
are 1, whereas in the SOEP data set for the persons with higher education
HEDU=1 and MEDU=0. The difference in earnings between males and females
in Poland is bigger than in Germany. In the analysed period women earned on
average about 19% less than men doing similar work in much the same work



116 Józef Dziechciarz, Marta Dziechciarz-Duda, Anna Król and Marta Targaszewska

Table 8 Estimation results of five different specifications of Mincer’s model (year 2009) based on the
Social Diagnosis data set (dependent variable ln(RMNEAR) )

(SD1) (SD2) (SD3) (SD4) (SD5)

constant 6.133∗∗∗ 6.873∗∗∗ 6.738∗∗∗ 6.916∗∗∗ 6.795∗∗∗

(0.01718) (0.01060) (0.01213) (0.01385) (0.01437)
YOE 0.06484∗∗∗

(0.001002)
EXP 0.01195∗∗∗ 0.01404∗∗∗ 0.01354∗∗∗ 0.01105∗∗∗ 0.01288∗∗∗

(0.0009639) (0.0009927) (0.0009839) (0.0008900) (0.0008705)
EXP2 −0.0001213∗∗∗ −0.0002492∗∗∗ −0.0002102∗∗∗ −8.475e-05∗∗∗ −0.0001101∗∗∗

(1.964e-05) (2.104e-05) (2.004e-05) (1.867e-05) (1.793e-05)
HE 0.4807∗∗∗ 0.6024∗∗∗ 0.3470∗∗∗ 0.4699∗∗∗

(0.009995) (0.01068) (0.009400) (0.01008)
ME 0.2887∗∗∗ 0.2116∗∗∗

(0.008038) (0.007129)
MCITY −0.08492∗∗∗ −0.06582∗∗∗

(0.008162) (0.008016)
VIL −0.2194∗∗∗ −0.1637∗∗∗

(0.008138) (0.008188)
PUB 0.4295∗∗∗ 0.3852∗∗∗

(0.009388) (0.009046)
PRIV 0.3909∗∗∗ 0.3662∗∗∗

(0.008321) (0.008243)
ENT 0.5190∗∗∗ 0.4745∗∗∗

(0.01904) (0.01881)
EAST −0.08472∗∗∗ −0.08729∗∗∗

(0.007100) (0.006818)
F −0.1933∗∗∗ −0.2138∗∗∗

(0.006624) (0.006485)

n 18417 18426 18426 18370 18370
R̄2 0.1904 0.1182 0.1642 0.3330 0.3660
AIC 77441.29 76479.20 75850.83 77973.57 77847.24

Significance levels (’***’ = 0.01; ’**’ = 0.05; ’*’ = 0.1), n = number of observations , R̄2 adjusted R2

and AIC = Akaike Information Criterion.

place. The influence of residence on the level of wages was significant as well.
Eastern Polish regions, which are considered to have lower living standards,
lower dynamic of economic development and insufficient growth factors, show
significantly lower earnings. In comparison to Central and West Poland the
people from eastern provinces earned about 8% less, ceteris paribus. Moreover,
the residents of small and medium cities earn about 6% and residents of villages
about 15% less than the inhabitants of big cities.

Tables 9 and 10 present the final estimated models for the years 1995–2010
for the SOEP data set and for the years 2003 – 2011 for the Social Diagnosis data
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Table 9 Estimation results of Mincer’s model in years 1995, 2000, 2005, 2010 based on the SOEP
data set (dependent variable ln(RHGEAR) )

(SOEP1995) (SOEP2000) (SOEP2005) (SOEP2010)

constant 2.421∗∗ 2.502∗∗ 2.243∗∗ 2.090∗∗

PWE 0.02106∗∗ 0.001609∗∗ 0.03010∗∗ 0.02577∗∗

PWE2 −0.0004066∗∗ −7.616e-07∗∗ −0.0005706∗∗ −0.0004867∗∗

HEDU 0.09978∗∗ 0.1385∗∗ 0.1826∗∗ 0.2229∗∗

MEDU −0.05301 0.04387 0.02129 0.1181∗

SEN 0.01831∗∗ 0.02322∗∗ 0.02000∗∗ 0.02151∗∗

SEN2 −0.0004006∗∗ −0.0004539∗∗ −0.0003263∗∗ −0.0003161∗∗

FEM −0.1897∗∗ −0.1899∗∗ −0.1789∗∗ −0.1684∗∗

APP −0.3114∗∗ −0.4339∗∗ −0.4124∗∗ −0.3749∗∗

PROF 0.2190∗∗ 0.2301∗∗ 0.2636∗∗ 0.2682∗∗

MAN 0.1461∗∗ 0.1861∗∗ 0.2544∗∗ 0.2881∗∗

SMALL −0.2908∗∗ −0.2744∗∗ −0.2894∗∗ −0.2847∗∗

MEDIUM −0.1080∗∗ −0.1101∗∗ −0.1202∗∗ −0.1081∗∗

n 7018 12423 9697 8787
R̄2 0.3365 0.3474 0.4088 0.4172
AIC 29487.92 53348.74 42004.25 38289.02

Significance levels (’***’ = 0.01; ’**’ = 0.05; ’*’ = 0.1), n = number of observations , R̄2 adjusted R2

and AIC = Akaike Information Criterion.

Table 10 Estimation results of Mincer’s model in years 2003, 2005, 2007, 2009, 2011 based on the
Social Diagnosis data set (dependent variable ln(RMNEAR) )

(SD2003) (SD2005) (SD2007) (SD2009) (SD2011)

constant 6.010∗∗∗ 6.067∗∗∗ 6.131∗∗∗ 6.795∗∗∗ 6.677∗∗∗

HE 0.5349∗∗∗ 0.4349∗∗∗ 0.4805∗∗∗ 0.4699∗∗∗ 0.4879∗∗∗

ME 0.2171∗∗∗ 0.2226∗∗∗ 0.2286∗∗∗ 0.2116∗∗∗ 0.2353∗∗∗

MCITY −0.09271∗∗∗ −0.07576∗∗∗ −0.07770∗∗∗ −0.06582∗∗∗ −0.04613∗∗∗

VIL −0.2105∗∗∗ −0.1382∗∗∗ −0.1452∗∗∗ −0.1637∗∗∗ −0.1384∗∗∗

PUB 0.4884∗∗∗ 0.4087∗∗∗ 0.4276∗∗∗ 0.3852∗∗∗ 0.4390∗∗∗

PRIV 0.4486∗∗∗ 0.3173∗∗∗ 0.3862∗∗∗ 0.3662∗∗∗ 0.3959∗∗∗

ENT 0.6216∗∗∗ 0.4372∗∗∗ 0.5128∗∗∗ 0.4745∗∗∗ 0.4716∗∗∗

EAST −0.05617∗∗∗ −0.05287∗∗∗ −0.03427∗∗∗ −0.08729∗∗∗ −0.07752∗∗∗

F −0.2324∗∗∗ −0.1882∗∗∗ −0.2030∗∗∗ −0.2138∗∗∗ −0.2219∗∗∗

n 6707 5802 9205 18370 18661
R̄2 0.3497 0.3028 0.3081 0.3660 0.3545
AIC 29570.07 24745.31 39952.75 77973.57 80272.48

Significance levels (’***’ = 0.01; ’**’ = 0.05; ’*’ = 0.1), n = number of observations , R̄2 adjusted R2

and AIC = Akaike Information Criterion.
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set. The obtained results allow for the evaluation of the dynamics of influence
of higher education and other factors on the earnings in Germany and Poland
accordingly.

In Germany in the last 15 years we observe a quite stable increase in the value
of the premium for higher education (from 11% to 25%). The auxiliary factors
whose influence changed the most are the ones connected with the type of work.
For example, the premium for managers increased from about 15% in the year
1995 to about 33% in the year 2010. Another interesting trend observed in the
analyzed period is the slight decrease of gender-related work discrimination
(from about 17% to about 15%).

The analysis of Polish data shows the stabilization of the influence of tertiary
education on the level of earnings. In the years 2005 – 2011 the premium for
higher education oscillates around the level of 30%. Similarly, the earnings
of women in the analyzed period remain lower than those of men of about
20%. There is a slight improvement in the reduction of regional differences.
The difference in earnings of the residents of villages in comparison to the
inhabitants of big cities decreased from about 19% in 2005 to about 15% in
2011.

4.2 Determination of the significance of differences in incomes
before and after reaching the higher education

Another part of our research was to check if there is a significant difference in
incomes before and after reaching a higher education degree and, in addition,
to measure the rate of return to education in both groups (cf. Targaszewska,
2014). To achieve those goals the Wilcoxon matched-pairs signed-rank test and
the classical Mincerian function were applied. The Wilcoxon matched-pairs
signed-rank test is non-parametric test used to compare two paired (dependent)
samples – each observation of the first sample has a unique connection with
an observation in the second sample. The null hypothesis states the equality of
median difference in paired observations. This means: samples have identical
distributions (cf. Jackson, 2011, pp. 266, 267). The research was based on the
group of respondents which fulfilled the following conditions:

• They participated in the SD-project in the years since 2003,
• they declared a lower than tertiary level of education,
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• and they declared in 2011 to have a higher level of education than in the
previous studies.

For both groups the rate of return to education is measured and compared
(Targaszewska, 2014). Because of the nature of the data some assumptions were
made. Firstly, in a situation where over the years, some respondents changed
their level of education more than once, the research included only the most
recent change. Secondly, the variable denoting years of experience in 2011
was estimated. Experience in 2011 is equal to experience in 2009 plus two
years. Lastly, incomes were corrected by the inflation indicator (with the base
year 2003). Moreover, the cases with incomes under the minimum wages in
each year were removed from the research. Finally 152 cases were taken into
account. The p-value for the executed test was almost 0.0. This allows to reject
the null hypothesis (of equality of median difference in paired observations)
which means that there is a significant difference in incomes between groups.
Wages of persons with a higher education degree are on average higher by 773
PLN in comparison to persons without this kind of education. 2453 [PLN] and
3226 [PLN] are the means “before” and “after” reaching the level of higher
education, respectively.

Subsequently, the rate of return to education and rate of return to experience
for both groups “before” and “after” were estimated by the classical Mincer
model (cf. Mincer, 1974):

log(Y ) = α +ρs+β0x+β1x2 +ξ , (3)

where Y is earnings, s is schooling level or years of study, x is work experience.
The parameter ρ can be interpreted as the average private rate of return to
schooling, β is related to the financial return to experience, and α is related
to initial earnings capacity (cf. Polachek, 2008). The estimated models are
presented in Table 11.

In the first model for the group “before” the parameter p is not significant at
the 5% significance level. It seems that for persons without higher education
degree the most important variable is experience. After rejecting the variable
“years of study” the model was estimated once again. From the new model for
group “before” one can conclude that the rate of return to experience, after 10
years of working is nearly 1.4%. For the group “after” each of the parameters is
significant. The rate of return to education is about 6.6% and rate of return to
experience after 10 years of working is about 1.1%.
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Table 11 Parameter estimates of Mincer’s model based on the data set Social Diagnosis (2003–2011)

Group

before before without years of study after

Variable Coefficient p-value Coefficient p-value Coefficient p-value

Constant 7.474 0.000 7.458 0.000 6.584 0.000
Years of study (s) -0.001 0.943 – – 0.066 0.002
Experience (x) 0.034 0.000 0.034 0.000 0.031 0.001
Quadratic experience (x2) -0.001 0.006 -0.001 0.006 -0.001 0.017

n 152 152 152
R̄2 0.1465 0.1522 0.1792
AIC 158.39 156.36 143.84

n = number of observations , R̄2 adjusted R2 and AIC = Akaike Information Criterion.

