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Advances in high-throughput experimental techniques in the past decade have enabled the explosive increase of omics data, while
effective organization, interpretation, and exchange of these data require standard and controlled vocabularies in the domain of
biological and biomedical studies. Ontologies, as abstract description systems for domain-specific knowledge composition, hence
receive more and more attention in computational biology and bioinformatics. Particularly, many applications relying on domain
ontologies require quantitative measures of relationships between terms in the ontologies, making it indispensable to develop
computational methods for the derivation of ontology-based semantic similarity between terms. Nevertheless, with a variety of
methods available, how to choose a suitable method for a specific application becomes a problem. With this understanding, we
review a majority of existing methods that rely on ontologies to calculate semantic similarity between terms. We classify existing
methods into five categories: methods based on semantic distance, methods based on information content, methods based on
properties of terms, methods based on ontology hierarchy, and hybrid methods. We summarize characteristics of each category,
with emphasis on basic notions, advantages and disadvantages of these methods. Further, we extend our review to software tools
implementing these methods and applications using these methods.

1. Introduction

Recent technical innovation in high-throughput experiments
has been successfully bringing about a revolution in modern
biological and biomedical studies. With microarrays, expres-
sion levels of thousands of genes can be simultaneously mea-
sured [1]. With yeast two-hybrid assays, pairwise interactions
between thousands of proteins can be systematically detected
[2, 3]. With tandem mass spectrometry, a large number
of proteins can be sequenced and characterized rapidly
[4]. Indeed, high-throughput experimental techniques have
enabled the collection of a vast volume of omics data, while
how to organize, interpret, and use these data has now
become a serious issue [5]. Each type of data explains the
biological system under investigation from a specific point
of view. In order to get full understanding of the system,
however, one needs to integrate multiple types of data—
typically coming from different laboratories and obtained
using different experimental techniques. Consequently, the

data should be organized in such a way that is standard
across different techniques and interpretable across different
laboratories. In other words, information and knowledge
included in the data should be described using a set of
controlled vocabulary that is standardized. Fortunately, an
ontology provides us with such a standard means of organiz-
ing information [5].

An ontology is an abstract description system for knowl-
edge composition in a certain domain [6]. By organizing
concepts (terms) in a domain in a hierarchical way and
describing relationships between terms using a small number
of relational descriptors, an ontology supplies a standard-
ized vocabulary for representing entities in the domain [7].
Particularly, in biological and biomedical domains, there
have been quite a few ontologies available [5]. For example,
the gene ontology (GO), including three separate domains
(biological process, molecular function, and cellular com-
ponent), has been widely used as a standard vocabulary
for annotating functions of genes and their products across
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different species [8]. The human phenotype ontology (HPO)
has been explored to facilitate the description of human
disease phenotypes with a set of standard terms [9].The plant
ontology (PO) has been utilized to describe plant structures
and growth stages [10]. Particularly, in order to achieve the
goal of providing standard annotations of multiple hetero-
geneous data sources using common controlled vocabular-
ies, The open biological and biomedical ontologies (OBO)
Foundry has been proposed to coordinate the development of
ontologies in different biological and biomedical domains [5].
Up to October 20, 2012, there have been 8 mature ontologies
and 107 candidate ontologies included in the OBO Foundry,
covering 25 domains, including anatomy, health, phenotype,
environment, and many others [5].

Many applications using domain ontologies need to
quantify the relationship between two terms [11, 12]. A suit-
able measure of such relationship is the semantic similarity
between the terms, given the underlying domain ontology
[13]. Considering the hierarchical structure of an ontology
[6], the semantic similarity between two terms is in general
defined as a function of distance between the terms in a graph
corresponding to the hierarchical structure of the underlying
ontology. However, the concrete form of the function may be
refined with further knowledge about the ontology or even
entities that are already annotated by using the ontology,
yielding a wide variety of approaches for calculating semantic
similarities of terms [14–19]. More specifically, we classify
these approaches into five categories: (1) methods based on
semantic distance between terms, (2) methods based on
information contents of terms, (3) methods based on features
of terms, (4) methods based on the hierarchical structure of
an ontology, and (5) hybrid methods. Since each category of
methods has its own traits, it is indispensable to know which
method is suitable for the application of interest. Motivated
by this consideration, we summarize characteristics of each
category of methods in this paper, provide a brief review
of available software implementation of these methods, and
introduce typical biological and biomedical applications that
rely on ontologies.

2. Biological and Biomedical Ontologies

The rapid development of high-throughput biological exper-
imental techniques has enabled the explosive increase of
a wide variety of omics data, while the integrated use of
these data appeals for the standard annotation of multiple
heterogeneous data sources using common controlled vocab-
ularies. To achieve this goal and coordinate the development
of ontologies in different domains, the open biological and
biomedical ontologies (OBO) Foundry has been proposed
[5]. The OBO Foundry is a collaborative experiment that
aims at creating controlled vocabularies for shared use across
different biological and medical domains. Participants of the
OBO Foundry have agreed in advance on the adoption of a
set of principles that specify the best practices for the devel-
opment of ontologies, for the purpose of developing a set of
interoperable humanly validated reference ontologies for all
major domains of biomedical research. As shown in Table 1,

Table 1: Domains in the OBO Foundry.

