4,722 research outputs found

    Comparative analysis of knowledge representation and reasoning requirements across a range of life sciences textbooks.

    Get PDF
    BackgroundUsing knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms?ResultsOur existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important.ConclusionsWith some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps heavily with those already being used for biomedical ontologies, this work suggests a natural pathway to include such representations as part of the life sciences curriculum at different grade levels

    Quantitative Perspectives on Fifty Years of the Journal of the History of Biology

    Get PDF
    Journal of the History of Biology provides a fifty-year long record for examining the evolution of the history of biology as a scholarly discipline. In this paper, we present a new dataset and preliminary quantitative analysis of the thematic content of JHB from the perspectives of geography, organisms, and thematic fields. The geographic diversity of authors whose work appears in JHB has increased steadily since 1968, but the geographic coverage of the content of JHB articles remains strongly lopsided toward the United States, United Kingdom, and western Europe and has diversified much less dramatically over time. The taxonomic diversity of organisms discussed in JHB increased steadily between 1968 and the late 1990s but declined in later years, mirroring broader patterns of diversification previously reported in the biomedical research literature. Finally, we used a combination of topic modeling and nonlinear dimensionality reduction techniques to develop a model of multi-article fields within JHB. We found evidence for directional changes in the representation of fields on multiple scales. The diversity of JHB with regard to the representation of thematic fields has increased overall, with most of that diversification occurring in recent years. Drawing on the dataset generated in the course of this analysis, as well as web services in the emerging digital history and philosophy of science ecosystem, we have developed an interactive web platform for exploring the content of JHB, and we provide a brief overview of the platform in this article. As a whole, the data and analyses presented here provide a starting-place for further critical reflection on the evolution of the history of biology over the past half-century.Comment: 45 pages, 14 figures, 4 table

    The Gene Ontology: enhancements for 2011

    Get PDF
    The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources

    The Infectious Disease Ontology in the Age of COVID-19

    Get PDF
    The Infectious Disease Ontology (IDO) is a suite of interoperable ontology modules that aims to provide coverage of all aspects of the infectious disease domain, including biomedical research, clinical care, and public health. IDO Core is designed to be a disease and pathogen neutral ontology, covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is then extended by a collection of ontology modules focusing on specific diseases and pathogens. In this paper we present applications of IDO Core within various areas of infectious disease research, together with an overview of all IDO extension ontologies and the methodology on the basis of which they are built. We also survey recent developments involving IDO, including the creation of IDO Virus; the Coronaviruses Infectious Disease Ontology (CIDO); and an extension of CIDO focused on COVID-19 (IDO-CovID-19).We also discuss how these ontologies might assist in information-driven efforts to deal with the ongoing COVID-19 pandemic, to accelerate data discovery in the early stages of future pandemics, and to promote reproducibility of infectious disease research

    Computing Network of Diseases and Pharmacological Entities through the Integration of Distributed Literature Mining and Ontology Mapping

    Get PDF
    The proliferation of -omics (such as, Genomics, Proteomics) and -ology (such as, System Biology, Cell Biology, Pharmacology) have spawned new frontiers of research in drug discovery and personalized medicine. A vast amount (21 million) of published research results are archived in the PubMed and are continually growing in size. To improve the accessibility and utility of such a large number of literatures, it is critical to develop a suit of semantic sensitive technology that is capable of discovering knowledge and can also infer possible new relationships based on statistical co-occurrences of meaningful terms or concepts. In this context, this thesis presents a unified framework to mine a large number of literatures through the integration of latent semantic analysis (LSA) and ontology mapping. In particular, a parameter optimized, robust, scalable, and distributed LSA (DiLSA) technique was designed and implemented on a carefully selected 7.4 million PubMed records related to pharmacology. The DiLSA model was integrated with MeSH to make the model effective and efficient for a specific domain. An optimized multi-gram dictionary was customized by mapping the MeSH to build the DiLSA model. A fully integrated web-based application, called PharmNet, was developed to bridge the gap between biological knowledge and clinical practices. Preliminary analysis using the PharmNet shows an improved performance over global LSA model. A limited expert evaluation was performed to validate the retrieved results and network with biological literatures. A thorough performance evaluation and validation of results is in progress

    Information extraction from bibliography for Marker Assisted Selection in wheat

    Get PDF
    Improvement of most animal and plant species of agronomical interest in the near future has become an international stake because of the increasing demand for feeding a growing world population and to mitigate the reduction of the industrial resources. The recent advent of genomic tools contributed to improve the discovery of linkage between molecular markers and genes that are involved in the control of traits of agronomical interest such as grain number or disease resistance. This information is mostly published as scientific papers but rarely available in databases. Here, we present a method aiming at automatically extract this information from the scientific literature and relying on a knowledge model of the target information and on the WheatPhenotype ontology that we developed for this purpose. The information extraction results were evaluated and integrated into the on-line semantic search engine [i]AlvisIR WheatMarker.[/i

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    An Architecture for Data and Knowledge Acquisition for the Semantic Web: the AGROVOC Use Case

    Get PDF
    We are surrounded by ever growing volumes of unstructured and weakly-structured information, and for a human being, domain expert or not, it is nearly impossible to read, understand and categorize such information in a fair amount of time. Moreover, different user categories have different expectations: final users need easy-to-use tools and services for specific tasks, knowledge engineers require robust tools for knowledge acquisition, knowledge categorization and semantic resources development, while semantic applications developers demand for flexible frameworks for fast and easy, standardized development of complex applications. This work represents an experience report on the use of the CODA framework for rapid prototyping and deployment of knowledge acquisition systems for RDF. The system integrates independent NLP tools and custom libraries complying with UIMA standards. For our experiment a document set has been processed to populate the AGROVOC thesaurus with two new relationships

    From Ontology to Semantic Similarity: Calculation of Ontology-Based Semantic Similarity

    Get PDF
    Advances in high-throughput experimental techniques in the past decade have enabled the explosive increase of omics data, while effective organization, interpretation, and exchange of these data require standard and controlled vocabularies in the domain of biological and biomedical studies. Ontologies, as abstract description systems for domain-specific knowledge composition, hence receive more and more attention in computational biology and bioinformatics. Particularly, many applications relying on domain ontologies require quantitative measures of relationships between terms in the ontologies, making it indispensable to develop computational methods for the derivation of ontology-based semantic similarity between terms. Nevertheless, with a variety of methods available, how to choose a suitable method for a specific application becomes a problem. With this understanding, we review a majority of existing methods that rely on ontologies to calculate semantic similarity between terms. We classify existing methods into five categories: methods based on semantic distance, methods based on information content, methods based on properties of terms, methods based on ontology hierarchy, and hybrid methods. We summarize characteristics of each category, with emphasis on basic notions, advantages and disadvantages of these methods. Further, we extend our review to software tools implementing these methods and applications using these methods
    corecore