4.3 Examination of non-monetary benefits of tertiary education

Our next research step for measuring the effectiveness of education was to
capture the intangible benefits of higher education, particularly non-monetary
private and social rates of return on investment in education. Empirical studies
were carried out on data from the Social Diagnosis 2011 data set. As shown in
Table 1, non-monetary returns are an important part of the benefits of education.
It is commonly believed that better educated people have a better life. This
general opinion can be empirically confirmed in two ways. Firstly, by people’s
personal experience and, secondly by the statements of the respondents con-
cerning their life quality perception and expectations along with their level of
education. Fig. 2 visualizes the output of the correspondence analysis performed
on this data. A comprehensive description of the algorithm of correspondence
analysis, computational details, and its applications can be found in the classic
text by Greenacre (1984). Fig. 2 shows the coincidence of the respondents’
education level with a subjective evaluation of the happiness with his/her life in
the last years.

The position of higher education in Fig. 2 is close to the most positive
assessment of one’s life in the last year. The percent of total inertia described in
the two first dimensions is almost 100%. In Figs. 2 and 3, the first dimension
describes about 98% of inertia. In Fig. 2, ‘very happy’ is next to ‘high education’,
and further to the right the ‘education level’ is lower, and the ‘assessment of
life in the last year’ is also getting worse. Basic education is near to negative
assessment. The conclusion is that better education is associated with a more
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Fig. 2 Correspondence analysis of education variable and assessment of life in the last year, the
Social Diagnosis 2011, sample size: 26332. Education Levels: 1 – basic education, 2 – vocational, 3 –
secondary and 4 – higher. Frequency of health problems: 1 – often, 2 – sometimes and 3 – never.

positive perception of the past. But when respondents were asked to name the
three most important conditions for a successful and wonderful life, the first
five positions were health, children, happy marriage, work and money. The
education level was mentioned somewhere between the 13th and 10th place out
of 14 possible places (higher position for better educated respondents). This
surprising phenomenon can be explained by the association of education with
higher earnings and better work.

Private non-monetary returns of tertiary education include the impact of edu-
cation on personal health, the ability to enjoy leisure and the capacity to make
personal choices. Obviously, education tends to improve income which affects
health positively. People with a higher education level are more aware of healthy
behaviour and demonstrate more tendencies to seek treatment when needed.
More results of the analysis of non-monetary benefits of tertiary education can
be found in Dziechciarz-Duda and Król (2013).



122 Józef Dziechciarz, Marta Dziechciarz-Duda, Anna Król and Marta Targaszewska

According to the WHO Regional Office for Europe (2012), the male pop-
ulation (age of 30) with higher education will live on average another 48.5
years. While the male population (age of 30) with primary education will live
on average another 36.5 years and for secondary education another 43 years.
For women, life expectancy is in general higher: for better educated women on
average 83.2 years and for the least educated women 5 years shorter. Moreover,
differences in the risk of death related to the educational level are greater in the
case of men than women for all causes of death (except cardiovascular diseases).
Death rates from all main causes tend to be lower among people with higher
education levels. All diseases contribute to shortening the lives of less-educated
people more than the lives of better educated individuals. The cause that is most
responsible for shortening the lives of less-educated people when compared
with better educated individuals are cardiovascular diseases, external causes and
cancer. Numerous research results confirm that higher education contributes
to increased longevity and better health in terms of severe and fatal diseases,
partly through the increased earnings that enable the purchase of better health
care and a better diet (cf. WHO Regional Office for Europe, 2012).

Fig. 3 visualizes the output of the correspondence analysis for the level
of education of Polish respondents in 2011 with the subjective evaluation of
self-well-being expressed as the frequency of health problems that hinder a
positive perception of the quality of life. The results support the hypothesis of
the positive impact of education on personal health. In Fig. 3, “often” is next to
“basic education” and further, to the right the level of education is growing and
the assessment of health is better.

4.4 Analysis of employment status and professional profiles of
universities graduates

The goal of our last research step was to analyse the professional situation
of young people with tertiary education. For this purpose a hierarchical clas-
sification method (Ward) was applied to the data from the Study of Human
Capital in Poland 2012, and 8 homogenous classes of university graduates were
distinguished based on the dendrogram. The analysis of the characteristics of
each class is a valuable source of information about the factors that have an
impact on the level of unemployment in this group. The following variables
describing the situation of graduates on the labour market were used: profes-
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Fig. 3 Correspondence analysis of education and the frequency of health problems, the Social Diag-
nosis 2011, sample size: 26332. Education Levels: 1 – basic education, 2 – vocational, 3 – secondary
and 4 – higher. Frequency of health problems: 1 – often, 2 – sometimes and 3 – never.

sional status (full-time job, part-time job, unemployed, housework, etc.), the
type of university (private, public), the type (full-time studies, evening studies,
extramural studies), the level of studies (bachelor, engineer, master, etc.) as well
as the average level of net income.

The analysis of the professional situation and characteristics of the graduates
in separate classes allowed for the assessment of how well the representatives
of each group cope with the labour market challenges (see Fig. 4). The worst
groups, in terms of the percentage of employed and earnings level, were the
young, out-of-work people with a bachelor’s degree, graduated from private
universities (class 5), young people without work and experience (class 8), as
well as young people from small towns and villages, graduated from agriculture
and service studies (class 2). The level of employment and earnings in class 3
(teachers and humanistic studies graduates) is similar to the average in the
whole population. Whereas the situation of the classes 1 (well-paid engineers),
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Fig. 4 Assessment of groups according to the percentage of employed and earnings, Study of Human
Capital in Poland 2012.

4 (employed economists with significant experience), 6 (working with a bache-
lor’s degree, graduated from private universities) and 7 (entrepreneurial with a
master’s degree) is significantly better. Comprehensive results of the research
can be found in Dziechciarz-Duda and Przybysz (2014).

These results show that graduates with a bachelor degree are in less favorable
condition compared to graduates with a master degree. The percentage of
employment in the group of bachelor degree holders is only 63,8%, whereas
for graduates with master degrees it increases to 80,7%. A similar situation
may be observed for graduates of technical universities – the employment
rate of undergraduate engineers is 76,5%, while in the group of engineers
with master degrees it is 85,3%. The graduates of engineering and technical
studies, as well as mathematics, statistics, physics and medicine grads occupy
the strongest position on the labour market. The students of the most popular
majors (economics, pedagogics and social studies) face an employment rate of
about 80% and an unemployment rate of almost 15%.
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5 Final remarks

This paper summarizes various results obtained in the framework of the research
project Methods of Measuring the Return on Investment in Higher Education.
The goal of the project was to analyse the problem of measuring the effective-
ness of investment into higher education in its various forms. The research
approaches, included classical methods (ANOVA, Mincerian earnings function,
correspondence analysis, hierarchical agglomerative clustering), as well as new
ideas (application of Wilcoxon Matched-Pairs Signed-Rank Test to determine
the significance of differences in incomes before and after reaching higher
education). All obtained results support the hypothesis that higher education
influences the level of income. Moreover, the estimated pseudo rates of return
to education provide the basis for the evaluation of the effectiveness of private
investment in education.
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Statistical Simulation of a Multi-Phase Tool
Machining a Multi-Phase Workpiece

Swetlana Herbrandt, Uwe Ligges, Manuel Ferreira, Michael Kansteiner, and
Claus Weihs

Abstract The continuing development of the multi-phase material concrete
leads to an increased demand for the optimization of diamond impregnated
tools. Because of high initial investment costs for diamond tools, not only the
reduction of processing time, but also the reduction of tool wear is in the focus
of interest. While some parameters like cutting speed can be controlled, other
important parameters like the number of cutting diamonds are beyond our influ-
ence. To manage this randomness, simulation models for diamond and segment
grinding are developed. In this work we will present two models for a segment
grinding simulation. The first model is an extension of the simulation model
proposed by Raabe et al. (2011) for single diamond scratching on basalt. Beside
the goodness-of-fit, the simulation time is an essential factor in the development
and choice of simulation models. The difficulties encountered while extending
this model are discussed and we provide a solution to accelerate the workpiece
simulation. In order to achieve a further reduction of simulation time, a second
model is introduced under the assumption of pyramidal shaped diamonds. The
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simulation results are compared with single diamond experimental data and a
feasibility study is performed for the segment setup.

1 Introduction

The machining of mineral subsoil is daily routine at building sites. In many
cases the machined material is concrete and the preferred tool for trepanning is
a diamond impregnated drill because of the diamond‘s cutting properties. Since
these tools are in general not adapted to particular situations, under certain
circumstances the tool wear can be much higher than expected and would
therefore lead to an earlier need for replacement. Hence our main target is the
understanding and optimization of the machining process with simultaneous
reduction of tool wear. The difficulty of this task is in the complexity of the
process in conjunction with the problem that many variables affecting the
machining process can not be directly influenced and are even difficult to
observe. The simulation should enable the control of these parameters and offer
the possibility to conduct as many simulated experiments as necessary to find
optimal settings for tool production and the machining process.

In the last twenty years many different models for the simulation of forces,
material removal and temperature in grinding processes were presented (Brinks-
meier et al, 2006). The model categories range from heuristic and empirical to
physical models, while high performance computers allow for the computation
of models with resolution degrees from macroscopic to microscopic. The con-
sidered areas of application are as various as the models due to the versatile
usability of diamond impregnated tools, the diverse characteristics of machined
materials, and the multiple kinds of machining processes. The state of the art
method for simulations of engineering applications like grinding or sawing
is the finite elements approach (Zienkiewicz and Taylor, 1977; Altintas et al,
2005). Originally, this method is used for the description of continuous trans-
formation of machined material regarding e.g. its deformation or the change in
temperature. Therefore, the finite elements method is particularly suitable for
materials which allow plastic or elastic deformation, respectively effects which
cause a continuous change on the material. In the case of rigid materials, like
natural stone, the material removal is a discontinuous process resulting in brittle
fracture and discontinuous chip formation (Denkena et al, 2004). Such situa-
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Fig. 1 Development of the Simplex Segment Model.

tions are often solved by the discrete elements approach or by a combination of
both methods (Munjiza et al, 1995).

Raabe et al. (2011) considered a model for the force simulation of a sin-
gle diamond grinding process with a geometrically undefined cutting edge
scratching on basalt. Their approach is closely related to the discrete elements
method since the removal mechanism is simulated by removing parts from
a workpiece represented by a set of 3-dimensional simplexes. The resulting
forces are calculated using a geometrical approach involving the angles of the
interacting simplexes of diamond and workpiece. In the following papers the
model was extended by including the material heterogeneity (Raabe et al, 2012)
and compared with experimental data (Weihs et al, 2014). Continuing this work
we introduce two models with further extensions concerning the material (from
basalt to concrete) and the tool (from single diamond to a segment).