Index Domain Number
1 Adverse events, health 1
2 Algorithms 1
3 Anatomy 39 (3)
4 Anatomy and development 1
5 Anatomy, immunology 1
6 Behavior 1
7 Biochemistry 3 (1)
8 Biological function 1 (1)
9 Biological process 3 (1)
10 Biological sequence 1
11 Environment 3
12 Experiments 8
13 Genomic 1
14 Health 12
15 Information 1
16 Lipids 1
17 Medicine 2
18 Molecular structure 1
19 Neuroscience 3
20 Phenotype 8 (1)
21 Proteins 6 (1)
22 Provenance 1
23 Resources 1
24 Taxonomy 4
25 Other 11

Total 115 (8)

up to October 20, 2012, there have been 8 mature ontologies
and 107 candidate ontologies included in the OBO Foundry.
These ontologies can further be classified into 25 domains,
including anatomy, health, phenotype, and environment.

The 8 mature ontologies are listed in Table 2. Biological
process, cellular component, and molecular function belong
to the gene ontology (GO), which aims at standardizing
representation of characteristics of genes and gene prod-
ucts across species via providing a controlled vocabulary
of terms for describing annotations of gene products [20].
Specifically, biological process describes operations or sets
of molecular events with a defined beginning and end.
Molecular function describes elemental activities of gene
products at the molecular level. The cellular component
describes parts of a cell or its extracellular environment.
The chemical entities of biological interest (ChEBI) pro-
vide a controlled vocabulary mainly for describing small
chemical compounds, which are either products of nature
or synthetic products used to intervene in the processes
of living organisms [21]. The phenotypic quality (PATO)
can be used in conjunction with phenotype annotations
provided by other ontologies to describe qualities (such as
red, ectopic, high temperature, fused, small, and edematous)
for phenotypes [5, 22]. The protein ontology (PRO) is used
to describe protein-related entities such as specific modified
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Table 2: Mature ontologies in OBO.

Title Domain Prefix
Biological process Biological process GO
Cellular component Anatomy GO
Chemical entities of biological
interest Biochemistry CHEBI

Molecular function Biological function GO
Phenotypic quality Phenotype PATO
Protein ontology Proteins PR
Xenopus anatomy and
development Anatomy XAO

Zebrafish anatomy and
development Anatomy ZFA

forms, orthologous isoforms, and protein complexes [23].
This ontology is separated into three domains: proteins based
on evolutionary relatedness, protein forms produced from
a given gene locus, and protein-containing complexes. The
Xenopus anatomy and development (XAO) is designed to
describe annotations of the model organism African clawed
frog (Xenopus laevis) [24]. In this ontology, the lineage of
tissues and the timing of their development are organized
in a graphical view, hence facilitating the annotation of gene
expression patterns, mutants, and morphant phenotypes of
Xenopus. Similarly, the Zebrafish anatomy and development
(XAO) provides a controlled vocabulary for annotating the
anatomy of the model organism Zebrafish (Danio rerio) [25].

Many of the candidate ontologies have also been widely
used in a variety of research areas. For example, in medical
research, the human phenotype ontology (HPO) provides a
means of describing phenotypic abnormalities encountered
in human diseases [9]. This ontology is developed based on
the Online Mendelian Inheritance in Man (OMIM) database
[26] and medical literature, currently containing more than
10 thousand terms and over 50 thousand annotations to
human-inherited diseases. In environmental science, the
environment ontology (EnvO) is designed to support anno-
tations of organisms or biological samples with environment
descriptions [5].

3. Derivation of Semantic Similarity between
Terms in an Ontology

3.1. Hierarchical Structure of an Ontology. Typically, an
ontology is represented as a directed acyclic graph (DAG),
in which nodes correspond to terms and edges represent
relationships between the terms. In some ontologies, there
is only one relationship between nodes, while in more
general case, there exist more than one relationship between
nodes. For example, the gene ontology defines 5 relationships
between nodes: is a, part of, regulates, negatively regulates,
and positively regulates [8], while the OBO relational ontol-
ogy defines 13 relationships between nodes: is a, part of,
integral part of, proper part of, located in, contained in,
adjacent to, transformation of, derives from, preceded by,
has participant, has agent, and instance of [5].

In the DAG corresponding to an ontology, there is a node
specified as the root. For every node in the ontology, there
exists at least one path pointing from the root to the node.
Every node in such a path is called an ancestor of the node,
and the ancestor that immediately precedes the node in the
path is called the parent of the node. Inversely, if a node is a
parent of another node, the node is called a child of the parent.
There might be more than one path from the root to a node.
Consequently, a nodemay have several parent nodes, and vice
versa. Given two nodes in an ontology, they must share a set
of common ancestor nodes, and the one represents the most
concrete concept is typically referred to as the lowest common
ancestor of the two nodes. Discarding the direction of the
edges in an ontology, there exists at least one path between
every pair of two nodes.

3.2. Methods Based on Semantic Distance between Terms.
Given a pair of two terms, 𝑐

1
and 𝑐
2
, a well-known method

with intuitive explicitness for assessing their similarity is to
calculate the distance between the nodes corresponding to
these terms in an ontology hierarchy; the shorter the distance,
the higher the similarity. In the case that multiple paths
between the nodes exist, the shortest or the average distance
of all paths may be used.This approach is commonly referred
to as the semantic distance method, since it typically yields a
measure of the distance between two terms.The distance can
then be easily converted into a similarity measure. Four main
factors are normally considered in distance-basedmethods as
follows

(1) density in the ontology graph: the higher the density,
the nearer the distance between nodes;

(2) depths of nodes: the deeper the nodes located in, the
more obvious the difference between the nodes;

(3) types of links: the normal type is is-a relation, and
other relations such as part-of and substance-of are
associated with the weight for edges;

(4) weights of links: edges connecting a certain node with
all its child nodes can vary among different semantic
weights.

In the last two decades, many efforts have been devoted to
building various models to measure such distance in cal-
culating similarities. Some representative algorithms include
shortest path [27], connection weight [28], and Wu and
Palmer [29].

Rada et al. proposed the shortest path method to cal-
culate semantic similarity based on the ontology hierarchy,
suggesting that the shortest path between two nodes was the
simplest approach for measuring distance between two terms
[27]. In mathematics, the formula for the distance between
two nodes by the shortest path was denoted by Sim(𝑐

1
, 𝑐
2
) =

2MAX − 𝐿, where 𝑐
1
and 𝑐
2
were the compared nodes, MAX

the maximum path on the hierarchy, and 𝐿 the shortest path.
The main advantage of this method was its low complexity
in calculation. Rada et al. hypothesized that when only the
is-a relationship existed in a semantic network, semantic
relatedness and semantic distance were equivalent. However,
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this method was short of consideration for different kinds of
edges as well as the semantic relatedness representing these
edges.

Sussna proposed an edge weight determination scheme,
which considered the first three factors: the density of the
graph, depths of nodes, and types of connections [28]. In their
method, the distance or weight of the edge between adjacent
nodes 𝑐

1
and 𝑐
2
was defined as

𝑤𝑡 (𝑐
1
, 𝑐
2
) =

𝑤𝑡 (𝑐
1
→
𝑟
𝑐
2
) + 𝑤𝑡 (𝑐

2
→
𝑟
𝑐
1
)

2𝑑

,

given 𝑤𝑡 (𝑥→
𝑟
𝑦) = max

𝑟
−

max
𝑟
−min

𝑟

𝑛
𝑟
(𝑥)

,

(1)

where →
𝑟
was a relation of type 𝑟, →

𝑟
 its inverse, 𝑑 the

depth of the deeper node, max
𝑟
and min

𝑟
the maximum

and minimum weights for a relation of type 𝑟, respectively,
and 𝑛

𝑟
(𝑥) the number of relations of type 𝑟 leaving node

𝑥. This method exhibited an improvement in reducing the
ambiguousness of multiple sense words by discovering the
combination of senses from a set of common terms thatmini-
mizes total pairwise distance between senses. However, depth
factor scaling and restricting the type of a link to a strictly
hierarchical relation apparently impaired the performance of
the method.

Alternatively, the common path technique calculated the
similarity directly by the length of the path from the lowest
common ancestor of the two terms to the root node [29]. In
detail, Wu and Palmer [29] took into account the position
relation of 𝑐

1
, 𝑐
2
to their nearest common ancestor 𝑐 to

calculate similarity. Here, 𝑐 was the node with fewest is-a
relationship as their ancestor node which appeared at the
lowest position on the ontology hierarchy. In mathematics,
the formula calculating similarity between 𝑐

1
and 𝑐

2
was

denoted as

Sim (𝑐
1
, 𝑐
2
) =

2𝐻

𝐷
1
+ 𝐷
2
+ 2𝐻

, (2)

where 𝐷
1
and 𝐷

2
were, respectively, the shortest paths from

𝑐
1
and 𝑐
2
to 𝑐, and 𝐻 the shortest path from 𝑐 to the root.

However, the calculation of similarity only cumulated short-
est paths together with the consideration that all the edges
were of the same weight. Hence, it might also potentially
lose information of semantics represented by various types
of edges existing in the ontology hierarchy.

However, in practical application, terms at the same depth
do not necessarily have the same specificity, and edges at the
same level do not necessarily represent the same semantic
distance, and thus the issues caused by the aforementioned
assumptions are not solved by those strategies [13].Moreover,
although distance is used to identify the semantic neigh-
borhood of entity classes within their own ontologies, the
similarity measure between neighborhoods is not defined
based on such a distance measure.

3.3. Methods Based on Information Contents of Terms. A
method based on information content typically determines
the semantic similarity between two terms based on the

information content (IC) of their lowest common ancestor
(LCA) node. The information content (IC) gives a measure
of how specific and informative a term is. The IC of a term
𝑐 can be quantified as the negative log likelihood IC(𝑐) =

− log𝑃(𝑐), where 𝑃(𝑐) is the probability of occurrence of 𝑐
in a specific corpus (such as the UniProt Knowledgebase).
Alternatively, the IC can be also computed from the number
of children a term has in the ontology hierarchical structure
[30], although this approach is less commonly used. On
the ontology hierarchy, the occurrence probability of a node
decreases when the layer of the node goes deeper, and hence
the IC of the node increases. Therefore, the lower a node in
the hierarchy, the greater its IC. There have been quite a few
methods belonging to this category. For instance, Resnik put
forward a first method that is based on information content
and tested the method on WordNet [18]. Lin proposed a
theoretic definition of semantic similarity using information
content [15]. Jiang and Conrath improved the method of
Resnik by introducing weights to edges [14]. Schlicker et al.
proposed a method that is applicable to the gene ontology
[31]. As mentioned by Wang et al. [32], methods based
on information content may be inaccurate due to shallow
annotations. Lee et al. also pointed out this drawback [33].