2 Outline

In this work we present two different models (Simplex Segment Model in
Sect. 4 and Scratch Track Model in Sect. 5) for the machining of concrete with
a single tool segment. The concrete is assumed to consist of two aggregates,
basalt and cement, while the segment is a sintered composite of uniformly
distributed diamonds in a metal matrix (see Sect. 3 for details).

In Sect. 4 we present a model (Simplex Segment Model, see Fig. 1 for model
development) for segment grinding as an extension of the single diamond
model of Raabe et al (2011, 2012) and Weihs et al (2014). Two models for the
workpiece simulation are described in Sect. 4.2. The representation of the multi-
phase tool (segment) is explained in Sect. 4.1, followed by a draft version of the
process simulation (Sect. 4.3), where we discuss the computational challenge
concerning the simulation time of this segment model.
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Fig. 2 Development of the Scratch Track Model.

The computation time of this computationally expansive simulation is re-
duced by introducing an assumption about the geometry of the diamond’s
cutting profile. While the Simplex Segment Model is working with geomet-
rically undefined cutting edges of the diamonds in the segment, the shape of
the diamonds in the Scratch Track Model (see Fig. 2) in Sect. 5 is restricted
to pyramids. This assumption allows the modeling of the scratch track which
results when one or more diamonds scratch the surface of the workpiece. The
development proceeds in two steps. In the first step we adjust all scratch track
diamond model parameters by minimizing the deviation between observed
forces from single diamond scratch tests and forces of the Scratch Track Dia-
mond Model. For this we will first introduce the scratch track diamond model in
Sect. 5.1, describe the experiments (Sect. 6.1) and then explain the optimization
procedure and the results in Sect. 6.2. The second step is a feasibility study
(Sect. 7.2) comparing the forces of the Scratch Track Segment Model (Sect. 5.2)
with the forces of conducted experiments with segments (7.1).

The goal of this work is to predict the arising forces while drilling with the
segment into concrete up to a predefined total depth with a constant cutting
speed and a constant feed speed.

3 Grinding Process

The core drilling process is a widely used method in the construction industry.
For this work diamond tipped drill core bits are used. A drill core bit consists
of several rectangular segments attached to a circular body in equally spaced
intervals. Each segment is a sintered composite of diamonds and metal powder.
Due to a large number of influencing factors, measurement results gained from
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(a) Scratch test (b) Dressing diamond

Fig. 3 Experimental setup for single diamond scratch test.

drilling tests provide only encapsulated information, because dependencies
and interfaces cannot be distinguished clearly (Franca et al, 2015). Hence, the
first logical step is to reduce the influencing factors by reducing the number
of segments which are used for a drilling operation and therefore reducing
the number of diamonds. Consequently, two different analysis approaches are
studied. Tests with single diamonds, called scratch tests and tests with single
segments comprising a number of diamonds on the surface.

Single Diamond Scratch Test To gain a better and more fundamental under-
standing of the complex grinding process, scratch tests with single diamonds
are conducted (Fig. 3 (a)). The advantage of this procedure is the better pro-
cess control due to the absence of diamond break outs, interactions between
diamonds, and the influence of the metal matrix surrounding the diamonds in a
segment. In the experimental setup a diamond with a pyramidal shape (Fig. 3
(b)) scratches on a circular path with radius r [mm], a constant cutting speed
vc
[ m

min

]
and a constant feed speed v f

[mm
min

]
into the specimens until a total

depth is reached. During the experiment the forces (tangential force fx, radial
force fy, normal force fz) are recorded.

Single Segment Test For single segment tests, the segments are manufactured
in a powder metallurgical process route as a mixture of diamonds and metal
powder. During the experiment the segment is attached to a tool holder (Fig. 4),
so that the diamonds with workpiece contact scratch the workpiece on a circular
path. As in the single diamond tests the cutting and feed speed are constant and
the forces (tangential force fx, radial force fy, normal force fz) are recorded.

Material Concrete is a composite material which consists of three main con-
stituents: cement, water and aggregates. Due to chemical reactions between
water and cement a hardening process occurs so that the cement acts like a
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Fig. 4 Experimental setup for segment test.

binder which holds the aggregates together and builds a strong connection.
Cement stone is a mixture of sand and water without aggregates like basalt.

4 Simplex Segment Model

The simplex model is a direct extension of the Raabe et al. (2011, 2012) model
and consists of the three parts: tool, workpiece and process simulation.

4.1 Multi-Phase Tool

Diamond Assuming that all diamonds used for the segment production have
the shape of truncated octahedra with different edge lengths, the two parameters
lk =

g
2
√

2
and ck ∈ (0, lk] (see Fig. 5 (a)) determine the geometrical form of a sin-

gle diamond with size g. For simplicity in simulation, the truncated octahedron
is subdivided into 3-dimensional simplexes as shown in Fig. 5 (c) by applying a
Delaunay tessellation (Barber et al, 1996). Simplexes can be used to simulate
the diamond wear by removing single simplexes from the diamond’s simplex set.
When considering the diamond wear, simplexes should be small and numerous.
Since size and number of simplexes depend on the number of points used for
the tessellation, such points have to be placed inside the truncated octahedron
either at random positions or by creating a 3D-lattice (Fig. 5 (b)). The lattice
can be generated, e.g., by stringing together cubic diamond crystal structures as
it was proposed by Raabe et al. (2012). The last step in the diamond simulation
is a random rotation of all points.
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(a) (b) (c) (d)

Fig. 5 (a) shape parameters, (b) cubic crystal structure lattice (c) simulated diamond (d) simulated
segment with 5 vol.-% diamonds

Segment When moving from a single diamond towards a complete drill core
bit, the segment is an intermediate step. As a sintered composite of diamonds
and metal powder it introduces new parameters. Design parameters are shape
and size of the segment, the size distribution of the diamonds, and their volume
fraction ρ in the segment. Suppose, e.g., the diamond sizes g are uniformly
distributed between 0.3 and 0.4 mm (equates to 40/50 mesh) and there are
5 vol.-% diamonds in the segment of size a× b× c and volume VS = abc.
For the expected diamond size E (g) the volume of this diamond is given by

V (E (g)) = 8
√

2 · 10−
3
2 E (g)3. To get a diamond volume fraction of ρ there

have to be

m =
VS

V (E (g))
ρ

diamonds of size E (g) in the segment. Therefore, we sample b2mc diamond
sizes and determine the corresponding volumes V (g1) , . . . ,V

(
gb2mc

)
. Sampling

more sizes than probably needed provides us with the flexibility to reasonably
approximate the volume fraction ρ . To achieve this, the first

n = argmin
1≤i≤b2mc

∑
i
k=1V (gk)

VS
−ρ

sizes are taken for the diamonds placed in the segment. The positions p1, . . . , pn

for these diamond sizes are sampled under the condition∥∥pk− p j
∥∥≥ g(k)+g( j)

2
∀ j < k
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to guarantee that the diamonds do not overlap each other. For these positions
the diamonds with sizes g1, . . . ,gn are simulated as described above. A result is
shown in Fig. 5 (d).

4.2 Multi-Phase Workpiece

In this section we will present two ideas for workpiece simulation which allow
simulating concrete as a composite of different materials like basalt and cement,
and reinforced concrete. The workpiece has the shape of a hollow cylinder with
a height h and radii r±b =

dp
2 ±b, where the half width b of the cylinder must

be greater than half the diamond size or half the segment width (Fig. 6 (a)).
If we want to simulate reinforced concrete, we first need to simulate the

reinforcing bar with diameter dS. The position of this bar is given by an axis
passing through two predefined or random points. Around this axis a point
lattice is expanded. Then we create an equidistant cement grid with point
distance δcoarse on

[−dr+be ,dr+be]× [−dr+be ,dr+be]× [0,h]

in steel direction to avoid irregular spacing between the bar and cement. To
fill the cement grid with basalt grains, we repeat the next two steps until the
desired basalt volume fraction is achieved. First we sample a random point
from our coarse grid and a random grain diameter from the basalt diameter
distribution U (abas,bbas), where abas and bbas are the lower and upper bound
of the occurring basalt grain diameters. If there are no other grains (or steel)
overlapping the sphere with the defined diameter around this random point, we
define all points inside as basalt grain. The resulting workpiece grid is shown in
Fig. 6 (b). Due to different material properties and inhomogeneity within the
same material each point receives an intrinsic value according to its material.
To achieve this, material specific exponential covariance functions are fitted
from the estimated seasonality of the force time series of real basalt and cement
experiments (Raabe et al, 2012). To use this information for each basalt grain
grid and the remaining cement grid Gaussian random fields are sampled with
the fitted covariance functions (see Fig. 6 (c)).

Approach a In the first steps all calculations are done on the coarse grid to
save time. Since we want to degrade the workpiece into fragments by applying
a Delaunay tessellation on the set of points from our grid, the distance between
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(a) (b) (c)

Fig. 6 (a) Basic shape, (b) coarse grid with steel points (yellow), cement points (grey) and basalt
points, (c) coarse grid after point elimination and (d) coarse grid with values (represented by different
color shades) from sampled Gaussian random fields

(a) (b) (c) (d)

Fig. 7 (a) Finer grid with interpolated point values, (b) tessellation of basalt grains and reinforced bar,
(c) tessellation of cement points and boundary points of the objects and (d) complete workpiece.

the points influences the size of the resulting tetrahedra. Due to the fact that
the chip size (size of the removed material fragments) is very small we need a
finer grid with point distance δ f ine < δcoarse. The values for these grid points are
interpolated by ordinary Kriging from the values of the coarse grid (Fig. 7 (a)).
The Delaunay tessellation of the finer grid proceeds in two steps. We first apply
it to the different workpiece objects (basalt grains, steel bar, Fig. 7 (b)). Then
the remaining cement points and the boundary points of basalt and steel are
degraded into simplexes (Fig. 7 (c)). It is obvious that especially in the second
part of the workpiece tessellation the set of points is not convex. To handle this
problem we remove all simplexes with maximal edge length greater than the
0.98–quantile of all maximal simplex edge lengths.

This procedure works much better than a tessellation of all points at once
because it respects the boundaries of the single objects. Finally, each simplex
receives the mean value of its four points’ values which are of the same material
as the simplex.

Approach b The most time consuming factor in the method of approach (a) is
the Delaunay tessellation. To reduce this we provide a different approach. As
described above we still need a finer grid but instead of expanding a finer grid
over the whole workpiece shape, we just take one part of the hollow cylinder
with the correct angle, being a fraction of π . By the Delaunay tessellation of
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(a) (b) (c) (d)

Fig. 8 (a) Workpiece blank, (b) first workpiece part with assigned simplex values, (c) four aligned
workpiece parts and (d) complete workpiece consisting of sixteen aligned parts.

Table 1 Average values for 100 simulated concrete workpieces of the same size (standard deviation in
parentheses).