Resnik [18] used a taxonomy with multiple inheritance as
the representational model and proposed a semantic similar-
ity measure of terms based on the notion of information con-
tent. By analogy to information theory, this method defined
the information content of a term as the negative algorithm
of the probability of its occurrence and the similarity between
two terms 𝑐

1
and 𝑐
2
as the maximal information content of all

terms subsuming both 𝑐
1
and 𝑐
2
, calculated by

Sim (𝑐
1
, 𝑐
2
) = max
𝑐∈𝑆(𝑐
1
,𝑐
2
)

[− log𝑃 (𝑐)] , (3)

where 𝑆(𝑐
1
, 𝑐
2
) was the set of all the parents for both 𝑐

1
and 𝑐
2
.

Since the lowest common ancestor (LCA) had the maximum
value of information content, recognizing the LCA of both
𝑐
1
and 𝑐
2
can be supported by this measure. The information

content-based similarity measure was symmetric and tran-
sitive. Obvious advantages of this method were its simple
calculation and easy formulation. However, in contrast to
distance by Rada et al., the minimality axiom did not hold
for Resnik’s similarity measure. The similarity between a
term and itself was the negative logarithm of its information
content. Only the single term on top of the hierarchy reached
the self-similarity of one. In addition, this method was only
suitable for the ontology hierarchy with single relations; for
example, all edges connecting terms represent only the same
relationship, so it cannot be applied to the terms with either
part-of relations or inferior relations.

Lin [15] proposed an alternative information theoretic
approach.This method took into account not only the parent
commonality of two query terms, but also the information
content associated with the query terms.Three basic assump-
tions were normally given by Lin [15] in calculating the
similarity between two terms as follows.

(1) The similarity between two terms was associated with
their common properties: the more the common
properties, the higher their similarity.
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(2) The similarity between two terms was associated with
their difference: the more the difference, the lower
their similarity.

(3) The similarity between two terms reached the maxi-
mum value when they were totally the same.

Based on the above assumptions, given terms, 𝑐
𝑖
and 𝑐
𝑗
, their

similarity was defined as

Sim (𝑐
𝑖
, 𝑐
𝑗
) =

2 log𝑃 (𝑐
0
)

log𝑃 (𝑐
𝑖
) + log𝑃 (𝑐

𝑗
)

, (4)

where 𝑐
0
was the lowest common ancestor (LCA) of 𝑐

𝑖
and

𝑐
𝑗
, and 𝑃(𝑐

𝑖
) and 𝑃(𝑐

𝑗
) were the probabilities of occurrence.

Not only the information content of LCA was considered in
the calculation, but also their information content was taken
into account in Lin’s method. This measure could be seen
as a normalized version of the Resniks method. Lin’s values
also increased in relation to the degree of similarity shown by
two terms and decreased with their difference. However, the
consideration of information content of two terms themselves
caused a strong dependence on the high precision of the
annotation information. Consequently, exact result can be
generated only when mapping relationships between com-
pared terms and other terms in the ontology hierarchy were
precisely described, while the result would be near to 0 when
annotations were abstract, yielding the problem of shallow
semantic annotations. In fact, the difference between two
terms with abstract annotations could be large, so it might
be misleading to produce similarity values according to Lin’s
method.

Jiang and Conrath [14] proposed a combined approach
that inherited the edge-based approach of the edge count-
ing scheme, which was then enhanced by the node-based
approach of the information content calculation. The factors
of depths of nodes, the density around nodes, and the type
of connections were taken into account in this measure. The
simplified version of the measure was given as

Dist (𝑤
1
, 𝑤
2
) = IC (𝑐

1
) + IC (𝑐

2
) − 2 × IC (LCA (𝑐

1
, 𝑐
2
)) .

(5)

However, being relative measures, both the method of Lin
and that of Jiang and Conrath were proportional to the IC
differences between the terms and their common ancestor,
independently of the absolute IC of the ancestor. To overcome
this limitation, Schlicker et al. [31] proposed the relevance
similarity measure. This method was based on Lin’s measure
but used the probability of annotation of themost informative
common ancestor (MICA) as a weighting factor to provide
graph placement as follows:

Sim (𝑐
1
, 𝑐
2
) = max
𝑐∈𝑆(𝑐
1
,𝑐
2
)

(

2 × log𝑝 (𝑐)
log𝑝 (𝑐

1
)+log𝑝 (𝑐

2
)

× (1 − 𝑝 (𝑐))) .

(6)

All these measures overlooked the fact that a term
can have several disjoint common ancestors (DCAs). To
overcome this limitation, Couto et al. [34] proposed the

GraSMmethod, in which the IC of theMICAwas replaced by
the average IC of all DCA. Bodenreider et al. [35] developed
a node-based measure that also used annotation data but did
not rely on information theory. Focusing on the gene ontol-
ogy, theirmethod represented each term as a vector of all gene
products annotated with the term and measured similarity
between two terms by calculating the scalar product of their
vectors. Riensche et al. used coannotation data to map terms
between different GO categories and calculated a weighting
factor, which could then be applied to a standard node-based
semantic similarity measure [36].

3.4.Methods Based on Features of Terms. In feature-matching
methods, terms are represented as collections of features, and
elementary set operations are applied to estimate semantic
similarities between terms. A feature-matching model in
general consists of three components: distinct features of term
𝐴 to term 𝐵, distinct features of term 𝐵 to term 𝐴, and
common features of terms 𝐴 and 𝐵.