Approach a Approach b

Points in finer grids 7504 11264
Point distance [mm] 0.33 0.251
Simplices 47578(250) 47568(0)
Mean simplex volume

[
mm3

]
4.253 ·10−3

(
9.973 ·10−6

)
2.623 ·10−3

(
3.304 ·10−6

)
Simulation time [sec] 37.147 (2.743) 10.716 (0.321)

this grid part we receive a degraded workpiece sector as shown in Fig. 8 (a)
without point or simplex values. Since neither the points nor the simplexes
of this sector have assigned values, we will call it a ‘blank’. To create the
workpiece, the next three steps have to be repeated until the hollow cylinder
is complete (Fig. 8 (d)). A copy of the blank with jittered points is rotated to
its position in the workpiece. Then we interpolate the values for the points of
this part by ordinary Kriging from the values of the random fields of the coarse
grid. Here we use the information about positions and sizes of the basalt grains
for a material separated interpolation. Afterwards the values for the simplexes
are calculated from the point values (Fig. 8 (b)). Because of using copies of
the one blank, each part of the workpiece has the same Delaunay tessellation.
Nevertheless, all simplexes have different volumes because we changed the
basis of the tessellation by jittering the points in each part.

To compare the two workpiece simulations one hundred concrete workpieces
with the sizes dp = 20 mm, b= 2.5 mm and a height of h= 1 mm were simulated
for both procedures. Despite the fact that the numbers of simplexes are rather
similar (see Table 1), the simulation time required for the second procedure
is much shorter, as intended. Another advantage of the second workpiece
simulation is that we have no variation in the number of simplexes because
the blank tessellation does not depend on the material. That makes it easier to
calculate the needed memory size.
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4.3 Process Simulation

To simulate the machining process with workpieces as in Sect. 4.2 we first have
to simulate a workpiece of desired size and material and a diamond or segment.
After positioning the diamond or segment on the surface of the workpiece the
process starts with the first movement of the tool. The length and depth of
this movement depends on the cutting speed vc, cutting depth per revolution
ap = 10−3 v f

vc
2πr [mm] and the number of iterations ν per revolution. For the

simulation of N revolutions, we have to determine for each of the νN iterations
whether the simulated tool has contact with the simulated workpiece. In this
case the affecting forces are computed. When using a tool segment machining
concrete, there are four possible interactions: basalt-diamond, basalt-metal
matrix, cement-diamond and cement-metal matrix.

For the force calculation we can use a geometrical approach based on the
edge orientation of the colliding simplexes and the division of the resulting force
into radial and normal force described for the process with a single diamond in
Raabe et al. (2012). In this approach each workpiece simplex hit by a diamond
simplex is removed from the simulated workpiece. To extend this procedure to
the grinding with a segment, we assume that material removal is only caused by
the diamonds and not by the metal matrix. With the additional assumption that
the force time signal is dominated by the forces arising in diamond-workpiece
interaction, we only have to distinguish between the different workpiece ma-
terials. Nevertheless, in each iteration we have to determine each workpiece
simplex with non-zero intersection volume with a simplex of at least one of the
diamonds in the segment. The computation time of one iteration step depends
on the number of simplexes in all diamonds and the number of simplexes in the
workpiece. Since the whole number of simplexes decreases due to the wear and
removal simulation, the evaluation of later iterations is faster. At the end of the
process simulation many workpiece simplexes outside the scratch track will
remain because they were not hit by any of the diamonds.

Unfortunately, it turned out that this model only appears to be appropriate for
the simulation of short single diamond experiments but not for the much more
complex simulation of segment experiments, which require the simulation of
hundreds of revolutions with multiple diamonds. For this purpose, we developed
another approach.
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5 Scratch Track Model

In the new approach we reduce workpiece modeling to a minimum. Instead of
modeling the complete workpiece and then remove parts of it, we only simulate
the parts which are removed by the diamonds.

The shape of the diamond, introduced in Sect. 4.1, is simplified to a pyramid
turned upside down as used in the single diamond experiments (Sect. 3). This
simplification to a pyramidal form can be justified since the part of the octahe-
dral diamond form that removes material in the segment experiments is very
similar to a rotated pyramid. By this assumption, the resulting scratch track has
the profile of a triangle with angle α determined by the cutting profile of the
diamond.

Before we introduce the force model for the grinding process with a segment
(5.2), we explain the model idea for the special case of a single diamond (5.1).

5.1 Scratch Track Diamond Model

In the one diamond case, a single diamond is scratching on a circular path
along the workpiece surface (see Sect. 3). The maximal intrusion depth of the
diamond is limited by the height of the diamond. For simplification we assume
that this maximal depth is reached after N revolutions. Let denote ν the number
of modeled observations per revolution and ap =

v f
vc

2πr the cutting depth per
revolution. It is obvious that the resulting forces depend at least on the volume
of removed material and characteristics of the machined material. Thus, in our
model a realization of the modeled force is obtained by

Fi =
gzv

r
· zi · vi +

gv

r
· vi, i = 1, . . . ,Nν ,

where r is the drilling radius, gzv and gv parameters, which have to be optimized,
vi the volume removed from the workpiece and zi the material heterogene-
ity (Herbrandt et al, 2016). In the following we will describe the concept of
the scratch track model and how the information about removed volume and
material characteristics is linked to this scratch track.

To simulate ν observations per revolution and N revolutions in total for one
diamond, we place νN + 1 triangles evenly distributed along the diamond’s
scratch track (Fig. 9 (a)), whereby the first triangle has an area of zero. The
sizes of these triangles depend on the intrusion depth of the diamond in the
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workpiece and the angle α of the pyramid representing the shape of the diamond.
Since the cutting depth per revolution ap is known, we can assume that the
intrusion depth increases by a =

ap
ν

for each simulated scratch track triangle
D j ( j = 1, . . . ,νN +1) (see Fig. 9 (a) with the triangles D1, . . . ,D21 of the
first revolution with ν = 20). To consider the brittleness of the material, we
allow a Beta(0,ap, p,q)-distributed size variation a? of the triangles, where
Beta(0,ap, p,q) is the generalized beta distribution for the interval [0,ap] with
the unknown parameters p and q. Thus, the height of the jth triangle D j with
the corner points (d j1,d j2,d j3) is h j = a( j−2)+ a?j ( j = 2, . . . ,Nν + 1 and
h1 = 0), where the i.i.d. variables a?2, . . . ,a

?
νN+1 have the same distribution as

a?.
A simulated observation is represented by a scratch track part formed by the

connection of two adjacent triangles (see Fig. 9 (b)). The connection is realized
by three 3-dimensional simplexes and the removed volume vi is calculated as
the sum of the volumes of the three simplexes.

As in Sect. 4.2 the material heterogeneity is considered by sampling from
Gaussian random fields. In contrast to Sect. 4.2, however, the number of values
we have to sample from the Gaussian random fields is smaller, since only the
3(Nν +1) points of the Nν +1 triangles are taken into account. Additionally,
we want to adjust the parameters µ,σ2,σ2

ξ
,ψ of the Gaussian random field

together with all the other parameters (p,q of the Beta distribution and gvz,gv)
by minimizing the deviation between the observed and modeled forces (see
Sect. 6.2). The material heterogeneity zi of the ith modeled observation is
calculated as the mean of the six sampled point values of each two adjoining
triangles (d j1,d j2,d j3) and

(
d( j+1)1,d( j+1)2,d( j+1)3

)
. In Fig. 9 (c) the six values

are represented by the colors of the six points of the two triangles and the overall
mean is represented by the color of the polyhedron (scratch track part) resulting
by the connection of these two triangles. Fig. 9 (d) shows 100 of thus scratch
track parts with heterogeneity values represented by colors in the first revolution.

5.2 Scratch Track Segment Model

In a segment we have several diamonds at random positions (see Sect. 3 and
Sect. 4.1). In addition to the first assumption (diamond shape), we introduce a
further assumption concerning the scratching with more than one diamond at
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(a) (b)

(c) (d)

Fig. 9 (a) Scratch track triangles for the first revolution and (b) tessellation of one scratch track part
into three simplexes (red, green and blue), (c) Scratch track part with sampled heterogeneity values for
the six points represented by different color shades for the points and the mean value (color of track
part) and (d) scratch track of the first revolution with ν = 100 observations (scratch track parts) with
assigned heterogeneity values.

the same time. The second assumption states that the scratch tracks of different
diamonds are independent of each other.

For our model one of the most important differences between grinding with
a diamond and grinding with a segment (which corresponds to grinding with
several diamonds) is the maximal intrusion depth. In the single diamond case
this depth is determined by the diamond height, since the one diamond defines
the complete tool. Therefore the intrusion depth ranges from 0 to the height of
the diamond hD = g

2tan α

2
, where g is the diamond size and α the pyramid angle.

In the segment experiment the diamonds are held by the metal matrix. Sup-
pose that the position of the lowest diamond of size g and height hD is
p = (px, py, pz)

T (Fig. 10 (a)). Then the first contact of this diamond with
the workpiece is at the intrusion depth of pz−hD (Fig. 10 (b)). The Figs. 10
(b)–(d) show the intrusion period of this diamond. The diamond of height hD is
completely in the workpiece at the cutting depth of pz (Fig. 10 (d)). When this
maximal intrusion depth of the diamond is reached, the diamond is still held by
the metal matrix and the grinding process proceeds (Fig. 10 (e)). We assume
that the diamond breaks out at an unknown cutting depth p′z.

The scratch track diamond model needs some adaptations for the segment
application. The adaptations of the three model parts scratch track, volume and
heterogeneity will be discussed in the same order as in Sect. 5.1.
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Fig. 10 (a) First segment workpiece contact with a diamond (yellow) inside the metal matrix (red), (b)
First diamond workpiece contact at a cutting depth of pz−hD, (c) Diamond in the intrusion period, (d)
Diamond at the end of the intrusion period at a cutting depth of pz, (e) Last position of the diamond
before break out at p′z.

(a) (b)

Fig. 11 (a) jth scratch track triangle D j =
(
d j1,d j2,d j3

)
and diamond profile

(
d′j1,d

′
j2,d j3

)
and (b)

ith scratch track part

When modeling the scratch track we have to consider the case in Fig. 10
(e). When the length of the triangle’s base b j = 2h j tan α

2 (h j height of the jth
triangle) representing the part of the diamond inside the workpiece exceeds
the size of the diamond g, the intrusion period of the diamond has ended (as
shown in Fig. 10 (d)). Since the diamond profile will not increase any more, we
have to cut off the corners

(
d j1,d′j1,c j1

)
and

(
d j2,d′j2,c j2

)
(see Fig. 11 (a)) of

the following scratch track triangles. The diamond’s profile in the workpiece is
determined by the triangles (d j1,d j2,d j3) during the intrusion period and then

by
(

d′j1,d
′
j2,d j3

)
.
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After the intrusion period the volume is reduced by the volumes vi1 (volume
of the right grey polyhedron in Fig. 11 (b)) and vi2 (volume of the left grey
polyhedron in Fig. 11 (b)) between the corresponding cut off corners. The result-
ing volume is the volume of the green polyhedron in Fig. 11 (b). Additionally,
the volume vi is reduced by the already removed volume vi−ν in the previous
revolution for i > ν (same procedure as for the scratch track diamond model).