Using set theory, Tversky [37] defined a similarity mea-
sure according to a matching process, which generated a
similarity value based on not only common but also distinct
features of terms. This approach was in agreement with an
information-theoretic definition of similarity [15]. Unlike
the above-mentioned models based on semantic distance
[27–29], this feature-matching model was not forced to
satisfy metric properties. A similarity measure based on
the normalization of Tversky’s model and the set-theory
functions of intersection (𝐷

1
∩ 𝐷
2
) and difference (𝐷

1
/𝐷
2
)

was given as

Sim (𝑐
1
, 𝑐
2
) =





𝐷
1
+ 𝐷
2










𝐷
1
∩ 𝐷
2





+ 𝜇





𝐷
1
/𝐷
2





+ (𝜇 − 1)





𝐷
2
/𝐷
1







,

for 0 ≤ 𝜇 ≤ 1,
(7)

where 𝐷
1
and 𝐷

2
corresponded to description sets of 𝑐

1
and

𝑐
2
, | | the cardinality of a set, and 𝜇 a function that defines

the relative importance of the noncommon features. The
first term of a comparison (i.e., 𝑐

1
) was referred to as the

target, while the second term (i.e., 𝑐
2
) was defined as the

base. Particularly, intersections or subtractions of feature sets
were based only on entire featurematches.This featuremodel
allowed for representing ordinal and cardinal features, but the
similarity measure did not account for their ordering.

In addition, the Matching-Distance Similarity Measure
(MDSM) by Rodŕıguez et al. [38] and Rodŕıquez and
Egenhofer [7, 39] was another feature model developed for
similarity measurement of geospatial terms. This category of
models was based on the ratiomodel that extends the original
feature model by introducing different types of features and
applying them to terms.

3.5. Methods Based on Hierarchical Structure of an Ontology.
Typically, an ontology is represented as a directed acyclic
graph (DAG), in which nodes correspond to terms, and edges
represent relationships between the terms. A parent node
may have several child nodes while a child node may have
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several parent nodes. Some nodes have high density around
themwhile some have low density in the hierarchy. Amethod
based on the structure of an ontology typically uses a distance
measure to quantify the similarity between two nodes in
the corresponding DAG of the ontology and then uses this
measure to assess the relatedness between the corresponding
terms in the ontology.

There have been quite a few methods that belong to this
category. For example, Rada et al. converted the shortest
path length between two terms into their semantic similarity
[27]. Wu and Palmer calculated the distance from the root
to the lowest common ancestor (LCA) node of two terms
as their semantic similarity [29]. Leacock and Chodorow
calculated the number of nodes in the shortest path between
two terms and then used the number with the maximum
depth of an ontology to quantify the relatedness of the terms
[40]. Al-Mubaid and Nguyen quantified the commonality
of two terms as their similarity [41]. Wang et al. proposed
to aggregate contributions of common ancestor terms to
semantic values of two terms in the calculation of their
semantic similarity [19]. Zhang et al. improved the method
of Wang et al. and proposed the combined use of the
shortest path length and the depth of the LCA node [42].
The strategies that these methods employed included lengths
of shortest paths, depths of nodes, commonalities between
terms, semantic contributions of ancestor terms, and many
others. Although the use of these strategies has enabled
the successful application of these methods to a variety of
problems, the existence of a drawback in these methods is
also obvious. It is common that a term in an ontology has
more than one parent node in the corresponding DAG, and
thus two terms may have two or more LCA nodes. However,
none of the above methods take such a situation of multiple
LCAnodes into consideration in their calculation of semantic
similarity.

Wang et al. evaluated measures proposed by Jiang and
Conrath, Lin, and Resnik and tested these measures against
gene coexpression data using linear correlation [19]. They
pointed out that the distance from a term to the closest
common ancestor might fail in accurately representing the
semantic difference between two GO terms, since two terms
near to the root of the ontology and sharing the same parent
should have larger semantic difference than those far away
from the root and having the same parent. In addition,
considering that a GO term may have multiple parent terms
with different semantic relationships, they also suggested that
measuring the semantic similarity between two GO terms
based only on the number of common ancestor terms might
fail in recognizing semantic contributions of the ancestor
terms to the two specific terms. In addition, from human
perspectives, an ancestor term far away from a descendant
term in the GO graph should contribute less to the semantics
of the descendant term, while an ancestor term closer to a
descendant term in the GO graph should contribute more.

According to the above understanding, Wang et al.
presented GO as directed acyclic graphs (DAGs) in which
terms formnodes and twokinds of semantic relations is-a and
part-of form edges. They further defined the contribution of
a GO term 𝑡 to the semantics of GO term 𝐴 as the 𝑆-value

of GO term 𝑡 related to term 𝐴. Formally, a GO term 𝐴 was
defined as a graph DAG

𝐴
= (𝐴, 𝑇

𝐴
, 𝐸
𝐴
), where 𝑇

𝐴
was the

set of GO terms in DAG
𝐴
, including𝐴 and all of its ancestors

in the GO graph, and 𝐸
𝐴
was the set of edges connecting GO

terms in DAG
𝐴
. For any term 𝑡 in DAG

𝐴
= (𝐴, 𝑇

𝐴
, 𝐸
𝐴
), the

𝑆-value related to term 𝐴, 𝑆
𝐴
(𝑡) was then defined as

𝑆
𝐴
(𝐴) = 1,

𝑆
𝐴
(𝑡) = max {𝑤

𝑒
× 𝑆
𝐴
(𝑡

) 𝑡

∈ children of (𝑡)} (𝑡 ̸= 𝐴) ,

(8)

where 𝑤
𝑒
was the semantic contribution factor for edge 𝑒 ∈

𝐸
𝐴
that links term 𝑡 and its child term 𝑡

. Given DAG
𝐴
=

(𝐴, 𝑇
𝐴
, 𝐸
𝐴
) and DAG

𝐵
= (𝐴, 𝑇

𝐵
, 𝐸
𝐵
), for terms 𝐴 and 𝐵,

respectively, the semantic similarity between these two terms,
𝑆GO(𝐴, 𝐵), was defined as

𝑆GO (𝐴, 𝐵) =
∑
𝑡∈𝑇
𝐴
∩𝑇
𝐵

(𝑆
𝐴
(𝑡) + 𝑆

𝐵
(𝑡))

SV (𝐴) + SV (𝐵)
, (9)

where 𝑆
𝐴
(𝑡) and 𝑆

𝐵
(𝑡) are 𝑆-values of term 𝑡 related to

terms 𝐴 and 𝐵, respectively, and SV(𝐴) and SV(𝐵), defined
as SV(𝐴) = ∑

𝑡∈𝑇
𝐴

𝑆
𝐴
(𝑡) and SV(𝐵) = ∑

𝑡∈𝑇
𝐵

𝑆
𝐵
(𝑡), were

semantic values of terms 𝐴 and 𝐵, respectively. Wang et al.
further compared their measure against Resnik’s method by
clustering gene pairs according to their semantic similarity
and showed that their measure produced more reasonable
results. However, in Wang’s method, the weights of the is-a
and the part-of relations were empirically determined as 0.8
and 0.6, respectively, without theoretical analysis. Moreover,
this method did not take into account the factor of the
amount of nodes. In a subsequent study, Zhang et al. [42]
pointed out that Wang’s method overlooked the depth of
the GO terms and proposed a measure to overcome this
limitation.

Schickel-Zuber and Faltings [43] defined a similar-
ity measure for hierarchical ontologies called Ontology-
Structure-based Similarity (OSS). They pointed out that a
quantitative measure of similarity should represent the ratio
of numerical scores that may be assigned to each term,
and thus the score of a term should be defined as a real-
valued function normalized to the range of [0, 1] and should
satisfy three assumptions. First, similarity scores depended
on features of the terms. Second, each feature contributed
independently to a score. Third, unknown and disliked
features made no contribution to a score. In detail, the OSS
measure first inferred the score of the term 𝑏 from 𝑎, 𝑆(𝑏 |
𝑎), by assigning terms in the ontology an a-priori score
(APS) and computing relationships between scores assigned
to different terms. Then, this method computed how much
had been transferred between the two terms, 𝑇(𝑎, 𝑏). Finally,
this method transformed the score into a distance value
𝐷(𝑎, 𝑏). Mathematically, the a-priori score of a term 𝑐 with 𝑛
descendants was calculated as

APS (𝑐) = 1

𝑛 + 2

, (10)

implying that leaves of an ontology have an APS equal to
1/2, the mean of a uniform distribution in [0, 1]. Conversely,
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the lowest value was found at the root. It also implied that
the difference in score between terms decreased when one
traveled up towards the root of the ontology, due to the
increasing number of descendants. Given two terms 𝑥 and
𝑧 in an ontology and their lowest common ancestor 𝑦, the
distance value was calculated as

𝐷 (𝑥, 𝑧) =

log (1 + 2𝛽 (𝑧, 𝑦)) − log (𝛼 (𝑥, 𝑦))
max𝐷

, (11)

where 𝛼(𝑥, 𝑦) was a coefficient calculated as 𝛼(𝑥, 𝑦) =

APS(𝑦)/APS(𝑥), 𝛽(𝑧, 𝑦) a coefficient estimated by 𝛽(𝑧, 𝑦) =
APS(𝑧) − APS(𝑦), and max𝐷 the longest distance between
any two terms in the ontology.

Al-Mubaid and Nguyen [41] proposed a measure with
common specificity and local granularity features that were
combined nonlinearly in the semantic similarity measure.
Compared with other measures, this method produces the
highest overall correlation with human judgments in two
ontologies. In mathematics, the semantic similarity between
two terms was calculated as:

Sem (𝐶
1
, 𝐶
2
)

= log ((Path − 1)𝛼 × (𝐷 − depth ((LCS (𝐶
1
, 𝐶
2
))))
𝛽

+ 𝑘) ,

(12)

where 𝛼 > 0 and 𝛽 > 0 were contribution factors of two
features, Path the length of the shortest path between the
two terms, 𝐷 the maximum depth, LCS the closest common
ancestor of the two terms, and 𝑘 a constant. Compared with
other measures, this measure produced the highest overall
correlation results with human judgments in two ontologies.

3.6. Hybrid Methods. Hybrid methods usually consider sev-
eral features such as attribute similarity, ontology hierarchy,
information content, and the depth of the LCA node simulta-
neously. One of the representativemethods wasOSS in which
a priori score was used to calculate the distance berween two
terms, and then the distance was transformed into semantic
similarity [43]. Another example was the method proposed
by Yin and Sheng [44], which combined term similarity and
description similarity.

4. Derivation of Semantic Similarity of Entities
Annotated with an Ontology

With the semantic similarity scores between terms in an
ontology calculated using either of the above methods, the
derivation of semantic similarity of entities annotated with
the ontology was typically conducted using either the average
rule [15] or the mean-max rule [19].

Given two sets of terms 𝑇 and 𝑆, the average rule
calculated the semantic similarity between the two sets as the
average of semantic similarity of the terms cross the sets as

Sim (𝑇, 𝑆) =

1

|𝑇| × |𝑆|

∑

𝑡∈𝑇

∑

𝑠∈𝑆

Sim (𝑠, 𝑡) . (13)

Since an entity can be treated as a set of terms, the semantic
similarity between two entities annotated with the ontology
was defined as the semantic similarity between the two sets
of annotations corresponding to the entities.