After that, the material heterogeneity zi of the i-th modeled observation is
calculated as the mean of the six sampled point values of each two adjoin-
ing diamonds’ profile triangles (d j1,d j2,d j3) and

(
d( j+1)1,d( j+1)2,d( j+1)3

)
(as

in the scratch track diamond model) or
(
d′j1,d

′
j2,d j3

)
and

(
d′( j+1)1, d′( j+1)2,

d( j+1)3
)

after the intrusion period of the diamond (Fig. 11 (b)).
The resulting normal forces

Fi =

{
gzv
r · zi · vi +

gv
r · vi, pz−hD ≤ ai+1 ≤ p′z

0, otherwise

are modeled so that for one diamond scratching at radius r and parameters gzv

and gv normal forces increase as the removed volume vi increases, while the
variance is represented by the heterogeneity values zi (i = 1, . . . ,Nν). For K
diamonds the total force in the ith iteration

Fi,total =
K

∑
k=1

Fi,k

is determined as the sum of the K forces Fi,1, . . . ,Fi,K in the ith iteration.
For the simulation of Nν = 4500 force observations with a segment including

one diamond by using the presented scratch track segment model we need
9.83 (±0.997) seconds. In almost the same time we can simulate the workpiece
of the simplex segment model (approx. 10 seconds, see Table 1 in Sect. 4.2).
For the simulation of 4500 observations with the simplex segment model we
additionally need to simulate the process (Sect. 4.3) to calculate the forces. That
means the scratch track segment model has finished the computation of 4500
observations even before the simplex segment model is ready to compute the
first observation.
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6 Single Diamond Grinding

In this section we will focus on the Scratch Track Diamond Model (Sect. 5.1).
For the model parameter adjustment we first explain the details of the conducted
single diamond experiments (Sect. 6.1) which provide the force data we use
as reference in the adjustment procedure. Then the optimization of the model
parameters and the results are presented (Sect. 6.2).

6.1 Design of Single Diamond Experiments

In the experimental setup a diamond scratches into the specimens until a total
depth of A = 0.08 mm. During the experiment the forces (tangential force
fx, radial force fy, normal force fz) are recorded with a sampling rate of
ν f = 200000 Hz. Depending on the total drilling depth and the speeds vc

and v f , the total number of recorded observations per experiment and force
can be calculated as A·60

v f
ν f (here: between 101000 and 480000). The tests are

conducted on a machining center (IXION TLF 1004) without a coolant or lubri-
cant. For the analysis of the influence of the cutting speed vc

[ m
min

]
and the feed

speed v f
[mm

min

]
on the resulting process forces, a 42− full factorial design with

the parameter setting vc ∈ {40.5,117,193.5,270} and v f ∈ {2,4.5,7,9.5} is
chosen. By carrying out scratch tests on single phases of the composite material
concrete the process is subdivided into subprocesses. Hence, tests on single
phase basalt and cement stone are conducted to analyze the forces developing
during the scratching. Five samples of each material are available and each
of them can be scratched on 12 radii r ∈ {16,17, . . . ,27} mm. The destructive
testing does not allow real repetitions, so each speed combination (vc,v f ) is
repeated on adjacent radii of a sample. The 16 speed combinations of the full
factorial design are distributed to six blocks of size five using the D−criterion.

Let denote R (vc,v f ) the set of radii with the same speed combination (vc,v f )
and nR (vc,v f ) the number of elements in this set. Since each speed combination
is repeated on the adjacent radius, each set contains at least two elements.
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6.2 Optimization of the Scratch Track Diamond Model

To find out whether the approach in Sect. 5 is suitable to describe forces arising
during a single grain scratch test, the model parameters θ = (gzv, gv, µ, σ2,
σ2

ξ
, ψ, p, q), where µ,σ2,σ2

ξ
,ψ are the parameters of the Gaussian random

field, are adjusted to the normal forces ( fz = f ) from the conducted single grain
experiments (see sec. 6.1) on basalt and cement (see Herbrandt et al, 2016,
for more details). The adjustment is performed for each speed combination
(vc,v f ) by applying model based optimization techniques which are particularly
suitable for the optimization of expensive black box functions (Jones et al,
1998). The target is the minimization of the objective function determining the
deviation between observed and modeled forces. For this purpose the expected
deviation

E
(∥∥ f (vc,v f ,r)−F (θ ,r)

∥∥
D

)
= E (D( f (vc,v f ,r) ,F (θ ,r))) (1)

of a measured force f (vc,v f ,r) from the model force F (θ ,r) (underlying
force model process with realizations F (θ ,r) as described in Sect. 5) is mini-
mized. By estimating the expectation with the arithmetic average of M (here:
M = 25) realizations F of the force model F and nR (vc,v f ) observed forces
f (vc,v f ,r) with radii r ∈ R (vc,v f ), the optimal parameter settings for one
speed combination are obtained as

θ
? (vc,v f ) = argmin

θ∈Θ

D̄( f (vc,v f ) ,F (θ))

= argmin
θ∈Θ

1
3MnR (vc,v f )

∑
r∈R(vc,v f )

M

∑
m=1

[
dR

(
f̃ (vc,v f ,r) , F̃ (θ ,r)

)
+dβ ( f ? (vc,v f ,r) ,F? (θ ,r))+dS

(
f̃ (vc,v f ,r) , F̃ (θ ,r)

)]
,

(2)

where the terms are discussed in the following. The considered deviation mea-
sure D̄ is the mean of measures for the comparison of the three characteristics
slope, range, and spectrum. For the comparison the forces f = f (vc,v f ,r) ={

fti (vc,v f ,r) | 0≤ ti ≤ Tf , i = 1, ...,L, L number of observations, Tf observa-
tion time in seconds} and F =F (θ ,r)= {Fti (θ ,r) | 0≤ ti ≤ TF , i = 1, ...,Nν}
have to be aligned. Due to the different sampling rates and since the sampling
rate of f is very high, we decide to exploit the characteristics of the time se-
ries, rather than applying very time consuming methods like the dynamic time
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warping. Therefore, the forces f and F are aligned by the intercepts of the
corresponding linear models

f = β f 0 +β f 1t + ε f and F = βF0 +βF1t + εF . (3)

Therefore, the force with the smaller estimated intercept (β̂ f 0 or β̂F0) is shifted
by redefining the starting time

f ? =

 f , β̂ f 0 > β̂F0{
fti | 0≤ ti−

β̂F0−β̂ f 0

β̂ f 1
≤ Tf −

β̂F0−β̂ f 0

β̂ f 1
= Tf ?

}
, β̂ f 0 ≤ β̂F0

(4)

(F analogue). For the comparison of range and spectrum the forces are addi-
tionally detrended, so that

f̃ =
{

f ?ti − β̂ f ?0− β̂ f ?1ti | 0≤ ti ≤min
{

Tf ? ,TF?

}
= T f̃

}
(5)

with f ? = β f ?0 +β f ?1t + ε f ? (F analogue). Then the range difference is

dR

(
f̃ , F̃
)
=

∣∣∣∣∣ max
0≤t≤T f̃

f̃t − min
0≤t≤T f̃

f̃t − max
0≤t≤TF̃

F̃t + min
0≤t≤TF̃

F̃t

∣∣∣∣∣ (6)

and the slope difference is

dβ ( f ?,F?) =
∣∣∣β̂ f ?1− β̂F?1

∣∣∣ . (7)

Since the modelled sampling rate

νF =
νvc103

2πr60

[
1
s

]
(8)

is much smaller than the sampling rate ν f
[1

s

]
and we consider both time series

on the same time interval, the number of considered observations nF̃ of F is
also smaller than n f̃ . Therefore, the spectral differences are only calculated at
the Fourier frequencies

ϕ j =
j
n

with n = nF̃ +

∣∣∣∣ min
(a,b,c)∈N3

nF̃ −2a3b5c
∣∣∣∣ and j = 1, . . . ,

⌊n
2

⌋
(9)

of the shorter time series F̃ . This approach allows the application of the fast
Fourier transform (Bloomfield, 2004) algorithm, which by itself enables a fast
computation of the periodogram
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IF̃ (ϕ j) =
1

νFnF̃

∣∣∣∣∣
nF̃

∑
k=1

F̃k exp(−i2πϕ jk)

∣∣∣∣∣
2

(10)

as an estimate of the spectrum of F̃ . By adjusting the angular frequencies 2πϕ j

to the sampling rate of the measured signal f̃ , we obtain the periodogram

I f̃ (ϕ j) =
1

ν f n f̃

∣∣∣∣∣
n f̃

∑
k=1

f̃k exp
(
−i2πϕ j

νF

ν f
k
)∣∣∣∣∣

2

(11)

of f̃ at the same frequencies ϕ j and can determine the spectral differences

dS

(
f̃ , F̃
)
=
b n

2c
∑
j=1

∣∣∣I f̃ (ϕ j)− IF̃ (ϕ j)
∣∣∣. (12)

Since the scratch track diamond model is stochastic, the noisy Kriging model
is chosen as surrogate in the model based optimization process for the CPU-
intensive deviation function (Picheny et al, 2013). A new point for evaluation is
proposed by maximizing the augmented expected improvement (Huang et al,
2006). We evaluated 800 parameter constellations θ for each speed combination
(vc,v f ). The first 80 points (initial design) for evaluation of the 800 in total
were sampled from a random Latin hypercube.

The results achieved with this method show a good agreement between
observed and modeled normal forces. Fig. 12 displays exemplarily the nor-
mal force from the conducted experiment for the speed combination

(
vc =

270 m
min , v f = 7 mm

min

)
and 50 modeled force time series with optimized model

parameters. As the figure implies, the modeled forces match the slope and
variance of the observed force quite well.

Table 2 shows the optimization results for each of the 16 speed combinations
(vc,v f ). In the most cases the best parameters were found in the first 500
optimization steps. For the speed combinations with higher minimal deviation
measures Dmin we observed discrepancies in the course of the corresponding
force time series (repetitions with the same speed combination but on different
radii or on different material samples). The described deviation measure results
in small values if all 25 realizations of the scratch track diamond model fits in
terms of slope, range and spectrum to all observed forces with the same speed
combination. If the observed forces with the same speed combination are quite
different, the optimal parameters found are a compromise which ensure the best
fit of the modeled force for all these observations in terms of average.



Statistical Simulation of a Multi-Phase Tool Machining a Multi-Phase Workpiece 149

Fig. 12 Normal force from conducted single grain experiment with the parameter settings
vc = 270 m

min , v f = 7 mm
min , r = 18 mm (black) and 50 modeled forces (red).

Fig. 13 is an example of an optimization course for the speed combination
vc = 270 m

min , v f = 7 mm
min . The first 80 points are the realizations of the deviation

measure for the model parameter combinations of the initial design (see upper
figure in 13). By using the space filling random Latin hypercube design a good
parameter combination with D̄≈ 2.1 could already be found within these first
80 points (lower figure in 13). The iterative optimization improved this value in
the following up to D̄≈ 1.45 after the evaluation of 592 further points.