The mean-max rule defined the semantic similarity
between a term 𝑡 and a set of terms 𝑇 in the ontology as the
maximum similarity between the term and every term in the
set as

Sim (𝑡, 𝑇) = max
𝑡

∈𝑇

Sim (𝑡, 𝑡

) . (14)

Then, the semantic similarity between two sets of terms𝑇 and
𝑆 was calculated as

Sim (𝑆, 𝑇) =

1

|𝑆| + |𝑇|

(∑

𝑠∈𝑆

Sim (𝑠, 𝑇) + ∑

𝑡∈𝑇

Sim (𝑡, 𝑆)) . (15)

Finally, the semantic similarity between two entities anno-
tated with the ontology was calculated as the semantic
similarity between the two sets of annotations corresponding
to the entities.

5. Software for Deriving Semantic
Similarity Profiles

With the above methods for calculating semantic similarity
of terms in an ontology and that of entities annotated with
an ontology available, a natural demand in research is the
development of user-friendly software tools that implement
these methods. So far, there have been quite a few such
software tools available, with examples including GOSemSim
[45], seGOsa [46], DOSim [47], and many others.

Yu et al. developed GOSemSim [45] for calculating
semantic similarity between GO terms, sets of GO terms,
gene products, and sets of gene products. This tool was
developed as a package for the statistical computing environ-
ment 𝑅 and released under the GNU General Public License
(GPL) within the Bioconductor project [48]. Consequently,
GOSemSim was easy to install and simple to use. However,
GOSemSim heavily depended on a number of packages
provided by Bioconductor. For example, package GO.db
was used by GOSemSim to obtain GO terms and relation-
ships; packages org.Hs.eg.db, org.Rn.eg.db, org.Mm.eg.db,
org.Dm.eg.db, and org.Sc.sgd.db were required in order to
obtain annotations of gene products for human, rat, mouse,
fly, and yeast, respectively. Although such a design scheme
greatly alleviated the requirement of understanding specific
formats of these annotations, the frequent access of anno-
tation databases was typically the bottleneck of large-scale
calculation of semantic similarity profiles for thousands of
gene products.

Zheng et al. proposed seGOsa [46], a user-friendly
cross-platform system to support large-scale assessment of
gene ontology- (GO-) driven similarity among gene prod-
ucts. Using information-theoretic approaches, the system
exploited both topological features of the GO and statistical
features of the model organism databases annotated to the
GO to assess semantic similarity among gene products.
Meanwhile, seGOsa offered two approaches to assessing the
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similarity between gene products based on the aggregation of
between-term similarities.This package has been successfully
applied to assess gene expression correlation patterns and
to support the integration of GO-driven similarity knowl-
edge into data clustering algorithms. This package has also
assessed relationships between GO-driven similarity and
other functional properties, such as gene coregulation and
protein-protein interactions in Saccharomyces cerevisiae and
Caenorhabditis elegans. A database consisting of semantic
similarity between gene products in both Saccharomyces
cerevisiae andHomo sapiens has been successfully established
using seGOsa and applied to the prediction of protein
interaction networks.

Li et al. developed an R-based software package (DOSim)
to compute the similarity between diseases and to measure
the similarity between human genes in terms of diseases
[47]. DOSim incorporated an enrichment analysis function
based on the disease ontology (DO) and used this function
to explore the disease feature of an independent gene set.
A multilayered enrichment analysis using GO and KEGG
[49] annotations that helped users to explore the biological
meaning implied in a newly detected gene module was
also included in the DOSim package. This package has
been applied to calculate relationships between 128 cancer
terms, and hierarchical clustering results of these cancers
have shown modular characteristics. This package has also
been used to analyse relationships of 361 obesity-associated
genes, and results have shown the complex pathogenesis of
obesity.

6. Applications of Semantic Similarity Profiles

Biological entities can be described using an ontology as a
common schema as well as compared by means of semantic
similarity to assess the degree of relatedness via the similarity
in meaning of their annotations. In recent years, there has
been a growing trend towards the adoption of ontologies
to support comprehensive, large-scale functional genomics
research. For example, it has been shown that incorporating
knowledge represented in the gene ontology may facilitate
large-scale predictive applications in functional genomics [7,
32, 50] and disease studies [12]. It has also been shown that
phenotype ontologies benefit the understanding of relation-
ship between human phenotypes [9, 11].

6.1. Inference of Disease Genes Based on Gene Semantic
Similarity Networks. Uncovering relationships between phe-
notypes and genotypes is a fundamental problem in genetics.
In the context of human-inherited diseases, pinpointing
causative genes that are responsible for a specific type of
disease will greatly benefit the prevention, diagnosis, and
treatment of the disease [51]. Traditional statistical methods
in this field, including family-based linkage analysis and
population-based association studies, can typically locate the
genetic risk to a chromosomal region that is 10–30Mb long,
containing dozens of candidate genes [52]. The inference of
causative genes from these candidates hence receives more
and more attention.

The inference of causative genes is typically modeled as
a one-class novelty detection problem [51]. With annotations
of a set of seed genes that are known to be responsible for
a query disease of interest, candidate genes can be scored
according to their functional similarity to the seeds and
further prioritized according to their scores. To facilitate
the discovery of causative genes for diseases that have no
seed genes available, phenotypic similarity between diseases
is incorporated. For example, [53] proposed to measure
functional similarity between two genes using their proximity
in a protein-protein interactionnetwork and further designed
a regression model to explain phenotypic similarity between
two diseases using functional similarity between genes that
were associated with the diseases. However, a protein-protein
interaction network can typically cover less than half of
known human genes, and thus greatly restricts the scope of
application of their method.

To overcome this limitation, Jiang et al. calculated
pairwise semantic similarity scores for more than 15,000
human genes based on the biological process domain of
the gene ontology [12]. They demonstrated the positive
correlation between semantic similarity scores and network
proximity scores for pairs of proteins. Moreover, through
a comprehensive analysis, they concluded that pairwise
semantic similarity scores for genes responsible for the
same disease were significantly higher than random selected
genes. With these observations, they constructed a semantic
similarity network for human genes according to a nearest
neighbor rule, and they proposed a random walk model
to infer causative genes for a query disease by integrat-
ing the phenotype similarity network of diseases and the
semantic similarity network of human genes.They compared
their methods with a number of the state-of-the-art meth-
ods and demonstrated the superior performance of their
approach.

6.2. Inference of Drug Indications Based on Disease Semantic
Similarity Profiles. The inference of potential drug indica-
tions is a key step in drug development [11]. This problem
can be defined as follows: given a query disease, a set of small
chemical compounds (potential drugs) and known associa-
tions between drugs and diseases rank small molecules such
that drugs more likely to be associated with the query disease
appear higher in the final ranking list. Bearing an analogy to
the above problem of inferring causative genes for diseases,
the inference of drug indications can greatly benefit from
phenotypic similarity profiles of diseases.

A typical method for the derivation of phenotypic sim-
ilarity profiles of diseases is text mining. For example, van
Driel et al. [54] used the anatomy (A) and the disease (C)
sections of the medical subject headings vocabulary (MeSH)
to extract terms from the OMIM database and further
represented the OMIM record (disease) as a vector of the
corresponding phenotype features. Then, they defined the
similarity score between two disease phenotypes as the cosine
of angle between the two corresponding feature vectors. It
has been shown that such similarities are positively correlated
with a number of measures of functions of genes that are
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known to be associated with the diseases, suggesting the
effectiveness of this approach.

Recently, the availability of the human phenotype ontol-
ogy (HPO) [9] provides another means of deriving the
phenotypic similarity profile of diseases. Given the ontology
and annotations of diseases, Gottlieb et al. [11] proposed
to first calculate semantic similarity between terms in the
ontology using the method of Resnik [18]. Then, treating
a disease as a set of terms in the ontology, they calculated
pairwise similarity betweenOMIMdiseases. Further analysis
has shown the consistent clustering of diseases according to
the semantic similarity profile derived this way (Hamosh et
al., 2002). With the semantic similarity profile of diseases
ready, Gottlieb et al. [11] further proposed a logistic regression
model to predict drug indications for diseases and showed the
effectiveness of this profile.

7. Conclusions and Discussion

The explosive increasing of a wide variety of omics data
raises the demand of standard annotations of these data using
common controlled vocabularies across different experi-
mental platforms and different laboratories. Biological and
biomedical ontologies [5], as abstract description systems
for knowledge composition in the domain of life sciences,
provide structured and controlled representations of terms
in this field and, thus, reasonably meet this end. Targeting
on the problem of quantifying the relationships between
terms in an ontology, and relationships of entities anno-
tated with an ontology, we have summarized a number of
existing methods that calculate either semantic similarity
between terms using structures of an ontology, annota-
tions of entities, or both. We have further extended the
review to the calculation of semantic similarity between
entities annotated with an ontology and summarized typical
applications that made use of biological and biomedical
ontologies.

Although there have been quite a few methods for
calculating semantic similarity between terms in biological
and biomedical ontologies, the correctness of these methods
largely depends on two factors: the quality of the annota-
tion data and the correct interpretation of the hierarchical
structure of an ontology. Particularly, for methods that
depend on information contents of terms, noise existing in
annotation data can adversely affect the correct estimation
of the information contents and further bring noise into the
resulting semantic similarity. For example, in gene ontology,
a large proportion of annotations is inferred electronically
by sequence similarity of gene products or other annotation
databases. Whether such inferred annotations should be
used in the calculation of information contents or not is
still an open question. Furthermore, some gene products
have been studied in more detail, while knowledge about
some gene products is very limited. As a result, available
annotations are biased towards heavily studied gene products,
and quality of annotations is also biased. Such biased in
annotations will also adversely affect the correctness of the
derived information contents.

On the other hand, many biological and biomedical
ontologies havemultiple types of relationships between terms
(e.g., is a, part of, etc.), and thus methods rely on structure
of an ontology need to properly weigh different types of
relationships between terms. How to determine such weight
values, however, is an open question. For example, although
Wang et al. [19] have suggested the weights of 0.6 and 0.8 for
is a and part of relationships in gene ontology, respectively,
whether these values are suitable for other ontologies is not
systematically evaluated. Furthermore, for ontologies that
have even more types of relationships, the determination of
the weight values becomes a more serious problem.

As for applications that make use of ontologies, the prob-
lem needs to be cared about is the circularity. For example,
information contents are calculated by using annotations, and
thus using similarity in annotations to evaluate the goodness
of semantic similarity derived from information contents is
not appropriate. A direct consequence of overlooking such
circularity will be the overestimation of the performance of
an application—good in validation but poor in real situation.
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