7 Single Segment Grinding

Since the resulting forces of the scratch track diamond model seems rather
promising, we start the analysis of the scratch track segment model with a
first feasibility study. In the first Subsect. (7.1) we summarize the technolog-
ical details concerning the segment manufacturing, as well as the design of
experiments for the conducted tests with the fabricated segments. The second
Subsect. (7.2) will deal with the feasibility study and its results.
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Table 2 Optimization results for the 16 speed combinations
(
vc,v f

)
with minimum value of D found

and the according iteration nmin of the optimization procedure.

vc v f Dmin nmin

40.5 2.0 3.245 328
40.5 4.5 3.037 621
40.5 7.0 5.643 682
40.5 9.5 4.317 299
117.0 2.0 1.492 800
117.0 4.5 3.811 490
117.0 7.0 7.075 427
117.0 9.5 4.413 434
193.5 2.0 1.657 731
193.5 4.5 3.729 171
193.5 7.0 1.749 452
193.5 9.5 6.950 423
270.0 2.0 2.089 122
270.0 4.5 4.750 755
270.0 7.0 1.450 672
270.0 9.5 7.607 261
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Fig. 13 Optimization course for the speed combination vc = 270 m
min , v f = 7 mm

min . Upper Figure:
Deviation measure D̄ for the 800 parameter combinations of θ . Lower Figure: Minimal deviation
measure from the first 80 evaluations (initial design) to all 800 evaluations. Red line marks the
evaluation with the best found parameter combinations of θ .
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7.1 Design of Single Segment Experiments

In the powder metallurgical process route a four component metal powder
consisting of iron, cobalt, copper and tin (Diabase V21, Dr. Fritsch) is used,
which is optimized for concrete machining. Within this process route synthetic
diamonds (Syngrit SDB1055, Element Six) with varying grain sizes (20/30,
40/50 and 70/80 mesh) are added to the metal powder mixture at variable
amounts of 2, 5 and 10 vol.-%. Subsequently the prepared powder-diamond
material is homogenized in a tumbling mixer. Finally the raw material is filled
in graphite moulds and sintered in a CSP100 hot-pressing facility (Dr. Fritsch)
to shape geometries of 8×10 mm rectangles. The maximum pressure is 350 kg

cm2

and the sintering parameters are 840◦ C for three minutes. The single segment
tests are carried out on a machining center (FZ 12 S, Chiron) under constant
water supply. An additive within the water prevents corrosion of the machining
center (Bechem Avantin 361, concentration 7 %). Before testing, segment
dressing is carried out in order to expose the first diamond layer of the segment
and thus, guarantee the contact between at least one diamond in the segment
and the workpiece. The radius of the tool holder amounts to r = 50 mm (Fig. 4).
Force measurements (tangential force fx, radial force fy, normal force fz)
are conducted using a force dynamometer (Kistler instruments, type 9255C)
with a frequency of ν f = 10000 Hz until a total depth of A = 3000 mm is
reached. For each diamond grain size and diamond concentration experiments
with the parameter settings of a 32− full factorial design in circumferential
speed n = vc103

2πr ∈ {117,449,781} 1
min (rounds per minute) and feed velocity

v f ∈ {0.5,1.25,2} mm
min are performed (including repetitions).

7.2 Feasibility Study for the Scratch Track Segment Model

Since the model results for the scratch track diamond model are satisfactory,
a feasibility study is established whether the scratch track segment model is
able to reproduce a force time series from a conducted segment experiment (see
Sect. 7.1). For this purpose the number of active diamonds and the number of
broken out diamonds in the segment are fixed to be 15 and 1, respectively, for
an experiment with circumferential speed n = 449 min−1, v f = 2 mm

min , grain size
of 40/50 mesh and 2 vol.-% diamond concentration. Additionally, the x− and
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(a) (b)

Fig. 14 (a) Normal forces of a segment experiment (black) and modeled forces with optimized
parameters (red), (b) segment profile with marked metal matrix bar

y−coordinates of the diamonds’ positions p = (px, py, pz)
T in the segment are

measured.
According to the speed parameters the total cutting depth amounts to approx-

imately 2.4 mm. Since 14 out of 15 cutting diamonds are still in the segment
when the experiment is over, we have to set the end of the diamond-workpiece-
interaction p′z of these 14 diamonds to a value greater than 2.4 mm. For the
broken out diamond the end of interaction is determined from the structural
change in the force time series at approx. 1.67 mm. The remaining unknown
parameters are the start of interaction of the 14 diamonds (one diamond’s
interaction starts at 0 mm), the grain sizes which are limited to the interval
[0.297,0.4] mm corresponding to 40/50 mesh, and the diamonds’ profile angles.
The adjustment of all these parameters with the model based optimization (as
described above) leads to the result presented in Fig. 14 (a). The average course
is already well matched up to the point that one diamond breaks out after approx.
50 seconds. There are at least two explanations for this mismatch. One is that
the optimized parameter settings are not correct for the broken out diamond. If
the chosen grain size is too small or the diamond-workpiece-interaction starts
too late, the resulting force of this diamond is too small at the break out point
and thus would lead to a too small decrease in the force time series. Another
explanation can be referred to a phenomenon that can be observed in segment
experiments but not when using a drill core bit, where the material removal and
the segment wear are more regular since more segments lead to more cutting
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diamonds. If a diamond in a single segment is cutting along its circular path at
a constant radius and there are no other diamonds at directly adjacent radii, the
material to the left and to the right of this diamond is not removed. The result is
that the metal matrix of the segment is removed at both sides of the diamond’s
position and the remaining metal matrix, which is holding the diamond, forms
a bar (see Fig. 14 (b)). It is conceivable that the friction between this metal
matrix bar and the workpiece results in higher forces. At the break out point
the diamond and the metal matrix bar break out which would explain the much
smaller forces after the break out. The magnitude of the normal force after the
break out of the diamond depends on the size of the diamonds newly active
afterwards.

8 Conclusion and Future Work

We have presented two different ways for the simulation of a grinding process.
The first approach (in Sect. 4) is based on the tessellation of the workpiece into
simplexes and turns out to require too much computation time. A reduction
of the workpiece simulation time can be achieved using a slightly different
approach (the ‘blank’-approach) regarding the tessellation procedure. However,
the computation of the process part cannot be accelerated without a substantial
loss of accuracy. Therefore, the approach in Sect. 4 is certainly appropriate for
the simulation of short single diamond experiments but not for the simulation of
segment experiments, which require the simulation of hundreds of revolutions
with multiple diamonds.

For this reason the approach in Sect. 5.1 was developed by introducing some
assumptions about the scratch track produced by a pyramidal shaped diamond.
The model parameters have been successfully adjusted to the data provided by
the conducted single grain experiments (Sect. 6.1). Therefore, we performed a
feasibility study (7.2) for the segment grinding simulation using the approach
in Sect. 5.2 with one of the segment experiments as reference (Sect. 7.1). The
average course of the normal force is already well matched by the modeled
force. Thus, the presented model can be used as base for further developments.
Improvements may be possible regarding the simulation time. Since all scratch
track parts are subdivided into three simplexes in the same way, it is possible
to derive a closed expression for the volume of each scratch track part and the
volume for the scratch track reduction, respectively. This closed expression
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will make the subdivision into simplexes redundant and thus leads to a faster
calculation. We already derived such formulas for the scratch track diamond
model (Herbrandt et al, 2016) and we want to extend these results for the
presented scratch track diamond model.

Beside the improvement of the actual model, future work will deal with
the duration of the diamond-workpiece interaction. Based on the proposed
simulations, future experiments will focus on a better understanding of diamond
break outs depending on different compositions of the metal powder used for
the segment manufacture.
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Abstract The analysis of biomolecular data from high-throughput screens is
typically characterized by the high dimensionality of the measured profiles.
Development of diagnostic tools for this kind of data, such as gene expression
profiles, is often coupled to an interest of users in obtaining interpretable and
low-dimensional classification models; as this facilitates the generation of bio-
logical hypotheses on possible causes of a categorization. Purely data driven
classification models are limited in this regard. These models only allow for
interpreting the data in terms of marker combinations, often gene expression
levels, and rarely bridge the gap to higher-level explanations such as molecular
signaling pathways.
Here, we incorporate into the classification process, additionally to the ex-
pression profile data, different data sources that functionally organize these
individual gene expression measurements into groups. The members of such
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a group of measurements share a common property or characterize a more
abstract biological concept. These feature subgroups are then used for the gen-
eration of individual classifiers. From the set of these classifiers, subsets are
combined to a multi-classifier system. Analysing which individual classifiers,
and thus which biological concepts such as pathways or ontology terms, are
important for classification, make it possible to generate hypotheses about the
distinguishing characteristics of the classes on a functional level.

1 Introduction

The high dimensionality of biomolecular data is one of the major challenges
for machine learning algorithms in the field of bioinformatics. The enormous
amount of measurements (e.g. gene expression levels) complicates the develop-
ment of reliable and interpretable models. Initial feature selection can improve
the performance of a trained model. This type of model reduction can aid
in identifying causes for the predictive ability of the model, which can then
further be validated in other experiments. However, feature sets derived in
purely data driven or model driven feature selection processes rarely allow a
functional interpretation. Measurements are typically selected according to a
mathematical performance measure and without respect to known relationships
or dependencies. Therefore, these feature sets can rather be regarded as a col-
lection of diverse fragments then as a description of biological processes such
as molecular signaling cascades or pathways.

Functional relationships and dependencies can rarely be inferred from a
single dataset. Additional knowledge in the form of meta information, i.e. infor-
mation about information, is needed for grouping or selecting the measurements
in an interpretable way. This information can be extracted from a large corpus
of biological literature and databases, see e.g. Galperin et al (2015) for an
overview of current molecular databases. It aids in focusing on the construc-
tion of dedicated feature sets for a single biological process or a small set of
biological processes.

The idea of incorporating meta information in the training of predictive
models is not new. An overview on recent approaches is given by Porzelius et al
(2011). They can mainly be divided into two categories. The first one consists of
algorithms that try to guide traditional feature selection processes. For example,
Binder and Schumacher (2009) incorporate knowledge on signaling pathways
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into a boosting model by penalizing the score of the single base learners.
Johannes et al (2010) developed a version of recursive feature elimination
that is guided by the structure of a protein-protein interaction network. The
second category enforces the usage of the given meta information more directly.
Abraham et al (2010) construct an intermediate representation of the original
measurements. The measurements of one category are replaced by a single
feature. Lottaz and Spang (2005) developed an hierarchical classifier system
that follows the structure of the gene ontology.

In this work, we propose a knowledge based feature selection algorithm that
operates on a predefined vocabulary, i.e. a set of interpretable terms taken form
molecular signaling pathways, gene ontology, etc. These verbal phrases are
assumed to be reflected in the dataset by a known subset of gene expression
measurements. A sparse set of these terms will then be selected and combined
in the training of a multi-classifier system.

2 Methods

Classification is the task of predicting the class label y ∈ Y of an object on the
basis of a vector of measurements, often termed features, x = (x(1), . . . ,x(n))T ∈
X ⊆Rn. The underlying decision criterion is typically formalized as a decision
function (a classifier) c : Rn→ Y . A classifier c ∈ C is initially selected ac-
cording to a set of m labeled training examples L = {(x j,y j)}m

j=1 and denoted
by cL if the chosen training set is relevant:

C ×L
train−−−−−−→ C . (1)

An important property of a trained classifier is its risk in misclassifying new,
unseen samples

R(c) =
∫

I[c(x)6=y]dP(x,y). (2)

Here I[] denotes the indicator function.
The risk of a classifier is typically estimated in a resampling experiment as

the r× f cross-validation (Japkowicz and Shah, 2011). Here, the available data
S is split into f folds of approximately equal size. A number of f experiments
are performed in which each fold of samples is tested by a classifier trained
on the remaining samples. This procedure is repeated for r permutations of S
in order to make the cross-validation error independent from particular data
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partitions. Let Li j and Ti j denote the training and test sets of the ith run and
the jth split. The error estimation of r× f cross-validation is then given by

Rr× f =
1
r

r

∑
i=1

f

∑
j=1

1
|Ti j| ∑

(x,y)∈Ti j

I[
cLi j (x)6=y

]. (3)

A second important characteristic of a trained classifier is its interpretability.
It can be seen as the classifiers ability of giving insights into the properties of
a dataset (e.g. identifying important components or dependencies). The inter-
pretability of a trained classifier depends on two distinct properties, syntactical
and semantic interpretability.

Syntactical or structural interpretability

The interpretability of a decision function is dependent on its structural prop-
erties. The higher the complexity of a decision boundary the lower is its inter-
pretability. The syntactic properties of a classifier can mainly be derived from
its concept class C . Possible notions of structural complexity are the number of
parameters (Hastie et al, 2001) or the VC-Dimension (Vapnik, 1998).

Semantic interpretability

The interpretability of a classifier is also dependent on the set of measurements
that is utilized for a prediction. For instance a selected measurement seems to
influence a classification result while a deselected one does not or should not.
Other more abstract semantic explanations can be revealed by analyzing the
selected feature combinations or structures developed by the trained classifier.
Analyses of this type are for example the (gene set) enrichment analysis for
the analysis of feature sets (Hung et al, 2012) or principal component analy-
sis (Jolliffe, 2002). The abstract terms that can be detected by these methods are
typically strongly affected by noise and should be regarded as fuzzy concepts.

2.1 Feature selection

A common step in the training process of classification models is the selection
of informative features (Guyon et al, 2006)
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C ×L
select−−−−−−→I = {i ∈ Nn̂≤n|ik < ik+1,1≤ ik ≤ n}. (4)

Here I indicates the set of all sorted and repetition free index vectors of
maximal length n. A single element i ∈ I is called a signature. It will be
denoted by i = (i1, . . . , in̂(i))T , where n̂(i)≤ n is the size of i. The elements of a
signature indicate the selection of measurements x(i) = (x(i1), . . . ,x(in̂(i)))T that
will be considered in the learning phase of the classifier and for predicting the
class label of new unseen samples. It will be called a feature set or feature
vector in the following.

Feature selection is typically a data driven process. That is, a feature set
is chosen according to some kind of quality criterion that measures the "in-
formativeness" of the single measurements (univariate feature selection) or a
combination thereof (multivariate feature selection). If it can be applied without
any knowledge of any other parts of the training algorithm, it can be seen as a
preprocessing filter.

Feature selection becomes model driven, if knowledge about the concept
class C is incorporated into the selection process. Here, an evaluation criterion
is based on the performance (e.g. accuracy) of the classification model c ∈ C
trained on the current feature combination. The category of model driven feature
selection methods comprises the category of wrappers, which evaluates general
performance measures, and embedded feature selectors, which evaluates model
specific characteristics.

Data driven and model driven feature selectors share a common search space
of 2n− 1 feature combinations. It can hardly be analyzed exhaustively due
to its exponential growth in n. Most feature selectors are based on heuristic
or stochastic search strategies. They usually do not guarantee to find a global
optimal solution.

Although data or model driven feature selection clearly reduces the mea-
surements that are involved in generating a decision boundary, it is often ques-
tionable if it really simplifies the semantic interpretability of a classifier. Mea-
surements selected according to some kind of performance criterion rarely can
be summarized under some interpretable term v. The reason for this is the
lack of knowledge about local, temporal or functional dependencies among the
measurements. In a purely data or model driven setting, these relationships have
to be learned from scratch and often remain undetected.
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2.2 Knowledge-based feature selection

In this work we propose a knowledge based feature selection algorithm that
allows for incorporating an experimenter’s domain knowledge into the feature
selection process. A domain expert often possesses knowledge about the ex-
perimental setup which typically can not be utilized by the machine learning
algorithm. For example, a possible functional grouping of features / measure-
ments is typically known to an experimenter but unknown to the algorithm. The
domain expert may also have knowledge about the subject of an investigation,
the corresponding measurements and their interactions, etc. For example, an
expert in molecular biology has some a-priori knowledge about the molecules
that are involved in a certain type of cellular process.

The interactions and relationships described above can typically be sum-
marized by a short verbal phrase that conveys some semantic knowledge to
the domain expert (e.g. video-signal, citrate cycle, insulin-secretion). We will
call such a phrase an abstract term or word v. A set of words will be called
a vocabulary V = {v1, . . . ,v|V |}. It reflects the external domain knowledge
that should be incorporated into an experiment. We will use a word or term v
synonymously with its associated signature i. That is a vocabulary can be seen
as a subset V ⊆I .

In contrast to a purely model or data driven feature selection, our method
constructs feature sets that can be seen as a union of the elements of a subset of
the vocabulary V

C ×L ×V
select−−−−−−→

⋃
v∈V ′

v, V ′ ⊆ V . (5)

That is, the final feature set will include all measurements that are associated
to the selected words V ′. Without loss of generality, we assume that a typical
vocabulary will result in |V | � |I | and ∀v ∈ V : n̂(v) > 1. In this case a
knowledge based feature selection will lead to a reduction of the search space
complexity from 2n−1 to 2|V |−1.

Although the final set of features is constructed by selecting a set of words,
it is questionable, if the corresponding union of feature sets really reflects the
chosen terms. These sets can be overlapping. Their union can implicitly include
signatures of additional terms. In order to keep the interpretability of the final
signature, we have chosen to couple our knowledge-based feature selection to a
multi-classifier system that evaluates each term independently.
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2.2.1 Semantic base classifiers (SBC)

Our multi-classifier system is constructed of semantic base classifiers of type

cv : x(v) 7→ y. (6)

Here cv denotes a classifier that is restricted to the signature of v and is therefore
associated to this term. The suitability of a term v is estimated in a 3×3 cross-
validation experiment on the learning set L . The signature is therefore evaluated
by a multivariate criterion.

A single term v∗ ∈ V can be chosen by ranking all terms in V according to
their achieved cross-validation errors

v∗ = arg min
v∈V

R3×3(Cv,L ), (7)

where Cv denotes a restriction of the chosen concept class C to the selected
term v. The final base classifier cv∗ ∈Cv∗ will be trained on all samples in L and
will be seen as an expert in interpreting v∗. In principal, each training algorithm
and concept class can be chosen for the underlying training of a semantic base
classifier. For our experiments, we have chosen the nearest neighbor classifier
(NNC) proposed by Fix and Hodges (1951).

2.2.2 Semantic multi-classifier systems (SMCS)

The multi-classifier system itself can be seen as a decomposable decision rule
that is based on an ensemble of semantic base classifiers E = {ci}|E |i=1, ci ∈ C .
The final decision rule will be denoted by hE . The training of hE corresponds
to a selection process in which the most suitable set of experts is constructed.

We have chosen an unweighted majority vote hma j as a fusion architecture. It
returns the most frequent prediction of the base classifiers as its own prediction
and therefore allows a direct interpretation

hma j(x) = arg max
y∈Y

|{c(x) = y |c ∈ E }|. (8)

The fusion on a symbolic level prohibits interactions on a feature level and
conserves the interpretability of the final signature.

The ensemble members are selected in an iterative way. Similar to Equation 7
in each iteration t, a term vt is chosen that minimizes the error estimate in a
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3×3 cross-validation experiment on the samples of L . The selection of the
current term is restricted to those terms that were not selected before. Formally

vt = arg min
v∈Vt

R3×3(Cv,L ), (9)

with Vt = Vt−1 \{vt−1} and V1 = V . The corresponding base classifiers cvt are
again trained on all samples in L .

3 Experimental setup and results

3.1 Basic setup

The proposed semantic multi-classifier systems are evaluated in the setting
of classifying gene expression profiles. We conduct nested cross-validation
experiments to assess their performance (Varma and Simon, 2006) on six
different microarray data sets. For the outer cross-validation experiment a
10×10 cross-validation is chosen. The training data of every split is used to
select a suitable set of features (signatures) and to train the classifier model. The
model selection process for this classifier is based on an internal 3×3 cross-
validation as discussed in Sect. 2.2.2. For all experiments, the nearest neighbour
classifier (NNC) was chosen as single or base classifier. The semantic classifier
systems (SBC and SMCS) were compared to NNCs that use all features and
those that incorporate a purely data-driven feature selection process, i.e. the
top k features with the highest absolute Pearson correlation to the class label
were chosen. The number of features k was predetermined with regard to the
chosen vocabulary (k = mean signature size, see Table 2) . All experiments were
conducted with the TunePareto-Software for classifier evaluation (Müssel et al,
2012).

Datasets

The experiments are conducted on different two class diagnostic classification
tasks. All are related to ageing associated diseases. The data sets are obtained
from high-throughput microarray experiments from different technological plat-
forms. All data sets are publicly available from the Gene Expression Omnibus
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Table 1 Basic characteristics of the analysed data sets with citation, Gene Expression Omnibus ID
(GEOid), feature number (Feat.), sample number (Samp.), and class distribution (Cl.0 and Cl.1).

Dataset Citation GEOid Feat. Samp. Cl.0 Cl.1

Alzheimer’s disease Liang et al (2008) GSE5281 54613 161 74 87
Leukemia Alcalay et al (2005) GSE34860 22215 78 21 57
Thyroid cancer Maenhaut et al (2011) GSE29265 54613 49 20 29
Lung cancer Hou et al (2010) GSE19188 54613 156 65 91
Melanoma Xu et al (2008) GSE8401 22215 83 31 52
Pancreatic cancer Zhang et al (2013) GSE28735 32321 90 45 45

Table 2 Characteristics of the vocabularies used from the MSigDB (Subramanian et al, 2005) (KEGG,
CHROM) and Gene Ontology (Ashburner et al, 2000) (GO), with the number of terms, the number of
elements associated to one term (signature) and the total number of covered genes in the database.

number of
terms

minimal
signature size

median
signature size

mean
signature size

maximal
signature size

total number of
covered genes

KEGG 186 10 53 69 389 5267
GO 3125 10 20 40 492 15992
CHROM 326 5 65.5 91 948 30010

(http://www.ncbi.nlm.nih.gov/geo/) database. A brief summary
of the data is given in Table 1.

Vocabularies

In our experiments we have used three different sources of meta information:

1. KEGG – Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto,
2000) is a collection of molecular signaling pathways,

2. GO – Gene Ontology (Ashburner et al, 2000) is a standardized terminology
for the categorization of gene products, here we limited our terms to those
that have a set size in the interval from 10 to 500, and

3. CHROM – Chromosomal Location is the position of the corresponding gene
within the human genome.

An overview on their key characteristics is given in Table 2. The signatures
are extracted from MSigDB (Subramanian et al, 2005) and Gene Ontology
(Ashburner et al, 2000). All identifiers have been mapped to gene names. They
can be regarded as knowledge of domain experts in molecular biology.

http://www.ncbi.nlm.nih.gov/geo/
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Table 3 Results of the 10×10 fold cross-validation experiments with the KEGG pathways vocabulary.
Mean error rates in % ± standard deviations are given. Feature numbers are given (All features),
predetermined (Feature selection), or averages (SBC and SMCS).

Alzheimer’s disease Leukaemia
(Liang et al, 2008) (Alcalay et al, 2005)

cv-error features cv-error features

All features 9.32±0.72 54613 13.59±0.90 22215
Feature selection 10.31±1.53 69 4.10±0.81 69
SBC (KEGG) 7.37±1.34 325.41 9.23±1.99 174.16
SMCS (KEGG) 7.02±1.02 281.8 8.33±1.51 173.15

3.2 Experimental results

In the following we exemplify our method of semantic multi-classifier systems
on selected combinations of vocabularies and data sets. Due to size limitations
we do not show all 18 combinations. The selected classification approaches
are by no means biased in terms of accuracy, etc., but rather give an arbitrary
assignment of data sets and used domain knowledge. In the following each
of the tested vocabularies is introduced by a short description first and then
validated on two datasets.

3.2.1 Kyoto Encyclopedia of Genes and Genomes (KEGG):

The Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto, 2000) is
a manually curated collection of molecular signaling and metabolic pathways
that regulate different processes in or between cells. A single term from this
vocabulary reflects the molecules (more precisely the gene products) that are
involved in the signaling process. An example for a KEGG pathway is the
insulin signaling pathway. It provides the list of molecules that are affected
by the binding of hormone insulin to the corresponding receptor of a cell. We
tested two datasets using the KEGG-pathways as meta-information. A summary
can be found in Table 3.
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Alzheimer’s disease data set

The Alzheimer dataset was collected by Liang et al (2008) and is available in
the Gene Expression Omnibus (GEO) under GSE5281. It comprises brain tissue
samples taken post mortem from subjects suffering from Alzheimer’s disease
(74 samples) and controls (87 samples). Each gene expression profile consists
of 54613 probe sets. Applied to all measurements the NNC achieves an cv-error
of 9.32%±0.72. With feature selection the cv-error is 10.31%±1.53. Lower
errors are achieved when meta information is used. Coupled to the vocabulary
of KEGG pathways a single semantic base classifier achieves an cv-error of
7.37%± 1.34. A semantic ensemble of three base classifiers achieves an cv-
error of 7.02%± 1.02. Fig. 1a) shows the frequency of the KEGG pathways
that are selected in the 10×10 cross-validation. The insulin signaling pathway
is selected in 91% of the cross-validation splits. It is known that this pathway is
impaired in Alzheimer patients (Candeias et al, 2012).

Leukaemia data set

The Leukaemia dataset collected by Alcalay et al (2005) consists of 57 sam-
ples of acute myeloid leukaemia with aberrant cytoplasmic localization of
nucleophosmin following mutations in the NPM putative nucleolar localization
signal and 21 samples without this specific mutation (GSE34860). Each gene
expression profile consists of 22215 probe sets. Using all features leads to the
lowest performance (13.59%±0.90). With feature selection obtains the best
cv-errors (4.10%±0.81). Utilizing the vocabulary of KEGG pathways the best
semantic base classifier improves the cv-error (compared to all features) by
4% to 9.23%±1.99. The semantic ensemble is able to lower the error rate by
another percent (8.33%±1.51). In this case the KEGG pathways hematopoietic
cell lineage and cell adhesion molecules cams are selected most frequently
(Fig. 1b). Both terms have been reported in the context of leukaemia (Bonnet
and Dick, 1997; Noto et al, 1994).

3.2.2 Gene Ontology (GO):

The Gene Ontology (Ashburner et al, 2000) is currently one of the most promi-
nent attempts of constructing an organized and standardized terminology for
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Table 4 Results of the 10× 10 fold cross-validation experiments with the GO terms vocabulary.
Mean error rates in % ± standard deviations are given. Feature numbers are given (All features),
predetermined (Feature selection), or averages (SBC and SMCS).

Thyroid cancer Lung cancer
(Maenhaut et al, 2011) (Hou et al, 2010)

cv-error features cv-error features

All features 11.22±1.73 54613 8.14±0.61 54613
Feature selection 12.45±2.25 40 6.22±1.51 40
SBC (GO) 11.63±3.34 159.93 4.49±0.74 48.83
SMCS (GO) 6.73±2.16 208.67 4.74±1.14 92.77

the categorization of gene products. It provides an hierarchical ontology of
terms that covers three different fields: biological processes, associated cellular
components and molecular functions. Most of these terms are linked to man-
ually curated gene lists. The Gene Ontology provides for example the term
cell aging, which is linked to the list of genes that are known to influence the
aging process of cells. The vocabulary of GO terms was tested in two different
scenarios (Table 4).

Thyroid cancer

The Thyroid cancer dataset was collected by Maenhaut et al (2011) (GSE29265).
Its 49 thyroid samples have been categorised into non-tumour control (20
samples) and thyroid carcinoma (29 samples). The dimensionality of the dataset
is 54613. Compared to the experiments with all measurements and data driven
feature selection (error rates 11.22%±1.73 and 12.45%±2.25) the knowledge-
based ensemble clearly improves the result. The error rate for the semantic
ensemble is 6.73%± 2.16. A single base classifier is not able to reach this
performance (11.63%±3.34). Looking at the selected categories in the cross-
validation experiment (Fig. 1c) of the ensemble, we find the chondroitin sulfate
metabolic process term as the one which is most frequently selected (Infanger
et al, 2006).
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Table 5 Results of the 10× 10 fold cross-validation experiments with the chromosomal locations
vocabulary. Mean error rates in % ± standard deviations are given. Feature numbers are given (All
features), predetermined (Feature selection), or averages (SBC and SMCS).

Melanoma Pancreatic ductal adenocarcinoma
(Xu et al, 2008) (Zhang et al, 2013)

cv-error features cv-error features

All features 8.19±1.11 22215 24.67±1.95 32321
Feature selection 8.92±2.39 91 23.56±3.28 91
SBC (CHROM) 7.59±1.14 165.02 22.89±3.24 69.13
SMCS (CHROM) 6.51±1.63 148.39 19.78±3.00 65.79

Lung cancer

The Lung cancer dataset (GSE19188) collected by (Hou et al, 2010) comprises
samples of non-small cell lung cancer (91 samples) and adjacent normal tissue
(65 samples). Each profile consists of 54613 probe sets. The mean cv-error
achieved by the NNC on all features is 8.14%± 0.61. By using data driven
feature selection this result can be improved to 6.22%±1.51. On this dataset a
single semantic base classifier achieves a slightly better classification perfor-
mance than the ensemble. The cv-errors are 4.49%±0.74 for the base classifiers
and 4.74%± 1.14 for the ensemble. The most frequently selected term is re-
lated to ascorbic acid (vitamin C) metabolism (Fig. 1d). Ascorbic acid has been
reported to have the ability to kill cancer cells under certain conditions (Chen
et al, 2005).

3.2.3 Chromosomal location:

The vocabulary of chromosomal locations (CHROM) can also be used to
organize the set of gene expression levels. Here, we restrict ourselves to the
human genome. It is organized in 22 pairs of autosome chromosomes and one
pair sex chromosomes. Each of the chromosomes can be divided into several
cytobands. They can be used to indicate local aberrations. A single term out of
this vocabulary gives the index of the chromosome, the chromosome arm (p =
short arm, q = long arm), and the cytogenetic bands position on the chromosome
arm. For example, chr17p12 denotes band 1, subband 2 on the short arm of
the 17th chromosome. Our experiments with the vocabulary of chromosomal
locations are summarized in Table 5.
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Fig. 1 Frequencies of the terms selected by the semantic multi-classifier system (SMCS) in the 10×10
cross-validation experiments. In total the frequency of 300 terms (= 10×10×3) is depicted in each
diagram (a to f), normalized to the 100 experiments conducted each. The top nine selected terms are
shown. The tenth bar "others" summarizes all categories that are selected less frequent.
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Melanoma

The Melanoma dataset (Xu et al, 2008) was collected with the purpose to distin-
guish between primary melanomas and melanoma metastasis (GSE8401). Both
classes are represented by 31 and 52 samples, respectively. The dimensionality
of the corresponding gene expression profiles is 22215. For this dataset the data
driven feature selection (cv-error: 8.92%±2.39) performs worse than using all
measurements (cv-error: 8.19%±1.11). Using the vocabulary of chromosomal
locations (CHROM) as meta information allows to improve the performance.
A single semantic base classifier achieves an cv-error of 7.59%± 1.14. The
semantic ensemble improves the cv-error to 6.51%±1.63. The most frequently
selected chromosomal band is 9q34 (Fig. 1e). It contains the ASS gene which
is known to play a role in the cell death in melanomas (Savaraj et al, 2007).

Pancreatic ductal adenocarcinomas

The second dataset tested with chromosomal locations was collected by Zhang
et al (2013) (GSE28735). Gene expression values of 45 pancreatic ductal
adenocarcinomas and 45 adjacent non-tumour tissues have been measured in
profiles of 32321 probe sets. The best results (19.78%±3.00) are achieved by
ensembles using the vocabulary of chromosomal locations as meta information.
Semantic base classifiers are able to achieve an cv-error of 22.89%± 3.24.
Using all features or data driven feature selection leads to 24.67%±1.95 and
23.56%±3.28 cv-error, respectively. For this dataset three chromosomal bands
are selected with comparable frequencies in the cross-validation experiment
(Fig. 1f). The ensemble selects Xq11, 1q31 and 18q21 in most of the cases. For
1q31 and 18q21 an association to pancreatic cancer has been reported (Chen
et al, 2003; Hahn et al, 1995).

4 Conclusion

We present a knowledge based approach for the design of classifier systems
that are interpretable in abstract terms. The basic algorithm incorporates meta
information in the form of a vocabulary of signatures (terms) that can be used
for constructing a decision rule. The design of the algorithm ensures a high-
level interpretability and eliminates the need for revealing an interpretation
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via reconstruction methods. Our experiments suggest that knowledge based
classifiers can be applied beneficially in the field of analyzing gene expression
profiles. The constructed models fit into the biomedical context of the analysed
diseases. The classification results indicate that selecting only a single term
out of a vocabulary neither leads to optimal classification performance nor
results in a highly stable selection. Combining a small set of terms improves
the classification performance in almost all experiments.

Compared to other approaches the proposed multi-classifier systems excel
other approaches by their superior interpretability. Yet, there might be more
sophisticated classifier systems that outperform the proposed methods in terms
of prediction accuracy. Subsequent work will be focused on the design of
classifier systems and other model types that also use continuous outcomes
that allow a suitable tradeoff between interpretability and prediction accuracy.
For genetic data the presence of close genetic relationships among collected
individuals may also bias the results (Habier et al, 2007; Dekkers, 2010), for
expression data this is unclear. Integrating meta information in the form of
these vocabularies might also be useful for guiding the selection of causal
models (Mayo, 1996; Pearl, 2009).

The experiments of this investigation reveal an additional question for the de-
sign of a knowledge based classifier system. Although the selected kind of meta
information will mainly be determined by the design of a medical/biological
study, there may be some a-priori hints on the suitability of a vocabulary of sig-
natures. These hints might be given in the structural properties of a vocabulary
(e.g. overlap between signatures) but also in their semantic interpretation (e.g.
local information vs functional information). This question can be addressed
in more detailed analyses on available sources of meta information for gene
expression profiles.
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